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SOME APPROXIMATIONS IN THE THEORY OF MOMENTS AND TRANSITIONS
FOR EVEN-ODD NUCLEI®

- M. Weigel+
Lawrence Radiation Laborétory
University of California

Berkeley, California 94720

June 1971

| ABSTRACT

. In the framework of Green's fﬁnctions, the'theofy of moments and 
transitions for evenfodd_nuciéi is devgloped. It is shown, how these
quantities are connected with the effective particle-hole force and %he
generalized linear response function. for the heighbour even-even nuclei. The
response function describes the change of fhe siﬁgle-particlé propagator due
to an external perturbation. For superfiuid‘systems the Nambu (;)—
Engelsberg (g)éBelyaev“(g) technique has been used. The connection between
earlief treatments is established; eépecially with thg sémiphenomenological.
aéproach of Migdél (E) and co-workers. Some approximations for the releﬁant
effective particle-hole force emérging from the many-body theory aré discussed
in detail. Furthermsre the generalization of the RPA-approximation for the

auto-correlation function of dehsity fluctuations in the case of superfluidity

is given.

¥ v » .
Work performed under the auspices of the U. S. Atomic Energy Commissicn.

+On leave from the Sektion Physik der Universitat Munich, Munich, Germany.
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I. INTRODUCTION
Most of the calculations of moments and transitions for even-odd nuclei
. [

are based on the assumption,.that the relevant states are mainly describable

by a single—(quasif)particle or -hole excitation plus a perturbation, which

>

can be either detérmined by (first-order) perturbation theory or a core-particle

coubiipg model. For the interaction, one pfefers a phenomenoiogical efféctive |

poteﬁtial. Rarely-due to convergence difficulties-a bare nucleon-nucleon force
e . . :

is used.

A disavantéée of such basically éhenomenological approacheé is the

lack of a thorough foundation in many-body physics. 'A step to overcome this

problem has been taken by Migdalm(ﬂ), who investigated the chgnge of the

density matrix due to adding (or removing) of a.particle. Since the wantéd

changevcaq bg related to the problem of rearrangément of nucleons aue to an

external field, which was treated by Feynman techniques, the problem ﬁas

reduced to the determination of the so—calléd charge vertex. For this

quantity, one ébtains an equation containing only the renormalized effective

particle-hole férce (éppendix A). The renormalization is due to two effects; the

first one is gauséd by deviations from the ideal shell-model propagation, the

second‘one by the restriction of the basis. Since the charge'vertex obeys

certain symmetries, one can parameterize in many cases the form of the homogenous

term. Furthermore, a simple ansatz for the renormalized particle-hole force

has been used. With this approach a kind of semiphenomenological theory-

*
If we consider for instance the calculations of magnetic moments for the ideal

case in the lead region, one has used both methodsv(S—S) to determine the

magnetic moments. The deviations from the experimental outcome is about
10-30%. ’
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based on thé many;body theory of nuclei- bas been established, which is useful
for the calculatipns of moments and transitions. For instanée;'in the case of
magnetic momentsvnear lead, one'obtains——despite of the very simplified used
interaction--a similar acéuracy as in the'phenomenological casé (532). Another
possibility to formulate the problem ié the ﬁée of Brueckner-Bethe techniques, .
which were developed mainly for the treatmeﬁt of thé nuclear matter problem. A
review for the'general theory witﬁ.application for»moﬁents and transitions is |
given in Ref. (10).

In this paper we intend to pfesenﬁ_the theory of moments and trahéitiqns
of even-odd nuclei (Nil-nuclei, N even) in such a manner, fhat-the connection
between these éuantities and the properties of théveven ﬁeighbourAnuclei
(N-, Ni2-nuclei) is made transpa;ent. If one has calculated the properties of -
theséveVen nuclei,‘one can determine the wanted momenfé and.transifions without,
solving an additional diagonalization pfoblem. The basic kéyifor such relationsv
is the fact, that the change in the single-particlé_pfopagator due td the
addition (or removal) of a particlé is determined by the same quantities which-

give the changé'of this propagdtor due to an external perturbation.~ In order to

obtain the propagétor change, the knowledge of either the effective scattering

amplitude or equivalently the effective particle-hole force plus the resulting -
linear response function is sufficient. Since we want to treat the theory as
unphenomenological‘as possible we are going to investigate the problem in soﬁe
approximations, which are based on the bare nuéleon—nucléon force and seem to be
suitable from & many-body standpoint of view. As in the semiphenoménological

approach we utilize the Green's function method for obtaining the relevant

expressions.

To obtain the relevant system of equations for the Green's functions,

several consistent ways are known. First, one can start with the Heisenberg
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equations for the field operators and obtain with the equation of motion

method a coupled system of integro-differential equations fof fhe Green's
functions. ?hese equations contain--as in classical statisticgl mechanics--

only the nucléén—nucleon force and the Green's fuﬁctions. Since in these
equations the n-point function is coupled to the n-l-point function and the
nt+l-point function, one has to solve, in principle, for a comﬁlete solution the
whole coupled system of order N.. This system of equations is equivalent to one
functional equation. Martin and Schwinger (;l) have developed a method of
truhcating the sysﬁem bybtakihg into account correlations ﬁp to a desired order.
This can be achieved by expanding the solution in powers of the annormal source
functions. But since the nucleon-nucXeon fbrce might be strong repﬁlsive for
short distances, one prefers often in nuclear physics a second approach in which
the finﬁl expressions contain only so-called effective quantities.(ﬂ), which

can either be calculated in some approximation using the bére forces or deduced
from experimental data. Since we want to investigate.the effect of certain
approximations for the effective quantities on the moments and transitions, we

are going tb follow the second approach. In most applications one wbﬁld like to
use & simple shell-model potential description for the intermediate particle or
hole propagation. But it is well known that in eertain regions of the periodic
table~-for insténce caused by superfluldity--this description breaks down due to
irregular terms in the effective one-particle pétential (32h212). One can overcome
this problem by treafing‘explicitly the strong couplings to the ground states of d
the Ni2-system. The technique is the use of generalized Green's functions, which ‘-
has Seen utilized by several authors (1,2,3). - In order to make plain the theories
and techniques involved, we will give a short summary of the general method in the
second section. Furthermore, we will rederive the change of the single-

particle propagator due to adding or
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////;émoving of one particle utilizing a method of scattering theory"suggested by
W. Brenig (;1).. In the third section we are going to take dowh.the approximations
to be used in the Green's function scheme. In order to show the structure of -

“the problem more explicitly, the normal systems will be treated extensively

in the fourth section.

II. GREEN'S FUNCTION THEORY
We are’going to obtain the relevant equatiéns with the help of the
functional technique (14). The usﬁal:notation for normel Green's functions
inconvient for our purpose, therefore we will adopt mainly the definitions
given by Nozieres (;2). Insﬁead of the standard Heiseﬁberg creation and

annihilatioﬁ operators we introduce the notation:

1

1
JBR. r
wr' B wi . R

1, (II.1)

with r denoting the complete single-particle quantum number set p plus the time

% .
coordinate tr. The equation of motion is given by (we assume only two-

-

particle nucleon-nucleon forces w):

RL L RL RL RL RL LRy L
=spg Vg - (B - W(P) by = w{N) n p+ u g - ug ) Yy
R,-L | :R,-1 + L. R, _ L _
-8 (s Vemin w‘m++wn+w2 + 8 Vomnr U8 wm"wn"') =0 (11.2)
* 4

m” means & shift of the time argument about an infinitesimal omikron.
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_Here, h denotes the'kinetié energy (or morergeneral time independent single-
particle hamiltgnian); s is the Schroedingér opérator; u(P) and u(N) are the
chemical potentials for protons and neutrons, p and n dénote the corresponding
projection operators on proton and neutron states, respectively,‘the uiﬁ are

‘the matrix eleménts of the source, which may be annomalous (2) (no particle

conservation, time dependent). Furthermore, we use the convention, according

to which summation or integration, respectively, is to be carried out over all

doubly occuring Latin indices.

Hence, we have more explicitly (h =1):

hﬁfi: = 8(t, - ty) s>~ {53’"1 (plnja) - 6331 {A]nle )z

»nii: = Rl G(tr - tz)‘ gGR’_l (p]%-+ T‘IA ) - 63’1 (Xl%f+ T ]p)}_
g = 80 6t - %) ;‘GR"”]‘ Gl -1 ) -Gl o >}
»wmgn: = 6(tr }- tm) S(tg - tn) G(tr - tl) % <pu|w|_}\v) = Cpulw]wr )i

(IT.3)

For the definition of the Green's functions one introduces (u = 0):

L
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where ¢ (N) labels the ground state of the N-particle system.

time—orderlng operator.”

- -
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'1))>-

Z (—

P

. (II.h)

" T denotes the

. We use the functlonal technlque to obtaln the relevant expres51ons

M(u # o) (2 13)

sourc eS..

. four—p01nt functlons by 1ntroduc1ng the effectlve s1ngle—part1cle potentlal Vzi

[

"The Green 'S functlons depend functlonally on the external

U51ng Suhw1nger s varlatlonal pr1n01ple (16) and ellmlnatlng ‘the -'

'(irreduCLbLeAmass operator) in the equation-for the twofp01nt function, one

obtains the following set of equations:

RL + hRL

rf

RL RL
rd U(P)prz “U(N) n

é gLS - o s v
s LR ARKNM rk KS - _
™ - Bar rknm ™™ [ Sxs
u .6 u
om m
SA_ ;)1 rra  Raik) (1K KL
ra 2 \ rkila ralk slk; €xe

RL _ LR, RL{ LS 6R’S ,
urgl ulr vrl gls s .
| (11.5)
-LMSN l LS KIMN KJ N
€msn T 2 zs- kjmn Skj f(I;.6)
1 RLAK _ RKAL) KL _ RILS LK ka
72 \¥reax rkaf gk!l, rjis 89y '—‘-—6 Is
A11.7)

) . A
Couplings to excited states of neighbour nuclei are assumed to be weak and
therefore not taken explicitly into account.

ujs' |
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NAXL NAXL, ., _NDXC CR KD _RAKL

Tnax2 = nax® -1 ndxc gcr gkd Trakz ’ (II.lS)
or expressed in Feynman graphs as:
n b'¢
n X I
[ g T ’ & d .
T S I + AV (11.17)
L a % a 1 k
T
L a

The expression (II.7) for the effective single-particle potential can now be

put in the following form (u

It
o
‘v

AR
v =
ar

py w_AKLR - wARLK LK _ KL 1 ALRK _ wAKRL KL
2 \"axtr T Varix Eox " Bk} T2 \Yatrk T Vakrt] &kt

_ w_AJLS LK _KDRC _CSDJ
ajis €2k “kdre csd]

= i AJLS _XKDRC _(I)CSDJ ' )
o {[ S ]’ Vails Tkdrc U csdj} (11.18)

Since the two-point function is determined by the effective single-particle
potential, and the four-point function accordiné to (Ii.6) by the linear response
function, one has to determine these both quantities. The perturbation expansion
in terms of dressed quantities is easily obtainable by iterating (II.6) and

. cey OV . Sg : L
(II.7) starting with v 0. BSince v and Sa do not depend explicitly on u, one
can finally put u = 0, Differentiation of the series for v with respect to the

two-point function gives the series for the effective particle-hole force. The

*#
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obtained exﬁansion 1s not a series iﬁ power;‘of thé twd—body force since the
"dressed" two-point functions dépend implicitly on the potential. |

If one would know fhe irreducible vertex, fof instance, by extraction-
from experimental data as if is partly done in Migdal's theory, one céuld.use
Eqs. (II.16) and (II.18) together with (II.5) tc determine the wanted quantities.
There, thebexternal source has to be set equal to zero. If ofie wants to avoid
pertufbétion theory, for instance, due to possible cbnvergénce difficulties;
and the p?rticle-hole force 1s not known sufficienfly; one.can try to solie in
some approximation thé fol;owing final system of equations, (uw=0):

; WKIR _ 1 JKRL _ , ~AXLY CX YD JKDRC) IK (11.19)
' 2 L axly Sex &yd “xare/) Gk : .

AXL _ gWDCX | 1 NDXC | . NUCY WU
ndex 2 "ndxc nucy & 8yv dvxw

+ 1 [(gfDLY YV [KVXC _ oNULC WU  KDXW
» ndly gyv kvxe mite & Tkdxw
4 NULY WU YV kvxw LK
muty & &y T 0D ) B
g .
cd
D L ., CB JD [ BAJL _
) [Gad Seg = 1 8y €s5a Tbajz] } (11.20)
: RM } -1 RM - . ' )
* 8o = ) - [s +h-uP)p-uN) n+v (Ir.21)
‘ , m
with:
~RKLA _ RKLA _RALK : | , (11.22)

Vexta® T Yrxta T Yralk
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The second equation was obtained using definition (II.10) and Eq. (II.18). For

completness we will take down in first order with respect to the external source

the change of the single-particle propagator, and equivalently, the equation

for the effective charge.

By definition we have in first order the following change for the single-

particle propagator

respectively:
A KL _ KJ AJDI\TM
Bre T &3 ) %jamm
or
KL

beyy

’

_ [i L(Dxan | ke

kmin

8 ng
4 —ad
s NM
u
m

DL
€al Ymm °
u=290 :

DI, _CBDA . (I)AMBN
Exe 838 “cbda ambn

M

nm

(11.23)

" which can be expressed in different ways using (II.6) or (II.15; II.16),

(11.24)

(II.25)

The first equation is useful for the perturbation éxpansion, The equation for

the effeétive charge u

natural way through:

KL _
A ey = 8y Ayamm U

(2)

KJ ,JpnM (E)NM DL

A

is given by:

JDNM (E)nM NM
A u - 0
Jjdnm nm nm

mm Sag

?

JLDR RX KL AXKNM
Jar Erx Exp “xknm

effective external source),

(E)M
m

defined in &

(11.26)

(rm.en)

=

G
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'

The effective charge can also be expressed by the linear response function or

the effective scattering amplitude, respectively. One gets:

| | :
JDNM (u(E)NM_uNM) _ _ [JADB BMAN M

he A',jdnm ' m nm jadb mean m
| ‘ | (11.28)
' JADB _ (I)BMAN NM '
~“Tyeab U tman Ymm

In graphs, (II 25) gives the following contributions to the perturbed single-

particle propagator (denoted by a double bar):

&— = é—m + k L+ , ,
k L k L (1) x a2
L T :
n m &} b
SO |
| . n m s - (1I1.29)
l .

" which leads to the equation for the effective charge (11. 27) having the

following structwre in Feynman graphs

u(E) u. J a
3o J2d I | - -
W‘ - v = g1 o : - , (11.30)
1 , : AN Y
' B e f

; ] _ _
In order. to obtain the transitions and moments, one has to determine a

generalized density matrix, which we define as follows:
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TN R |
, 8 £ ,
if, 2 * © (II.31)

o _
* Qv )
2, vy vy l0,
Aishe N . N-1
where .Q Q are the exact initial, final states of the N + ~nucleus.
: i’ 'f

The Schroedinger opérétors wf(wa) create (annihilate) a particle in a state
0 defined by a suitable chosen single—parficle hamiltonian.

Since, due to conservation laws, many of #he quantum numbers Yi.of the
odd nucleus coincide with the quantum numbers i of a suitable chosen single-
particle hamiltonian; one selects the followihg representation for the étates

of the odd nuelei (13):

¥+ 2, v, |2,

Ty imeetmens | Vil YA T le ) >
=1 R' 1 at + . . -

- o [vilegtm e, fuslo ) )
' [ R : . o1

inwiE.t-nt wil(bo(N) )(Ailwilq)O(N) )
= 1 2 . : 1 . at + . + | .

. v log (M) e [y o (w))

(11.32)

A similar representation holds for the final states. H denotes the hamiltonian of
the system in field-theoretical formulation. Ei is the energy-eigenvalue of

the state Ai or Qi, respectively. The energy is normalized by setting EO(N) =0.
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» Sinée we are déaling mostly with bound states, Vé have both options
for the representation. In scattering théory thé initial and final states
obey different boundary conditions. | |

For the N-particle system, the density matrix is a special casé of the
single-particle propagator. Therefore, it seems appropriate to.introduce the

following Green's functions for the odd system; .

if,h ' St
ip €ap SRR N | 3
G.: = : o= -i S - - (11.33)
= if,p (lry we,> . -

€ab 11T ¥y W%,

which differ from the standard definition by not being always an expectation
value of a time ordered operator- product in the ground state.
If we choose for the arbitrary time T the maximum of It | and It l

we can express the Green's functions for.the 0dd system by the generalized

four-point function as follows (|0 ) = I¢O ) ):

. v o, =T .
Gif i . 1Eiti niti ot o] L —1Eftf+nftf "
ab i'f i ' f
T —c0
o
+ -1 1 1-1-1 ) -1
-Colys A 0T g iy Aplvglod

fII.sh)

' -1 1 1-1-1 iy -1
Colygla ™ gy o pp (Belvplo?

| So, the problem of determining transitions and moments of odd nuclei has been

related to properties of the even system; As a further détail, we will give
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the spectral representation of the Green's function for odd systems. Defining

the Fourier transform by:

ie t ~ie t ' '
if 1 a’a Tbb _if
Gae(ea, eb) =5 J( dt_ dat, & Gy » | ) (11.35)

one can separate in energy-space the §~function of energy from this function,

so obtaining

if if

Gal€ys &) = 8w+ @, ) Gas(e =5 (e, +¢)) 3 (11.36)
with
M. | W)
Gi'f(e)- = : V(e -H+E +‘o)":L w++ 'f( +H - E "o)lp £
ag'~’" " B A B the "if"1 a
(Q| : 2.0
(11.37)
where we have used ‘the following definitions (EO(N) = 0):
R G
Eoi =3 (13i + Ef)
Qe =E -E; . . - (11.38)

Since we want to determine the transitions and moments of even-cdd nuclei,

caused by an operator q, we have to determine the following matrix element:



£

-17- '~ UCRL-20495

(AilqlA‘f.)

(1)q|F): = = Z %4 oig =i Z %0 Géé(o-; o") (11.39)
(Qlqla,) af o8 o A

In the sectioms IV. and V. we are going to discuss the relation of:fhese

matrixkelements with the properties of the even-even system.
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III. APPROXIMATIONS
For nonsingular and well-behaved nucledn—nucleon potentialé—-as for
instance the Tabékin potential (;1)——thé expaﬁsion in terms of the fwo-body force angd
dressed single-particle prOpagators seems to'be'a natural choice. Thé’wanted

expre551ons in this kind of perturbatlon theory are given in j-th order according

to (II1.6), (II.7), and (II.22) by (Gv( 0)

= 0):
(H)RA _ . )L~ (DK _ _(JKLy _ 1= (3)KL
Yra. T )2 rkza(g “&g ) - "2 rzak €k
N (3-1)xa D . .
RILS" (1)K “Vke :
Vrits ok 5235 } ’ (II1.1)
js
(J)LS Gv(ﬁ‘l)RK .
825 (J)IR )  RKNM rk (3)Ks S '
NM gﬂ.r {Arknm JS } ng s JZ1 . . (III.Z)
Su Su,
js
In first order one obtains (the upper index j = 1 is suppressed):
AR _ . ~AKLR 1 ~AKLR,  IK
Vor = Y Var - 3 waklr) €k (III-?) ‘
IMSN _ . s _ LR ,RKNM KS .
LR,msn -t 6uNM lu=O =t By Arknm €xs ' : (111.%)

nm
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NBLA _ ., _'mb _ 1 ANBAL _ 1 ~NBLA _, 1 ~NABL
Tbte Y T2 "7 2 Ymvat ¥ 2 Ynvta ¥ 2 Ynabvt
g
ab :
GVKR .
kr | _ _  KBRA _ANBS
Gqu u=0 kbra Tanbs
Js '

Insertion of (III.6) in Egs. (III.1) and (III1.2) gives the following

the second' order approximation (index j = 2 is suppressed):

R - §(pAMaR 1 sakRL LK

ar akfr ~ 2 "akrl’ 8k
_ 3 AWLS LK AKDCR _ 1 -KDRC, CX \XYSN YD
anls &gk kder 2 “kdre €ex “xysn 8yd

. s 1S
meEghl
msn s NM 'u=0
u :
nm
_— - LR ARKNM + 1 QRBAK _ l,ARBKA) AU AUVMN VB KS
_glr rknm * "rbak 2 "rbka au uvmn -vb gks
GVAR
IANRM =3 ar _ _ GANMR _ l_GANRM)
anrm 8 MN anmr 2 "anrm
€un

APLS (~KDCR _ 1 ~KDRC, , oM (KN CX XYSP YD
5 ,

-1 wapzs Ykder kdrc fm “kn Eex Xysp gyd

UCRL-20L495

(III.S)

(I11.6)

result for

(1I1.7)

(111.8)
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M IK ANYSP YD + DN IK AXMSP CX l
cm 82k “nysp 8yd dn &2k “xmsp Eox j

+ 6 . | (II1.9)
The general particle-hole force consists of_all graphs, which cannot
be divided in two graphs by cutting only a ﬁparticle" and a "hole"-line. An
important subseries.of thése graphs are the so-called ladder-graphs, which seem
to give an essential contribution to the particle-hole force. Furthermore one
can reﬁove in the ladder approximation hard core singularities. Therefore we:.
shall investigate thé ladder approximation for the particle-hole force. In the
ladder approximation (All—approximation (17)) one takes only the directvscattering

of particles and holes via the potential into account. Hence, one neglects

in (II.20) all terms but the first three ones,'so obtaining

(L)NDXM _ _ ~NDMX _ 1 ~NDXM _ , ~NDUY (L)UK _(L)YV (L)KVXM ,  (III.10)

T ham T 7 “namx T 2 Yndxm Ynauy & w & yv kv

which leads by inserting in Eq. (II.19) to the following expression for the

irreducible mass operator:

JL)AR _ o (L)AKRX g(L)XK '

ar akrx xk (111.11)

So, the effective scattering amplitude plays the role of a pseudo-nucleon-

nucleon-potential. If one neglects the propagator dependence of T; the effective

particle~hole force is just the scattering matrix in ladder approximation:

(111.12)
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| (L)

Here, the term ésg—— *g has been néglected. One can include the functional
derivative in the ladder approximation, which leads to the following approxi-

mation for the irreducible particle-hole vertex:

| AR\(L) FAKRX () '
(F)AMRN _ . <6var) - plD)aEN (6 aer) g (LXK
$

amrn amrn NM xk
gnm :

g

_ (L)AMRN i (L) AKNX (L) AKXN (L)XY (L)uk
=T - %'{ (2T aknx‘ + bt akxn) xy uk

*

'T(L)MYRU
myr

U (op(LIAKXN hT(L)AKNX) (D)X (L)UK T(L)YMRU} . (IT1.13)

akxn aknx Xy uk . ymru

The last expression can be obtalned by using the fact, that the
homogenous term in Eq (;II 10) does not depend on the 51ng1e—part1cle propa-
gator. The correspondlng equatlons for the effective single-particle potential,
the linear response function (or the T-matrix) emerge from (II.23), by inserting
(111.13) in (11.18), (II1.12), or (II.16). - |

In the next section we are going to apply the results of the last both

sections to the problem of moments and transitions for normal systems.
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IV. NORMAL SYSTEMS
Normal systems are characterized by the unimportance of contributions of
bound nucleon-pairs to the single-particle propagators, so one can restrict

oneself for the Green's functions according to (II.4) to the case

N . : |
Z (A, + Bi) = 0. Furthermore u(N) and u(P) can be put equal to zero and the
i=1 ‘
. external sources can be restricted to the standard source

11 ,1-1_ 11 _ -1I-1 | |
u (u = u =u =

_— 0). Since we do not need to keep the upper indexes

for normal systems, we reintroduce the standard notation:

sl -4 ; h_l.l“= h el diay

r 8 rl ’ r & rl ’ r & rl

-1 , -1 , 1 1-1-1, _ _
Vorat T Ve ? rs' T Bgg 0 Lmsn _ Stmsn (IV.l?
The system of equations (II.5) - (II.7) reduces then to

-(s+h+u+ v)rl gzs = Grs R | | (1v.2)
e s . Gvrk ) »
Su__  &n Bus t Byr du_ ®ks = ~ &msn + €2s Bmn * (IV'3)

nm nm .

' 6vka

Yra = 7 2l,wrman Entmt+ ¥ 1 Vinon 8ok EET::T: ) (1v.4)

In order to avoid misunderstandings we place emphasis upon the fact, that the
system (IV.2) - (IV.L4) is a complete system for any many-bbdy fermion system
with two-body forces.‘ The only point is, that for Cooper-pairing in nuclei to
our knowledge no transparent and convenient approximation scheme without further

neglections (18)
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exists. Since--as in the géneralized case--the effective singie4particle potential
does not explicitly depend on u, we obtain instead of (II.12); (11.16), and

(II1.18) the following equations (u = 0):

o | m |
Lomsn = Uomsn = ¥ 8ar ks Irvka ambn (IY.S)
Thaxt = Tnaxt = 1 Tnaxc Bcr 8k Trakt (1Iv.6)

Var = 7 2 Vypan Bntwr+ * Vaxay 8ex 8ya Tkare B (T
with : . | R
. - Sg
11-1-1 _ — . s
’Lz m sn_ “fmsn T Su '|u=0 (1v.8)
nm
(1) _
lesn'- * &on Bns (1v.9)
_.~=1-111 _-111-1
Toka=Trvka " Trakbd (1Iv.10)

The analogue to Eq. (II.20) can be found in Ref. (17). The expressions for the
% change of the single-particle propagator due to an external source (II.24) and

the equation for the effective charge (II.28) réduce for normal systems to:
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RN ¢ N | - .
Agk£ = -3 Lkmﬁ,n Um = 1 8y galdeaf €en &nd Ynm (1v.11)
-11 ¥ _(E)W™ _ (E) _ _ ' (E)
A e A T Tiear Grx &xg Yk
T Y3a T Ijadb Leman %mm  ° : (1v.12)

For the different approximations one gets in the normal case the following
expressions:
1) First order renormalized perturbation theory (equivalent to Hartree-Fock

theory, index j = 1 is suppressed):

Vo =-2iv gn*mf+' . o _ (Iv.13)
Troka = 2 Yrbka . (Iv.1k)
Sg )
— . _&s _
LR.msn - 1% quo = 8gn Bns s - (1v.15)
nm .
Gvrﬁ ¢
Su |u= = =21 Yivga Cax €yb ’ (IV-; )
xy ,
2) Second order renormalized perturbation theory (index j = 2 is sup-
pressed):
v., = -2iw (IV.17)

k& kmtn Entutt ¥ 2 wéjﬁs €ox “kdre gcj Bsa



ijln il gjn gm2/+ ggjk €mu Ykuar gaﬂ,vgrn

KIklmn =g wi{lmn +2i

+ bi w
1

3) Ladder approximation for the effective particle-hole force:

(L) o (L)

Iklmn kmn:

(1)

where T is‘the solution of
(L) -
klmn 2 wklmn +1 wklab ar

For the effective single-particle potential one has:

(L) (L) (L)
kl kmln €nm ’

(1)

showing that T

klab ar gbs

kanb €or 8sa Yorms

gbs

rsmn

(L)

rsmn

plays the role of a pseudo-potential.

UCRL-20495

(1v.18)

(IV.19)

(1v.20)

(Iv.21)

(IV.22)'

4) Inclusion of the functional derivative in the'ladder-apprOXimation:

(L)

(0 ) Tkaty
kmln kml ngm

kmfn keny &

ba

(L)

uce mslu

(IVi23)
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For the expression (II.34) for the Gféen's function of the odd system, different
vefsions can be derived depending upon the theoretical quantities one wants to
deal witﬁ. First one could express the four-point function in (II.3h).in terms
of the two-point functions and the effective scattering amplitude. But since

- a determination of the T-matrix (redﬁcible vertex)--due to the complicated
energy-dependence--is not easy to obtain, we prefer a representation.of.the
Green's functioﬁ for odd systeﬁ or equivalently the wanted Q-matrix element
(11.39) in terms of the effective pa:ticle—hoie force énd the linear response
function, which are usually more transparent. The response function can often be -
directly related to experimental data of the even systen. For completeness the
rebresentation in terms of the scattéring amplitude and the equation for the
"charge vertex“ will be given'iﬁ:the appendix (A).- Utilizing the following
expression for the fbur-poinf.function ‘

Eomsn ~ 82s Smn ~ 8n Bms * Eor Bks Irbka Lombn  ° (1v.2L)

obtained with the help of (II.11), (IV.3), and (IV.5), one gets for the Q-matrix

element |[0): = |¢O(N)))

| ‘ Cojyt|a ><A.'|¢ lo)
(1lq|F ) =(1|F) (o|qlo? + Z qBab {3} . [{ B!t i f.
aB (Ollpalﬂf>(ﬂlld)8|0)

elEftl + 1EitS

o » (Ai|w0|o><o|wI|Af>1 . '
- f dt,dt dt_dt_ Z Z ~iE b + 1Bt

;
= T (olwclszf >{Qi|wk|o ¥

- o+ ' e
* Izrsm Luaps(tm,o 5 tr,O )] . (1v.25)
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where we have given the time-dependence of L explicitly. Due to energy con-

servation, the effective particle-hole depends only on three time variables:

’ ' ] .
Torsm = Tapop (Babrbstn) = Typoy (7o 3T-T) T (IV.26)
with
. t,Q, + tS ' ' tr + tm
T=ty,-t, , T=—5 ;T =t -t , T = . (IV.27)

According to our knbwledge,‘one has in fhe calculations of the properties of the
odd system always made implicitly the assumption of an insﬁantaneous particle-hole
forée as given in the first apprgximafion (IV.14). Therefore it seems suffiqient
to us to split up the particle~hole force in an.instantgneous and a non-

instantaneous part

T g (T757T') = Iggu §(1-0) 6(1'=0) 6(T-T') -

ni)

(
+ IApou

(1,7 ;7-T') ~ (1Iv.28)
- and to treat the part of (IV.25) resulting from the second term in (IV.28)
approximately by taking only the first term of (IV.5) ("independent particle
(-hole) propagation”) into account. In practice, one can include all weakly

(1)

energy-dependent terms of the effective particle-hole in I . Hence, we have

. ~ v (1) ' ‘ 1 : I P T+
Izrsm Lmax_'b Z fdr dT [I)\p(m §(1-0) 8(t -0) &(T-7 ) LuapB(T - 2,o ;T 4+ 0)
up '
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(ni)

o'y g ! ; EL - 0.-7 X
PO (t,T ;7-T ) i guB(T 5 - 0) - (-0 -T )], (Iv.29)

+1 o 5

where the time dependence of the two-point function is given explicitly

(gab = gaB(ta - tb)). In order to evaluate (IV.29) further, one can either

make an analytical ansatz for the particle-hole force and determine the parameters
by experiment (4,9) or one can consider approximations emerging from the
many-body theory. We want to investigate the approximations (IV.14), (IV.19),

(Iv.20), and (IV.23), which have the following time structure:

Igim =2 v o a(T;T') 8(t-0) agr'-o) : | (1v.30)

Iff»im = 8(m-1') (2 )\ p0u §(1-0). g(r'-o) + i8(t-1") VypuB gaS(T—2O)gBV(T-—20) Vevou
+ bi §(t+1'-20) Vaau8 ng(—T') gva(-r) wpaov) , ' (IV.31)

Ig,';m = §(1-1") §(t-1") Ig()m(r) . | - | . (1v.32)

A more explicit expression for the right hand side of (IV.32) will be given

later.

Ig:im = §(7-1") 6(t-T") Iié’c)m('t) r i Iii&B(T—T_' + 3+ 5 gas(r') g (1)
. Iégc)w('r' rs-Teg) | (1v.33)
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The phenomenological and semiphencmenological-approaches are formally equivalent
to the first approximation (IV.28) since they both use an instantaneous particle-
hole force. According to the time dependence of our approximations, the time
integration in (IV.29) for the approximations (Iv.30) - (IV.32) can bé performed |

triviélly. For the approximation (IV.33) one needs the explicit time dependence

of I(L). For nonsingular potentials one can use the following representation
| (L) _1x>0
for I (o(x): =50 x < 0)

(L) 6(t_ - t)) 8(t, -t ) {2 w

Legiem = PAKU a(tr'f ty)
| -i VOAVE (ot - t,) <o]wvw€z | w %IO )
4 ¢ SH(t - t » (), o _
+0o(t, -t) <o|wow62 Ky wglo )1 soku ¢ (1Iv.3h4)

" In the case of a hard core potentiél; one can derive a similar expression provided
the energy-dependence of the T-matrix due to the hard core is ﬁeak in the relevant

(L),

energy region. Therefore we make the following ansatz for I

(L)

6(ty - t) 8(t - ¢ ) {F)\pdu 6(‘.t2 - t.)

lrsm
It ‘ ) (t - )
. +2 N+2 2 s
- 1 [l - Z ngcm
s ‘ | |n+2 )
(t, - t.) . |
2 N AR
+0(t - Z Apou - } . - (1v.35)
|v-2)
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Fo, FN+2, and FN-Z can be determinediby solving the ladder approximatioﬁ probiem.
Another possibility is the determination of the overlapp amplitudes

(o|yy|N+2 ) ete. .fr'omjexperimental dé.ta or shell-model calculations. Weakly
energy-dependent terms caﬁ be included in FO, 50 that one may sum only over the
relevant N+2, N-2-states in (IV.35). If the nucleon-nucleon potential is non- -

N-2

+2 . '
singular, we obtain for FN»z_and ¥ the following expressions:

+2 Tt '
ngnu = j{: wpkvg_<0|wvwE|N+2 )<N+2|wcw6|o ) Yok
Vg ' ' :
8o

P = prxve:(o'“’;"’gm‘?)(?f"zl"’v“’glo) sy - (1v.36)

Vg
od

For the first and second order "dressed particle" perturbation theory
one can evaluate (IV.25) and (IV.29) by using the Fourier transform of the two-
point function. Since the two-point function depends only on the time difference

of the two time variables, it.has the form:
gaB(ea €y) = 6(e, - &) 'gaB(ea) , o | (Iv.37)

where g(e) obeys the following exact Lehmann representation (19):

go(8) = (o] tyyle -+ iyl +ylie s m -y (o)
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.

; 11 | |
Z Colu,la <l Jo? . Z (OlwulAMAI%IO), ) (1v.38)

= € - E. + in : €+ E, - in
|2) o wy A
Using the expressions (1v.30) or (IV.31), respectively, one gets:
(zq|F) 13 - (17> (olqo).
L | |
+Z . *[ -,(oleIAf)(Ailwalo) .
v : +
by P Coluyla, ¥¢a lyflo>
. g CA fwglo YColw, |a) oL
o +ZZ | 2wy sou Tuapp(Pis)
, 5% _<ov|¢0|szf.><szi|w)\|o> - , . '
ae de, Ly
f (27r) ZZ sgs(€1) enelep) * (prin
En 16 :
in . '
BuglEps + €1 * €5 - 5) 8y, (Epy + & + €y + 57
e | Ses |
guB( -Eo; + € +E, - ——2——) €qp (-Efi N (1Iv.39)
Q Q
- s fiyv )
8ugl-Feg = € * 5 - 2 ) Bup (Bpy -~ &t et ) -
* Vetou * l“"mug o Q.. _ : Q.. - Yoson ) '
’ (E e+e-i1-) ( -€, +€ +—£1-)
' uB 1 2 2 ap 1 2 2 ‘
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In first order theory, one has to neglect the integral over de, de,. L({w)
denotes the so-called autocorrelation function of the density fluctuations or the

standard linear response function, which is defined by:'

* - 4 : 4
pBA :N p\)ll )N - pu\)aN pAB sN (IV )40)
w=-E_+ in w + EN - in ? . )

Cmo#]0) { x
with:
Pax, N’ = (olwkam) . : _ © - (Iv.b1)

|N ) abbreviates the excited sta?es of the N-particle system. '

The integral over the energy-variables can be péiformed with the heip of
Chauchy's theorem utilizing the simple pole-structure of the two—pointvfunction.given by
(1v.38). Since we are going fo discuss the ladder-approximation in more detail,
where similar procedures are used, we will not give here the lengthy outcome of
.this elementary, but tedious integration. Furthermore, we will later discuss
the determination of the»autoéorréiation function.

Invthe ladder approximation for the effective particle-hole force the
first term in (IV.35) . leads to the same expression as the first-order perturbation
. Hence; if one performs the

theory. One only has to replace 2w by F

(0]
ApoU Apou”

time integrations in (IV.25) one obtains due to the structure of the second and

. (] . B *
third term in (IV.35) and the approximation in (IV.29) the following result:

* .
For I =F and Q" = Q' (or A" = A') one has to take--if necessary--the limit

1im lim . .
Be> 0 B E
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(1]QF? = (I|F) ¢o|qjo? B - R |

- Colytla > <Ay o)

+qua*

- .
aB» | Colw,|e,? fni|wslo)

| +
<Ai|wc,-|0)-<0|%\lf\f> . o |
. ‘ . * :
+ZZ g "1.. _ F)\pcm LuapB(Qif)'
oA pu _<o|w0|§zf> <Qi|w>\|0) ,

+2 : ; ' - T R .
- Z F?:pcu (Z Colwgl@ 2 (Qpy - Bpr = Bge + an)7" (R [y [O)
|n+2 ) A'' | :

; ‘ . y=1
. (-Bj - Epr = Byyp *+ i0) '
* (o|w8|A ) _ <A “’uIO)

| . o -1

+ (o]wulsz' Y Q. - Eyr ='Egr + ‘in)':L ,<9'lwg|o)

(-Bp = By = Byyp + 1)
% Colyl|a" ) | (A'lylo)

_ | -1
(E; = Epr = Eyyp * in)

- Z (olngA' ) (A'lwulo) (0|1p;r|A") (A'ly o)

. A'A"
o -1

* (EA.. - Epr - Qif)

( E +’i2-i—f- in)~t (E +E. 4 B - =L iyt .

Epep ¥ Bip * By 5 - 10 7 = Uy T By TR T2 | )
¥* ) " .

' - if .ov=1 if g -1
(Epyo = Byp + Byt + 5 - i0)7 = (Bpo - Bjp + Egn = 5= - i)
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In-2) A'Q'
' (-E, + Eg EN 5 - i)™ .
* Coly |o" ) ' <Q'|¢p[o )
| |
{(B; + Eqr + By , - in)

LI L y=1 1
+ <o|wp|A Y Q. + Eqr + By - in)T (AT [y 00

A
(-E, + Eqr + - it ,
( ') 1 " e @' [¢f]o)
» Cofy @ S0 2 |yglo
(Ep + Eqr + E_, - in)

' , ! T“l wypanmg T
- Z: <0N@H2>_(9|¢Q0> (Mwahz>_<nlwdo>
Q Q" .

# (Eqv ~ Eqn - Q f)'l
Q Q..
~ if -1 if
(-Eyp + Bjp *+ 5 - Egr +dn) 7 = (-Ey 5 + E;p = 5 -
Q Q.
if -1 | if
(-Ey o~ EBjp vt 5 -Egr+in) " - (-By 5 -Ep -5 - E

~(1|F) (o|qlo)

DI ;:f:l

af
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+ oyl ot
Z Apcm (Z <o|w8|A >(9 Q. + Egs -m) (A Iwu|o>

(1Tv.42)
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] e (P

w2 ) - SRS |
IZ ,Fﬁmu (zazs Soplay | (1%) Mg (Bg; - Bg = By +in)
N+2 . - B

oA pﬂ

-~

. -1
(-Ei - Eg - By * in)
-1
(Ef - EB - EN+2 + in)
(-Eg = Eyyp + i)
. -1
(l—nB) n (Qif -E - EB +1in) " =
) (E; - Ej - Ep,p + in)
' -1
nm, (in - Eg - E)
Qlf -1 ' if 1
(Byup * T + Byg + =55 = i) = (Byp + B+ Byp = =55 - in) |
- ' TS -1 Yy -1
(Epyp * Bg = By + 5 - 1) 7 - (EN+2 Ey = By =3 - 10

IZ Apou (ZGZB Saodeu |11 ma) (Byp + By + Bg - in)
N-2 | |

‘ ' -1
(-Ef + Ea + EN-2 - in)
(E. + E —+ E - in)_-l
i o N=-2 _

: (-E, +E, + E. _ - :‘m)'l
| o i ©UN-2 ,
nd(l-nB) (in +Eg +E - in) v .
(Ep +Eg+ By, - in)
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- (1-nB)(l-na)(Qfi + EB - Ea);l

-1 i -
(Byp+ Byp * 5= By + )7 = -y, + Byp - 55 - B, + in)

i _ if = o )) -
* | .
Qif ' .o =1 Qif -1

By o= Bypt 5 Bt in) " - (B p =By =5 - By + In)

In the second expressionx&;vhave.used.the one-pole quasipartiéie appfoximatibn.
(gg) for the two-point fﬁnction. Due to the possible eneigy-dépendence of the
effective single-particle potential one cannot normalize in many cases the
generalized single-particle (-hole) wavefunctions (Olwvlﬂ')( <A|w:|o ’). From
the many-body theory one obtains the following expressions for the renormalization

constants (20): ' -

| v (e) N
_ U 2 + an
= (1_%) 1- Z] (Q|\pu|0. )| +Z<9|wa|o T <o|1pn|sz>
p¥v on éé.Q
_ © _ ,
+ 1 Z| (olw |A)| Z(ow lA) (Alwn|o> o (1Iv.h3)
u¥v : €=-E, ' '

1

n, denotes the Quasi—particle occupation number. A possible way of determining
the renormalization constants is the use of experimental spectroscopic factors.
The treatment of the approximation (IV.33) can 5e performed in a similar
manner. Since in the time integrations one has only to deal with integrals over
exponentials and step functions, these integrations cén be done in an élementary,

but tedious way. Due to the length of the procedure we will not take down the

result. If one makes in the second term of (IV.33) the reasonable assumption of
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(L)

» then the treatment is equivalent to the treatment’

0"

weak eﬁéfgy-dependence of I
of the last term in (IV.31). One only has to. repiace """ by "oF and the last
term of (IV 39) gives the correctlon to the ladder approxxmatlon (IV k2).

Our results make plain, that--prov1ded the ladder approx1mat10n (ladder
approximation with 1nclus;on of the functlonal derlvat}ve) is a good representatloh
of the effective pérticle;hole’force and_is-furthermore_éuffiéiently_energy-‘
independent in the relevant energyéregidn-—the first order (éecond‘drder) "dressedﬁ
perturbatioh theory is almost equivalent to the ladder appfoximationv(ladder

approximation plus functional derivative). If one is able to fit a chosen

phenomenological (density-dependent) potential to the data in such a manner, that .

in fact the essential features of the particle-hole force are represented, one can hape tc

. Justify the phenomenological treatment. Whether such a procedure is always

possibie is not known to us. It'depends'oh the structure of the outcome of the
calculation for the ladder'approximation (21). One'might use a kind of local

(L)

density approximation of the nuclear matter results for the I' '-matrix (20).
Furthermore one has to keep in mind, that one deals in the'calculation of the
properties of N-pérticle system normally with rénormalized‘quantities, since one.
wants to keep the‘shell—model structure for the intermediate particle (-hole)

propagation. This can be achieved by introducing the following‘renbrmalized

quantities:

1/2

Lepa(0) = (22,232 )% 1y ) (w)

= (<o|q,$|1\v> (AKlelo) m'"’y'% ) <Qxlw;|o> o, (l—nu)(]'.—n)‘)v (IV.hb)

o 1t t ‘ | |
+ <o|¢K|QK) (Qlepv|o) (olw)‘lA}\) (Aulwulo) n,ny (1-nK)(1—nv)) * LKu)\\)(w) R
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o, = (7,7 Pou,n = '((l—nu)nv @ v lo¥ A lylo?
. + - »
+ nuv(l—nv) (olwvlnv ) (olwumu >) Py i ° (Iv.k45)
T . = 1/2 . - o |
-Ilpou(q)' (zlngjzu). Ilpou(w) , - (IV.L6)
where (ZX€0)1/2 is given by
/2 nn ¢ ) Colui|a, ) ( y <oy ol o)
(z2) nn €Al o) Coly,fa, ) + (1-ny))(1-n)) Coly lQ v, |o (IV.L7)
(zr)zu)l/2 can be read off from expression (IV.L4). With !Qv ), lAv ) etc. we denote such

exact stateé of the N+l-, N-l-system, which have the largest overlapp with the
HShell—modei"-states' w:lo >, vaO ) ete. I(w).is the Foﬁrier'transtrm of the
effective particle-hole force, where one has neglected the retardatibn effects.

It should be mentioned, that one needs for thevdeterminétionvof»the.moments
and transitions differentvmatrix eiements as in the calculation of excited states
of the N-particle system, where only matrix elements of the form <phlI|ph ) enter.
Since in the energy-independent limit the first order theory is formally equivalent
to the treatment with an instantanequs effective particle-hole.force we can read
off the standard procedure of calculation from (IV.39). We have to neglect the
last two terms and replace 2wl by 2nIL. Use of the renormalization procedureé
removes the generalized single-particle (-hole) amplitudes, if we assume that

only the largest amplitude is important. Hence, one gets:
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L ) _
—qu_ ) - —

(r|Q]F) = (1|F) (olqo)+
| dir

~ EN - Qif'- in E_+ Qif - in

' 2 B PSR | ‘ p P P p .
+ zﬂz fpip * Z ( up,N Boc,N. + cB,N "pu,N ) . (IV.18)
T -Iipfu -~ #fo) N

Vheré_we have defined:
S = (2,2 )% = | Colur|a, ) A v lO)+(l.n)(ln)
98q g%’ QRa T ‘PB%y gliig alYa ~nglti-n,

(Olwalﬂa ) (Qslwglo )) %G, - (1Iv.49)
. . B
The only difference is the occurrence of a renormalized gq-matrix element. In
the case of moments one might detérmine .a&a with the help of the méasured
spectroscopic faqtors. The density'amplitudes 3 can be determined from the
renormalized RPA-equations (20): |

~ : | l ~
DW’N = (r\) - n‘u) EN T nv(l_nu)(Eu(N+l) + Ev(N-l)) - nu(l-nv)(Eu(N—l) - E\)(N+l))

* (-2m) Z 'f\xmA EM . - | (1V.50)
oA .

Summarizing our treatment of normal systems, we can conclude that only for an eneréy—
independent particle-hole force the knowledge of the properties of the N-particle
system plus estimates of ovérlapp amplitudes afe sufficient for +the determinatidn of
vthe moments and transitions of the even-odd nuclei. If one takes the

# ' ‘ : .
A further renormalization might occur through the restriction of the basis. For
details see Ref. (4).
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energy-dependent parts of the force into account one obtains additional contri-
butions, which are determined in the ladder approximation byvproperties of the

N2 system. However, in many céses selection rules or large energy-denominators
may reduce these additional contributions. For completeness we give the reduced

matrix elements in the ladder approximation in the appendix B.
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V. SUPERFLUID SYSTEMS
In .supe«rfluid systéms it 1is convénient to‘tr.eat thé g.r.dund state

emplitudes (N + é|w+w+|0 ) and (O|W|N + 2 ) explicitly. It has been shown

by Brenig and Wagner (l_L_3_$, that it is sufficient to 'ta.ké only thé standard
source u-ll into ac’count. Furthermore, we will réstrict ourselves to the case
of one kind of fermions. The generalization to the simultanééﬁs tireatment'of“
protons and neutfons can be achieved easily b& using the same procedure. Reirvl-‘v-
troducing the chemical potential take‘n-ou‘t in chapter'II, we obtain npﬁ for (II.34) |
(E_(N) = 0; o) = [p () )):

1,1 (E;+u )ti-niti -1 (Ef+p )tf+nf‘cf

[+ ..‘]_‘ R
. o . '
¢ = inn at at. * T
ab it i £ | i(E,-u)t.-n.t. —i(E -u)t £t
- 2 i i i'i 2 £ f
To : - .

' t -1 .11-1-1 ~1
=Coluh 0T er iy Aglvglod”

% 3 o (v.)

-1 11-1-1 Froy -
<oy la, » € arp Opliglo?

where the four-point function is given according to (II.6) and (II.12) by:

11-1-1=_(1_1 -1 _ 11 -1-1y
€ia s b i b 8a s a &b s
13-l -11_ 1-1,
Egds _ba.
s (gl 1-1 ~1C1M, 11 1-1 lClM) M1C-1
dr s reckm drgks reckm’ machb

(v.2)

+

(l-l -1-1 _~1 C-1 "M+ 11 -1-1 _1 C~1 M) M1 C~1
ks rckm gdr,gks rckm macb
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Performing the time integrations in (V.1l) gives for (II.39) the following

expression:

(1|Q|F) = (IIF) (o|q|o)

+ ) agy L

_<o]1pB|A > WLy, ]o> (-2ly A A, lwel-.e)
aB - (Q |w8|o) (o|y ]9 )

-(Q, ]w ]2 ) <2|¢B|sz

1(E, )t —i(E +u)t , Lt
P MaA R e @ luglod<olyyla) |
-1R1M

+[dtdtdtdt ( : Ny s * ( (*1
£7°s " 'm r ZE: . i(E,~-u)t ~i(E_-u)t : . + . £rsm
o g i s E T ‘ ._mi].‘p}\]o><ol¢0]9f> o

(-2]y > <A fu |o? .lRlM
» * 12 rsn

[ - <a,lul2 ) Coly Ja,)

Colut +
Coly, A, ) A fy |-2) R
£Zrsnnm

+ o
- |y o) (2|1pc|9f )

1.
2lihe? 4 lvgl-2) 1R-1M M1 R
® T = ) -

Grsp ) ¥E (t,—n; trn))]

wuapB

SCAINERRE LY (v.3)

Here |0}, |~2), |2) denote the ground states of the N-, N - 2—,’N + 2-gystems.
Furthermpre, it was assumeq, that the N-particle system does not differ
appreciably with respect fo the densit& matrix fromAthé N * 2-system. One can
put (V.3) in a more convenient form by introducing the fouriér'trans}orms of

I, L, end g: : - ' o
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iLe, gbgtiMe t +IRE t +iAe t  0)

1
}\upu (82, €n &r E:a.) (2“) fl Ilmra._ 2 m

dt,dt_dt_dt ’
r a

(v.h)
me (6 c e e)= 1 iLt»: t +iMe t +1Re t +M€E~ta .L o a ’
Aupa *2 m r "a (2;") rs T4 m r a
(v.5)
iLe, t, +iAe t ) '
LA _ 1 272 7""a’a LA | - - :
& (g e ) =5 2 7 | Era Gtdt, o - (v.6) _,

Due to energy-conservation, one has the following structure for the Fourier

transformed quantities:

i ' - Me ~ Re Ae -~ Be
6§(Me_ + Ae. + Re_ + Be, ) pARE ( m £ 8 b
m a r v

“HopB -

‘Me -~ Re. Aeg -~ Be

MARB : _ MARB m .~ r a b
. -Lqu'_B (e €, €, e:a) = G(Me + Ae_+ Re + Beb) LB (— 3 Y S
. Ae
LA = __3'_____& ‘ .
gl@ (el ea) = G(Le + Ae ) g ( > Y . - (v

Insertion of the Fourier transforms in Eq. (V.3) and performing the time

integrations gives then for the transition amplitude:

(1]elF) =(1|F) (ojqjo?

- Colyih g0 (A, lu loo 2]y n, (Ailwgl—z)

+Z%at<' o L T )
)

Tlo) | | | *
o8 (@ lvglo) Coly [a.) —<Qi‘lwa2 ) <_2lw8|9f

Me_ + Re )
m a

(v.7)

3 Me +_R€a)

(v.8)

'.9):
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YN + [ .-1R1M, :
_ ot <A.i|w0102 <o]>w>‘|Af> I pr(-Eif—p,s,Qif)
+ dede' e “(( o K :
+ ~1R1M _
-(Qi|w0|o> <o|xp0[9f> I Apou( E, 1,650, )
1RIM )
C=2lyy A > A fufor g I}\pcu(—E.f—u,s,Qif)
+ ’ % ' .
1R1M
-_(Qilwx|2,> <o|1pc|szf> prou( _E, +u €30, .)
U + -LR-1M, . o
<0Iw)\lAf) (Ailwol‘_2.) i po u(’Eif—u’e’Qif)
+ . %*
+ 16 -1 R-1 M
"milw)\l()). <2|wc|9f ’ Ikpcu( Eifueg )'_
o) IRIM, .
B IRECIUN PRI LA E R B Y o o ul Byptase)
. , . 3 |
+ 1\ -1 R-1 M o
- (Qi'wAIZ > <2|wo|9f ) I p o u(-Eif'“’?’Qif)
(M1R1 ' . -
110LpB(fa €', 2,,.))] B - (v.10)
with _
Qe =E -E., | (v.11)
Ei + B . : o ' R
E.pf =——3— . (V°12),

If we neglect, as it is assumed in almost allbcalculations for spherical nuclei
without pairing, the retardation effects in the effective particle-hole force

(1(e, €'; w) = I(w)), we can reduce (V.10) to the following form:
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(1]q]rF) =<1|F) Colqjo)

"qua“;: "’

o -

var )Y

Ao pu ‘ "<Qil_wilo> »(olwclﬂf)

|

R
(A, v lo) <0|1pA|Af)

C-2]y, A Ay fo?
- <o, ly |2 > <o.|xp0|s2f.>
Colwila,y <A, jvi|-2»
AE i'"o
+ +
-y o) (2ly fa, )

-2y, <a]ul]-20 .
MR-

(@))% 1 o B (@ N1,

-(a. |y |2 ><2|1p§|szf )
(v.13)

containing only the standard respomse function L{w) (generalized auto-

correlation function of the density fluctuations) defined by:

' + + :
LARB v, -1 , Ji€0 +i€'0 _MARB \ A |
LuapB (w): .— o7 fdede e | LUOLPB (e, €', w) . (V.1L)

In terms of amplitudes, this function has a similar structure as in the case

without pairing:
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. R M
.(—M—lep v,
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w) <ufyl y o

EREILR

Colwh w,Im> <yl ol

w - EN + io

+ R 7)'

UJ+EN—iO

i | | (v.15)

In order to evaluate (V.13), one has to determine the autocorrelation function

by following the pattern'outlinéd in section IV. Since the structure

problem is rather complicated, we will restriet ourselves to the generalization

of the RPA-approximation taking into account first only the first-order

approximation of the partlcle—hole force.

approximation can be treated 51milarly.

has the following structure (index J =

E T O
+ %’5L’-S skt GM’i(aL’—l frsm
o R Sl C el A
+§9"RW“181“ "dnrs

L,-R §S,-1 oM,1,L,-1 Voo

The energy—independent ladder
In first order, the irreducible vertex.

1 is suppressed):

L,
+ 8 wﬁrsl)

L,l
+ 8 whsrl)

L,1
+ 9 wsrml)

L,
§ wsmrz)

L,1
§ rmsf

L,1 |
+ 6 wfsml) . (v.16)
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Insertion of this approximation in Eq. (I1.12) gives the generalization of the

RPA-approximation:

M1R-1 M-1 1R M1 ~-1R
i( )

marb mb B r fmafbr
-1 M1 lRW L—ll—l--l__i 1 -11‘{w 111-1
€n k 82 r Yxsik saxb €k € 2r "isx 'saxb
-3 M-1 1R (w Ll 1-1~1 - -1 ll-l)
Bm k 80 r “Wkxls “s a x Db ksx{ " saxdb

M1 1R 1 1-1-1 -11 1-1)

-lgmkglrwR.xskLsaxb+wsR,:d<Lsaxb (v.17)

Due to the energy-independence of the potential, we obtain from (V.‘l7) the

following equation for the "standard" response function::

M1 R-1 _ M1R-1 1R1
L app W= Pﬁ ap Bt -7} LB pa

1R l -l l-l-l -1 R~ l ' l 11-1
ZZ{Pﬁ)\pKw)WEO)\K anB PMApKw)wKAOE caEB(U

kp ©&
L 1-1-1 -111-1
_"PM (‘*’)(Kgxo oat 80 * Ve g oz gl®))
-1 R1 C11-1-1 - ~111-1
+ P}: X (W) (WAEUK Ly ok glw) + WO'}\EK_I"YO‘ 0 g B( ))} >

(v.18)
with

! ) '
e o fediepden . oo
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For the case of no pairing Eq. (V.18) reduces to the Vell-known RPA-

1 1-1-1 4 0).

equations (only P Equation (V.18) can be further reduced by

assuming a "Hartree-Fock-Bogoliubov"-structure of the single-particle propagators.

In this approximation, the two-point function has the following form (3 12)

giﬁ(e) = {(e - EA + io0)” -1 iﬁ + (e + Ek -i0)” -1 &g R - | (v.20)
with:
LA, _ .L,1 A,-1 2 GL,1 Al ; _ _gla-l sA,-Ll o Lyl A,-1; 2
VS T N S T b W P
- (v.21)
LA = L,1 (A,-1 _ 2 L,1 (A,1 . L,-1 A,-1 L,1 (A, l
Bka' 8 ) Gka vy t 8 § Gla u, vy + 8 5§ 6Aa u, vy o+ 8 ) 6A uA
(v.22)
The EA are defined as follows:
=27, 2 2_ _ '
ey =g, - p) + AT | | (v.23)

where the €, are determined by a suitable chosen single-particle hamiltonian.

The occupation probabilities uy and vy ere given by:

+ A - A -
> 2 1 & * A A
uy = 1-v) =z 5 (1 + — ¥ wvy = Tz (v.2k)
- ex 28A»

»
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With z, Ve denote Migdal's renormalization constants. Use of the approximation
(v.20) gives for the integration in (V.19):

RK, \ _ __ R R -1 M _IR

Plﬁ‘p'( (w) = = {(w - € ~E ¥ 2i0)" - (0 + .e)\ + € - 219) 'Amc ka

(v.25)

Substitution of (V.15) and (V.25) in Eq. (V.18) yields the following equation

. . »a
for the amplitudes needed in the evaluation of (V.13):

R M
(-M'—R.lwp wu|N>

' R1 + o F ~M=-1
_Z Z {P}: Apk (EN) 1'ﬁc:)m(zl"‘é ‘%IN) "'Pﬁ,}‘
o o |

R1 . _
o« Yinag ¢ 2l¥ YW

+ P!

1 R-1
HAP

K (EN) (WKEAG - WKSGA) (Olwg wc,N )
+ pﬁ-i 1; i (E,) (VAE;GK - WEAO_K) (olng wGI_N )} . . - ‘(v:.26)

Insertion of the solutions of this equation into Eq. (V.13) with use of (V.15)
and (V.16) leads to the desired relation of the moments and transitions for
superfluid odd nuclei with the generalized RPA—strucfure problem of fhe even-

even nucleus.

¥ .
Since the renormalization procedure is similar as in the normal case, we will
not treat this problem explicitly here and therefore put Zy = 1. One could

include those effects by following the same procedure as in section Iv.

%% | . .
For continuum states one also has to take the first term of (V.18) into account.
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If we use the ladder approximation (III.10) we obtain an equation

similar to (V.17), the only difference is that we have to take into account

"nondiagonal'-elements of the effective particle-hole force (M + S + L + K # 0).

(L) = L)

Instead of (V.17), we obtain now (I index L suppressed in the

response function and the two-point function):’

LMlR-l=i(M-l lR_ M1 —lR)
marhb gm b ga r gm a br

(L)KXLS .S 1 X-1

. MK IR | | -
™ Sk gﬁr I ks s axv : _ : (v.21)

If we negléct retardation effects and assuﬁe.weak energy~dependence of the T

matrix in the relevaht energy region, the following equaﬁion emerges for the

"standard" response function from {(V.27):

LMlR-l(w)=PMlR—lw)_PM— ﬁi

wmapt Hap g
Y ¥ e (O 121 ) (v.28)
Kp ©f : : -

The amplitudes are determined now by:

R
<-M-R|wp wﬁln )
- | K (L)X-1 L-1
= ~(em) }: Z {P’ﬁg,( (By) T 35 () <2|“t y v
Kp o
HApPK (EN) I(L)I:é icly (EN) (-21% L/ lN)

(L)

v



~51- UCRL-20495

» B my) @R T e - T ) ol w >} (v.29)

In contradiction to the nonsuperfluid case, where the equivalent equations for
(Vv.26) and (V.28) formally have the same structure (2w - 2ﬂ;I(L)); one has in
(L)

-the superfluid case due to the nondiagonal matrix elements of T a different‘
structure for the generalized RPA-equations depending on the use of first-order-

7or ladder-approximation for the effective particle-hole force, respectively.
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Vi. SUMMARY
The general theory of moments and transitions for even-odd nuclei has
been discussed in detail in order to trace the contributions from the

' neighbour nuclei. The method of Green's functions has been used fhroughout

[

the treatment. The necessary theory of Green's funcfioﬁ theory was developed
usiqg functional techni@ﬁés. For non—superfluid nuclei the first- and gecond—
order approximation, as well as the ladder and ladder plus'functioﬁal derivative-
approximation for thé effective pérticle-hole_force, was treated. The connection;
at tﬁe éemiphenomenological freatment was also established. For superfluid
nuclei we resfricted ourselves to the first-order andv"énergy—independent"

ladder approximation. Furthermore, we discussed the generalized random-phase
apprdximation”for superfluid'sjsfemsj We think; that the described treatment
mekes plain the assumptions involved in standard calculations'énd shows the way ‘

for possible extensions.
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APPENDICES

A. Equivalent Treatments of the Transition Matrix Element (Normal Systems)

First, we ekpress the matrix element using the effective scattering
amplitude instead of the effective particle-hole force. fhis can be easily
achieved by inserting the definition (II.lS) in Eq. (IV.lS);’ Use of the
definitions of sectioh IV and performing the Fourier transforﬂs gives the

general result:

-v(olxp;IAf) Wl lo?

(z|F) (olqlo) + Z agy |

(I|QlF) | . B
B Coly_la, ) milw'glo)

+
I

X pH B EEATNERRTIA

. Q. | By paesfy ) (on)

Bop(e = 50) ggle ¥ 50) ¥ Y (aa)
\ T(E, )] -

*

»E380,
if Apou

<o|xp;:lAf > g fuglod

fTe TF whe

X pu ¢a w0 Coly o,
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1 1, N . (pp)
2, T(S{-E;pme4y ) 5By -0y o) se-E, ) ’
- —-— * ' .
* gyle L) gple + 3 . L )
TSHE pme¥Q o )o5{E; g6 o )3e4E

: 0N B
2-"ir 2 i’ ) o

(A.2)

In (A.2) we have used iﬁfthe effective:ecettering amplitude tpe particle;
particle energy;variables (characterlzed by the upper index (pp)). This might
be sometlmes an adventage in evaluatlng the 1ntegral over € dependlng upon the
approximation one is using. In general the structure of the reducible vertex
is not so- transparent, se'that the treatment of section IV is easier to perform.
If the structure‘of the reducible vertex is known, one.can purSue along'the
procedure given in section Iv. - |
Charge‘verteX'

'The connection with Mlgdal's treatment can be obtained by introduc1ng

the " harge—vertex" TQ defined implicitly as follows:

) , . - | - g .
(1|Q|F) -.(IlF) (o]qlo? +T (E; ;s 00) R ~ (A.3)
Here, T (Elf’ ) can be determined from the followlng deflnltion
. , - -
. _<o|1p)‘|Af) (. [y lo) T(-E, p» Dy p)
THE, ., Q. .): = * » (A.4)
if if : + \ Q )
AC (Qilw)\lm (OI“’oIQf) TH(E 00 Q5 ) .
- , . o "
where T?U obeys the following equation: ' e . e
\ e e ) . (o oYy 8
(e w) = j{: j{: de! IAdoB(e’e"w) ng(e' + 2) gua(e' -3 Tvu(e,w) R

(A.5)
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which corresponds to Eq. (IV.12) for the effective éharge:of the.evenfeven
nucleus due to an_exterhal'field.' It can be_oﬁtained from (II.12) by deriving
the equation for the exprgssion 1 - igTg appearing in (A.1). Neglection of
the retardation effects and introducing shell-model propagation leads to the

Q

well-known equation for the charge vertex TAU:

Q | }’ mg - n,
Tv (W) = q,_ -~ 27 I (w) =
Aot AC AaoB w+e, - EB\— 2;ﬁ(na - nB)

Tga(w) | (A.6)

which has been used in several calculations.* However, one should have ih
mind, that according to section IV one has not to solve (A,6) if the solﬁtions .
of the nuclear~structure problem_ére éVailablé, since the desired matrix -
elements can be directl& expreséed in termé of.those solutions. .Only if an
extr§ fit is wanted, Eq. (A.6) is suitable. | |
For superfluia systems one can repeat the derivations given in this

“appendix and obtain similar expressions.

Here, we have neglected the renormalization procedure, which can be included

using the techniques of Ref. (k).
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B. Reduced Matrix Elements

We are going to put Eq. (IV.k2) in a reducéd fozm.. Since Eq. (IV.42)
emerged from a relative cqmpliéated ansatz for the particle-hole_fdrce, several
other approximations--for instance the first order or the energy—independenﬁ
approximation are included in our treatment--can be obtained by neglecting the
additional terms. Furthermore we uée (IV.36) for F -2, With respect to phases,

) gingle—particle functions, etc. we use the convegtidns of Bohr and Mottelson (gg);

“The multipolemoments and the single-particle wave functions are defined as

~

follows:
M w =) e - v, @), | e
Moo, w) = G20+ Y2 2 (g, - ), )+ e (1, 0)] |
B f~,&?¥c.- | = k s A+ 17'A-1 A+ 1 A-1 ‘(k-l,l)lu
: (B.2)
. vz | - 11 o
Vnggmr (F) = Rygyr (7) Z i Y, (@) 2> 2> > (B.3)
. I mlms ml m ' mS T :

vhere the parity is determined by (—))‘ for WZ(EX) and by (—)A'»-l for WZ(M)\),
respectively. The states of the even-odd system are given mofe'explicitly by:

\ ( : Yy

[ |9,> M, By, Ty, T 0, . |
> ;o= | } , S B
o, ) |7 M5 By Tops s (R)) | |
)\ — /
\ ( . }
ho? 190> Mg, Ep, Taes Tps (ML) B
) i o= N (%) :

] )
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We want ob obtain.thevreduced matrix element (IIQ]F ) , defined by

o 1/2
(Ji. = (2 Ji +1) )

U _ il o '
(IIQMIF) =§ (1lg,lF) ‘- (B.6)

Q)IH

T ;n. :
9 \m ol

where qu can be read off from (B.1) and (B.2). For the isotope shift one has
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After performing the standard procedure one gets for (IV.42) the following

equation for the reduced quantities
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Here, we have used the second expression of (IV.42). For the autocorrelation

function of the density-fluctuations we inserted the renormalized version of
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~ A ’ .
(IV.hO){ With o, B we denote the quantum number set without the magnetic

quantum numbers.

The reduced matrix elements occuring on the right-hand side of (B.7)

are defined as follows: .
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. where the different multipble.moments can be read off from:
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The radial integral has the form:
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The phonon operator B is defined by:
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and its reduced matrix element is given as follows:
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For the reduced renormalized particle-hole force we use the standard definition:
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The FJ'Z—matrix elements can be expressed as:
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vhere the two-particle operators A are defined as:
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The particle~particle matrix elements are given in the standard counvention by:
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Finally, the reduced one-particle amplitudes are defined by:
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* This report was prepared as an account of work sponsored by the

United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned r1ghts
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