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We describe some of the processes which occur when light 

beams pass through material, systems which possess an intensity 

dependent refractive index. These effects include: self- 

trapping and self-focusing, intensity-dependent birefringence, 

four-photon scattering, and inelastic light scattering (taking 

into account the finite relaxation time of the induced index 

change), as well as self-induced distortion of the amplitude 

and phase of intensity-modulated plane waves (with consequent 

spreading in the frequency spectrum of the light). Since the 

bandwidth or the optical pulse may be substantiall, increased 

due to the. self-phase-modulation process there is the possibi-

lity of obtaining subpicosecond pulses. 

'Such'. nténsity-dependent phenomena can arise from the 

optical Kerr effect. Neglecting relaxation effects, this 

dirct1.y produces a nonlinear change in the optical refractive 

index which is proportional to the intensity of the optical 

beam. Most of the effects listed above have been Dbserved 

experimentally for the optical Kerr effect A simple model 

of the optiá.ál Kerr effect is obtained by considering the 

orientation of anisotropically polarizabIe molecules. 

Another source of an intensity dependent refractive index 

is the two step process involvingoptical rectification and 

its inverse, the linear electro-optic effect. The influence 

upon the propagation and scattering is more complex since the 

difference frequency fields cause a propagating change in the 

an- 4 nal ,.a*rn4 4 e,. 4 nAa. 
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II. Stimulated Scattering Arising from 
the Orientational Kerr Effect 

We discuss stimulated light scattering for the case wh3re 

the materialmechanism involves the orientational Kerr effect. 

The orientational optical Kerr effect arises from alignment 

produced by the interaction of the electric field with the 

induced dipole moment of a molecule. The effect is particu-

larly large in liquids composed of anistropic molecules (such 

as CS2 or Nitrobenzene)'. In an electric field E . , a single 
4. 	9. 	9. 	9. 4. 

molecule is subject to a torque T = E X  P ='E x ( 	E), where 

is the induced dipole moment and 40 0  is the polarizability 

tensor. The torque is zero when the electric field is parallel 

to a symmetry axis of the molecule, and the equilibrium is 

stable when the electric field is along the axis of. highest 

polarizability tends to orient along the electric field 

In finding an equation of motion, one neglects nonviscous 

molecular interactions except for the local field correction 

due to the linear dielectric constant. (Mcre complicated 

intermolecular interactions can produce an intensity-dependent 

index in liquids of nominally isotropic molecules ) The equa-

tion for the average induced change in the susceptibility AX .  

to second, orderin the field is given'foraxially symmetric 
23 

molecules '(CS2, nitrobenzene) by 

= - 	+ K E 2 	 (2.1) 

2 

2 	ii - where 	
(3) 
== 2n 	= 	 kT 	N 	and _Tr

where T is the relaxation time associated with the randomiza- 
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tion of the molecular orientation after the field is shut off 

suddenly. 	is the third order nonlinear susceptibility, 

£2 and n2  are associated with the quadratic contribution to 

the dielectric constant and index of refraction, respectively. 

a ll  and a1  are the polarizability components parallel and per-

pendicular to the symmetry axis, N is the number of molecules 

per unit vOlume, k is Boltzman's constant and T is the tempera-

ture. In the idealization of sphericalinolecules, the relaxa-

tion time T is approximately given by Y?V/  (kT) where r is the 

viscosity and V is the molecular volume. If we allow two 
-.4 	- 

.•) 	 -i(w't-k'• r) 
f19s E 	' e -i(u  o  t-1  o 	+ c.c. and E = 	'e 	 ± C.C. 

_o 	 - 

and & )> V both polarized in the same direction to interact, 

we get as a solution to (2.1) 

	

KT / 	
,q*r - t) 

	

tx= •( 	2 	+ l+],QT 
(22) 

where q = 	- k and n =w'- 

This susceptibility modulates the incident laser wave and 

scattered waves to produce a polarization: 

P = XE = KI [I F,0 1 2  (E0±E')± 1±iQT 	e)ot - 

e, e  No - '). — ( 2cj 0-w')t] 
+c.c + l+cT 	

. (2.3) 

whereE=E0+E' 
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Let us concentrate on the second term in the right-hand side 

of (2.3). This term can react back on the waves E'. The 

power transferred/unit volume is: 

	

E' 	= Re . 	 . 

- .L9 - 
	) 2 

 NIE 2 	2 (D'T 

	

45 	2kT 	 1 + 2.-2 

•C 
01 

 erl 2 	
Co Lg'L 

	

dt 	87r 	 T 	87r 	
(.4) 

Hence, the gain per unit length is: 

	

(an - 	) 2 

N 	
2 	, , ()-T- 

g 
- 

- CT 
- 	

- 

- 

c 	45km 

	

g 
- g 

	
0 	 01 	

+ 1T 

Note that we have neglected the last term of (2.3) which 

corresponds to anti-Stokes generation and is important only in 

the near-forward directions. The gain (Fig. 2.1(a)) is posi-

tive for n > 0 (i.e. for Stokes or down-shifted frequencies 

from the laser) and is negative for !n < a (i.e. for anti-

Stokes or up-shifted frequencies there is absorption). This 

is a general property of stimulated light scattering and reflects 

the fact that Stokes shifts are associated with phonon production, 

leading to positive feedback, whereas anti-Stokes shifts are 

associated with phonon destruction, leading to negative feedback. 

The crossover point at fl = 0, therefore, naturally has zero gain. 

Anotherway of stating this is that as Q -, 0, the "phonon"  rate 

of buildup decreases proportionately. Also intuitively obvious 

is that. as fl >> 1/-j-, the molecules are being driven so fast that 
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they cannot respond and, hence, cannot react back on the field 

to producemuch gain and, therefore, we expect that g -. 0 as 

. The gain reaches a maximum between thes€ two extremes 

at 2 = l/T and one expects to observe gain narrc wing to pro-

duce a sharp line at precisely Q = l/r. Thisis in sharp con-

trast to. the.spontaneous scattering spectrum skEtched in 

Fig. 2.1 (b), which is centered at Q = 0 and ha Lorentzian. 

wings. . These wings are produced by kT-driven, at isotropy fluc-

tuations 'Which decay with a tlme,T, thus modulating and scat-

tering the laser beam into a Lorentzian distribttion. 

Let us .return to the formula for the inducec polarization 

given by (2.3). and set Q= 0 and add an anti-Stckes wave 4  E" 

given by 

E" 	 - cD"t) 	
+ C.C. 	 .. 	(2.6) 

where k" = 2k-k' and w" = 2% - ' = 

in this case, when n = 0. Then (2.3) becomes 

= 	 (E0  + 2E' + 2E") + e 	'e1h' 	- ci"t) 

-) -3 
2 	• 

+. 	".e 	r - 	
+ 	 . 	. 	 (2.7) 

0 

Note the factor of 2 in front of E' and E". This represents 

the phenomenon of "weak-wave-retardation".. This phenomenon 

arises whenever a strong and a weak wave interact in a non-

linear material, and manifests itself as an extra slowing down 

of the weak wave over and above that of the strong wave. From 

(2 7) the strong wave is slowed down by- 



.2 
teo l' 

2 

tX strong  = 
. (s). 

2  
. 
or 	strong 

_____ 	2. 

- 	no 	k0I = 
_____ 
2 (2.8) 

The weak wave is slowed down by twice this amount: 

(3)  
Xweak = X. kI 	or = % 

2 

tao' (2.9) 

Thus, the relative index change, which lengthens IkIl 	and Ik"I 

is: 2 
(3)k01 

2 ,2 

= 	weak - strong . 	n = e 4% 	= - (2.1() 

8 

Physically,, this retardation exists because, in addition to the 

overall index change produded by the strong field, there exists 

a coherent phast-grating'.arising from the beating of the strong 

and 'weak waves. This Bragg grating reflects: the strong.wave 

into the weak wave direction, inducing an in-phase polarization. 

C 4 	4-k 4 . 	1 	. 4 	4 	4C. 4" .. 4 +kV1, 	4 	-1 	t' 

through an index change in = n 11 2/2 as indicated in Fig 2 2(a) 

The converse process of, reflecting the weak wave into the stronç 

wave direction is negligible ( o  >> V1 ,E") and thus the strong is 

not slowed down any amount comparable to An. Note that the Brac g 

grating is shown at 45° for' simplicity. 

This phenomenon. implies that even in the absence of disper-

sion, the weak waves E' and E" interact most strongly at a non- 
U)0  

zero angle.00 
p' 

 sketched in Fig. 2.2(b) where Ak = An - 
9 

Hence, k'cos 	= k0  so for small 9opt'  (1 - o 
	)k' = k0  - 

or k' 2  = k from which we get:  

1
2 \½ (n

,, 

 \

(2Ak (n\ (2 o  0
opt - 

= no 2    nc 
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At this angle the weak-waves react back on each other so as to 

transfer power by amounts: 

x 	 * * 

	

= - B" 	 - Im ( 2 v e" ) 	 (2.12) 

- 	_ 	x () 	
2 	* 

	

- B' 	= o 4 	Im ( 0  ' " ) 	 ( 2.13) 

Equations (2.12) and (2.13) show that if O o.. q', and " are 

the phases of go .9  et•, and £" respectively, choosing 

- '-" = ir/2, we automatically insure the simultaneous 

buildup of both weak waves at the expense of the strong wave 

One can state this process quantum mechanically as follows: 

two incident laser photons scatter off each other and produce. 

photons in Ic' and k" directions.. This process is sometimes 

called light-by-light scattering or four-photon parametric 

amplification. To calculate the simultaneous gain, we set: 

(3)1e12 	
£ 	

le'12 x  Coo 	

(2.14) 
_  

So by multiplying together we get 

2 

27r 	(3) 	2 	n2l0I 	 2 
g = C'Tg  = ne o X 	It = 	k, = °()pt k0 	(2.15) 

This gain is twice the maximum gain of the anistropy-fluctua-

tion scattering at c2 = liT. For example, CS2  (a Kerr liquid 

with €2 7.5 x 10 11 esu) has a gain of about 10 2 cm' (Mw/cm2 ), 

for the light-by-light process and half this amount for 
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anisotrôpy-flUctUatiofl scattering. These values are comparable 

to the stimulated Raman and Brillouin gains. However, since 

light-by-light scattering involves no shift in frequency, it 

does not suppress the gain for other processes by laser deple-

tion. In fact, since this effect will produce self-focussing, 

it enhances the other gains. A typical value of 0 	 given, foropt 

CS2  is 2.8 x 10 4 rad per (M watt/cm2. )½• A more general treat-

ment which includes both light-by-light and stimulated 

anisotropy-fluctuatiOn scattering starts with letting three 

waves E = E0 	" +E'+E(EcE"<< E0 ) interact in the medium. As 

usual we let: 

i(k r-wt) 
= ½ 0e 	o 	o + c.c., 

-4 -) • 	 i(k'•r - 't) 
E' =½ e'e 	 + c.c., 	(2.16) 

-4 
• 	 i(k"•r - "t) 

= ½ e!'e 	 + C.C. 

where, however, we make the slightly different choice for our 

kS 	 2 
U) £ 	 2 

k02 - :2 0 - ' 2c2 I et 	2 = 0 1  

(2.17) 
2 

• 	

2 	a' 	 () 	2 2 - 	- 4r " 	I (D 	= 0. 
2 	 2 	0 2c 

For simplicity we will neglect the frequency dispersion of the 

linear dielectric constant We also write a similar equation 

for k" 	This is in order to subtract out the strong-wave retar- 

dation common to all three waves If we had made an error in 
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this choice, we can always correct it by taking ' and 90
, 
 to 

be e 	which is slowly varying. These waves produce a change 

in susceptibility: 

3 I 

A - 	' ' (I, 	2 	 C' 	 _1(q r 
X 	2 	'o

1 
+  

(2.18) 
1* 

- c~ t) + c c • 	 H 

Where as usual a = cu - 	= 	
- 	

and q
= 	- 	= 	- 

Substituting the resulting nonlinear polarization into Maxwell's 

equation, we obtain: 

2 ___ 	 2 	2 	 2 * 	1 e' + 2.ik 	= - ' 
2c2 	0 	+ o e }1 + MT 

(219) 

2 	* 	fi 	 ,(s) 	 *• 

- 2ik 	= - 	

2c2 
(1) 	 + e0 	'}l + LQT 

where we assumed that ', " are slowly varying functions of 

z, the direction of propagation of the strong wave We allow 

for weak-wave retardation by allowing for a nonzero Lk (see 

•Fig. 2.2(b)). Let us define e = k*/1c0 as our independent van- 	 H 

able (we expect maximum interaction tooccur.and, hence, maxi-, 

mum gain when e = 0opt and this 'should come out of the calcu-

lation).. Also, our ansatz for the behavior of e f  and " is 

,. 
e(z) 	/\ 

( 	 ) = 	( 	) 	
e Z 	 : 	(2.20) 



13 

where -y is complex (the real part being the effect of retarda-

tion and the imaginary part being the gain). We shall also 

assume and u' WN CU since the scatter ng is 

almost elastic and no difference terms appear in the c(upled 

equations Hence, we get from putting the ansatz into the 

coupled equations, 

2 —)e' = 	X 	je i2'+2 	
*} 

+1T 

2 21) 

(-e2  + 2 ; ) e" = - 47r 	F{I OI2h,*42 
'} 1 + 1 iQT 

or multiplying together 

	

(e2 - 2 	+ 2ir X 	
l±iQT) 

(2 	2 	+27r  

2 	 (2.22) 

-  2 
 

	

(2 X 	
Ie0! 

- \ 
	o 

1+3ST 

	

e4 	41TX 	
112 

e 2 	4 
- 	o 	l+iQ-r 	- 	

= 0 

H3nce, 

± = * e 
(2  4 	

= ± 

ke 

( 	

2e2 	
(2 23) 2.

The power gain g = -2 Im y = ---- -a + (a 2  + b2)½ ½ where 



14 

2 

a = 02 - 
	opt 	and b = 202 	 This ga:.n is - 
1 + fZT 	 opt 

+ 2_2 

sketched in Fig. 2.3. 	- 

The maximum gain occurs atfor PT = 0 and as '.e noted 

previously, this gain corresponding to the degenerate I= 

light-by-light process is twice that of the inelastic oain 

maximum (T = 1) for large angles 

	

.,. 	2, 

	

I 	1 opt 
2 	

? (1 + 

and 

g (large angles) = -2 Im -y = k0  0 
t  

02 	 T2 
2 	(2.24 

l+lT 

which checks with our previous expression for stimulated 

anisotropy-fluctuation gain. Thisprocess is rélatéd to se..f-

focussing and self-trapping in, the following qualitative wa: 

various spatial Fourier components of the beam scatter into 

components at larger angles and thereby decrease the beam 

diameter. Fora Gaussian beamnof diameter,:d, we know that 

k 	= 2/d is the cutoff Fourier component. In the limit 

It —', thegain atthis component is g 	omax V 
0opt 

If we set this equal to the inverse of some characteristic. 

focussing length Z fs  which cLear1y has the physical signifi-

cance as the distance in which something has happened to 

diminish the beam diameter, then 

'I 	 2 	 2½ 	'. 

	

z - - (2Io_ I 	. ( 2 1 ' 
4 	 2n 

' 

I - 2 \ 	/ 	= 	2 \ 	0 / 	
(2.25) 
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In faàt at this distance, the beam focusses down to a singu-

larity ,S aS can be seem from the following reasoning: as a 

beam profile enters the liquid, it produces an index profile 

(since 	intensity) which mimics the effect of a lens. This 

lens is convergent if n2>  0 and proceeds to produce a shorter 

focal length lens, etc. as indicated in Fig 2.4 (a) 	This 

process leads to a singularity, as verified by machine calcu-

lation This singularity is called the "self-focussing point" 

or "first-focus" 	This distance from the cell face, z fP  at 

which this occurs can be estimated from the following qual:Lta-

tive argument: consider what happens to the two rays (1 and 2) 

of Fig. 2.3. 

The index: differs by an amount An = n Ie0!/2  for rays 1 

and 2 and produces a focus in a distance E f  from the initial 

boundary of the medium determined from Fermat's principle: 

fn di =fn dl 	 (2.26) 

path .1 path 2 

where we have assumed the initial phase fronts to be plane. 

Using the fact that $ .Q;-f+ 
()2 	

Zf (l + 
8zf2 

 we obtain 

or 
:: : 	

no: 

= 
no 	Zf  (1 + 

82 :2  

which differs from (2.25) by a factor of 12. 

Self-trapping occurs when we distribute the Fourier com-

ponents in such a way that these components light-by-light 

scatter self-consistently to reproduce the same distribution 
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of Fourier components except for a phase shift,. which crres-

ponds to an overall slowing down of a trapped intensity, pro-. 

file Qualitatively, this occurs when 1 22 X/d s'hich 

leads to thecorrect self-trapping threshold. Another simple 

way to describe self-trapping is that the intensity-dependent 

index change.causes a critical angle to.develop 

cos ecrit n 	fl 0 ±  

e2  
• 	 ii 	crit  

0 

or 	
½ [in2  16,0r\½  

crit = no - \ no / 

Notice that =e0 although physically they correspond to 
crit

surface and volume phenomena respectively. Self-trappiig occurs 

when the diffraction angle 0diff = 1.2X 	0crit Th'.is, 

there exists a power threshold: 

	

• 	p-n . .2-. 	e1 7rd- (1.22X)c 	 (230) 

	

- 0 8r 	O 	• 	128n 2  

Note that this is a power threshold, not an intensity  threshold. 

This occurs because. if one decreases the beam diameter to 

• increase the beam intensity, one has a compensating effect of 

increased beam diffraction and the two effects balance. A 

machine calculation of the correct intensity profile which will 

• propagate without change except for a phase ch.nge, yields a 

threshold very close to the value given by the above argument. 

Furthermore, the machine solution states that the phase change 

	

is of an amount 	 . 	 . 	. 	• 
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j 	 2½ 

k 	
( 2 	 0I 

%ff = 	= \'o + 972 

Associated with self-trapping are the phenomena of self-

phase modulation and self-steepening, in which a pulse of 

light, due to the fact that its intensity and, hence, its 

index change varies with time, undergoes a modulation of its 

phase (i.e. frequency modulation) and a distortion of the 

intensity envelope (i.e. its peak travels slower than its 

skirts), eventually leading to a "shock't involving an infinite 

slope in the pulse shape. We will discuss the self-phase 

modulation in the next section. 
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III. 	Kerr Effect Self-Modulation 

The propagation ofoptical pulses and other complex 

wave forms through media with an intensity-dependent index of 

refraction results in both a self-steepening of the envelope 

and a phase perturbation driven by the nonlinear dielectric 

change (which can be called self-phase modulation). These 

processes, particularly that of self-phase ntodulation, produce 

sidebands7  which have been observed 810  in the frequency spec-

tra of small-scale trappedfilaments of laser light' 3-. 

The characteristics of the light pulse propagation are 

based upon a traveling wave equation obtained from a Fourier 

analysis of the wave equation, using a general approach in 

which dispersion is easily included. If the electric field is 

specified by E(z,t) = ½ (e(z,t)e1(c01)0t) +C.C. , k0  and 

being the carrier propagation vector and the trequen', one 

obtains the following complex propagation equation for the 

electric field envelope 12  

(~f  O= 6z 
+ h)zt = 

[jW 
- ½(_ 	- 	

)][-zt)] (3.1) 

where ó€ is the nonlinear change in the dielectric coefficient 

which is assumed to be much less than 1. 

We concern ourselves with Kerr liquids, for which the 

non-linear change in displacement, oD, can be written in the 

form 

	

oD(t) = óE (t)E(t) 	 (3.2) 	 I  

where o€(t) is the intensity-dependent part of thedielectric 

coefficient given by (2.1). Since l/T is much less than opti-

cal frequencies, molecular orientation cannot respond to opti- 
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cal variations in thee torque resulting from the applied elec-

tric field and the induced molecular dipole moment. Conse-

quently, 6e effectively responds only to the part of E which 

does not vary at optical frequencies. For CS2  the value of G2 

which is definedafter (2.1) is about 7.5 x 10 11  esu. 

The effectsproduced by the propagation of a pulse 

through, the medium are investigated primarily through spectral 

analysis. The relevant power spectrum as observed is given by 

	

S(Q,cz) = 	Re [e(Q,c) 	(Q,c)) 	 te(Q,c7H 2  (3.3) 

in which e(Q,c) is the Fourier transform of the envelope E(z,t). 

00 

e(Q,n) 	dz Ldt 	
9() 1(QZ -ct) 	(3 4) 

00 	
:  

For distances which are very short compared to the shock dis-

tance 13 , the self-steepening of the envelope is not appre-

ciable. In this case the spectral development is almost 

entirely determined by the phase distortion which obeys 

	

(c 

	

+ 	
ó (z,t) = 

(Do 	
ô 	(z,t) 	 (3.5) 

where ó€ is found given as before by (2.1). The complex 

amplitude, e(z,t) has been expressed as a ( z, t) e _, Zt )  where 

	

a(z,t) and o (z,t) are real 	If we assume a 2  to have a fixed 

shape for all z, and assuming o(z = o,t) = 0, o becomes 

t -(t-t')/-i- 
6q(z,t) = a.f 

e 	
T 	

a(z,t')/a0 ] 2  dt' 	(3.6) 
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We define the phase parameter a to be k 0z€ 2 a 2/4€ 0 , 
in which 

a2 normalizes the initial intensity variation to unity. 
0   

The methods of stationary phase applied to Eq. (3.4) 

show that the frequency shift is approximately given by (minus) 

the time derivative of O. Thus, the slope of the phase curve 

determines, to an important degree, the Fourier component 

associated with that part of the pulse. There are generally 

two points in the phase curve with the same slope and, as 

Shimizu6  has pointed out, the corresponding contributions can 

interfere constructively or destructively depending on whether 

they differ in phase by an even or odd multiple of rr. It can 

be shown that the maximum number of interference peaks is 

a./2rr. W1iile théphase development is very significant we also 

must consider the shape:of the envelope since the degree of 

interference will be determined in part by the amplitude ratio. 

Furthermorá, the rate.of change of slope of the phase will also 

influence the size of the contributions of each region. 

The downshifted part of a filament spectrum is shown in 

Fig. 3.1. Curve (a) of this figure shows the theoretical self-

modulation obtained by Cheung, et a1 7  from Eq. (3.6), when 

= 0. The optical wave envelope, a 2 (z,t) is assumed to possess 

a weak modulation at a frequency w = 2.5 cm 1  . This envelope 

is independent of z since self-steepening was ignored. In corn-

parison, curve (c) indicates the self-modulation obtained when 

r = 0, assuming a Gaussian envelope, a 2 (z,t), of full width 

7.4 psec. Pulse distortion is taken into account but has 

little effect on the spectrum in this case E;ince thedistance 

is about 1/100 of the shock distance. The curves of both 

Figs. 3.1(a)and 3.1 (c)f it the experimental spectrum (curve b) 
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of Cheung et a17  for CS2 . 

It is evident that there is little difference between 

the overall spectral development for a single pulse and that 

for a sinusoidal modulation whose period is of the order of 

twice the width of the pulse. The spectrum for the sinusoid, 

however, does possess a discrete underlying structure whose 

components are spearated by u, in contrast to the continuous 

spectrum for the pulse. A libration effect arising from an 

osci llatiön of the molecules about the electric field, has been 

suggested 7  as a model giving rise to a sinusoidal modulation. 

Experimentally there are a few cases whi c'h show fine structure, 

possibly 'due to sinusoidal 	 ",
-14 	is apparently 

no fine structure associated with the largest frequency shifts 

contrary to what is expected for pure sinusoidal modulation. 

Vtriation in modulation frequency might blur out the discrete 

spectra in the region of large frequency shifts. The finite 

filament lifetime, if it is only a few modulation cycles, can 

aLso lead to a blurring of the fine structure. 

If the spectra arise from pulses of the order of ten 

picoseconds, the origin is still uncertain. Spectra with the 

aJove characteristics have been observed in experiments using 

laser pulses at least as long as 100 psec. We, therefore, 

thfer that pulses of this length, if present, are formed in 

tie liquid. Nevertheless, the initial time structure of the 

laser is important since it plays a role in the nonlinear 

processes, including self-focusing. 	. 
\ 

The self-focusing process and stimulated sôattering 

might give rise to trapped filaments whose tenoral extent is 

of the order of one to ten picoseconds'. . . Marburger and 
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Wagner have pointed out that a pulse will become shortened 

in time as it travels from the cell entrance to the shortest 

self-focusing point in the beam. This process of chopping 

the wings of the pulse should continue until its,width is the 

order of the relaxation time for. orient.ation,. 38 . This process 

can also turn a smoothly modulated signal into a series of 

short pulses, which would have a spectrum exhibiting fine 

structure, at the modulation frequency.' 

Stimulated scattering processes, for example Brillouin 

scattering in the backward (opposite to the laser beam) diec-

tion,. could lead to a shortening of the self-trapped lighl: 

pulse in a filament. This shortening would continue until the 

gain dropped to a low enough value to cut off the loss due to 

stinulated scattering The Brillouin gain in this region will 

take on transient character •17,19 The tnsient gain exponnt 

can be given by 

l2gv 
G 	 T 	... . 	 (37) 

Tt  

Here 90  is the steady state gain per unit length, T' is the 

phonon relaxation time, v0  is the velocity of light, and T is 

the pulse 'length in time. Note that g 	r'; therefore, C 

does not depend on T 1  In small scale filaments g0  iOcm', 

10 9 sec and assuming G <20 for the instability to be 

ineffective, we find T < 25 psec 

From the above we conclude that pulse envelopes whose 

widthi are of the order of the relaxation time or less in 

extent may result from the self-focusing process or from stimu-

lated scattering processes occurring in the backward directipn. 

In such cases the lagging edge of the phase, 6(z,t), will pos-

sess an exponential tail with a decay time equal to the relaxa- 
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tion time,T. Since this portion of the phase curve determines 

the upshUted Fourier components, we can immediately conclude 

that thés.é components will be most affected by the relaxation. 

Figure 3.2 (a) shows a computer calculation of the pulse devel-

opment at two distances including the effect:; of relaxation, 

while Fig. 3.2 (b) shows the phase development at the same dis-

tañce (the initial phase was assumed to be zero). The relaxa-

tion time is taken to be 2 psec correspondinq to Cs2 . 

The,frequency spectrum corresponding to a propagation 

distance given by a = a 1  (Fig. 3.3) and illustrates the influ-

ence of relaxation, which is particularly no:iceable on the 

anti-Stokes side. Of the two contributions from the envelope, 

a(z,t), to any upshif ted Fourier component, the one nearest the 

GrvelopG pk %1A=.,Jna1%%-V3 	 than in thc 	;Thcn 

since the other contribution will be out in the exponential 

tail of the phase curve where the envelope is smaller. Thus, 

the interférencé pattern shows less contrast for the upshifted 

part of the spectrum. However,, as in the case when -r << 

this interference effect increases with increasing upshift, 

since the ratio of the two envelope amplitudes determining 

each frequency compOnent tends to one. 

In contrast, the entire Stokes spectru -n exhibits a pro-

nounced interference effect similar to that observed when 

7 <( T. We also notice that there is a compression of the 

frequency spectrum since the height of the phase curve is 

decreased due to the exponential tail. 

We also see that the total intensity oe the anti-Stokes 

components is less than that of 'the Stokes side due to the 

phase delay and the exponential.tail. ' 	 . 
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The relative importance of the above effects depends 

upon the detailed shape of the pulse and its length with respect 

to the relaxatIon time. However, many self-modulated filaments 

display the type of Stokes-anti-Stokes asymmetry illustrated in 

Fig. 339, 111 14 

VarIatIon in obéerved spectra could be due to variation 

in pulse shape. A significant fraction of the filaments observed 

by various authors show weak upshif ted wings which are more ex-

tensive than the intense downshifts. Such spectra might arise 

from pulses whose tails drop sharply. Stimulated scattering in 

the backward direction as well as self-steepening would produce 

a sharp tail. Noncollinear gain effects, not included in the 

present plane-wave calculation, will also have an effect on 

asymmetry. It has been shown that relaxation inhibits but 

doesnot prevent the steepening of the envelope and the 

buildup of thephase. If lifetimes and propagation ditances 

associated with the filaments are great enough, dispersion will 

ultimately become inportant, provided other spreading 'mechanisms 

are regligible.. 

Figure 3 4(a) shows an experimental spectrum taken with a 

mixture of •. two- thirds CS2  and one- third benzene by volume. The 

spacing of the peaks close to the laser was about 3.5 cm 1  . A 

similar spectrum was obtained theoretically (Fig 3 4b) using 

a Gaussian puls.e ofwidth 5.-4psec and a relaxation time of 

9 psec. Perhaps the  c8 2  orientational relaxation time is 

altered by the presence of the benzene. Deviation from Gaussian 

pul&in abal.,-,o miqht modify somewhat the parameters used. 
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IV. 	Electro-Optic Self-Phas&. Modulation 

Optical retification and the electro-optic effect can 

combine to give self-phase modulation and pulse distortion. 

Optical rectification was first observed by Bass, et al' 9  and 

difference frequency generation20  as well as the production 

of millimeter waves by optical pulses have also been observed 21 

We will discuss the reaction back of the base-band (or rectified 

field) on the optical field.. This phenomenon differs in a number 

of signIficant ways from Kerr effect self-modulation and envelope 

distortion. We show that a) an effective intensity-dependent 

refractive index change of either sign results, suggesting the 

presence of.éither or both self-focusing and defocusing, b) a 

novel spectrum of self-phase modulation is generated, c) non-

linear pulse dispersion and self-steepening occur, d) new types 

of both stimulated and spontdneous iight scdtte.in iu iiyhL-

by-light scattering arise. All these new effects are a gener-

alization of processes involved in parametric amplification and 

upconversiori, 22  in that continuous sideband generation on both 

sides of the pump frequency occurs. 

The simultaneous rectification and time-distortion of an 

optical pulse can be studied most simply for collinear propaga-

tion of the rectified and optical fields neglecting the radial 

profiles of both. For optical pulses longer than a few wave-

lengths the rectified field.can be adequately described by a 

scalar wave equation. This is coupled to the optical field 

through the portion of the nonlinear polarization proportional 

to the optical field intensity so that 

(2 	

\ F 	Anx (41) 
c 2 t 2 / 	c 2  6t2 	 .. .. . . 
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Here x is the effective value of the electro-optic coef.icient 

appropriate for the particular direction of field polar .zation 

chose, is the effective static dielectric coefficien;, and 

the complex amplitude of the optical pulse as defined in sec-

tion3. 

Through the electro-optic effect the induced field F 

produces a change in the dielectric coefficient of the medium 

which is given by o 	87rXF. For intense shcrt pulses, the 

resultant contribution to the polarization vzirying at the 

optical frequency can cause significant phase and amplitude 

distortions in the öptical.pulse. Such changes are goverened 

by the same approximate complex traveling wave equation for 

e employed for the Kerr effect modulation, Eq. (3.1). The 

imaginary term, on the right-hand side of (3.1) which provides 

the primary contribution, gives rise to a ph;ise change across 

the pulse, whereas the remaining two terms .e:fectively describe 

the influence of the nonlinearity upon the shapeôf the pulse 

envelope. . 

If the last two' terms of (3.1) are neglected, only the 

phase of the bptical pulse is affected by therectified field 

which is generated. For this approximation, which is valid. . 

for short propagation distances and relativeLy small nonlinear 

changes, €' is only a function of (t - where v0 = 

is the linear speed of the optical pulse In this case the 

rectified field is excited by a phased array of distributed 

dipoles whose frequency spectrum is not varying with distance. 

The calculation of. the field thus reduces to a problem of linear 

radiation theory. Choosing z = 0 at the inpit boundary of a 

crystal and assuming normal incidence of the waves, it can be 
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verified that the following solution satisfies (4.1) 

• F(t,z)= L' 	
.R'3 	+ 	for z < o

vp 

(4.2) 

ceo •{_(t 
- t)~ T (t._ 	

)} 

for z ) 0, 

4/6 +k' 
with v5 

= 	
and v = 	, and where 	= 	

+ 	
and 

	

k 	1€ 	23,24 
R 	 . and 	are respectively the 

"static" dielectrth constants inside and outside the crystal. 

We assume throughout that the crystal is antireflection coated 

- 	 -- 	 7\. 	•- .-. 	 - 

at tne optical trequency. • iere, k'(t 	
— J is trie aipoie 
0/ 

moment per unit volume, which for the electro-optic effect is 

P t 	z 	I (t 	
- 

z 

 - 

12. 

Many ferroelectric crystals, such as Barium Strontium Niobate 

(BSN) , have large linear electro-optic effects associated with 

extremely. large static dielectric constants. 25 ' 26  For these 

materials the rectified fields generated on the input surface 

arid the bulk of the crystal are given directly by Eq. (4.2). 

Only the forced response tobthe driving nonlinear polarization 

travels with the optical pulse. For distances larger than 

V 2  T 

	

o p 	the homogeneous response is delayed significantly. 
V0  - 

If c 5  is chosen to be equal to € , this portion of the recti-

fied field crosses the boundary without reflection 
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The resultant influence upon the, optical pulse i; very 

similar to that.obtairted from the Kerr. effect but.with,a nega-

tive value for the Kerr coefficient. The phase change across 

the pulse after propagating through a crystal of length, L, is 

given, by , 

= - u 0P(t-L/v0 ) . + t 	(4.3) 

where 	is the small contribution 'arising from the for'.'ard 

propagating homogeneous rectified pulse as well as reflections 

from the bOundaries of the crystal. , As before, for crystals 

appreciably larger than the pulse width this influences the 

phase only Onthè low intensity trailing portion of the inten-

áityprofile and donsequently can be neglect€d. In cOntrast 

to the optical Kerr effect the leading edge, of the optical 

pulse' is frequency upshifted and the back edge is downshifted. 27  

The power spectrum in the absence of dispersion is symmetrical 

and identical to that obtained for the orientational Kerr effect 

in the 'limit Of a zero relaxation time. 6 ' 7 1 9  

The most interesting sjtuation arises when: the optical 

pulse width v0-r and the coherence length V0 T/(Vo-Vs) are 

respectively much less' and much greater than crystal length L. 

GaAs is an exaxnpleof a material for which the coherence length 

will be of the order of centimeters. Both the homogeneous and 

driven rectified fields within the crystal then travel with the 

optical pulse and a resonant interaction occirs. By expanding-

tho aacond term of (4.2) into a Taylor series about (t - 

the singularity is eliminated and one obtains a finite field, 

a portion of which is linearly increa,sing in z. 
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F (t, z) 
= + ft) P (t + z/v) for z < 0 

(4.4) 

I 	= 

 

727r 

{ 	

(t 
- z/v) 	

~ 	
,jP(t_Z/Vo)} for z> 0 

This situation is analogous to the resonant excitation of a 

simple harmonic oscillator as is readily apparent for a.purely 

sinusoidal intensity modulation. 24  The linearly increasing, 

solution then displays the usual proportionality to frequency ,  

and 900  phase shift with respect to the modulation. In •  this 

context we note that the high frequency components combined 

with the high intensity of ultrashort pulses should greatly 

enhance the amount of rectification which can be achieved. 

The: fields subsequent to •a reflection from the output 

boundary of the crystal are obtained by the usual continuity 

requirements.28  When 0 = 	the results are particularly 

simple. The portion of the field represented by the first 

term of (4.4) is transmitted while that represented by the 

third is reflected from theoutput boundary. In Fig. 4..1 (a) 

these general characteristics, which were. obtained by solving 

(4.1) and (3.1) numerically, are illustrated for the case of 

propagation through an electro-optic material 12 nun in optical 

length, having 	= 5 and am electro-optic coefficient of 

2.0x 10 esu. The initial pulse, which is assumed to be a 

Gaussian with a peak intensity of .25 gigawatts/cm2  and a full 

width T of 20 psec., displays little distortion and, at the 

time shown in Fig. 4.1 (a), would be centered on the right-hand 

rectified pulse. The pulse reflected from the output boundary 
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has also propagated out of the crystal and 1gs the first 

pulse trávèIing in the backward direction by a distance of 

2L. Since the forward propagating rectified pulse exhibits 

essentially one cycle of oscillation over the width of the 

optical pulse, its spectrum is broad with a peak at T '  
10) 	 (Fig. 4i  (b)); this spectrum could be significantly narrowed by 

using mode-locked pulse: trains in which successive pulses are 

separated by the pulse width. The two backward prOpagating 

pulses whichare spearated by a distance of 2L, each possess 

the spectral shape of the optical intensity profile. Inter-

ference between the two pulses results in a shift of the peak 

of the spectrum from zero towards (v 0/2L). 

The phase change produced across the optical pulse by 

therectified field of (4.4) isdetermined by integrating (3.1).. 

Since we have assumed distortionless propagation, the last two 

terms of Eq. (3.1) are neglected and the electric field is of 

the form F,= a( (tz/'i 0 ))e 	where the real amplitude, a; 

can be treated as a constant with respect to the integration. 

Using (4.4) in the expression for o, one obtains 

-'ki 7r2 X 2P(t-z/v ) 	2w ir P(t-z/v 

	

° 	° z2 - ____ 	 ° z+L(z,t). 

	

. c 0c 	t 	 € 0c f.k 0 +1) 

(4.5) 
ft . . 

The third term arises fromfhe portion of the rectified field 

which is reflected from the output boundary into the backward 

direction For crystals which are longer than the pulse width, 

this only contributes in the low intensity region on the trail- 

ing edge of the optical pulse and hence is unimportant. It is 

this contribution which is responsible for the tail. on the phase. 
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curve of Fig. 4.1 (c), which begins to taper off at a time 2L/v0 , 

the time at which the reflected rectified field begins crossing 

the input boundary. 

The frequency shift for any portion of the optical pulse 
9,10,12 

is given approximately by - 	ó (z,t). 	Assuming .a 

crystal longer than the pulse width, the contribution quadrati-

cally increasing In z dominates. Consequently, the wings of 

the optical pulse are upshifted in frequency whereas the central 

portion exhibIts a downshift. The resultant power spectrum, 

which is roughly proportional to I e(c)I 2  is shown in Fig. 4.1 (d) 

This is in contrast to the behavior of the Kerr effect for •which 

a linear distance dependence is predicted 
10,12 and experi-

mentally verified 
29  The resultant Stokes spectra are quite 

simIlar; howver, the anti-Stokes shift for the linear electro-

optic effect contains additional interference which is not pres-

ent for the quadràtic.Kerr effect. This originates from inter-

ference of.the four localizedportions of the pulse profile 

experiencing approximate:.y the same frequency upshift. An 

overall interference pattern simIlar, to that obtained from the 

Kerr effect is produced by the interferencewithin eitherof 

the two upshlfted regions whereas the superinposed fine struc-

ture arises from the cross-interference between these two 

regions .. The separation between the interference maxima of 

this fine structured region is approximately, the inverse of 

the optical pulse width. Experimentally, the presence of such 

a fine structure would be strong evidence for the presence of 

millimeter radiation generated by the rectification process. 
2 

For the intermediate case V0  T 	is of the order of the 
vo_vs 
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crystal length, the homogeneous and forced responses to the 

polarization, then coiiine to produce a spectrum between that 

of Fig. 4.1 (d) and Fig. 3.1. However, for such a situation 

the homogeneous rectified fields partially reflected from the 

output boundary could also significantly alter the phase 

change, and hence the optical spectrum. 

We have also investigated the propagation characteristics 

assuming crystal lengths and pulse characteristics such that 

the optical pulse shape would distort significantly. Although 

(4.1) and 0.1) were solved numerically, the envelope changes 

are more transparent when considered in terms of the internal 

energy àssôciated with the optical field, p 	(1 + 6c)e*/87r. 

This energy profile, which is independent of the phase of E, 

distorts both throuah a nonlinear chanae in ve10-if-v. -r - - 	lEo 

as well as through a nonlinear energy conversion'stimulated by 

the rectified field which is generated. The latter is given 
(6E/2c0 ) 	so 

by -p 	 The internal energy associated with the 
Li 	F2€ 

rectified field, 	obeys a simpler equation in which the 

only nonlinear term is that which describes the rectified field 

generation, -66- 
2E 0 6t 

Before a significant amount of distortion takes place 

for e s  = Co , F is quite accurately described by Eq. (4.4) in 
p 	

which the term proportional to z eventually dominates for crys- 

tals much longer than the optical pulse The nonlinear velocity 

change is roughly zero in the center of the pulse. 

Consequently, the stimulated energy conversion, which 

is proportional to the second time derivative of the intensity, 

dominates and is such that there is a decrease in the inten- 

sity. The peak decreases to about l/e of its initial 
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value in a distance Z of about 2cT/t where E is the maximum 

value of f(47rx)ee* 1 ½ at z = 0, and T is the pulse width. 

:L 	£o•J 
In order to conserve energy, this decrease must be associated 

with an increase in the rectified field energy as well as a 

growth on the wings of the optical pulse, which implies that 

the pulse disperses nonlinearly. Both the nonlinear velocity 

change and the stimulated gain on the wings are such that the 

internal energy p spreads symmetrically about the center of 

the pulse. This is illustrated in Fig.4.2 for a pulse propa-

gating through, a crystal possessing an electro-optic coeffi-

cient equalto 5 X  105esu. Zd  is then equal to 2 cm. 

In the other extreme, for 	6 and a crystal length 

much greater than the pulse length, the theory of Kerr effect 

-, C - 	- , - 2 - 2 . .. - -, - 4 A 
£ L.11 	-- 	. 	 V 4A 	'.4  

sity dependent index change. The leading edge of the pulse con-

sequently steepens in a manner analogous to acoustic shock wave 

development. The steepening distance is given' 1  by 

0.194 Cres / o/ó 6 m 	where t is the full 1/e width of the 

initial intensity profile and 6c is the maximum change in the 

dielectric constant across the pulse profile. 66 m  is about 10-4 

in BSN for a quarter of a gigawatt/cnf pulse. If te  is 20 psec, 

then this distance is of the order of 25 meters. A shorter 

and more intense pulse woulq decrease this distance significantly; 

however, for most cases of interest the distortion should be 

small and, hence, the modulation effects should dominate. 
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V. Applications of Self-Phase-Modulation 

Self-phase-modulation of optical pulses producing frequency 

broadening hundreds of waveriunthers in extent can easily dominate 

the initialphase profile across the pulse. Such self-phase-

modulated spectra can be utilized to deduce information about 

the initial pulse shape. For the Kerr effect, the spectral 

width is roughly proportional to both the propagation distance 

and the size of the nonlinearity, and inversely proportional 

to the pulse duration. This has been established experimentally 

and has been employed to estimate the •size of the nonlinearity 

associated with self-trapped f1laments5 9  The filament duration 

could also be estimated sitce the frequency spacing between 

interference, maxima close to the carrier frequency is the inverse 

cr LAle PUIO- t!ULLiU11 IL UUth relaxation of the nonlinearity can 

be neglected and a large number.bf interference maxima are pres-

ent The self-phase-modulated spectrum may gve more reliable 

pulse shape information than the presently. used correlation 

techniques.  

The large chirp resulting from self-phase-modulation also 

suggests the possibility of obtaining extremely short pulses 

with the use of dispersive delay techniques. 3135  In particular, 

the linear frequency sweep introduced by a Kerr liquid near the 

peak of the pulse indicates that linearly dispersive optical 

delay lines can be utilized to delay the leading (lower fre-

quency) portions of the pulse with respect to the lagging 

(higher frequency) portion. 

We consider only "linear" nonattenuatirtg dispersive delay 

devices (ones which cannot alter the frequency spectrum of the 
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pulse) and so the transfer function can be written as 

exp[-i.Q(t)]where Q() is real. One can then find the resul-

tant comp1ec electric field output by Fourier analyzinq the 

pulse, applying the transfer function, and ther Fourier recon-

structing the pulse. For ) 	- 	one fjnds for E, 
 the 

complex compressed field 
31, 34 35 

4-  'coot  
:2 	jfdtdc a(t')exp i{ó(t') + 	t'-t)-Q(f1)] 	

(5.1) 
.00 

where:a(t') and o+(t') are the input pulse electric field 

envelope and instantaneous phase shift respectively. 

If we••expand Q() in : a power series (i.e. Q(2) = Q0  + 

Q 1 2 + Q2 02  + ...), we see from Eq. (5.1) that Q (the overall 

phase) can be neglected. One also notices that the Q 1 2  term 

can be absorbed into the Cxp [i(t'-t)] by  redefining t, and 

thus 0 1  corresponds to an equally uriinterestincl group delay. 

The Q292  term is then the first important term in the series. 

We will assume that this term dominates: the hiqher order terms, 

and we can effectively replace Q(Q) in Eq (5 ) by Q? 2 	One 

can then integrate over to yie1. 33 ' 35  

+ U) tJ 	it 2 00 P = e 	 e 4Q2fdt'a(t')exp[i(o(t')+F— - 2Q 	(5.2) 2   

A linearly chirped pulse, for example, has a quadratic time 

dependence of ó.: Thus Q of the dispersive d9lay line (or: 

"compressor") can be adjusted so thatthe  first two terms can-

cel in the exponent of Eq. (5.2), which implies that o = - 13t'2= 

t'2 : 	 _1: 
- 	, or, equivalently, that 	= 2Q. If one 

further:  assumes 

thata(t') is a Gaussian [aCt') = a0ep(- (t ' ) /2T 2 )]. then one can 

evaluatel Eq (5 2) to note that the intensity, 1(t) is given by 
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1(t) 	exp [ -t2/.(1/T) 2 ] 	 (5.3) 

2 which is a Gaussian pulse of duration T = •T 	Since AT 
p 

is of the order of the pulse bandwidth, one can see that thE 

pulse has been compressed to near its uncertainty limit. 'This, 

one finds that an increase in the linear frequency sweep (ar, 

hence, in the bandwidth) increases the possible compression 

efficiency. 

In the case of an intense laser pulse propagating throrh 

a Kerr liquid, one finds that the resultant pulse does not 

exhibit a linear time dependence of instantaneous frequency 

shift. Thus, one cannot find a Q which sets the expressior 

[o(t') + t'2 /4Q 2 ] in Eq. (5.2) to zero over the entire pulEe. 

The problem of compression of a self-phase-modulated pulse Js 

most easily treated numerically. 	To avoid unnecessary th€ D- 

retical complications, we neglect envelope distortion (self-

steepening) and assume that the pulse travels a distance wha:h 

is much less than the self-focusing distance. 

For a relaxation time short compared to the pulse durat ion 

Eq. (3.6) shows that the phase perturbation closely approxi-

mates the shape of the intensity profile. A symmetrical pulse 

thus develops an approximately constant positive chirp i 0 
near 

the intensity peak and the pulse envelope can be compressed by 

matching•this chirp to the inverse of the delay per unit fre-

quency of a delay line linearly dispersive in frequency. Since 

the effective bandwidth of the chirped pulse is of the order of 

the minimum compressed pulse envelope wid,th obtainable 

is of the order of 2/I30T• Compression is diminished by the 
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influence of relaxation which not only delays the maximum 

chirp, but also decreases the linear chirp in magnitude and 

extent. In the limit of T much shorter than the relaxatior.  

time, T, Eq. (3.6) shows that, the phase perturbation become5 

monotonically increasing across the pulse since 60 is then 

proportional to the time-integrated intensity. The chirp is 

thus nonzero only on the wings of the pulse. Were such a 

pulse passedthrough the delay line, the most intense portion 

would remain, uncompressed. 

Figure (5.1) shows the instantaneous frequency shift 

which is found by numerical integration of Eq. (3.6) for an 

initially unmodulated Gaussian 22 Gw/crn2  pulse of 5 picosecond 

full l/e intensity duration propagating through 10 cm of CS 2  

(relaxation time 2 picoseconds). The maximum 111U2' .1L1k9 iS 

of the Order of 1.5 down from the case of instantaneous relaxa-

tion. We estimate that neglecting envelope distortion due to 

the non-linearity and relaxation introduces about a 5% error 

over a propagation distance of 10 cm. The pulse can be corn-. 

pressed by matching the chirp near the intensity peak to the 

inverse of the delay per unit frequency of a delay line The 

optimaIlycompressed intensity profile is found by numerical 

evaluat.ion of Eq. (5.2) for different values of Q2.  The 

resultant pulse envelope is. shown in Fig (5.2). The optimum 

value of Q was numerically found to be 65 x 1026 sec2  for 

this particular case. The optimization 'point was found by 

increasing Q2 , which is proportional to the compressor setting, 

until the shortest pulse was found without substantial side 

lobes. These side lobes increased with further increase in 

92  beyond the optimum value. For a compressor made of two , ' ' 
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parallel gratings having 300 lines per mm and oriented so 

that the angle of incidence of 600, the  gratingseparatiOfl 

to give the compression is 4cm. 

The full width at half-intensity of the optimally corn- 

-14  pressed pulse is 5X 10sec. These results are down by an 

order of magnitude from the estimates made neglecting relaxa-

tion and assuming a constant chirp over the pulse. The 

optimum value of 02  corresponds to the slope of the frequency 

shift at a point between the peak of the pulse and the point 

of maximum slope (and constancy of slope). Thus the maximum 

compressed pulse originates primarily from a region whih 

simultaneously optimizes the intensity and constancy of slope. 

The case äalculated here should be fairly realistic indicating 

that compression ratios of the order of lO c ie 2taired 

using reasonable experimental conditions. 

Although the calculations have been carried out speci-

fically for unmodulated Neodymium pulses, intense mode-locked 

ruby pulses should serve equally well. 

PulsecônipresSiOfl using the abovetechnique has recently 

35 
been achieved by Laubereau. 

S 	 - 	 - 	 - 
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0 ___ 
We have defined T2' = r r 

S and R2 = r 
(cont.) 	

V€ +%,I€ 

transmission and reflection coefficients pertaining to 
the forced response 

	

, 	 r 
A/CS 	 VC 5-\1 C 5 	 _ 

= 	
R1= 

SdrCS+V 	
, 	

v 	
, R 2  = 

are the usual linear transmission and reflection 
coefficients at the input and output boundaries 
respectively. The reflected wave will subsequently 
be multiply reflected at z 0 and z = L with 
coefficient R 2 . In the limit 	= 	

these become 

) 

Ft(t---)= 	 - 
	( t+ Z 	2L )) 
 - 
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