
~. 
I 

Submitted to Annals of Physics UCRL-20495 
Preprint e.2_ 

SOME APPROXIMATIONS IN THE THEORY OF MOMENTS AND 
TRANSITIONS FOR EVEN-ODD NUCLEI 

M. Weigel 

June 1971 

AEC Contract No. W -7405-eng-48 

TWO-WEEK LOAN COPY 
I 

This is a Library Circulating Copy 
which may be borrowed for two weeks. 
For a personal retention copy, call 
Tech. Info. Dioision, Ext. 5545 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 

, I •• 



-1-

SOl~ APPROXIMATIONS IN THE THEORY OF MO~NTS AND TRANSITIONS 
FOR EVEN-ODD NUCLEI* 

M. Weigelt 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 94720 

June 1971 

ABSTRACT 
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In the framework of Greea's functions, the theory of moments and 

transitions for even-odd nuclei is developed. It is shown, how these 

quantities are connected with the effective particle-hole force and the 

generalized·linear response function for the neighbour even-even nuclei. The 

response function describes the change of the single-particle propagator due 

to an external perturbation. For superfluid systems the Nambu (JJ

Engelsberg (2)-Belyaev (~) technique has been used. The connection between 

earlier treatments is established, especially with the semiphenomenological 

approach of Migdal (,!!) and co-workers. Some approximations for the relevant 

effective particle-hole force emerging from the many-body theory are discussed 

in detail. Furthermore the generalization of the EPA-approximation for the 

auto~correlation function of density fluctuations in the case of superfluidity 

·.is given. 

* Work performed under the auspices of the U. S. Atomic Energy Commission. 

tOn leave :'rom the Sektion ?hydk der Universitat Munich, Munich, Gerrr.any. 
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I. INTRODUCTION 

Most of the calculations of moments and transitions for even-odd nuclei 

are based on the assumption, that the relevant states are mainly describable 

by a single-(quasi-)particle or -hole excitation plus a perturbation, which 

can be either determined by (first-order) perturbation theory or a core-particle 

coupling model. For the interaction, one prefers a phenomenological effective 

potential. Rarely-due to convergence difficulties~a bare nucleon-nucleon force 

* is used. 

A disavantage of such.basically phenomenological approaches is the 

lack of a thorough foundation in many-body physics. A step to overcome this 

problem has been taken by Migdal (~), who investigated the change of the 

density matrix due to adding {or removing) of a particle. Since the wanted 

change can be related to the problem of rearrangement of nucleons due to an 

external field, which was treated by Feynman techniques, the problem was 

reduced to the determination of the so-called charge vertex. For this 

quantity, one obtains an equation containing only the renormalized effective 

particle-hole force (appendix A). The renormalization is due to two effects; the 

first one is caused by deviations from the ideal shell~odel propagation, the 

second one by the restriction of the basis. Since the charge vertex obeys 

certain symmetries, one can parameterize in many cases the form of.the homogenous 

term. Furthermore, a simple ansatz for the renormalized particle-hole force 

has been used. With this approach a kind of semiphenomenological theory-

* If we consider for instance the calculations of magnetic moments for the ideal 

case in the lead region, one has used both methods (5-8) to determine the 

magnetic moments. The deviations from the experimental outcome is about 

10-30%. 

• 



-3~ UCRL-20495 

based on the many-body theory of nuclei- has been established, which is useful 

for the calculations of moments and transitions. For instance, in the case of 

magnetic moments near lead, one obtains--despite of the very simplified used 

interaction--a similar accuracy as in the phenomenological case (~). Another 

possibility to formulate the problem is the use of Brueckner-Bethe techniques, . 
... 

which were developed mainly for the treatment of the nuclear matter problem. A 
; 

review for the general theory with application for moments and transitions is 

given in Ref. (10). 

In this paper we intend to present the theory of moments and transiti9ns 

of even-odd nuclei (N±l-nuclei, N even) in suc.h a manner, that the connection 

between these quantities and the properties of the even neighbour nuclei 

(N-, N±2-nuclei) is made transparent. If one has calculated the properties of· 

these even nuclei, one can determine the wanted moments and transitions without 

solving an additional diagonalization problem. The basic key: for such relations 

is the fact, that the change in the single-particle propagator due to the 

addition (or removal) of a particle is determined by the same quantities which 

give the change of this propagator due to an external perturbation. In order to 

obtain the propagator change, the knowledge of either the effective scattering 

amplitude or equivalently the effective particle-hole force plus the resulting · 

linear response function is su~ficient.· Since we want to treat the theory as 

unphenomenological as possible we are going to investigate the problem in some 

approximations, which are based on the bare nucleon-nucleon force and seem to be 

suitable from a many-body standpoint of view. As in the semiphenomenological 

approach we utilize the Green's function method for obtaining the relevant 

expressions. 

To obtain the rele~ant system of equations for the Green's functions, 

several consistent ways are known. First, one can start with the Heisenberg 
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equations for the field operators and obtain with the equation of motion 

method a coupled system of integra-differential equations for the Green's 

functions. These equations contain--as in classical statistical mechanics--

only the nucleon-nucleon force and the Green's functions. Since in these 

equations the n-point function is coupled to the n-1-point function and the 
.. 

n+l-point function, one has to solve, in principle, for a complete solution the 

whole coupled system of order N. This system of equations is equivalent to one 

functional equation. Martin and Schwinger (11) have developed a method of 

truncating the system by taking into account correlations up to a desired order. 

This can be achieved by expanding the solution in powers of the annormal source 

functions. But since the nucleon-nuc~eon force might be strong repulsive for 

short distances, one prefers often in nuclear physics a second approach in which 

the final expressions contain only so-called effective quantities (4), which 

can either be calculated in some approximation using the bare forces or deduced 

from experimental data. Since we want to investigate the effect of certain 

approximations for the effective quantities on the moments and transitions, we 

are going to follow the second approach. In most applications one would like to 

use a simple shell-model potential description for the intermediate particle or 

hole propagation. But it is well known that in certain regions of the periodic 

table~-for instance caused by .superfluidity--this description breaks down due to 

irregular terms in the effective one-particle potential (3,4,12). One can overcome 

this problem by treating explicitly the strong couplings to the ground states of 

the N±2-system. The technique is the use of generalized Green's functions, which 

has been utilized by several authors (1,2,3) •. In order to make plain the theories 

and techniques involved, we will give a short summary of the general method in the 

second section. Furthermore, we will rederive the change of the single-

particle propagator due to adding or 
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· removing of one particle utilizing a method of scattering theory suggested by 

/ 
W. Brenig (13). In the third section we are going to take down the approximations 

to be used in the Green's function scheme. In order to show the structure of 

the problem more explicitly, the normal systems will be treated extensively 

in the fourth section. 

II. GREEN'S FUNCTION THEORY 

We are going to obtain the relevant equations with the help of the 

functional technique (14). The usual notation for normal Green's functions 

inconvient for our purpose, therefore we will adopt mainly the definitions 

given by Nozieres (15). Instead of the standard Heisenberg creation and 

annihilation operators we introduce the notation: 

R = 1 

R = -1 (II.l) 
' 

with r denoting the complete single-particle quantum number set p plus the time 

* coordinate t • The equation of motion is given by (we assume only two-
r 

particle nucleon-nucleon forces w): 

(II.2) 

* m+ means a shift of the time ~gument about an infinitesimal omikron. 
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Here, h denotes the· kinetic energy (or more general time independent single-
.. 

particle hamiltonian); s is the Schroedinger operator; ~(P) and ~(N) are the 

chemical potentials for protons and neutrons, p and n denote the corresponding 

projection operators on proton and neutron states, respectively, the u~~ are 

the matrix eleme!lts of the source, which may be annomalous (g) (no particle 

conservation, time dependent). Furthermore, we use the convention, according 

to which summation or integration, respectively, is to be carried out over all 

doubly occuring Latin indices. 

Hence, we have more explicitly (h = 1): 

RL oR,-L o ( -i a at ) 8 rt: = rt R. 

hRL. 
rt· = o(tr - tR.:) 0R,-L l oR,-l ( pjhjt.) ~R?1 <AihiP >I 

n~i: = OR,-~ o(tr tt)_ laR,-l (PI~+ T '") - OR,l <>.1~ +TIP >I 

p~i:. = ~R,-L O(tr t~) { ~R,-1 (PI~- T lA) - ~R,l <AI; - T I p >I 

"rm.tn' = ~(tr - tm) ~(t~ - tn) ~(tr - t~) ~ { ( wlwiAv) - ( P~lwlvA >I 

For the definition of the Green's functions one introduces (u = 0): 

(II.3) 
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,. 

<<t»o(N)IT llJ~ •• ~llJAn lJJ.bBn ••• lJJ.bBll;o(N)') ·fo;t~i. ·= LBi. ·' 
al an n 1 · · 

.. 
r:. .j·. ( . 

.. 1':' ,.., . , .. ' :, 

. ·. " (li~4) 

* where ¢»
0

(N) labels the ground state of .the N-particle system~ · T den~tes the 

ti~e~orderi~ operator. 

We use the functional technique to obtain the relevant expressions 
r. ;_ ~: ' ,,"""- ( ' ' i 

(u ~·O) {2,13). The Green's functions depend functiori8J.ly on the external 

sources. Using Schwinger's variational principle {16) ~nd ·e~iminat~ng the - . 

four-:-point~fu?ctions. by iD:troducing the effective single-part,icle potential v~~ 

·(irreducible mass operator) in the equation for the t:wo-:point function, one 

obtains the following set of equations: 

jsRL + hRL _ (P) RL { ) RL + RL LR + RL l LS :.t'R,S 1 rR. rR. lJ . PrR. - Jl N nrR. urR. - uR.r v rR. i gR.s = 0rs u 

LS · 
0 gR.s LR 

NM = gR.r 
0 u 

nm 

ARKNM + vrk I , 0 RKI' 
rknm _ 0 UNM 

nm 

=- ·LMSN + 1 . LS AKJMN. KJ 
g imsn · 2 g R.s · kjmn gkj 

(II. 5) 

VRA = i ·I ra 
1:_ (wRKLA RALK) ( LK IG:.) _, l-(wRLAK _ wRKA.L) IG:. + wRJLS LK 
2 rkR.a '7 wraR.k gR.k-- gkR. _ ·2 · rR.ak rkaR. ~1. rjR.s gR.k 

' 

0 VKA I' ka 
:1' JS 
u ujs 

(II. 7). 

* Couplings ·to excit.ed states of neighbour nuclei are assumed to be weak and 
therefore not taken explicitly into acco~t. 



-i 

-10-

1NDXC CR KD TRAKL 
ndxc gcr gkd rak.! 

or expressed in Feynman graphs as: 

n x n x 

GJ· = GJ 
t a. R. a 

+ 
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(!!.16) 

n x 

I 

d 

"'r'- 'V (!!.17) 

r k 
T 

R. a 

The expression (!!.7) for the effective single-particle potential can now be 

put in the following form (u = 0): 

AR 
v = i ar 

ARLK) - w ar!k 

AJLS LK 1KDRC LCSDJ} 
- waj!s g!k kdrc csdj 

] 
_ wAJLS TKDRC L (I );SDJ} 

aj!s kdrc csdj 
(!!.18) 

Since the two-point function is determined by the effective single-particle 
- . . 

potential, and the four-point function according to (!!.6) by the linear response 

function, one has to determine these both quantities. The perturbation expansion 

in terms of dressed quantities is easily obtainable by iterating (!!.6) and 

{!!.7) starting with~:= Q. Since v and~ do not depend explicitly on u, one 

can finally put u = 0. Differentiation of the series for v with respect .to the 

two-point function gives the series for the effective particle-hole force. The 
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' 
obtained expansion is not a series in powers of the two~body force since the 

"dressed" two-point functions depend implicitly on the potential. 

If one would know the irreducible vertex, for instance, by extraction 

from experimental data as it is partly done in Migdal's theory, one could use 

Eqs. (!!.16) and (II.l8) together with (!!.5) to-determine the wanted quantities. 

There, the external source has to be set equal to zero. If one wants to avoid 

perturbation theory, for instance, due t'o possible convergence difficulties, 

and the particle-hole force is not known sufficiently, one can try to solve in 

some approximation the following final system of equations, (u = 0): 

AR 
v = i ar 

~AXL- { naxJI.-

gRM = 
rm 

with: 

+ i 

[ 
,._NDCX + 1 _._NDXC + . _._NUCY WU YV TDVXW -w -w l.W g g ndcx 2 ndxc nucy -wu yv dvxw 

(
wNDLY YV TKVXC + wNULC WU TKDXW 

ndJI.y gyv kvxc nuJI.c ~ kdxw 

RKLA RALK 

o TKVXW) kvxw 

0 CD 
gcd 

=w -w rkJI.a raJI.k 

(!!.19) 

(!!.20) 

(!!.21) 

(!!.22) 
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The second equation was obtained using definition (II.iO) and Eq. (II.l8). For 

completness we will take down in first order with respect to-the external source 

the change of the single-particle propagator, and equivalently, the equation 

for the effective charge. 

By definition we have in first order the following change for the single

particle propagator 

KL 0 gki 

0 uNM 
mn 

UNM = - i L_~ UNM 
nm lonJI.n mn 

u = 0 

·which can be expressed in different ways using (II.6) or (II.l5; II.l6), 

respectively: 

' 

or 

[
i L(I)KMLN + KC DL TCBDA L(I)AMBN] 

kmin gkc gdt cbda ambn 
NM 

u 
nm 

(II.23) 

(II. 24) 

(II.25) 

The first equation is useful for the perturbation expansion~ The equation for 

the effective charge u(E) (effective external source), defined in a 

natural way through: 

(II.26) 

is given by: 

AJjDdlnmM (u (E)NMnm ... uNMnm) = _ i IJLDR RX KL AXKNM (E)NM 
j idr grx gkt xknm u nm (II.27) 
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The effective charge can also be expressed by the linear response function or 

the effective scattering amplitude, respectively. One gets: 

AJDNM 
jdnm 

·,: .. 

( 
(E)NM NM) u - u nm nm =- IJADB BMAN NM 

j adb Lbman umn 

TJADB 1 (I)BMAN uNM 
jadb bman mn 

{II.28) 

In graphs, (II.25) gives the following contributions to the perturbed single- . 

particle propagator (denoted by a double bar): 

= ( + k 1 _+ 
- k R,. k R, 

Qj k R, 

n m 

' 
a 

which leads to the equation for the effective cha:ge (II.27), having the 

following structure in Feynman graphs: 

u 
(E) 

u 
j. d v j d v 

I 
I 
I 

j 

= 
I 

I 
I 

d 

a 

f 

In order. to obtain the transitions and moments, one has to determine a 

generalized density matrix, which we define as follows: 

(II.29) 

(II. 30) 



where (~i' ~f) 
. i' f 

The Schroedinger 
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I 
<A .1 ~t ljJ lA . > 

:L 13 a~~ f . 

= 

<niiiP~ ~Palnf > 

-(II.31) 

are the exact initial, final states of the (~:i)-nucleus. 
operators ljJt(ljJ ) create (annihilate) a particle in a state a .. 

a defined by a suitable chosen single-particle hamiltonian. 

Since, due to conservation laws, many of the quantum numbers y. of the 
:L 

odd nucleus coincide with the quantum numbers i of a suitable chosen single-

particle hamiltonian, one selects the following representation for the states 

of the odd nuclei (13): 

liN ,.... 1, Y i ) 

IN+ 1, y.) 
:L 

00 

=nf 
T 

0 

iHt-iE. t+nt . 
:L dt 

iHt-iE.t-nt 
R. . :L • . dt 

I
IP.I<P (N) ><A .I~P.I<P 0 (N) > -l 
:LQ :L:L 

lj!II<~>o<N) ><nilljiil<~>o<N) >-1 

llji. jcpo(N) ><A.Ilji.I<Po(N) > -1 
:L :L :L 

~Pil<~>o(N) ><nilljiil<~>o(N) > -1 

(II.32) 

A similar representation holds for the final states. H denotes the hamiltonian of 

the'system in field-theoretical formulation. E. is the energy-eigenvalue of 
:L 

the state Ai or ni, respe~tively. The energy is normalized by setting E (N) = 0. 
..- 0 . 
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Since we are dealing mostly with bound states, we have both options 

for the representation. In scattering theory the initial and final states 

obey different boundary conditions. 

For the N-particle system, the density matrix is a special case of the 

single-particle propagator. Therefore, it seems appropriate to.introduce the 

following Green's functions for the odd system: 

Gif. 
ab" I 

if ,h 
gab 

if,p 
gab 

= -i 
(A i IT tP a tP~ ~ f )I 

< niiT tJ.Ia ~lnf > 

(II. 33) 

which differ from the standard definition by not being always an expectation · 

value of a time ordered operator product in the ground state. 

If we choose for the arbitrary time T
0 

the maximum of Ita I. and ltbl, 

we can express the Green's functions for the odd system by th~ .~e~eralized 

four-point function as follows ( I 0 > = 1.<1> 0 > ) : 

-T 

L 
o -iEftf+nftf 

dti t dtf 

-oo 

- < olttJ!IA. > - 1 1 1-1-1 <AflttJ·flo > -l 
:L :L gf a i-b 

{II.34) 

< o·l tlJ. In. > -l 1 1-1-1 < n ltJJt I o > -1 gi a f b :L :L f f 

So, the problem of determining transitions and moments of odd nuclei has been 

related to properties of the even system. As a f'urther detail, we will give 
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the spectral representation of the Green's fUnction for odd systems. Defining 

the Fourier transform by: 

(II.35) ·.j; 

•· 

one can separate in energy-space the o-function of energy from this function, 

so obtaining 

' ' {II.36) 

with 

= 

(II.37) 

where we have used·the following definitions (E (N) = 0): 
0 

Eif: 
1 (E. + Ef) = 2 ~ 

nil.: = E. - E 
~ f 

(II.38) 

Since we want to determine the transitions and moments of even-odd nuclei, 

caused by an operator q, we have to dete1nine the following matrix element: 
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<IIQIF>: , (II.39) 

In the sections IV. and V. we are going to discuss the relation of these 

·• matrix elements with the properties of the even-even system. 

'' 
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III. APPROXIMATIONS 

For nonsingular and well-behaved nucleon-nucleon potentials--as for 

instance the Tabakin potential (17)--the expansion in terms of the two-body force and 

dressed single-particle propagators seems to be a natural choice. The wanted 

expressions in this kind of perturbation theory are given in j-th order according 

to (II.6), (II.7), and (II.22) by (ov(O) = O): 
ou 

v(j)RA = i {!_ ~ (g(j)LK _ g(j)KL) 1 "RLAK (j)KL 
ra 2 rkta ik ki - 2 wrtak gkt 

0 ( j-l)KA } 
+ RJLS (j )LK vka 

wrjis gtk -.r~J-8--
uujs 

(j )KS 
gks 1 

In first order one obtains (the upper index j = 1 is suppressed): 

AR •("AKLR 1 "AKLR) . LK v = J.w --w g.Q.k ar akir 2 akir 

ogLS 
LLNSN:: i ~ 

lu=O = i LR AmaiN KS 
imsn ouNM gtr rknm gks 

nm 

(III.l) 

(III.2) 

(III.3) 

(III.4) 

"\' 

p 
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1 "'NBAL 1 "'NBLA 1 "'NABL --w +-w +-w 2 nbai 2 nbia 2 nabi 

KR ovkr 
ou~s 

JS 

1KBRA LANBS 
kbra anbs 
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(III.5) 

(III.6) 

Insertion of (III.6) in Eqs. (III.l) and (III.2) gives the following result for 

the secondi order approximation (index j = 2.is suppressed): 

• ANLS LK ( "'KDeR 1 "'KDRe) ex AXYSN YD l 
- ~ wants gik wkdcr - 2 wkdrc gcx ·xysn gyd ~ 

0 LS 
LLMSN = gts I 

tmsn ouNM u=O 
run 

• LR { ARKNM + . ( "'RBAK 1 "RBKA) AU AUVMN VB } KS 
=~g ~w --w g g g ir rkrnn · rbak 2 rbka au uvmn vb ks 

AR ov . 
rANRM=i~= 

anrm 
0 

MN 
gmn 

. APLS ( ,..·KDCR _ .!_ "'KDRe) * [ .rLM .rKN ex AXYSP YD 
- ~ w ap.l!.s wkdcr 2 wkdrc · u R.m ukn gcx xysp gyd 

(III. 7) 

(III.8) 
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(III.9). 

The general particle-hole force consists of all graphs, which cannot 

be divided in two graphs by cutting only a "particle" and a "hole"-line. An 

important subseries of those graphs are the so-called ladder~graphs, which seem 

to give an essential contribution to the particle-hole force. Furthermore one 

can remove in the ladder approximation hard core singularities. ·Therefore we . 

shall investigate the ladder approximation for the particle-hole force. In the 

ladder approximation (A11-approximation (17)) one takes only the direct scatt.ering 

of particles and holes via the potential into account. Hence, one neglects 

in (II.20) all terms but the first three ones, so obtaining 

T(L)NDXM = 
ndxm 

"NDMX 1 "NDXM .; "NDUY (L)UK (L)YV T(L)KVXM 
wndmx+-2wn.dxm+ ... wd g ukg k n uy yv vxm ( III.lO) 

which leads by inserting in Eq. (II.l9) to the following expression for the 

irreducible mass operator: 

(L)AR 
v - -ar 

i T(L)AKRX (L)XK 
akrx g xk (III.ll) 

So, the effective scattering amplitude plays the role of a pseudo-nucleon-

nucleon-potential. If one neglects the propagator dependence of T; the effective ,. 

particle-hole force is just the scattering matrix in ladder approximation: 

ov(L)AR 
1

(L)ANRM::: i ___ a_r ~ 
anrm 0 MN 

gmn 

T(L)AlffiM 
anrm (III.12) 
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Here, the t·erm ·g has been neglected. One can include the. functional 

derivative in the ladder approximation, which leads to the following approxi-

mation for the irreducible particle-hole vertex: 

(

6 AR )(L) 
1 (F)AMRN = i var 

amrn 
6 

NM. 
gnm 

= T(L)AMRN + 
amrn ( 0~x) (L) 

akrx 
6NM gnm 

(L)XK 
g xk 

:, T(L)AMRN _ i { ( 2T(L)AKNX + 4T(L)AKXN) (L)XY (L)UK 
amrn 3 aknx akxn g xy g uk 

* T(L)MYRU + (2T(L)AKXN + 4T(L)AKNX) (L)XY (L)UK T(L)YMRU. } • (III.l3 ) 
myru akxn _ aknx g . xy g uk . ymru 

The.last expression can be obtained by using the fact, that the 

homogenous term in Eq. (III.lO) does not depend on the single-particle propa-

' gator. The corresponding equations for the effective single-particle potential, 

the linear response function (or the T-matrix) emerge from (II.23), by inserting 

{III.l3) in (II.l8), (II.l2), or (II.l6). 

In the next section we are going to apply the results of the last both 

sections to the problem of.moments and transitions for normal systems. 
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IV. NORMAL SYSTEMS 

Normal systems are characterized by the unimportance of contributions of 

bound nucleon-pairs to the single-particle propagators, so one can restrict 

oneself for the Green's functions according to (II.4) to the case 
N 
I: (A. + B.) = 0. Furthermore ll(N) and ll(P) can be put equal to zero and the 

i=l ~ ~ 

external sources can be restricted to the standard source 

-1 1 ( 1-1 1 1 -1-1 ) u u =u =u =0. mn Since we do not need to keep the upper indexes 

for normal systems, we reintroduce the standard notation: 

-1 1 -1 1 
hrR. 

-1 1 s . = s h r R.: = u = r R.' rR. r R.. 

/ -1 1 v 1-1 1 1-1-1 = vrR. gR. s: = gR.s ; gR. m s r R.' 

The system of equations (II.5) - (II.7) reduces then to 

(s + h + u + v)rR. g~s = tS rs 

v =ra 2i w g + i w g 
rman n+m++ rmR.n R.k ou ++ + m n 

n 

urR. 

: = gR.msn (IV.l) 

(IV.2) 

(IV.3) 

(IV.4) 

In order to avoid misunderstandings we place emphasis upon the fact, that the 

system (IV.2) - (IV.4) is a complete system for any ma~y-body fermion system 

with two-body forces •. The only point is, that for Cooper-pairing in nuclei to 

our knowledge no transparent and convenient approximation scheme without further 

neglections (18) 

... 

.. 

ir 
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exists. Since--as in the generalized case--the effective single-particle potential 

does not explicitly depend on u, we obtain instead of (!!.12), (II.l6), and 

{II.l8) the following equations (u = 0): 

with 

L R.msn 
= L(I) - i I L 

R.msn gJI.r gks rbka ambn 

Tnarl 

v ar = - 2i w g ""-· + w g g T g rman n · m++ _ axR.y ex yd kdrc R.k 

1 1 -1-1 
L R. m s n 

. . og 
L -. R.s I 

= Jl.msn = 1 ~ u=O 
nm 

L(I) ·= .; g g 
• ... nn ms Jl.msn )(, 

I-1-1 1 1 _ I-1 1 1-1 
Irbka:= r b k a r a k b 

(IV.5) 

(IV.6) 

(IV.7) 

(IV. 8) 

(IV.9) 

_ (IV.lO) 

The analogue to Eq. (II.20) can be found in Ref. (17). The expressions for the 

change of the single-particle propagator due to an external source (II.24) and 

the equation for the effective charge (II.28) reduce for normal systems to: 
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6.g,_n = -i L_ (I~ ti - i g g T g rt. • u 
.IU. !on.X,n nm kb ai bdaf fn -ma. nm 

(IV.ll) 

A-ll NM u(E)NM = u~E) 
jd nm nm Jd 

= u -jd 

= ujd - I jadb 1 fman unm (IV.l2) 

For the different approximations one gets in the normal case the following 

expressions: 

1) First order renormalized perturbation theory (equivalent to Hartree-Fock 

theory, index j = 1 is suppressed): 

v =ra 

I = 2 w rbka rbka 

og 
L =i~ I imsn ou u=O = gin ~s 

nm 

ovri --1 - -2i w g g ou u=O - rbia ax yb 
xy 

' 

2) Second order renormalized perturbation theory (index j = 2 is sup-

pressed): 

(IV.l3) 

(IV.l4) 

(IV.l5) 

(IV.l6) 

(IV.l7) 

·-
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1It.~mn = r wktmn + 21 v~b gar ~s w rsmn 

~ 4i wkanb gbr gsa wirms 
! 

3) Ladder approximation for the effective particle-hole force: 

where T(L) is the solution of 

T(L) = 2 w + i w g g T(L~ 
kimn kR.mn kiab ar bs rsmn 

For the effective single-particle potential one has: 

(L) _ . T(L) (L) 
v ki - -1. k:!n.in gnm 

showing that T(L) plays the role of a pseudo-potential. 
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(IV.l8) 

(IV.l9) 

(IV.20) 

(IV .21) 

(IV.22) 

4) Inclusion of the functional derivative in the ladder-approximation: 

I(F) = T(L) + 
kmin kmin 

oT(L) 
kaib 

og 
nm 

= T,~~n + i T(L) T(L) 
AlliN kcny gys guc msiu (IV.23) 
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For the expression (II.34) for the Gr~en's function of the odd system, different 

versions can be derived depending upon the theoretical quantities one wants to 

deal with. First one could express the four-point function in (II.34) in terms 

of the two-point functions and the effective scattering amplitude. But since 

· a determination of the T-matrix (reducible vertex)--due to the complicated 

energy-dependence--is not easy to obtain, we prefer a represehtation of the 

Green's function for odd system or equivalently the wanted Q-matrix element 

(II.39) in terms of the effective particle-hole force and the linear response 

fUnction, which are usually more trahsparent. The response function can often be 

directly related to experimental' data of the even system. For completeness the 

representation in terms of the scatte~ing amplitude and the equation for the 

' 
"charge vertex" will be given in the appendix (A). Utilizing the following 

expression for the four-point function 

' (IV.24) 

obtained with the help of (II.ll), (IV.3), and (IV.5), one gets for the Q-matrix 

element I 0) : = I ¢0(N)>) 

<riQIF > = <riF > <oiQio > + 

.. 

- Jdt 0 dt dt dt 
.IV r s m 

*In L 
0
(t ,0-; t ,0+~ . 

JVrsm lJCXp.., m r ] 
.- .. (IV.25) 
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where we have given the time-dependence of L explicitly. Due to energy con-

servation, the effective particle-hole depends only on three time variables: 

with 

tn + t 
~ s· T = ~~__.;;;.. 

2 
I 

T = t r t m 

, (IV.26) 

t + t 
' r m T. = .....;;..-.,...-= 

2 
• (IV.27) 

According to our knowledge, one has in the calculations of the properties of the 

odd system always made implicitly the assumption of an instantaneous particle-hole 

force as given in the first approximatlon (IV.l4). Therefo.re it seems sufficient 

to us to split up the particle-hole force in an instantaneous and a non-

instantaneous part 

(IV.28) 

and to treat the part of (IV.25) resulting from the second term in (IV.28) 

approximately by taking only the first term of (IV.5) ("independent particle 

(-hole) propagation") into account. In practice, one can include all weakly . ' 

energy-dependent terms of the effective particle-hole in I(i). Hence, we have 

I I 

IR.rsm Lmarb:::::: L fdT 1 dT 1 [Ii~~ o(T-0) o(T
1

-0) o(T-T
1

) LJJCtP8(T
1

- T2,0-;T
1 

+ T2,0+) 

llP 
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+ I 
( ni ) I I I T I 1 T I 

(T,T ;T-T ) i g,, 0 (T - --2 - 0) g (-0- T - ~)) 
A.pC1lJ t-'1-J . ap 2 ' (IV.29) 

where ~he time dependence of the two-point function is given explicitly 

(gab= gaS(ta- tb)). In order to evaluate (IV.29) further, one can either 

make an analytical ansatz for the particle-hole force and determine the parameters 

by experiment (4,9) or one can consider approximations emerging from the 

many-body theory. We want to investigate the approximations (IV.l4), (IV.l9), 

(IV.20), and (IV.23), which have the following time structure: 

I(l) = 2 w,pm• o(T-T 1
) o(T~O) o(T 1

-0) 
irsm 1\ ~'"' 

(IV.30) 

(IV.31) 

(IV.32) 

A more explicit expression for the right hand side of (IV.32) will be given 

later. 

= o(T-T 1
) o('r-'r 1

) I(L) (-r) + i I(L) (T-T 1 + !_ + ~) g
0
.r(-T 1

) gV,_.(-T) 
APOll A<Xl-18 2 2 1-JU ~ 

* I(L) (T 1 + ~ - T + !.) 
poov 2 2 

(IV.33) 
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The phenomenological and semiphenamenological approaches are formally equivalent 

to the first approximation (IV.28) since they both use an instantaneous particle-

hole force. According to the time dependence of our approximations, the time 

integration in (IV.29) for the approximations (IV.30) - (IV.32) c~~ be performed 

trivially. For the approximation (IV.33) one ne'eds the explicit time dependence 

of I(L). For nonsingular potentials one can use the following representation 

(L) l X > 0 
for I (0(x): = 0 x < 0): 

(IV.34) 

In the case of a hard core potential, one can derive a similar expression provided 

the energy-dependence of the T-matrix due to the hard core is weak in the relevant 

energy region. Therefore we make the following arisatz for I(L): 

- i 

(IV.35) 
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F0 , ?+2 , and ~-2 can be determined by solving the ladder approximation problem. 

Another possibility is the determination of the overlapp amplitudes 

( 0 I tJ!tP I N+2 ) etc. from . experimental data or shell-model calculations. Weakly 

energy-dependent terms can be included in F0 , so that one may sum only over the 

relevant N+2, N-2-states in (IV.35). If the nucleon-nucleon potential is non-

.-N+2 N-2 singular, we obtain for~- and F the following expressions: 

~~~ = L wpA.v~ <olt~Jvt/J~IN+2 ><N+2It/J~t/J~Io > w00Kll 

\)~ 
ocr 

~~~ = L wpA.v~ < Olt/J~t/J~IN-2 ><N-2It/Jv~~lo > w00Kl-l 
\)~ . 

(JQ 

(IV.36) 

For the first and second ord~r "dressed particle" perturbation theory 

one can evaluate {IV.25) and (IV.29) by using the Fourier transform of the two-

point function. Since the two-point function depends only on the time difference 

of the two time variables, it has the form: 

(IV.37) 

where g{£) obeys the following exact Lehmann representation (19): 

,, 



-31- UCRL-20495 

=[ 
In> 

<oi1/J~IA><AI1/J)o > 
E + El\. - in (IV.38) 

~ Using the expressions (IV.30) or (IV.31), respectively, one gets: 

(IV.39) 
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In first order theory, one has to neglect the integral over d€1 d€2 • L(w) 

denotes the so-called autocorrelation function of the density fluctuations or the 

standard linear response function, which is defined by: 

{ 

p p* 
.SA.,N V}l,N 
w- EN + in 

. } PJ..l\I,N p.A8,N 
w + EN_- in .. 

(IV.40) 

with: 

(IV.41) 

IN ) abbreviates the excited states of- the N-particle system. 

The integral over the energy-variables can be performed with the help of · 

Chauchy's theorem utilizing the simple pole-structure of the tWo-point function given by 

(IV.38). Since we are going to discuss the ladder-approximation in more detail, 

where similar procedures are used, we will not give here the lengthy outcome of 

this elementary, but tedious integration. Furthermore, we will later discuss 

the determination of the autocorrelation fUnction. 

In the ladder approximation for the effective particle-hole force the 

first term in (IV.35) leads to the same expression as the first-order perturbation 

theory. 0 One only has to replace 2wA.pcrlJ by FA.pap· Hence, if one performs the 

time integrations in (IV.25) one obtains due to the structure of the second and 

third term in {IV.35)- and the approximation in (IV.29) the following result:* 

*For I -- F and n" -- n' (or A" -- A ' ) h k · th 1" · t ~' 3' H H one as to ta e--~f necessary-- e ~~ 

lim 
E.f-+ E. 

1 1 

.• 

·• 

.. 
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<rjQIF > = <riF > <oiQio > 

* 

[ 

-<ollJI~IAr> <AillJialo> 

< ollJialnr > <nillJI;Io > 

<Aii1J10 IO > < OllJI!IAf > I· 
- <oi1J10 In~ > <nillJirlo > 

UCRL-20495 
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..• 

(IV .42) 

... 



<. 

, .. 

+ L I . 
a>.. Pll 

* 

\ ~+2 
L APO"ll 

IN+2) 
( 

z z 0 0 
a 13 ap 131.1 

(-E - E - E + in) 
i 13 N+2 

-35-

-1 

+ (1-na) n (n.f - E - Ea + in)-1 * 
~ a 1 a ~ . 

* 
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I 

( -E - E - E__ + in) -
1

.1 f a ~+2 · 

•' -1 
.(Ei - Ea- ~+2 + 1n) 

- \ ~-2 (z z
13 

o o
13 

[n
13

(1-n ) (n.f + E + Ea ,.. in)-1 
L APO"ll a ap 1.1 a 1 a ~ 

IN-2) . 

* I 
. ' -1 

{-Ef + E~ + EN_2 - in) 

. )-1 {E. + E + EN 2 - 1n · 
1 a -
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I (-EN-2 
nif )-1 n.f 

in)-1 

]))l + Eif + --- Es + in - (-~ + E - -~-- E + 2 -2 if 2 (l 

* nif · n.f 
(-E - )-1 . )-1 E + --- Es + in - (-E - E - --~--- E + J.n · N-2 if 2 N-2 if 2 (l 

... 
In the second expression we have used the one-pole quasiparticle approximation 

(20) for the two-point fUnction. Due to the possible energy-dependence of the 

effective single-particle potential one cannot normalize in many cases the 

generalized single-particle (-hole) wavefunctions ( 0 jlji)Q ) ( ( Ajljl~j 0 ) ) . From 

' the many-body theory one obtains the following expressions for the renormalization 

constants (20): 

•v = (l-n) ll 

1
1- L I 

]..1*\) 

<ojljltiA > 12 + \ <ojljltiA > avan(e:) 
J.1 L a ae: 

an 

(IV.43) 

nv denotes the quasi-particle occupation number. A possible way of determining 

the renormalization constants is the use of experimental spectroscopic factors. 

The treatment of the approximation (IV.33) can be performed in a similar 

manner. Since in the time integrations one has only to deal with integrals over 

exponentials and step functions, these integrations can be done in an elementary, 

but tedious way. Due to the length of the procedure we will not take down the 

result. If one makes in the second term of (IV.33) the reasonable assumption of 

" 



\ .... 

-37- ·UCRL-20495 

weak energy-dependence of I{L), then the treatment is equivalent to the treatment 

of the last term in {IV.31). One only has to. replace "4w" by "2F0" and the last 

term of {IV.39) gives the correction to the ladder approximation (IV.42). 

Our results make plain, that--provided the ladder approximation (ladder 

approximation with inclusion of the fUnctional derivative) is a good representation 

of the effective particle-hole force and is furthermore sufficiently energy-

independent in the relevant energy-region--the first order (second order) "dressed" 

perturbation theory is almost equivalent to the ladder approximation (ladder 

approximation plus fUnctional derivative). If one is able to fit a chosen 

phenomenological {density-dependent) potential to the data in such a manner, that 

in fact the essential features of the-particle-hole force are represented, one canhapetc 

justify the phenomenological treatment. Whether such a procedure is always 

possible is not known to us. It depends on the structure of the outcome of the 

calculation for the ladder approximation (21). One might use a kind of local 

density approximation of the nuclear matter results for the I(L)_matrix (20). 

Furthermore one has to keep in mind, that one deals in the calculation of the. 

properties of N-particle system normally with renormalized quantities, since one 

wants to keep the shell-model structure for the intermediate particle (-hole) 

propagation. This can be achieved by introducing the following renormalized 

quantities: 

= (<olv/IA ) (A lw lo) <olw In ) <n,lw~lo) n n (1-nj.l)(i-n.) 
V V K K J.1 j.l 1\ 1\ .K\1 A 

(IV.44) 
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-38-

= ( (1-n ) n. ( n liP t I 0 )- (A lw I 0 ) . p v p p v v 

, 

= ( z. z z z )1 / 2 I ( ) 
A p cr p Apcrp w 

where ( z.zn)l/2 A v is given by 

UCRL-20495 

(IV.45) 

(IV.46) 

(IV.47) 

(zpzp)
1

/
2 

can be read off' f'rom expression (IV.44). With lnv), ll\v) etc. we denote such 

exact states of the N+l-, N-1-system, which have the largest overlapp with the 

"shell-model"-states 1jJ t I 0 ) , 1jJ I 0 ) etc • v v I(w) is the Fourier transform of the 

effective particle-hole f'orce, where one has neglected the retardation effects. 

It should be mentioned, that one needs for the determination of the. moments 

and transitions different matrix elements as in the calculation of excited states 

of' the N-particle system, where only matrix elements of the form (phi I !Ph ) enter. 

Since in the energy-independent limit the first order theory is fo~ally equivalent 

to the treatment with an instantaneous effective particle-hole force we can read 

off' the standard procedure of calculation from (IV.39). We have to neglect the 

last two terms and replace 2wL by 2niL. Use of the renormalization procedure 

removes the generalized single-particle (-hole) amplitudes, if we assume that 

only the largest amplitude is important. Hence, one gets: 
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* . , (IV. 48) 

where we have defined: 

(IV.49) 

* The only difference is the occurrence of a renormalized q-matrix element. In 

the case of moments one might determine q with the help of the measured 
00 . . 

spectroscopic factors. The density amplitudes p can be determined from the 

renormalized RPA-equations (20): 

(IV.50) 

Summarizing our treatment of normal systems, we can conclude that only for an energy-
'"!!' 

independent particle-hOle force the knowledge of the properties of the N-particle 

system plus estimates of overlapp amplitudes are sufficient for the determination of 

the moments and transitions of the eves-odd nuclei. If one takes the 

* A further renormalization might occur through the restriction of the basis. For 
details see Ref. (~) . . 
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energy-dependent parts of the force into account one obtains additional contri

butions, which are determined in the ladder approximation by properties of the 

N±2 system. However, in many cases selection rules or large energy~denomirtators 

may reduce these additional contributions,. For completeness we give the reduced 

matrix elements in the ladder. approximation in the appendix B. 

. . I 
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V. SUPERFLUID SYSTEMS 

In superfluid systems it is convenient to treat the ground state 

amplitudes (N + 2I1Pt 1Ptlo) and< OlllnPIN + 2) explicitly. It has been shown 

by Brenig and Wagner (13), that it is sufficient to take only the standard 

-11 source u into account. Furthermore, we will restrict ourselves to the case 

of one kind of fermions. The generalization to the simultaneous treatment of 

protons and neutrons can be achieved easily by using the same procedure. Rein-

traducing the chemical potential taken out in chapter II, we obtain now for (II.34) 

1

-< o I1P "!'!A . > -l 
~ ·~ 

* 
( 0 I1P .I ~L ) -l 

~ ~ 

* I 
i{E.·+~)t.-n1t. 1 ~ ~ ~ 

i{E.-~)t.-n.t. 
R. ~ ~ ~ ~ 

1 1-1-1 < I I > 1 gf · b Af 1Pf 0 -a ~ 

1 1-1-1 < nfl ,,,tfl o > -1 
gi a f b '+' 

where the four-point function is given according to {II.6) and (II.l2) by: 

1 l-1-1 ( 1~1 1-1 - 1 1 -1-1) 
gd a s b = - gd b ga s gd a g b s 

{ l-1 1-1 -1 C l M + l '1 1-1 11 C 1 M) 1M l C~l 
+ gd r ~ s I r c k m gd r gk s r c k m m a c b 

{ 1-1 -1-1 1-1 C-1 M + 1 1 -1-1 11 C-1 M) LM 1 C-1 
+ gd r g k s r c k m gd r ~ k s r c k m m a c b (V.2) 
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Performing the time integrations in (V.l) gives for (II.39) the following 

expression: 

<IjQjF> =<I!F> <ojQjo> 

1
-( 0 lw~ ~ f ) <A i jljJ a I 0 ) 

< ni lw: I o > < o I$ al nf > 

+ I <-2l$alAf) <Ail$:1-2> 

-<nil$al2 > <2l$:lnf > 

+Jdt 11 dt dt dt 
A. s m r 

I ( -21 "'A ~ f ) <A.IW jo >I l. a 
+ 

- <~\I$AI2 > < olwalnf > 

I ( ojwriAf) (A .I .,t l-2 ) I l. a 
+ 

- < ni lwt I o > < 2jw~lnf > · 

+ 
I ( -21 "'A 1\ f ) (A i I "'~ l-2 ) I 

- < n i lwA 12 > < 2lw ~In :r > . 

* Il R 1 M 
R.rsm 

* I-1 R-1 M 
R. r s m 

* Il R-1 M ) 
R. r s m 

* LM· 1 R-l(t 
l.l a p 6 m' -n; t n)) J r 

) 

(V.3) 

.-

Here I 0 ) , l-2 ) , j2 ). denote the ground states of the N-, N - 2-, N + 2-systems. 

Furthermore, it vas assumed, that the N-particle s¥stem does not differ 

appreciably with respect to the density matrix from the N ± 2-system. One can 

put (V.3) in a more convenient form by introducing the Fourier transforms of 

I, L, and g: 

., 

.. 
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- 1 t 1,1 m m r r a a ILMRA dt dt dt dt 
. f iLE t +i,ME t +iRE t +iAE t 

( 2n)2 · ~a 1 m r a 

(V .4) 

LLMRA (E E E E ) 
AlJPO. 1 m r a 

= 1 m m r r a a L dt dt dt dt 
l f iLE1t 1+iME t +iRE t +iAE .t LMRA 

( 2n) 2 . R.mra 1 m r a 

(V. 5) 

(V.6) 

Due to energy-conservation, one has the :following structure for the Fourier 

transformed quantities: 

Insertion of the Fourier transforms in Eq. (V.3) .and performing the time 

integrations gives then for the transition amplit~de: 

(IjQjF) =<IjF) (OjQjO) .• 

- <ollJJ~lt\:r > <Ail1Pa.lo >I 
+ L <laa. u 
~ <n1 11P~Io> <ollJJa.ln:r> 

+ I L-2l1P alA f > 

- < nil1Pa.l2 > 

(A i I1P~ l-2 ) 

<2l1JJ;1nf > 

(v .9) 

) 
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(\ illJ!a·lo) < oiljJ~IAf >I 

- <n.llJ!tlo > < ollji lnf > 
J. o a 

+ I ( -2lljit. lA f > (A i j1)J a I o >. . * 

- <nii1)Jt.l2 > <o11)Jalnf > 

I <oi~Ytr> <A.I1)Jtl-2> -1 R-1 M( . ) I I A p a ~ -Eif-~,E;S"2if J. a 
+ * 

- < ni j1)Jtl o > <211)J~Inf ) -1 R-1 M . 
I A p a ~(-Eif+~,E;S"2if) 

.
1 

( -21$. Yt i' ) (A .j1)Jtj-2 ) -f R-1 M( ) I I.A p a~ -Eif-~'E;nif J. a 
+ * 

- < ni j1)J" 12 ) <2j1)J~1nf ) -1 R-1 M( ) 
I A p a~ -E.if-~,E;S"2if 

* 1M 1 R-l(E S"2 ))] ~a p B.' E', if 

with 
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) 

(V.lO) 

(V.ll) 

(V.l2) 

If we neglect, as it is assumed in almost all calculations for spherical nuclei 

without pairing, the retardation effects in the effective particle-hole force 

(I(E, E1 ; w) ~ I(w)), we can reduce (V.lO) to the following form: 



., 
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<riQIF> =<riF> <oiQio> 

+ 21T L: L: << 

< A i 11/J cr I o > ( o 11/Jt lA f > 

- <nill/Jtlo > < oll/Jcrlnr > 
* I-1 R 1 M (Q ) 

A p cr JJ if 

+ 

+ 

Acr PJ.l 

( -211/J, lA ... > (A .11/J I 0 ) 
1\ .1. ~ cr 

<oll/JiiAf> <Aij\ji~l-2> 

- < n i 11/Jt I o > < 211/J ~ I n f > 

+ I ( -211/1~ ~ ~ ) ( Ai 11/1~ l-2) 

- < ni ll/JA 12 > < 211/J~ I nf > 

* Il R 1 M (Q ) 
A p cr ll if 

* Il R-1 M {Q ) ) * LM 1 R-1 {Q ) ) ] A p cr JJ if JJ a p S if ' 

containing only the standard response function L{w) (generalized auto-

correlation function of the density fluctuations) defined by: 

LARB 1 f eiEO++i£'0+ LMARB L a ( W) : = - dE dE ' 0 ( E , E ' , W) 
~~ . ~ ]J~p 

{V.l3) 

(V.l4) 

In terms of amplitudes, this function has a similar structure as in the case 

without pairing: 

.-·· 
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LM 1 R-1 (w) 
ll a p a 

/ 

L 
IN>~Io> l ( ~M~R 11/J~ 1/J~ IN ) ( N hv; 1jJ a I 0 ) 

w- ~ + io 

( Oll/J; 1/JalN > ( Nll/J~ 11J~IM + R ) ·1' 

w + ~- io 
(V.l5) 

In order to evaluate (V.l3), one has to determine the autocorrelation function. 

by following the pattern outlined in section IV. Since the structure 

problem is rather complicated, we will restrict ourselves to the generalization 

of the RPA-approximation taking into account first only the first-order 

approximation of the particle-hole force. The energy-independent ladder 

approximation can be treated similarly. In first order, the irreducible vertex 

has the following structure (index j = 1 is suppressed): 

(V.l6) 

.- .• 
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Insertion of this approximation in Eq. (!!.12) gives the generalization of the 

RPA-approximation: 

1M 1 R-1 = . ( M-1 1 R M 1 -1 R) 
m a r b l gm b ga r - ~ a g b r 

_ i ft.M 1 gl R w 1-1 1-1-1 _ i ft.M..;l g -1 R w. 11 1 1-1 
~ k i r xsik s a x b Jm k i r kisx s a x b 

_ i M-1 1 R 1 1-1-1 -1 1 1-1) 
gm k gi r (wkxis 1 s a x b + wksxi 1 s a x b 

M 1 -1 R ( 1 1-1-1 -1 1 1-1) 
- i gm k g i r, wixsk 1s a x b + wsixk 1 s a x b (V .17) 

Due to the energy-independence of the potential, we obtain from (V.l7) the 

following equation for the "standard" response function: 

1M 1 R-1 (w) = pM 1 R-1 (w) _ pM-1 R 1 (w) 
~ a p S ~ a p S ~ S p a 

_ \ ~ {~ 1 R l(w) w 1-1 1-1-l(w) + ~-1 R-l(w) 11 1 1-l{u. 
L L ~ A p K ~O'AK cr a~ S ~ A p K wKAO'~ cr a~ S 
Kp 0'~ 

_M 1 R-1 { 1 1-1-1( ) -11 1-1( )) 
+ Y~ A p K(w) w~AO' Lcr a~ S w + wKO'~A L 0' a~ S w 

~-1 R 1 ( ) ( 1 1-1-1 ( ) · -1 1 1-1 ( ) ) } 
+ ~ A p K w w A~ O'K L 0' . a ~ s w + w o"A~ K L a a ~ a w 

{V.l8) 

with 

(V .19) 
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For the case of no pairing Eq. (V.l8) reduces to the well-known R~A-

( 1 1-1-1 ) equations only P f 0 • Equation (V.l8) can be further reduced by 

assuming a "Hartree-Fock-Bogoliubov"-strticture of the single-particle propagators. 

In this approximation, the two-point function has the following form (3,12): 

(V.20) 

with: 

(v.-2r) 

(V.22) 

-The EA are defined as follows: 

(V.23) 

where the EA are determined by a suitable chosen single-particle hamiltonian. 

The occupation probabilities uA and VA are given by: 

(V.24) 
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• With zA we denote Migdal's renor.malization constants. Use of the approximation 

(V.20) gives for the integration in (V.l9): 

EK + 2io)-l - (w + EA + EK - 2io)-ll A: B~~ 
. . 

(V.25) 

Substitution of (V.l5) and (V.25) in Eq. {V.lB) yields the following equation 

** for the amplitudes needed in the evaluation of (V.l3): 

-[ L: 
Kp ~ 

{V.26) 

Insertion of the solutions of this equation into Eq. (V.l3) with use of (V.l5) 

and (V.l6) leads to the desired relation of the moments and transitions for 

superfluid odd nuclei with the generalized RPA-~tructure problem of the even-

even nucleus. 

* Since the renormalization procedure is similar as in the normal case, we will 

not treat this problem explicitly here and therefore put zA = 1. One could 

include those effects by following the same procedure as in section IV. 

**For continuum states one also has to.take the first term of (V.l8) into account. 
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If ~e use the ladder approximation (III.iO) we obtain an equation 

similar to (V.l7), the only difference is that we have to take into account 

"nondia:gonal"-elements of the effective particle:-hole force (M + S + L + K #- 0). 

Instead of (V.l7), we obtain now (I(L) = T(L); index L suppressed in the 

response function and the two-point function):· 

L M 1 R-1 _ . ( M-1 1 R M 1 -1 R) 
m a r b - ~ gm b ga r - ~ a g b r 

-i MK LR I(L)KXLS 1s 1 X-1 
~ 8 R.r kxR.s s a x b 

(V.27) 

. (L) 
If we neglect retardation effects and assume weak energy-dependence of the T -

matrix in the relevant energy region, the following equation emerges for the 

"standard" response function from (V~27): 

(V.28) 

The amplitudes are determined now by: 

= -(2n) L L {~~ (~) I(L)~-~ ~-~ (~) < 21~ l/10 IN l 
KP cr~ 
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~ ( ) (I(L)K-1 L 1 (R_) _ r(L)K 11-1 (R_)) <olu! ,,, IN>} 
+ llAPK ~ K ~ A a Ii K a_ A ~ Ii "t;. ·'~'a (V.29) 

In contradiction to the nonsuperfluid case, where the equivalent equations for 

(V.26) and (V.28) fonnally have the same structure (2w-+ 27r I(L)); one has. in 

-the superfluid case due to the nondiagonal matrix elements of T(L) a different 

structure for the generalized RPA-equations depending on the use of first-order-
. 

or ladder-approximation for the effective particle-hole force, respectively. 
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VI. SUMMARY 

The general theory of moments and transitions for even-odd nuclei has 

been discussed in detail in order to trace the contributions from the 

neighbour nuclei. The method of Green's functions has been used throughout 

the treatment. The necessary theory of Green's function theory was developed 
.•. 

using functional techniques. For non-superfluid nuclei the first- and second-

order approximation, as well as the ladder and ladder plus functional derivative-

approximation for the effective particle-hole force, was treated. The conpection 

at the seni.iphenomenological treatment was also established. For superfluid 

nuclei we restricted ourselves to the first-order and "energy-independent" 

ladder approximation. FUrthermore, w~ discussed the generalized random-phase 

approximation 'for superfluid systems. We think, that the described treatment 

makes plain the assumptions involved in standard calculations and shows the way 

for possible extensions. 
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APP~ICES 

A. Equivalent Treatments of the Transition Matrix Element (Normal Systems) 

First, we express the matrix element using the effective scattering 

amplitude instead of the effective particle-hole force. This can be easily 

achieved by inserting the definition (II.l5) in Eq. (IV.l5). Use of the 
.•. 

definitions of section IV and performing the Fourier transforms gives the 

general result: 

<I 1 Q 1 F > = < I IF > < o I Q I o > + L qea [ 

ae 

or equivalently: 

<IjQjF> = .•. + L 
ae 

- < olljJ~IAf > <Ailljialo > 

< olljiajnf > <nijljJ~Io > 

< o jljit lA ; > <A i jljJ a I o > 

< ni jljit I o > < o llj!a I nf > 

(ph) 

) ] 

A.pQll 

< o lljit I A f > <A i I1P a I o ) 

< n i-lljit I o > < o llj! a I nf > 

(A.l) 
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. ~ 
(A.2) 

In (A.2) we have used iil the effective scattering amplitude tJ:e particle

particle energy-variables (characterized by the upper· index (pp)). This might 

be sometimes an advantage in evaluating the integral over € depending upon the 

approximation one is using. In general the structure of the reducible vertex 

(pp) 

is not sotransparent, so that the treatment of section IV is easier to perform. 

If the structure of the reducible vertex is known, one can pursue along the 

procedure given in section IV. 

Charge vertex: 

·The connection with Migdal's treatment can be obtained by introducing 

the ''charge-vertex" TQ, defined implicitly as follows: 

(A.3) 

Here, TQ(Eif' Oif) can be determined from the following definitio~: 

- < ol$tiAf > <Ail$olo > 
Q . 

TQ(Eif' 0if): L: 
T (-Eif' 0if) 

= * (A.4) 
' 

AO < o i lwt I o > < o I$ a In f > TQ(Eif' 0if ) 
AO 

Q where TAO obeys the following equation: 

(A. 5) 

) ] 
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which corresponds to Eq. (IV.l2) for the effective charge of the even-even 

nucleus due to an external field. It can be obtained from (II.l2) by deriving 

the equation for the expression 1- igTg appearing in (A.l). Neglection of 
' I 

the retardation effects a.nd introducin~ shell-model propagation leads to the 

well-known equation for the charge vertex l~0 : 

(A.6) 

* which has been used in several calculations. However, one should have in 

mind, that according to. section IV one has not to solve (A.6) if the solutions 

of the nuclear-structure problem are available, since the desired matrix 

elements can be directly expressed in terms of those solutions. Only if an 

extra fit is wanted, Eq. (A.6) is suitable. 

For superfluid systems one can repeat the derivations given in this 

·appendix and obtain similar expressions. 

* Here, we have neglected the renormalization procedure, which can be included 

using the techniques of Ref. (~). 



.· 
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B. Reduced Matrix Elements 

We are going to put Eq. {IV.42) in a reduced form. Since Eq. (IV.42) 

emerged from a relative complicated ansatz for the particle-hole force, several 
. . ' " 

other approximations--for instance the first order or the energy-independent 

approximation are included in our treatment--can be obtained by neglecting the 

additional terms. Furthermore we use (IV.36) for ?±2 • With .. respect to phases, 

single-particle functions, etc. we use the conventions of Bohr and Mottelson (§). 

· The multipolemoments and the single-particle wave functions are defined as 

follows: 

{B.l) 

ill eh 1/2 L A-1 . 2g!l. . 2g!l. (MA,_ ") = 2Mc A(A + 1) [( )(Y ) + (Y j)] ~ rk gs - A + 1 A-ls A + 1 A-1 ' 
. (A-l,l)AlJ 

k 

ll'n!LjmT (r f = Rn!l.j-r (r) 

1 

i!l. Y (n ) 12) !l.m r 
m s 

(B.2) 

(B.3) 

where the parity is determined by (-)A for ~(EA) and by {-)A-~ for~(~~), 

respectively. The states of the even-odd system are given more·explicitly by: 

lA . ) 
~ 

IJ., 
~-

M.' 
~ 

E.' 
l T3i' II. ; 

l 
~.) ) 

~ 

= (B.4) 
ln. > 

~ 
IJ., 

~ 
M.' 
~ 

E.' 
l T3i' II. ; 

l 
(fl.) ) 

~ 

~1\ f ) IJf, Mf, Ef' T3f' IIf; (Af) ) 

= (B.5) 

lnf > IJf, Mf, Ef, T3f' IIf; (nf) > 

·"· 
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We want ob obtain the reduced matrix element <I I Qj F ) , defined by 

(J.: = (2 J. + 1)1/2) 
~ ~ . 

( IIQ~,.IF) = 0 * 
1\t" 1T 1Tf,1T. 

. l. 
' 

(B.6) 

where Q~ can be read off from (B.l) and (B.2). For the isotope shift one has AJ.I . 

Q1T=+l 2 = r • 
00 

After performing the standard procedure one gets for (IV.42) the following 

equation for the reduced quantities 

Jf + J. - A 
<-> l. oJ J oJ · J a f a i 

* 
(T ) 

* ( allq~lla ) a ) 

Jf + J. - A + 1 
<-) ·. l. o J J oJ J 

iV Of 



* < a-r 11 q~ll a-r > * a 11. a 

1 
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< o01jJ~IL\ f > < oD1jJ~~ i > 

< nfU1jJ~Do > < ni D1jJ~Do > 

1 
(-) oJ J oJ J 

v:r ai 

J. + Jf -:- A + 1 
(-) -~ oJ J oJ J 

v i a :r 

*[L J 2 (1 - n,Jn8 < v-r a-r nF, N+2 na-r 8-r
13 

> "' * c ..... * 
'V a 11. ~ JN+2 E - E - E - E + io 

~ :r i a a 
E 

JN+2 

+ ••• (see (IV .42)) ) 
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(-E -E -E +in)-l 
i B N+2 

-
---'-__...!;;....( _ __.;:;:..)__ ( ( -Ef+. E,.. + EN_2-i n) -l) "' "' JN 2 "' "' "'2 na 1 - na ..... 

( 'VT aT iiF, - U crT 13-r a ) J * ( 
'V a 11. cr ~ N-2 E. - E + E12 + E - io 

~ :f ~ a (E.+E +E 
2
-in )-l 

~ a n-

+ ••• {see (IV.42))] (B. 7) 

Here, we have used the second expression of (IV.42). For the autocorrelation 

function of the density-fluctuations we inserted the renormalized version of 
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"' "' (IV.40). With a, a we denote the quantum number set without the magnetic 

quantum numbers. 

The reduced matrix elements occuring on the right-hand side of (B.7) 

are defined as follows: 

~or m(E:\) 

· for 'lfl (MA) 
, 

(B.8) 

where the different multipole moments can be read off from: 

, (B.9) 

,., "' (T ) -:\+1 J -j +:\-1 .· R. -R. +:\-1 
(all m(M:\)Da > a = i ~c (-) a B .i a B 

.R. + l. -J . J +Js-A 
[l + ~ (-) a 2 a· {{Ja + ~) + (-) a {Ja + ~)} ] 
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j +Jo+A 
+ (-) a 1-1 .,.--..;..;;t_ [A.(2A. - 1)(2A. + 1) j (j + 1)(2j + 1)]112 * 2g (-ra) (~ja 

A.+l a a a.· 

A.-1 

0 

* (B.lO) 

The radial integral has the form: 

(B.ll) 

+ . The phonon operator B 1s defined by: 

Bt jm (z z )-1/2 L c jll :) j -m + = (-) ll ll aj m T · a 
Pl.l,TPTll p ll j -m T 

mm m ll ll ll p p p 
p ll p ll 

(B.l2) 

and its reduced matrix element is given as follows: 

= (JN J o) -1 < o!Btjm IN l 
Pll, T T 

~ m 0 p ll 

(B.l3) 

For the reduced renormalized particle-hole force we us-e the standard definition: 

( ) j -m +j -m 
< v-r p-r I i 0 I en llT ) = · (-) P P a a 

v p a ll 

; ' . 
< vT PT DF(o)phuaT ~T > 

vpj. vv (B.l4) 
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J+2 
The F - -matrix elements can be expressed as: 

J "2 ja j\) JN±2 
(.... A II N±2u" a ) = -.J.:.._ VT aT Fj crT ~T.f3 : .v a a "2 

JN±2 jcr Js j 

(B.15) 

, 
t vrhere the two-particle operators A are defined as: 

Atjm = L 
(ja 

aj3,Ta.Tf3 \ 
m ms 'lffi 

Cl. ., Cl. 

j) 
,m 

with the reduced matrix element: 

= (JN±2 j 

. MN±2 n.< 

a t 
ct.T a. 

0
0) -l 

(B.l6) 

:'("'I .. A'i",j:m IN+"• T 1lt_ E } ' "'· -·rxa .:r T
8 

· -c. ' v N±2' ··'"N±2' N±2 , a . 

(B.JJ )-

The particle-pa~c-t:l.cle matrix el€ments are given in the standard cmwention by·: 

(. )_~j --:m. 
- A r ' A A 

- -· ·I~ ( \)T ci;r !h-1 Jl )l T \)'t ) 
';" \I C< . j ]J \J 
.J 

( .,., 'I "') l). __ t)' 

\ 
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Finally, the reduced one-particle amplitudes are defined by: 

<noll!: no> - ... 1/2 (B.l9) - Jn oJ j zl3 ' ~ 

n 13 

~' 

(OUllJ:DA) 
... 

o -:zl/2 =- JA {B.20) 
JAjl3 13 

.-·· 
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