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ABSTRACT 

UCRL-20623 

* 

It is shown that inclusive cross sections are 

discontinuities across certain cuts in the connected 

.parts of appropriate multiparticle scattering amplitudes. 

This relationship, which is analogous to the well-known 

connection between total cross sections and total 

discontinuities, has been used in recent work on 

the theory ofhigh-energy reactions. 
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I. INTRODUCTION 

Mueller's recent work1 has initiated important new developments 

in the theory of high-energy reactions. The immediate achievement of 

that work \-Jas a simple derivation of the main features of the high-

energy cross sections for reactions of the form a + b ~ c + anything. 

Three important ideas have emerged from this achievement. The first is 

an understanding of how to obtain by direct nondynarnical calculations 

results that had formerly been obtained from dynamical arguments. The 

second is the recognition that scattering functions have a cluster 

p'roperty in momentum space, with Regge poles playing a role similar to 

that played in the space-time cluster properties by ordinary particle 

poles. The third is the realization that unitarity entails a large set 

of relations between theory and experiment that had not formerly been 

exploited. This last point is the subject of the present work. · 

It is well known that the total cross section for a reaction 

a + b ~anything is equal, apart from known factors, to the "total 

discontinuity" of the connected part of the amplitude for a + b ~a + b. 

The total discontinuity is the difference between the function evaluated 

above all cuts and the function evaluated below all cuts. Mueller's 

work has focused attention on the similar relationship that connects 

the inclusive cross section for the reaction a + b ~ c + anything to 

a discontinuity across a c~rtain_cut of the amplitude for the reaction ,-- - . ~--·~- --

2 
a+b+c~a+b+c . 

The relationships between individual discontinuities and 

inclusive cross sections are special cases of the "basic" discontinuity 

equation represented in Fig. 3 below. This basic discontinuity equation 

/ 
'.i 
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was originally studied in connection with an analysis of the analytic 

stru~ture. of many-particle scattering amplitudes) In that work the 

basic discontinuity equation, and various equations derived from it by 

analytic continuation, were shown to be the fundamental constituents 

of the unitarity equations, in the sense that these individual discon­

tinuities added up, .in the cases studied, to the total discontinuity. 

The importance of the basic discontinuity equ,ation in works 

stemming .from Mueller's work has generated interest in' the question of 

whether it can be derived from field theory. 2 The aim of the present 

work is to shovr that this discontinuity equation does follow formally 

from field theory. 

• 

• 
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.II. THE OFF-MASS-SHELL S MATRIX 

In field theory the S matrix is related to a time-ordered 

product of field operators. One defines the T function as 

(2.1) 

where the operator T on the right orders the operators A. (x.) 
l. l. 

so 

that their times 0 t. = x. increase from right to left. Then the 
l. l. 

s-matrix element 

( cpa 1 cp B) 
out in = 

a. an Bl Bm 
(A j_ • • • A I A . A ) 

1 out n out n+l in··· n+m in 0 

4 can be written as 

f. 4 4 4 4 
.

SNA = d X ···d X d y ...• d y 
~ 1 n l. m 

( .)n+m K ( -l. ···K K ···K T X ,···X; x
1 

x y
1 

y 1 n n m · 

Here 

D -M
2 

X X 

y • • ·Y ) • 1 · m 

(2.2) 

(2.4) 

is the Klein-Gordon operator associated with the variable x. The 

functions f. are positive-frequency solutions to the Klein-Gordon 
J 

equations: 

. (2.5) 
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To keep things as simple as possible it is assumed that the 

f's have disjoint supports in velocity space, and are such that no 

disconnected processes contribute to sas. 
The momentum-space T functions are defined by-5 

t(k) = T(k1 , • • ·kn+m) . 

= Jd
4

x • • ·d
4

x d
4
y · • ·d

4
y exp -i(x k · • · + y k ) 1· n 1 m 1 1 m n +m 

In the special case where the space components of all the k. are 
]_ 

real, 

= q. = real 
_,_,]_ 

•t 6 one can wrJ. e 

(2.8) 

Here P represents a permutation of the set of integers (l,···,n+m). 

And 

J d4
x ~;) (x) exp (-iqx) (2.9) 

.. 

.... 
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is an operator t:p.at has nonzero matrix elements between momentum-

ene,rgy eigenstates only if the .momentum~energy of the state on the 

left is greater than t.hat of the state on the right by the amount q: 

unless P = P' + q. (2.10) 

The (*) is a star if .Pj is greater than n; otherwise it is nothing. 

The quantity Ej(P) is 

0 0 0 
- kP(j+l) + kp(j+2) + ·•• kF(n+m) j = 1, · • ·n+m-L 

(2.11) 

That is, it is tpe sum of the energies k. 0 corresponding to the A's 
J 

standing to its rigpt. The quantity H is the energy operator. By 

virtue of (2.10) the denominator E.(P) -His 
J 

0 ' 0 ' 0 
kF(j+l) + • • • + k.F(n+m) - qP(j+l) 

0 
qP(n+m) · 

(2.12) 

The formula (2.8) is easily derived within the Hamiltonian 

framework. The factor (i/E - H + iE) is the momentum-space form of 

the propa.~ator 

U(t,t') = 9(t- t') exp -iH(t- t') (2.13) 

that takes the system from the time t' when the operator . A standing · 

on its right acts, to the time t when the operator A 'standing on 

its left acts. The operator i/E - H + iE can be evaluated in the 

usual way by introducing a complete set of energy eigenstates: 
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i L jo:) E 
i <a: I (2.14) ·E ..; H + iE = 

- Eo; + iE 
. 

0: 

The momentum-space form of (2.3) and (2.8) is (see Appendix A) 

. l 
f(k .• •k J. .. ·1' n+m 

E 

(2.15) 

where 

fj (k) J d4
x fj(x) 

ikx 
=· e (2.16a) 

and 

f'j(k) J 4 . ikx 
= d x fj(x) e 

= ~j(-k))*. (2.16b) 

The braces with subscript E means that the k. 0 are to be evaluated 
J 

at 

(2.17) 

where kjO 0 is real. The mass-shell constraint. on the fj (k) can be 

used to write them, if desired, as 

f'.(k.) = ~.(k.) 2:rr o(k. 2 - M. 2) 9(k.0 ). 
J J J J J J J 

(2.18) 

• 

.. 
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Def'ining the of'f'-mass-she11 S matrix 

S(k) ~ S(k ~ •• k )· 
_ -1' ' n-+m 

= (-i)n+m [(k 2 -M_ 2)··•(k2 - MF )] T(k) 1 --.l n-+m n+m (2.19) 

we may write (2.15) as 

(2.20) 
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III. STEINMANN RELATIONS 

Consider S(k) for fixed real values of the space parts of the 

various ki: 

k. = aJ.. = real. "-l. . ;e 
. (3.1) 

Then Eqs. (2.20) and (2.8) give, in explicit form, the dependence of 

S(k) = Sr(k)(2n:)
4 

B
4
([kj) on the energy components kj0 • Equation (2.8) 

shows that Sr(k) is analytic at all points of 

(k1 °,k2 °, • • • ,k~+m)/([kj = 0) space that satisf'y 

for all· j and P. (3.2) 

That is, the singularities are confined to points where at least one of 

the sums of energies Ej(P) defined in (2.11) is real. This type of 

analytic structure is called cut-plane analyticity. The function is 

analytic at all points that lie on none ofthe cuts 

0 
(k : Im Ej(P) = 0}. (3.3) 

The variables Ej(P) are called the channel energies associated 

with S(k). They are the energies of the various reactions associated 

with S(k). The function Sr(k) is analytic unless at least one of the 

channel energies is real, provided the three-momenta are all fixed and 

real. 

The cuts Cj(P) divide the space 

0 0 0 
(Im k1 , Im k2 ,···Im k )/(~k. = 0) into a number of cones, which all n+m t... J 

meet at th~ origin Im k0 = 0. The function Sr (k) is analytic in ~:ach 

of these. cones. The origin represents the real boundary point. In 

.. 

• 
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general, one expects to find a different boundary value for each cone: 
0 . 

The value of . S (k) at Im k = 0 vlill depend on the cone through which 
r 

this real boundary point is approached; 

In the case of a four-point function the cones in Im k 0 space 

0 0 0 0 are bounded by the three cuts Im(k1 · + k2 ) = 0, Im(k1 + k
3 

) = O, 

and Im(k1° + k4°) = o, and the four cuts Im kj
0 

= 0 (j 1,2,3,4). 

Because the energies of the intermediate states are nonnegative 

the singularities that could lie on these various cuts may be absent 

for certain values of Re k. If one considers only the "connected 

part" (i.e., if one ignores contributions associated with the vacuum 

intermediate sta.te6'7) and if there.is a lower bound on the masses of 

the stable states, then there will be a region around Re k = 0 such 

that the singularities are all absent. For these values of Re ~ the 

functions in the various cones are all parts of one single analytic 

function. The region in Re k for which this is true depends, of 

course, on the detailed nature of the spectral conditions--i.e., on the 

masses of the lowest states in the various channels. 

The Steinmann relations are a set of properties that greatly 

simplify the analytic structure of the functions s (k). r 
They arise from 

the fact that Sr(k) is a sum of terms corresponding to the different 

orderings of the A's, 

s (k) 
r 

together with the fact that a given energy denominator Ej(P) - H 

will occur only in certain terms of this sum. 
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To make this precise let E(P' ,j) denote the set of P's 

such that E. (P) 
J 

is identically equal to 

Here E.(P) :: E.(P') 
J J . 

means that E.(P) 
J . 

E.(P'):· 
J . 

consists of identically the 

same sum of energies Each of·the Sp with P in 

have the common energy denominator (Ej(P') -H). 

k. 0 as E.(P' ). 
J_ J. 

E(P' ,j) 

The set E(P',j) evidently consists of all P such that P 

equals P' modulo permutations that permute the elements of the sets 

(Pl,P2, • • ·Pj) and ~(j + 1), · · •P(n + m)) among themselves. 

Let c;(P') be the part of Cj (P') that lies at 

Re E.(P') > 0. And let c~(P') be the set of points that lie on 
J . . . . J 

c:(P'), but on no other cut: 
J 

C'. (P') :: c:(P') 
J J n 

Pf'E(P' ,j) 
or . ifj· 

" C.(P). 
1: 

Here Ci(P) is the complement of Ci(P). The only terms SrP(k) that 

can have singularities on C~(P') are those such that P belongs to 
J 

E(P' ,j ). 

The set 

E(P' ,j) () E(P",i) {P E.(P) ~ E.(P'), 
J J 

E. (P) ;o; E. (P")} 
J_ J_ 

is the set of P's such that SrP can have singularities on both 

and C!(P"). This set is clearly empty if the channels defined by 
J_ 

(P' ,j) and (P",i) are "crossed"; i.e., if the four sets 

(3.7) 

C'.(P') 
J -
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~ .. +- +- = (P' l,P, 2, .•• pj ) n (P"l,P"2, •• ·P"i > 

J +- ~ = (P' l,P' 2, · • ·Pj) (\ (P"(i + 1), · · ·p"(n + m~ 

,s&~ +- = ~' (j + 1), · · ·P' (n + m)) n (P"l,P"2, • • ·P''i) 

.&·~~ = ~'(j + l)···P'(n +mDn ~"(i + l),···P"(n + m)) 

(3.9) 

are all nonempty. In this case there can be no permutation P such 

The important consequence of this result is that if the channels 

defined by (P', j) and (P",i) are crossed then there is no Sp 

that has singularities on both C'.(P') 
J 

and c:(P"). 
l. . . 

discontinuity of S(k) across the singularity surface 

have no discontinuity across the singularity surface 

the Steinmann relation. 6 

Consequently the 

C'.(P') 
J 

C!(P"). 
l. 

can 

This is 
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IV. FIRST BASI~ DISCONTINUiri EQUATION 

The above derivation of the Steinmann relation leads directly 

to.an important basic discontinuity equation. Let DiscS represent 

the discontinuity of S across some fixed .cut Inspectton of 

(2.8) shows that this discontirlUity is obtained by making the replacement 

i• 
E .(P)"- H + iE 

J 

(4.1) 

in all terms · S such that P belongs to E(P' ,j), and dropping all p 

other terms 

The retained terms $p are those corresponding to all permuta­

tions of the A's within the two s~parate sets (Ap, 1 • • •AP' j) and 

(AP' (j+l)•• ·~, (n+mY·· Thus Eqs. (2.19), (2.8), and (4.1) give 

X I L (ol~l EPl - ~ + iE .•• ~j !out,a) 
a P 

XL 
P" 

(out,aiApn(· 1) E i_ H + iE ···AP"(n+m·)l·o). 
J+ P"(j_+l) 

The quantities EPi can be expressed as 

= i = 1;·· ·j-1 

which is an alternative form of (2.11). 

(4.2) 

• 
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Introducing 

I out ,a:) = L lin,(3) s~ (4.4) 
(3 

one obtains, after simple manipulations with the reduction formulas, 4 

the discontinuity formula 

Disc Sc(k) = s (k') s -l s (k"). 
c I c , 

The variables in (4.5) are linked in the manner shown in Fig. 1 • 

. A,. 
13" 

AI 

Fig. 1. Diagrammatic representation of Eq. (4.5). 

The left-hand side of Fig. 1 represents the discontinuity of the 

connected part s (k). 
c The two plus circles on the right-hand side repre-

sent the connected parts Sc(k') and Sc(k"). The minus box represents 

-1 SI , which acts on the intermediate set of particles. The shaded 

strips represent sets consisting of any number of lines. The two plus 
·, 

signs in the circle on the left-hand side indicate that the channel 

energies that do not "cross" the channel associated with the discon-

tinuity in question are all evaluated on the positive or physical sides 



-14- UCRL-20623 

of their cuts (i.e., Re E Im E > 0). The Steinmann relations ensure 

that the equation does not depend on upon which sides of the remaining 

cuts it is .evaluated. 

The occurrence of Sc(k) on the left-hand side of (4.5) arises 

from our original restriction to processes in which only the connected 

parts contribute. 

the right-hand side is due to.the condition that 

and S (k") c on 

C~(P') contains no 
J 

points lying on any other cuts Ci(P). [See (3.6)]. This condition 

ensures that various disconnected terms that are potentially present 
0\.l.~f'l" 

in the twoAfactors on the right-hand side of (4.2) are in fact absent. 

This is discussed further in Appendix B. 

The discontinuity equation (4.5) is similar to one derived 

earlier within the S-matrix framework. 8 The two are identical within 

tll:\ir common domain of defin-ition. 

• 
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V. ·HERMITIAN ANALYTICITY 

Equations (2.2) and (2.20) give 

cxf3 I a* 
= ( out ¢in ) 

* = sea. (5.1) 

where 

"' S(k) = (-i)n+m [(k_ 2 - M_ 2)···(k2 -if )] ~(k) 
-L -l -~+m n+m (5.2) 

and 

Here 

f'or j = 1, · · •n (5.4a) 

and 



"(*) A .. 
J 

Using 

-1 
SO:t3 

(2.16) one can 

fd4~ 
= lim 4 €~ 0~ (2:n:) 

UCRL-20623 

for j = (n + 1), • • • (n + m). -

write (5.1) as 

d4k n+m 

(2rr)
4 

(5.5) 

where the second line follows from (5.2), (5.3), (5.4), and a relation 

similar to (.2 .16b): 

which follows from the definition (2.9). 

Comparison of (5.5) to (2.20) shows that a reversal of the 

signs of all the 

function for -1 s . 

iE's changes S(k ) 
E 

to minus the corresponding 

This result, which applies specifically to regions 

where only the connected part of S contributes, is called Hermitian 

analyticity. 

Diagrammatically the connected part of S is represented·by 

a circle with a plus sign. We shall represent this same function with 

a minus i€ prescription by a circle with a minus sign. Then Hermitian 

analyticity is represented by Fig. 2. 
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Fig. 2. Hermitian analyticity. 

" 
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VI. SECOND BASIC DISCONTINUITY EQUATION 

The second basic discontinuity equation is represented by 

Fig. 3 

B •• 

A' 

Fig. 3· The second basic discontinuity equation. 

The left-hand side represents the discontinuity 

Discs(-;;+) s(-;±;+) s(-;+;+) - s(-;-;+) 

across the cut C~(P') corresponding to the indicated channel 
J 

7"l'Ti"' 'Z> ,, 
.vncA.'*"""" 0 

(A"+ B") ~(A'+ B'). The first argument of s(a1 ; a2 ; a
3

) is the 

sign of the iE's associated with the channel energies of the 

(A' + B') part of the diagram. The third argument a
3 

is the sign 

of the iE's of the (A" + B") part. The second argument is the sign 

of the iE associated with the energy of the channel A 11 + B 11 ~A' + B' • 

The derivation of this formula is essentially the same as the 

derivation of the formula (4.5). The only differences are that now the 

iE's of the first vacuum expectation value in (4.2) are preceded by 

minus signs, and one uses for this factor the Hermitian conjugate of 

the reduction formulas. 

Notice that if A' = B" and B' = A" then the right-hand 

side of this discontinuity formula is, by virtue of Hermitian analyticity 



-19- UCRL-20623 

and uni tari ty, proportional to the inclusive cross section for the 

reaction B" ~A" + anything. 
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VII. CONCLUDING REMARKS 

(a) Analytic continuation of the two basic discontinuity equations 

leads to other discontinuity equations. For example, fr.om the basic 

discontinuity equation given by Fig. 3 one obtains by analytic continua-

tion the discontinuity equation shown in Fig. 4. 

A' 

Fig. 4. Another discontinuity equation. 

The minus sign in the little section around the set of lines 

B" indicates that all the channel energies that correspond to sets of 

lines in the set B" have been continued to the negative sides of 

their cuts. The right-hand side of Fig. 4 must, however, be interpreted 

with the aid of a special rule, called the "back-up rule." 

The point is that the continuation around the cuts in the 

variables ,.,_,B" takes the function represented by the upper bubble 

on the right-hand side of Fig. 4 to the negative sides of certain 

other cuts as well. To see this consider the equation represented by 

Fig. 5. 
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8"' 

A' 

Fig. 5. Result of introducing a discontinuity formula in Fig. 3. 

The continuation of the equation represented. by Fig. 3 to the negative 

sides of the cuts associated with B" will take the function represented 

by the plus bubble on the right-hand side of Fig; 3 to the negative 

side both of the cuts associated with B", and also of the cuts 

associated with the discontinuity indicated in Fig. 5· One way to 

see this is to note that intermediate energies in Fig. 4 are real 

(since all momenta are real) and hence the negative imaginary energy 

brought in at B" forces one below the cut indicated on the right-hand 

side of Fig. 5· 

In Ref. 3 it was shown, in some simple cases, how the unitarity 

equation is built up out of contributions corresponding to individual 

discontinuities calculated in this way from the two basic discontinuity 

equations. It is probably possible to turn the calculation around and 

derive all the discontinuities from unitarity, since the discontinuities 

around all the singularities lying inthephysical region have already 

been derived in this Wa.y. 8 So far it has not seemed worthwhile to 

reproduce in this way all the equation$ that come out of field theory, 

since the two methods appear alWays to give the same r.esqlts. 

•;'i 

/ 
'I 

) 
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{b) The box diagram singularities on the boundary of the double­

spectral region of the four~point function correspond to points where 

the double discontinuity associated with crossed channels does not 

vanish. In the case of the mass-shell four-point function these points 

lie outside the physical region, and hence do not produce any violation 

of the Steinmann relation. On the other hand, if one replaces some of 

the single external lines by sets of lines, then it is possible to 

move the box diagram singularity into the physical region of the larger 

process. This might at first appear to produce a conflict with the 

Steinmann relations. 

However, the Steinmann relation asserts only that the double 

discontinuity associated with crossed channels vanishes if all the 

other variables are fixed, and away from their cuts. By introducing 

extra external lines one introduces also extra variables. These 

Variables control, through the back-up rule, the iE's associated 

with the cuts that conspire to give the t cut of the s-channel 

discontinuity formula. When this fact is taken into account one finds 

that the box-diagram singularity in the physical region does not produce 

any conflict with the Steinmann relations. The Steinmann relations hold 

at ~real points. This fact is, of course, vital to the main conclu­

sion of this paper, which is that the discontinuity equation represented 

by Fig. 3 holds at ~ energies, not just near the threshold. 

(c) If one invokes a locality condition (e.g., that commutators 

vanish outside light cones) then the analyticity in the upper and lower 

half E planes discussed above can be extended to analyticity in 
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corresponding upper'and lower light-cones in the space of the imaginary 

6 10 parts of the.corresponding four vectors: ' 

~ k. (P) 
J = ~(j+l) + · • • ~(n+m)" (7.1a) 

(?.lb) 

The consequences of this analyticity property, together with the spectral 

conditions and the Steinmann relations, have been studied in detail 

by Bros, Epstein, and Glaser.10 They derive by algebraic methods an 

equation11 from which a variety of discontinuities across individual 

channel-energy cuts can be derived. 

The cones of analyticity described in (7.1) do not intersect the 

mass shelL Indeed, one of the outstanding problems in field theory is 

to show that the domains of analyticity that follow from the axioms do 

intersect the mass shell for the n-point functions with n > 4. This 

deep problem of field theory lies outside the scope of the present paper. 

In S-matrix theory the situation is simplified by the fact that 

the singularities are confined, by assumption, to the Landau surfaces 

that are singular by virtue of the u ni tari ty equations. It seems likely 

that the cut-plane analyticity in Ei(P) space derived from field theory 

will go over in S-matrix theory to local cut-plane analyticity in 

space. That is,the scattering function s (k) rc will be analytic 

si(P) 

(in k) 

in someneighborhood of each real point k, except on the normal threshold 

cuts Im Si(P) = 0, where Si(P)- (ki(P)) 2 . One of the outstanding 
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problems in S-matrix theory, at the fundamental level, is to prove this, 

together with the relations between the various boundary values that 

follow foriTially from field theory. 
) 



G 
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APPENDIX A. DISCUSSION OF EQUATION (2.15) 

Equation (2.15) is formally derived as follows: Let (2.8) be 

written as 

~(k) = l: ~p(k), (A.l) 
p 

where 

L1l(d4

k 0 ik·x "' ( ) Tp(x) = 
c . (2·~" e · T k p 

p J 

(A.2) 

and 

T(x) L: Tp(x). (A.3) 
p 

The contour Cp runs just above the real axis in each of the variables 

Ej(P) j = l,···n+m-1. 

. Next write 

('I( K.) T(x) 
.. J 
J 

= ~ &K~Tp(x) (A.4) 

-· ~(ryK~ [ (11~ eik'x vk) 

P · (A.5) 

= L[frl~ \ eik·~rtf~/ _ Mj~ 
p C ~J (2n) S} "!J ~ 

p . . . 

X ~P(k) (A.6) 
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(A. 7) 

"{:;: (k).--r"(k .2 c ·t.r 2)\ 
ft p q·j·l'-1. J J '1€ 

.. . . . . : ._: .·.· ' . . :. ·. 

(A.8) 

= lim rq1~' eik·~ ~(k)~kj 2 _ Mj 2)1 . 
€~ 0 J \!_j ~~n)r:J l· J . .Je 

.· (A.9) 

'the result (A.8) is substitut~d in (2~3") an:d .th.e limit e ~ 0 

is then moved to outside the integral. 

·'ibe validity of these·formalmanipul~tio~::;·d:~p¢nd on the high 

energy behavior of the off-mass-shell ll!atrix eiements. · We do not wish ' 

to delve into such matters her·e. But the work of Hepp9 indicates that 

the fina;L r~sult is alright, provided the time-:orderedproduct is 

. well-defined in the first. place • 

. \· .. 

. ... 

. ' ''·! ~~ .. .. ..... _.; .. 

) 
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APPENDIX B. DISCONNECTED CONTRIBUTIONS 

Notice that the sum of the terms corresponding to the two 

orders of interaction shown in Fig. Bl lead to a factorized form of 
( 

the propagator. 

f. . - f-! • f ' ~· f l -· '~ • - 1-1 '1--

Fig. Bl. Two orders of two disconnected contributions. 

That is, 

1 1 1 ·- 1 
El - Hl El + E2 - H - H + 

E2 - H2 El + E2 - H - H 1 2 1 2 

1 1 
= 

El - H E - H2 
. 

1 2 
(B.l) 

The two parts can therefore be treated independently, as indicated in 

Fig. B2. 

Fig. B2. An alternative representation. 
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The point is that the discontinuity does not really occur in · 

the variable E1 + E2 • It occurs in E1 and E2 . (See Fig. B3.) 

Fig. B3. The surface Im E1 + Im E2 = 0. 

Thus if one stays away from the two surfaces Im E1 = 0 and Im E2 = 0 

..._ there is no singularity. For this reason the factors S (k') and c 

S (k 11
) in (4.5) are connected parts. The discontinuity being calculated c 

is,, by definition, to be taken at points lying away from the various 

other cuts. 
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