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ABSTRACT 

A new convergent, nonperturbative par~on (straton) dual reson-

ance model for deep inelastic eN and high-energy + -e e production 

processes is proposed. The model incorporates the parton's final-state 

interactioneff'ects and resolves the puzzle why the parton is not 

observed experimentally. It does not require "cut-off" of any sort, 

and automatically furnishes explicit formulas for the structure tunc-

tions vw2 and w1 over the whole range of the scaling variable w 

between 0 and co. The explicit formula for vW2, apart from a non­

scaling factor of £n-1 jq
2

j, correctly reproduces the regge limit 

(w ->co), the "fixed angle" limits (w -->1 ± e, e finite), and the 

threshold behaviors in connection with the asymptotic 

nucleon form factors. For the e+e- annihilation process, it further 

predicts the pionization (nucleonization) limit as w --+0. We also 

suggest that the final-state interaction is of diffractive type 

(Pomeron exchange); and if the straightforward extrapolation of the 

Veneziano formula to the off mass shell makes sense, the final-state 

interaction breaks the scaling law by the factor 2 1 {a+ b £nlq j)- • 
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I. INTRODUCTION 

Two of the most in1;eresting theoretical ideas, in recent years, 

are the recognition. of the duality concept in strong interaction on 

one hand, and the emergence of the parton idea in the deep inelastic 

eN scattering on the·other. "d 1 The original contents of the parton 1 ea 

are: (a) its point-like interaction with heavy virtual light quanta,. 

and (b) that the hadron is made of an incoherent sum of partons (in 

infinite momentum frame). 

The latter assumption (b), though intuitively simple, is, 

however, incompatible with the duality concept, since we need parton­

parton interaction to manifest the duality. Indeed, the physical 

picture of the parton-parton interaction satisfying duality has been 

pushed forth recently in the "parton-dual view"2 or .the "fishnet 

diagrams"3 interpretations of the dual resonance model. Quite indepen­

dent of this, Bloom and Gilman4 have further suggested that a substan­

tial part. of the scaling curves for the structure functions are in 

fact built up from resonances. All of these suggest that the dual 

resonance model5 should be capable of describing the salient features 

of the electroproduction data in SLAC. 

Based on the original parton idea, several models for deep-

inelastic eN scattering and/or-high-energy + -e e colliding beam 

scattering have been proposed. 6 However, because none of these models 

have taken into account the important_final-state interaction effects 

among.the partons,7 one immediately faces the puzzle: What is a 

parton? Why is the parton not observed experimentally? 

Here, we take a completely different point of view. We appeal 

to the experimental fact that the parton ~observed, we assume 
' . 

that the partons are tightly bounded inside the hadron, and that the 
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parton-parton interaction is strong. In other words, we assume that 

the parton, which absorbs the heavy virtual light quantum, must enjoy 

very strong final-state interaction with the rest of the partons inside 

the hadron, so that it is not observed. We thus propose a six-point 

function model for the virtual forward Compton scattering, shown in 

Fig. 2a, of which the imaginary part in s = (P + q)
2 

yields the 

structure functions. The dotted line in Fig. 2a indicates the correct 

imaginary part one should take. Figure 2b shows the fishnet structures 

of the hadron, and Figs. 2c-f are the duality diagrams of Fig. 2a 

(imaginary parts are understood). 

In this model, the whole i~ea of a parton becomes a mathematical 

device only, i.e., its mediation between the electromagnetic inter-

action and the strong interaction through its point-like coupling with 

the virtual photon. We use the standard six-point Veneziano formula 

(four legs off shell) to describe the strong interaction part of the 

process. We state our assumptions: 

(a) hadron is made of partons that are tightly bound inside the 

hadron, 

(b). the character of the parton is its point-like coupling with 

the heavy virtual photon, 

(c) the high-energy parton decays8 by bremsstrahlung into S'lm of 

partons through parton-parton interaction, 

(d) the parton, which absorbs the high-energy virtual photon, 

must suffer··very strong final-state interactions with the remaining 

partons, so that it is not observed, and 

(e) assume the six-point Veneziano formula is allowed to go off 

mass-shell in a straightforward way. 

-4-

The final-state interaction assumption (d), is cr.ucial in our 

model. It turns out that the fir.al-state interaction, besides breaking 

the scaling law by a factor of (a+ b tnlq2 1)-1 , also requires the 

parton-parton channel (not the usual t channel) to have unity regge 

intercept. This could mean that the final-state interaction might be 

diffractive in nature. The point-like interaction, assumption (b), 

leads to the physical picture of the heavy virtual photon: a heavy 

virtual photon behaves like a parton-antiparton pair when it partici-

pates in the strong interactions. Finally, the off-shell Veneziano 

formula, assumption (e), has extremely interesting consequences when 

generalized to detect one more hadronic final-state particle. It yields 

predictions for the lepton-hadronic inclusive process, analogous to 

the pure-hadronic inclusfve experiments.9 It further gives definite 

10 predictions for massive lepton-pair production process. These 

results will be shown elsewhere. 

1 :. 

l ;v 
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II. FORMULATION OF THE PARTON DUAL RESONANCE MODEL 

We specify the kinematics as shown in Fig. 1. The virtual 

photon, of mass 2 q , energy v, is point-like coupled to a pair of off-

shell partons, which then participate in strong interaction with the 

target hadron (nucleon) of momentum P, and results in producing any-

2 
thing of invariant mass 'square s = (P + q) ~. 

our starting point is to set up an off-shell six-point dual 

resonance model for the .spin-averaged virtual forward Compton scattering 

amplitude 

S ~ -oo, 

T 
JlV 

(Fig. 2a). We first go to the asymptotic region 

2 q ~ -~, where the six-point function converges nicely, and 

obtain an asymptotic form for T 
JlV 

2 Then we keep q fixed, and 

analytically continue s to the region where has a 

cut for s > P2 • Take its imaginary part in s, we thus obtain explicit 

formulas for vW2 and w1 of electroproduction. Then again we keep 

s fixed at ~ and analytically continue q
2 (in vW2 and w1 ) 

into the q2 ~~ ± iE region, and thus. we enter the physical region 

+ -of e e process (see the dotted lines in Fig. 3). 

We write down the spin-averaged, virtual forward Compton 

scattering amplitude corxesponding to Fig. 2a or Fig. 2c: 

2 ' m ) 

(1) 

'!dlere m is the mass of the. partons·; k1 = q - k2, k6 = -q - ~' and 

for spin-zero partons (i = 1), 

(2a) 

~ Tr[{¥2 + m)r {-¥1 + m)(¥6 + m)r {-~ + m)], 
(4m) . ll v ·1"5 

to~ spin-! partons (i = 2). {2b) 

-6-

We mention that the spin-~ case (i = 2) is the multiplicative quark 

11 model proposed by Mandelstam, Bardakci, and· Halpern. We show in 

Appendix A that Eq. (2b) reduces to 

2~ q q) +q g -~ 
JlV 2 q. 

(2c) 

The four legs off-shell six-point .dual amplitude, in its standard form, 

is 

dxdydz ~2 q)-l ~23(s)-l L.
l ( 

B6 (1 - xz)(l - yz) (xy) z . 

(3) 

In Eq. (3), the invariant variables 2 s, q on the lett•hand side 

(legs 1,2,3) must be analytically continued in opposite directions12 

with respect to those on, the right-hand side (legs 4,5,6), due to the 

t . 1 th f th t . 12 Th. . b li d b th op .1ca eorem or . e cross sec .1on. 1s 1s sym o ze y e 

iE-prescription. 12 We mathematically distinguish the parton legs 

1,2,5,6 from the hadron legs 3,4 by assigning the following different 

intercepts: the parton-parton channel has intercept ~6 , the parton­

hadron channel has intercept a
23 

(=a
45

), the parton-hadron-antihadron 

channel, a234 (= a
345 

= a23 ), the hadron-hadron channel (the usual 
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t channel), a 34 ( =at), and the photon channel, ~2 (= a
56

). 

Physically, the parton legs 1,2,5,6 are distinct ~rom the hadron legs 

3,4 by their point-like couplings with the virtual photons, and that· 

they are off-shell particles, i.e., field theoretical particles. 

We now substitute Eqs. (2), (3) in Eq. (1) and explicitly carry 

out the two loop-momentum integrations (see Appendix B), bene~ obtain 

Eq. (B.3). We then take the asymptotic limit s ~ -~, 

Eq. (B.3), but keep the scaling variable w fixed, 

2P•q s - p2 
w - -2- 1 ---2-

-q q 

2 . q ~ -~, 10 

(4) 

It can be shown that if w is fixed at values less than unity, 

the important contributions in Eq. (B.)) then come from the region 

-~ n 1 n 1 · o 1 .uere kn x' kn y' kn z' a1 , a6 are small. We thus_ make the scale 

transformation 

tn !. 
X 

tn !. 
y 

tn !. p" z = ~3' 

(5) 

and expand everything else in terms of p, 131 , 132 and 13y Then the 

coefficient of q2 in Eq. (B.3) reduces to 

(6) 
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Now comes the critical step, due to the crucial assumption (d) in 

Sec. II. We note that, in the expression ( 6), there are two terms 

involving w, the first one, (1 - w), is from s = +q
2

(1 - w), and the 

second one in [ ], is from the loop integrations. Since later on we 

only want to take the imaginary part cut across the resonances, but 

not-across the partons (nonobservable)~we have to13 separate out these 

two w's. The unique way to do this is by making the transformation 

al ai/E 
(7) 

a6 a(/E, 

where 

E 

The expression (6) becomes 

(9) 

We then complete the scale transformation by setting 

(10) 

After the scale transformation, and performing the integration 

over p, we obtain Eq. (B.ll). Equation (B.ll) will yield scaling 

invariant structure functions (apart from tn jq
2

j ), only if ~6 = 1. 

Putting ~6 = 1 in Eq. (B.ll), we obtain 

t 
I 
I 
i 
i 
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2 
q -+ -co 

al6= 1 
. (.) 4 ' 1 X (G' J iC 1 eXp( -J') _:n:_.- , 

IJ.V (C'E)
2 1q2 l(l-Wf3) 

. 3 

(11) 

where (G' ), K~~), J·', C', E are defined in Eqs. ~B.12.:16). The 

asymptotic expression for T(i), Eq. (11), is anal_ytic in w for 
. . j.J.V 

w < 1 (hence in s for s < P
2 ) . It has branch cut when w > 1 

(or when s.> P2), owing to the positive-definite requirement of 

Eq •. (6) or Eq. (9). We now keep q2 fixed at -co and analytically 

continue S to14 
+co j; iE, or eqp.ivalently to the region W > 1, and 

take the imaginary part in s (not in w). This amounts yo replacing 

the factor (1 - we
3
)-l by 8(1 - we

3
) in Eq. (11).~ The e

3 
inte- _ 

gration then is trivial, and we obtain the structure tensor for the 

electroproduction {w > 1): 

w<i) - Ims T~~) ~ 
J'"' I"" rl rl-B 

(I.~IJJo da2 Jo ""5 Jo .. 1 Jo 1 .. 2 j.J.V 
S-+ +co 

2 
q-+-co 

~6=1 

' 4 
"' 9(1- B - B - !.) (G"} . :n: ex:p(-J") K:(i) 
I' 1 2 w (C"E' )2 !J.V ' 

(12) 

-·•ere (G" ), K~(i) " ) w.u IJ.V , C , E', and J" are defined in Eq. (B.l2-17 , 

1 
but with f33 = w" 

In order to simplify the final answer, we make change of 

-10-

Bl 

and define 

~(i) 
K 

J.LV 

X 

Now we quote the explicit forms ~or K(i): 
j.J.V 

2 1 1 2 ~ qfl;v) 4x (P + 2X q )(p + -2x q ) - :::; g - , 
fl .. j.J. · V V u. fJ.V q 

(13) 

(14) 

i = 1, 

(15) 

i = 2. 

Equation (15) exhibits the gauge invariance at x ""l,_this will be 

shown in the next section to correspond to w ""1, i.e., the asymptotic 

form factor case. 

We substitute Eqs. (15), (13), (14) in Eq. (12), and then 

compare it (near w ~ 1) with the gauge invariant form of w(i), 
J.LV 

w(i)_ 
(i) ( W )( W- ) 2 W = p + -2 q,, pv + - q -- -
j.J.V 1-1 ~ 2 V p2 

We thus identify F
1
(i), F(i) 

2 ' 
defined by W(i) -+ F(i) 

1 1 ' 

' 

(16) 

and hence we get the results given in the following explicit formulas 

(1 < W <co): 



X 
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2x 
2 . . -1 -1 

lq ltn[(l + ~ )(1 + 02 ) 

1 

. 2 
2Mwx 

....-...-:1:.---:::2 (G J Exp ( _:J) ' 
(1 - wx) · 

(17) 

(18) 
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2 2 In Eq. (17), M is the hadron (nucleon) mass (P = M-). In obtaining 

the a integration, we have performed the double integrals over b2 

and b
5 

(see Appe~dix c, where we discuss the exact tnlq2
1 depen­

dence). Equation (17) explicitly shows, for spin-zero partons case, 

how the Fll) goes to zero. One can also show that, for spin-! 

parton case,' 2MW1 = wvw2 if w large. Hence, our model predicts 

" the R ratio, defined by R ~ 
0
s, is.zero for spin~ partons, and is 

infinite for spin-zero partons, ·in agreement with other models.6 

Equation (17) is the. central result of this model• 
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III. PREDICTIONS OF THE MODEL 

From now on, we will consider spin-~ parton case only. For 

the sake of theoretical simplification, we assume the case .en lq2 1 --> oo. 

(Experimentally, this is unfeasible at the present stage, however.) 

Equation (17), then is further simplified, we make a further change of 

variable a = z .en ( [ ( 1 + ~ )( 1 + a 2)] /( <Xra2)}, and. obtain from Eq. 

(17) the following expressions for wi2), vW~2 ): 

-~){: }c: ;)2 

X •>Pf [m2(, - y) + P2(~ - l)] Jn [(l + ~~: + a,Jl 
~ere (G} is given in_Eq. (18), and 

we now discuss several s~ecial limits in above formula (19). 

(a) The Regge Limit. 

As w -->oo, the important region in Eq. (19), is ~ ~ w, 

02 ~ w, and z ~ w. We make the change of variables ~ = ~l' 

~ = ~2, z = tJ:(X, and eXpand 

(19) 

1 1 1 
ln([{l + ~)(1 + a2)]/(~a2)J ~ w<ir" +B). We find the regge limits 

1 2 

-14-

F(2) ,-..___/ 
c at-1 

---w 2 .enjq21 -W--> 00 

(21) 

F(2) ~ C' , at 
1 .enlq21 w W--> 00 

where c and C' have explicit forms . Since at is arbitrary, our 

model can accommodate the vW2p - vW2n difference (at = _:p, P', A2, 

etc.). 

(b) The "Fixed Angle"· Limit. 

This is the case w = 1 + €, € small but nonzero. In this 

limit, we need both 2 s ·and -q to go to infinity. The main contri-

butions to Eq. (19) come from the region ~' a2 and (z - 1) small. 

We make the transformation on Eq. (19) 

~ 
-~ -!) t3 ' w 1 

a2 (1 - ~)(32' (~) 

and 

(z - 1) f" \ .-r a. (1 - -) w 

and approximate (z - w) by w.[.en 1 
1 2]-l' 

(1 - -wJ 
We further set y ~ 1, 

we find, l5 

.en~ ~ !) c )-2a23 +1 ----"~l...;:;..w::... (!) 1 -! 
.enlq21 w w 

c 
F(2) r--1 

' 2 w=l+€ 

(23) 
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The dominant duality diagram is Fig. 2d, while for regge limit, it is 

Fig. 2f. This is the "triple-reggeon vertex" limit. 

(c) The Threshold Limit. 

This limit, on the other hand, is the limit e ~o. By Eq. 

(4), this limit therefore is 

(24) 

Because of Eq. (4); one can think this Umit is the case 

2 
-q ~co but keep s fixed at various ·resonance masses. Hence the 

dominant duality diagram is Fig. 2e. Mathematically, Eq. (23) smoothly 

approaches Eq. ( 24), but physically, they are different. The threshold 

limit is the case discussed by Bl.oom,and Gil.man. 4 In fact, within the 

framework of this model, we have calculated the asymptotic hadronic 

form factor {see Appendix D), and indeed find the asymptotic form 

factor.to go like 

(25) 

OUr model thus satisfies the relation p = n - 1 = -ax23 + 1, firstly 

16 derived by Drell and Yan. Take p = 3, yields ~3 = -1, 

-16-

(d) Predictions for + -e e Colliding Beam Experiments; 

We now further analytically continue Eq. (19) to the region 

q2 ~+co+ ie, or equivalently, to the region 0 < w < 1. We thus put 

the Q-function constraint in Eq. (19) to the upper limit of the range 

of integration of a2 [and drop the Q function in Eq. (19)].17 We 

thus predict the threshold behavior w ~ 1- and the "fixed angle" 
. . . 

limit w ~1 -·e, to be silnilar to Eq. (23) and Eq. (24), except 

(1 -~} is replaced by (~ - 1) . 
A further prediction can be made about the pionization 

(nucleonization) limit, i.e., the limit as w ~ 0. In this case, we 

need s, 2 2 q ~+co but keep sfq ,.., 1~ 

~~ a2, (y - 1), arid (z - 1) small. 

which goes to zero as w3, if ~; 

again Fig. 2d. 

Again, the important region is 

We then find 

., (26) 

-1. The duality di,a.gram is 

I 
I 
~ 

' 

l 
r 
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I 
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IV. CONCLUSIONS 

The model proposed in this paper, reproduces all essential 

. f'ea tures of electroproduction, confirms Bloom and Gilman's conjecture, 
4 

predicts the lepton-pair annihilation process with detection of.one 

hadronic (nucleonic) final state, and emphasizes the dynamical aspects 

of the lepton-hadronic collis:Lons through the d~al.properties of th~ 

six-point Veneziano.formula, similar to the pure hadronic inclusive· 

'iiiJrk. 9 It further suggests that 

(a) the parton's final-state interaction is of diffractive.type, 

and breaks the scaling law by a factor of (a + b .enlq2
1 )-1, 

(b) the heavy virtual photon behaves like a parton-antiparton pair 

when it participates in the·strong interactions, 

(c) the parton' s mass parameter m2, can be determined by fi ttirig' 

Eq. (19) to the experimental vW2 curve. 
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APPENDIX A. THE TRACE CALCULATION FOR SPIN ~ PAR TONS 

We show that Eq. (2b) leads. to Eq. (2c) 

~ Tr[(~2 + m)r (-¥1 + m)(¥6 + m)r (-~ + m)] (A.l) 
(4m) 1.1 " 

- ~Tr(AB·), 
(l~m) 1.1 v 

with 

B" - (¥6 + m)rv (-~ + m) 

[(-i¥' + m
2

- k
12

)rv + 2k~(~ + ~·)] - m(2k~ + ~rv)' 

~ = k, ~ = k'. 

we use the standard decompositions to factorize Eq. (A.2), 

Tr(A B ) 
1.1 v 

"ifhere 

" Tr(A Ti) Tr(T.B ), L 1.1 1 v 
i 

Ti = l (scalar), r
5 

(pseudoscalar), r 0 (vector), 

ir r. (pseudo-vector), ~a (tensor). 
a 5 · (2 )2 f.1V 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

It can be readily shown that the pseudoscalar and the pseudo-vector 

components vanish. We further define the scalar component Tr(Ail), 

-20-

Tr(B ) 'to have charge conjugation parity C = -1, due to their 
v 

coupling to the light quanta. Then the vector component is even under 

c, and the scalar and the tensor components are odd under C. ·We 

assume C conservation, hence the ve.ctor component is forbidden, we 

are left with · 

Tr(A B ) = Tr(A ) Tr(B ) + !2 Tr(A a,,,) Tr( cf' 5B ) • 
f.1 \1 1.1 V 1.1 ~u \1 

(A.7) 

carrying out the. trace calculations on the right-hand side of Eq. (A.7), 

we obtain Eq. (3) in the text, 

~ Tr(A B) 
(4m) 1.1 " 

-(2k - q) (2k' + q) + q2 r: -qf.J.:\1). 
1.1 v ~\1 . q 

(3) 

• 

l 
~ 

.J 
I 

~ 
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APPENDIX B. FORMULA FOR THE ASYMPTOTIC VIRTUAL 

FORWARD COMPTON SCATTERING AMPLITUDE 

We use the following identities to do-the two loop integrations: 

1 -r .. , 
Jd4k'[l,k ,k k ] exp(k2z + 2k·y) 

ll ll v 

= i:rr
2 

[l _ ~ -gllV + Yf{v] exp f l) 
2 ' z ' 2z 2 \_-z z z 

i = 1,2,5,6, (B.l) 
. ' 

(B.2) 

Separate out k2,~ dependence factors in Eq• (3), use Eqs. (B.l), 

(B.2), and perform the integrations over d
4
k2_ d4~, the result is 

(i) ('Xl . f"" 1 1 1 (i) 
TllV Jo da1 da2 da5 da6 Jo d(£n X) d(£n y) d(£n z) (G} KllV 

- 4 { 2[ 1 X 1L exp q £n - + 
c2 x:y (1 - w) .'" ~ + ~] }•XI>( -J), 

-where 

(G} 
· 1 (1 -: ~z) 

= (l-x)(1-y)(l z) (1-'x){i-y) { 
[, 

2 ]0:23 

X [(1 - z)(l - x;yz)l-o:t (l. __ x:yz) -o:16} l (1 - xz)(l - yz)J 

(B.3) 

(B.4) 

and 
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D (a1 + a6) (a2 +_ a5· + £ (1 - x:yz)2 - w £n(1 - xzHl - yz)] - . n(~ - x)(l - y) (1 - x 1 - y) 

r;, 1 - xyz 1 - y;'\ 
)( \:5 + £n 1 -Y - w £n "l="T.) 

{;_ 1 - xyz) ('_ . 1 - x:yz 
+ al~a5 + a6 + £n 1 - Y ~2 + £n 1 - x 

1- XZD - w £n --- , 
1 - X 

2( ) 2{ (1 - xz}(l - yz) 
J - m al + a2 + a5 + a6 - P L£n (1 - x)(l - y) 

_ !. [.en/_ 1 :\ £n2 (1 - xzHl - yz) 
C "l -xyz_) (1 - X ~ - yJ 

+ ~1 + a2 +.en \--~0 £n2(i = ~z) 

+ 

2P•q 
w - -2-

-q 

s - p2 
1-:--2-, 

q 

£n2(t : ~:)J} 

K(i) c(i) P P + c(i)(P q + P q ) + c(i) q q + c(i) g 
IJ.V 1 ll V 2 ll V V ll 3 ll V 4 IJ.V 

(B.6) 

(B.?) 

(B.8) 

· At this moment, we are not interested in the expressions for 

(B.9) 

(i) 
cj , 

i = 1,2, j = 1,2,3,4. 

As explained in the text (Eqs. ( 5-10), \~e. need to make the 

scale transformation in-~B.3): 
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.en ! pt31' X 

.en! Pt32' y 

.en ! Pt33' z 

al a.j_/E' (B.lO) 

a6 af/E, 

a' 1 PS4' 

a' 6 = p(l - s - s - s - s4). 1 2 3 

Substitute Eqs. (B.lO).in Eq. (B.3) and expand everything else in 
. -1 2 

terms of p and s5. Further put . .en p = £n q , p = 0 , everywhere 

except the coefficient of q2 and in {G}. We then obtain~ after 

the p integration, 

T(i) r'-J 
IJ.V s~~ 

(-G' J 

2 
q --+ -co 

(B.ll) 

(B.l2) 
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~ [·2 + "' + ,, 

and the explicit form for K(i) is 
!-LV 

-(i) 
K "" j.lV 

·where 

(B.l3) 

. (B;l4) 

I 
I 

l 
I 
t 
I 

I 

i 
n 

' .• 
I 

"J 
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Equation (B.ll), with a
16 

= 1, is the asymptotic formula for the 

virt~al forwardCompton scattering amplitude, valid for both
14 

space­

like and ti~;-like17 heavy virtual photon, as long as w < 1. · 
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APPENDIX C. REDUCTION OF THE DOUBLE INTEGRAL OVER 

b
2

, b
5 

INTO THE SINGLE INTEGRAL OVER a 

After substituting Eqs. (13), (14) into Eq~ (12), we isolate 

the double integrals over b2 , b
5 

in the form 

I 

of the .sum of b2 

(c.i) 

is from ~ Exp(-J"), which is only a function 
(E•) 

and b . 
5 

The denominator function in Eq. (C.l) is 

from C" in Eq. (12), or Eq. (B.l3). We make the change of variable 

b2 ~b2 + b
5 

=a, and then interchange the order of integration from 

b2, a to a, b2, getting 

I 
f(a) (C.2) 

2 I 2
1 

2 (b2 - ab2 - a tn q ] 

The b2 integral can be explicitly done, resulting in 

I 2 "I r; 2 ';\2 
2\~ +a tnlq y 

f(a) 

)( tn 

C 2 0 11[ d 2 . )11 a. 2 2 a a 2 2 
4 + a .en I q I 2 - d2 -: 4 + a .en I q I J 

(C.3) 

Strictly speaking, Eq. (C.3) is the exact form that should appear in 

Eq. (17) of the text. It exhibits the £nlq2
1 dependence exactly. 
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In the experimental situation as the factor £nlq
2

1 is doubled when 

lq2
1 varies from 2 GeV to 15 GeV, one cannot consider £n!q

2
1 large. 

However, for the theoretically interesting case, we still take £n!q2 ! 

J.arge at least inside the complicated logarithmic expression in Eq. 

(c.3). Thus we approximate Eq. (C.3).to 

(d.4) 

Since f(o:) 1 is of the. form exp(-ao:- b a), and so the 0: integral 

is convergent at the upper limit of integration, we can further 

approximate Eq. (c.4) to 

I~ 
.en I q I-+ 00 

00 _l_l do: ~ (o: - d 
2 0: 2 

tnlq I ~~ 
(C.5) 

This is the approximation we take in Sec. III. 
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-
APPENDIX D; ASYMPTOTIC HADRONIC FORM FACTORS 

We write down the invariant amplitude corresponding to the form 

factor picture Fig. 4, 

K(i) B4[q - k, k, P -(P + q)] 

2 2 2 . 2 
(k - m )[ (k - q) - m l 

where 
1 . . 

i ""'\2(q)-l -o:23 (k+P)-l 
B4 . ' dx X (1 - x) . 

0 

for both spin-0 and spin ~ partons. 

the loop-momentum integration, and setting 

w 

we get 

2P•q 
-2-
-q 

1, 

-1 -o: -1 . 

L
l 00 

0 dx x "":L2 (1 - x) 23 K~>) L dA1 

X 2 2 )-1] 1 eXp[-m (a1 + a2 ) + P £n(l - x 22 
where 

c 

D 
c 

-1 
a

1 
+ a2 + £n(l - x) , 

(D.l) 

After 

(D.2) 

(D.3) 

2 "n!. mall As q --+ -oo, the important region is when a1 , a2, b x are s · 

We vut, in Eq. (D.2), 

l 
I 

.···.1 
it 
l 
j 

t ,, 

J 
j 
I 

1 
I 
' ·j 

l 
I 

.j 

I 
j 

t 
$.: 

'j 
l 
l 
·j 
j 

.1 
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2 1 

a1 (p .enlq IF' r\ 

2 1 

a2 (p tnlq 1)2 132' (D.4) 

.en !. p(1 - 131 - 132). 
X 

Further approximate (1- x) ""p(1- 131 - 132), .en(1- x)-l ~ .enlll, 

and perform the p integration, we get 

were 

2 2 
if P = m , 

l.'f p2.1 2 r m • 

The iE-prescription in (D.6) is the ordinary prescription for 

propagators used in the Feynman. field theory. 

(D.5) 

(D.6) 

Because there is further enhancement in · q
2 

behavior when 

e
1

, (1 - s
1 

- s
2

) are near zero, we make fUrther scale transformation 

where 

{ 

2 
. m ' 

f -

. · iE, 
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f 
2 2 if P = m , 

. 2 .1 2 if P r m • 

We then approximate Eq. (D.8) by 

T
(i) 1 

~ --.--2. 
.1-l .enlq I 

Carry out the p' integration, we find 

p'dp' 

-a -1 
(p'a) 23 

dp' 

(D.9) 

1 

(lq21P' + iE) 

(D.lO) 

(D.ll) 

. 2 
Thus the corresponding form factor G(q ) goes like 

(D.l2) 

This result is in agreement with Gerstein, Gottfried, and Huang's 
w . . 

calculation. However, we want to call the attention to the crucial 

importance of the iE-prescription. We also stress that. the form 

(D. 7 ) .factor behavior, Eq. (D.l2), is exactly the same· for the elastic and 

all inelastic cases. 
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FIGURE CAPTIONS 

Fig. 1. The kinematics of electroproduction and 

experiment. 

+ -e e colliding beam 

Fig. 2. (a) The six-point dual resonance mo4e1 for the virtual forward 

Compton scattering. 

(b) Fishnet str11cture of the model. 

(c) The x,y,z variables in the expression for the standard 

six-point Veneziano formula. 

(d) The Feynman parameters for the two loop integrations. 

This is also the diagram for the "fixed angle" limit. 

(e) The duality diagram that dominates the threshold behavior 

of Bloom and Gilman. 

(f) The dominant duality diagram for the regge limit. 

Fig. 3· The physical regions for eP; e+e- and the virtual forward 

Compton scattering processes. The dotted lines indicate the 
{' 

asymptotic limit and the analyti~continuation, taken in the 

text. 

Fig. 4. The asymptotic form factor picture. 
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(Fig. 2e) 
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