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*
INCLUSIVE CROSS SECTIONS -ARE DISCONTINUITIES

Henry P. Stapp .
Lawreﬁce Radiation.Laboratory
- University of California
Berkeley, California - 9L720

March 9; 1971

- ABSTRACT
It is shown that inclusive croés sections ére
discontinuities across certain éuts in the conﬁected
_»pérts of appropriate multipértiéle scattéring amplitudes.
:Thié-relationship; which is analogéus to the well-known.
~connection between totél cféss sections and total
discontinuities, has been used iﬁ recent work on

the theory of'highrenergy reactions.
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I. INTRODUCTION

Mueller s recent workl has initiated 1mportant new developments
in'the theory'of high-energyvreactions; The immediate achievement of
that work‘was'a simple derivation of the main features of the high-
energy cross'sections for reactions of the form a + h ;;c‘} anything.
Three important idesas have‘emerged from this.achievement. The’first is
an understanding of how to obtain hy direct nondynamical.calculations |
results that had formerly been. obtained from dynamical arguments. The
second is the recognition that scattering functions have a cluster
property in momentum space, w1th'Reggebpoles playing a role s1milar to
that played in the space time cluster properties by ordinary particle
| poles.' The third is the realizatlon that unltarlty entails a large set
of relations between theory and experiment that had not formerly been
exploited. This last point is the subject of the present work. -

It is well known that the total cross section for a reaction
a + bl-aanything is equal, apart from known factors, to the "total
discontinuity"‘of the connected part of the amplitude for a +b —a +b.
The total discontinuity is the difference between the function evaluated
above all cuts and the function evaluated below all cuts. Mueller's
work has focused attention on the similar relationship'thatvconnects
the inclusive cross section,for the reaction a '+ b Q;c + anything to

a dlscontinuity across a certain cut of the amplitude for the reaction

—

o S o
a+b+c—oa+b +ec. : : ' '

The relationships between individual discontinuities and
inclusive cross sections are special cases of the "basic" discontinuity

equation represented in Fig. 3 below. = This basic discontinuity equation
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" was origihally studied in connection Qith ag anginis‘Of ﬁhéfénalyﬁié
strﬁétufévof many-particle scattering a.mplitudes...3 In that work the
basic dlscontlnulty equatlon, and various equatlons ‘derived from it by
analytic continuation, were shown to be the fundamental constituents
of the unitarity equations, in the sense that these individual discon-
tinuities’added up, in the cases studied, to the total discontinuity.

The importance of the basié discontinuity equation in works
stemming frqm Mueller's work has geﬁerated interest ih’the question of
whether itvéén be derived from field theory.2 The aim of the present
work is to show that this discontinﬁity equation does follow formally

from field fheory.
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II. THE OFF-MASS-SHELL S MATRIX.
~ In field theory the S matrix is related to a time-ordered

product of field operators. One defines the T 'fuhction as

0.‘. . '.'. | — s * o..'* '

Oy s%ps K3 Vs, = (r(a, (x,) By () A2 () o o
(2.1)
where the operator T on the right orders the operators Ai(xi) so

that their times ti = xio increase from right to left. Then the

S-matrix‘element

S = (6j l® B) = (AO(1 ...th 'Asl : ...ABm )
“oR - Y out' in - 1 out n out "n+l in n+m in’0

(2.2)
can be written as

e )
SaB = f'dxlnthdxndyi...d‘y

m

: -f;l(xl) oty () £y ()0 ()

le' -‘.KX Ky]-oo-Kym T(Xl,'..‘xn; yl'.’vym)- (2'3)

Here

v Ky T x Me oo oo : . ' o »-(gfh)
is the Klein-Gordon operator associated with the variable x. The
functions ‘fj are'positivé-frequency»solutionsvto‘the Klein-Gordon

equations:

K, fj(x) = .o. 1 . | | o , -(2.5)
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To keep thingé as éimple as poésible it is assumed that the
f's have disjoint supports in velocity space, and are such that no

disconnected processes contribute to SGB'

The momentum-space T functions are defined by5
"F(k) = :F(kl’.'.k ) .

n+m

N

it

N e
fd xyreedixy dyyeedlyy exp -i(xgky e by )
X T(x,eeex 5 ¥y ey ) o (2.6)

m

In the-Special case where the space components of all the ki. are

real,
k 7‘= q; = real R (2.7)

one can write

T(k) f f -~dqn+m (2.8)

Z <A( )(qu) E, (P) T Ape (qu) E,(P) —r s

‘ 'Augz:)m) CqP(n+m)> )or

Here P represents a permutation of the set of integers (l,~-',n+m).

And

( )(Q) Id X APJ)(X) exp (-igx) | (2.9)
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ishan operator that has nonzero matrix elements between momentum-
energy eigenstates only if the momentums=energy of the state on the

left is greater than that of the state on the right by the amount q:

<P1A§;)(q)13f> = 0 unless P = P{ + q. | | (2.10)

The (*) is a star if.‘Pj is greater than nj; otherwise it is nothing.

The quantity EJ(P)’ is
0 . 0 (0] . ' ,
kmiﬂ)+kﬂj%)+-upkwnm) vJ—lf'mﬂPL
. _ (2.11)

Ll

B (P)

- That is, it is the sum of the energies ij corresponding to the A's
standing,tq its right. The quantity H 1is the energy operétor.- By

virtue of (2.10) the denominator Ej(P) - H is
By(B) - H = M) * o Mp(am) T %(341) T T Y(aem)
' S : (2.12)
The formula (2.8) is easily derived within the Hamiltonian

framework. The factor (i/E - H + ie) is the momentum-space form of

the propagator

U(t,t') = o(t - t') exp -iH(t - t') | ' (2.13)
that takes the system from the time t' when the operator A standing
on its ?ight acts, to the time 't when the operator A"standing Qn 
its left acts. The pﬁeratOr i/E - H + ie can be evaluated in the -

usual way_by:introducing a complete set of energy eigenStates:'
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(0]

-'ﬁh:Zla)m(a,-" - (2.1h)
a ,

The momentum-space form of (2.3) and (2.8) is (see Appendix A)

b L
a kl d'k *
S . = lim cee BB F (k) E (k)
o T To) ef T et e ey
. \n-+Hm 2. 2 2 2 g
(-._1) v [(kl - Ml ).”(kn+m h Mn+m)]_ T(kl’ kn+mi? (2.15)
, e -
where
_?:'j(k) = fdhx fj"(x) R , 1© >0 - (2.16a)
and . o
Ei(x) = J'dl*x fg‘(;;) X | k0 <o
( ¢ D ‘»(2 16b)
- fj(jk)> | :
The braces with subscript € .means that the kjo are to be evaluated
at
0 Oy . . - | , ‘
kje = kjo (} + ie), . (2.17)

where kjoo is real. The mass-shell constraint on the fj(k) can be

used to write them, if desired, as

| 5 > on ,
'f‘j(kj) = 63.(1:3.) 25 zs(kj - M ) e(kj ). . | (2.18)
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Defining the _off—maés-shell S matrix -

Sk) = 8y, eesky )

s PR D)0, )R (2.19)

we may write (2.15) as

L 4 . : S
I B! .dknﬂn%*( Yoo (k) S(k.) (2.20)
?’qa = .i:mo+ (en)“" (21()1* 051 kl Bm nm’ PV o | .
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IIT. STEINMANN RELATIONS
. Consider 8(k) for fixed real values of the space parts of the

various -ki:

kK =4 = real. . S ' - ﬁ(5-l)

Then Egs. (2.20) and (2.8) give, in explicit form, the dependence of
s(k) = sr(k)(eﬂ)LIL 5”(§:kj) on the energy components k;), Equation (2.8)
shows that S (k) is analytic at all points of '

(klo,keo,-.-,kgﬂn)/(zjkj-= 0) space that satisfy

Im Ej(P) £ 0 for all j and P. . (3.2)

That is, the'singularities are confined to points wheré at least one of
the sums of energies Ej(P) defined in (2.11) is real. This type of
analytic structure is called cut-pléne analyticity.v The function is

analytic at all points that lie on none.of the cuts

]l

Cj(P) (x° : Im Ej(P) =0}). | (3.3)

The variables Ej(P). are called the channel energies aéspciated
with S(k). They are the energies of the various reactions associated.
with S(k)._ The functioﬁ Sr(k) is analytic unless at least one of the '
channel energies is real, provided the'three-momenta are éll fixed and
real.

| The cuts cj(P) divide the space
(Im klo, Im‘k20,°"Im kg;m)/(E:kj = 0) ‘into a number of cones, which all

meet at the origin Im ko = 0. The function Sr(k) is analytic injéach _—

of these cones. The origin represents the real boundary point. 1In
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general, one expects to find a different boundary value for each cone:
L o - : L :

The value of 'Sr(k) at Im k™ = 0 will depend on the cone through which

this real boundary point is approached:

In the case of aifour-pointvfunction the cohes in im_ko‘ space

0 0]
1 )

0, 0
-+k2-.)=o,‘ Im(kl +k,7) =0,

p)
: 0 0 : .0 o L
and Im(kl- + Xk ) = 0, and the four cuts Im kJ. =0 (j =1,2,3,k).

are bounded by the thfee cuts Im(k
?Because'the energies of the intermediate stateé are nonnegative
the sinéqiafifies that could lie on these Various\cpts may be absent
for certain valués of Re g. If one considefs only tﬁe "connécted
part" (i.e., if one ignores contributions associated with the vacuum
intermediate'state6’7)'and'if thére‘is a lower bound on fhebmasses of ~
the stéblg states, then there will be a region aTQUnd Re k =\O_'sﬁch
that the singularities are.all absent. For these valﬁes of - Re % the
functions in the yafious cones are éll parts 6f,0né single analytic
function. The region in Re k for which thié'is true depénds; of
course,kon the’detailed nature of the spectral éonditionsf-i.e., on thew
masseS'ofvthe lowest states in the various channelé. |
' The Steinmann relations are a set of properties tﬁat greatly
simplify the analytic structure of the functions Sr(k); ‘They arise‘from
the fact.that Sr(k)‘ is‘a sum of terms cqrréspondiag to thefdiffergnt
orderings of the A's, | |
s,() = ) 8.,(k), N BT
| P : : : '
_togethér with the fact that a given energy deriominator .Ej(P) - H

will occur only in certain terms of this sum.
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To meke this precise let E(P',j) denote the set of P's

such that Ej(P) is identically equal to Ej(P'):<
E(P',3) = (P :Ey(P) = E;(P)). (3.5)

Here Ej(f).s Ej(P') meansithat Ej(?) consists of identically the
same sum of energies kio as EJ(P’). Eachvbf:the ’SP .w;th P in
E(P',J) have the common energy denominator (Ej(P')-- H>°

The set E(P',j) evidently consists of all P such that P
equals P' modulo permutatiqns that permuté the elements of the sets
(P1,P2,+Pj) and <?(j +1),+«+P(n + mi) ‘among themselves.

Let"cg(P') be the part of C;(P') that lies at
Re Ej(P').>fO, And let .Cj(Pf) pe thg set.of'pointé that lie. on
C;(P’), but-on no other cut: ,

cje) = cl(e) m ¢, (®). | | (5.6)

o PEE(P',J)
or i#j

Here Ei(P) is the compiement of Ci(P). The only terms SrP(k) that
can.havg éingularities on. Cj(P')_ are thosé.such that P belongs to
E(P',]). |

The set

E(P',a‘)ﬂ E(P",i) = (P : E;(P) = E;(P'), Ei(f_’_) = Eﬁi(P”).] (3.7)

P
and Ci(P"). This set is clearly empty if the channels defined by

is the set of P's such that S, can have singularities on both Cj(P})

(p',j) and (P",i) are "crossed"; i.e., if the four sets
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Piad

(P'1,p'2,-+B)) (V1 (P"L,P"2, -+ -P"1)

J(—_) . .(P'l,ls'e,. . '.Ps )(-\ CP"Y(i' +' l).f, .. P"(n + m)>-

§ = FE e w) e, e

1

s

are all nonempty. 1In this case there can be no permutation P such

HCREIREACEE)IE @(1 + l‘),‘_"P"(.n ru)

(3.9)

that both 'Ej(r) = Ej(P') and Ei(P) ='Ei(P");

The important consequence of this resﬁlt is that if the channels
defined by (P', j) and (P",i) are crossed then there is no HSP |
that has‘ginguiarities on both Cj(P’) and.vci(Pﬁ)} cOnsequenﬁly_the
discontinuity of S(k) across the sihgularity surface 'Cj(f') can .
have no diééontinuity acfoss'thé éingularity Surfacev Ci(?").v This is

the Steinmann relation.
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| IV.- 'FIRST BASIC DISCONTINUITY EQUATION
The above derlvatlon of the Stelnmann relation leads dlrectly
to .an important basic dlscontlnulty equatlon. »Let Disc 8 represent
the discontinuity of § across some flxed.cut C&(P’), Ipspection of

(2.8) shows that this discontinuity is obtained by making the replacement

i _ i i
E(P) - H + ic - E;(P) - H + ic E;(P) - H + ic
= 2r 8(E,(P). - H) S (4.1)
in all terms 'SP such that P belongs. to E(P',j), and dropping all
other terms SP.

The retained terms 'SP  are'those corresponding to all permuta-
tions of the A's within the two separate sets (AP'l.f.AP'j) and

@P,(jﬂ)...%,(mm))-.,' Thus Egs. (2.19), (2.8), and (k.1) give

D'ilsc s(k) = (-1)*® ,rRk f ]

X Z Z <0|A'Pl E H e Apjl?‘?*»;“).

i s :
X Z (out alAP,,(J+1) E - T T iec AP"(n+m)|O>‘ ()4.2)
P" P ( +l) . )
The quantities EPi can be expressed as
0 0 .. 0 N . ’
= -(kPl L ), i= 1,003-1 (4.3)

which is an alternative form of (2.11).
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Introducing

lout,a) = Z lin,8) S(;clx | . )
= |

one obtains, after simple manipulations with the reduction formulas;

the discontinuity formula
‘.. - ] - . ) ' _l " i T N :
Dise sc(k) = s (k') 5.7 8 (k ), . (4.5)

The variables in (4.5) are linked in the manner shown in Fig. 1.

Fig. 1. Diagrammatic representation of Eq. (k.5).

The left-hand side of Fig. 1 represents the disconfinuity of the
connected part Sc(k). The two plus circies on the right-hand side repre-
sent the connected parts s, (k') and S.(k"). The minus box represents
SI—l’ which acts on the intérmediate set of particles.vahe shadéd '
strips represent sets éonsisting 6f any‘number of.lines. The two plué
signs in fhe cirecle on thé left-hand side indiqate that the chénnél -

energies that do not "cross" the channel associated with the discon-

tinuity in question are all evaluated on the positive or physical sides
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of their‘cuﬁs (i.e., Re E ImE > 0). The Steinmahﬁ relations ensure
that the equatiéﬁ doeslnot_depend on'upon which sides of thevrémaining
cuts it is evaluated.

The écéurrence of Sc(kj dﬁ the left-hand side of'(h.5) arises

from our origihal restriction to proceéses in which only the connected

parts contribute. The occurrence of the Sc(k') and Sc(k”) on
the right-hand side is due to the condition that Cé(P') contains no
points ‘lying on any other cuts Ci(P). [see (3.6)]. This'éondition
ensures thét various disconnected terms that aré'potentially present
in the twg:;;;;ors on the right-hand side of (L4.2) arg_in factlabsent.
This is discusséd fuftherlin Appendix B;

The discontinuity equation (4.5) is similar to one derived
earlier within the S-matrix framework.8 'The.two aré identical within

D, .
their common domain of definition.
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V. HERMITIAN ANALYTICITY

Equations- (2.2) and (2.20) give

-1
Sop = (¢ina’ out)
= out| a)
= Sea . —_— -1
3 dhk duk
= lim
€—)O+ (2]-[;& (27{)
(f CORE AU ACD
wherev
50 = (-0 () - Mf)--»(kﬁm 2,01 T (5.2)

and

'r(k ) [ f(&r) 2;;

Z <AP1 (apy) E @) - 5 T Ape)(qpe) AP(n+m)<qP(n+m)> )o .
| (5.3)

Here
Xg*) = A; for . j = 1,-;-h : (5.&&)

and
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K(*) = A for j = (n } 1)'--;(n + m) ‘
J . i - —. - ? .

. _:(5-4b)
Using (2.16) one can write (5.1) as
_ L L
R § . ! k)
Sa = lim . g X
B e 0% ) (2x) (2n)
~¥ ¥
fal(kl)-.-%‘sm(knm) S (-k,)
, dhk. dhk
= lim = te nzm
-0t ) (2n)*  (2x)
~¥ ~ .
B )8, () sk (D), (5.5)

where the second line follows from (5.2), (5.3), (5.4), and a relation

similar tb.(2;l6b):
@y@)" = aj-), : | - (5.6)

which follows from the definition (2.9).

| Comparison of (5.5) to (2.20) shows that a reversal of fhe
signs of all the iec's .changes S(ke) to minus the corresponding
functidﬁ for S_l. This result, which applies specifically to regions
whére only the connected part of S contributes, is'called Hermitian
analyticity.

Diagrammatically the connected part of § 1s represented by

a circle with a Plus sign. We shall represent this same function with
a minus i€ prescription by a circle with a minus sign. Then Hermitian

analyticity is represented by Fig. 2.
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H
s

Fig. 2. Hermitian analyticity.
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VI. SECOND BASIC DISCONTINUITY EQUATION

The second basic discontinuity equation is represented by

Fig. 3

“Aalt »
A E)YLT!’L_L

Fig. 3. The second basic discontinuity equation.
The left-hand side represents the discontinuity
Dis¢ 8(-33+) = S(-3x3+) = 8(-3+;+) - 8(-3-3+)

across the cut Cj(P') corresponding to the indicated channel
(A" + B"} - (A" + B'). The first argument of S(o,; O3 03) is the
sign of fhe ie's. associated with the channel energies of the

(A" + B') part of the diagram. The third argument o is the sign
of the ie's of the (A" + B") part. The second argument is the sign
of the ie associated with the energy of the channel A" + B" —A' + B'.

The derivation of this formula is essentially.the same as the

derivation of the formula (L4.5). The only differences are that now the
ie's of the first vacuum expectation value in (4.2) are preceded by
minus signs, and one uses for this factor the Hermitian conjugate of
the reduction formulas.

Notice that if A' = B" and B' = A" then the right-hand

side of this discontinuity formula is, by virtue of Hermitian analyticity
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and unitarity, proportionai to the inclusive croés se‘ctio.n for the

reaction B" — A" + anything.‘
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VII. CONCLUDING REMARKS
() Analytic continuation of the two basic discontinuity equations
‘leads to other discontinuity equations. For example, fromlthe basic
discontinuity equation given by Fig. 3 one obtains by aﬁalytic continua-

tion the discontinuity equation shown in Fig. L.

ATTT oIl B

Fig. 4. Another discontinuity equation.

The minus sign in the little section around the set of lines
B" indicates that all the channel energies thaﬁ éorrespond to sets of
lines in the set B" have been continuea to the negative sides of
‘ their cuts. Thé right-hand side of Fig. L must,.however, be interpreted
with the aid of a special rule, called the "back-up rule."

‘The point is that the continuation around the cuts in the
variables ~B" takes the function represented by the upper bubble
on the right-hand side of Fig. 4 to the negative sides of certain

other cuts as well. To see this consider the equation represented by

Fig. 5.

A
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B’“ : ' S T A AP 5 D S S0 W X B"'

L e :::_ﬁlf?f:;“ff:“
.A. ITETTIT tfj;?fi/ﬂfr

. i v /
uwww{\"}"ﬁ“&w E

Fig. 5. Result of introducing a discontinuity formula in Fig. 3.

The cpntinﬁation of thebequation'representéd,by Fig. 3 to the negative
sides of the'cutsvassociated'with SB" will take the funétion represented
by the plus bubble on the right-hand side of Fig:. 3 to the negative |
side both of the cuts associated Qith B",fand.also of the cuts
associated’with the discéntinuity indicated in Fig. 5. One way to
éee this is to note that intermediate enérgies in Fig. 4 are real
(since all momenta are'feal) and hence the negative imaginary energy
broﬁght in at B" forces'oﬁe below the cut indicated on the right-hand
side of Fig. 5.

in Ref. 3 it was shown, in some simple éases, how the unitarity
equétionvis built up out of'cohtributionéxcorrespbnding to individual
discontinuities calculated in this'wéy from‘the two basi§ discqntinuity
equations. It is probably possible to turn the calculation around and

derive all the discontinUities from unitarity, since the discontinuities

around all the singulérities lying in the physical région have already

‘been derived in this Way.8 So far it has not seemed worthwhile to

reproduce in this way all the equationg that come out of field theory,

since the two methods appear always to gi&e the same results.’

e
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(b) The box diagram singularities on the boundary of the double-
spectral region of the four-point function correspond to points Qhere-
the double discontinuity associated with crossed channels does not
vanish. In the case of the mass-shell four-point function these points
lie outside the physical region, and hence do not produce any.violation
of the Steinmann relation. On the other hand, if one replaces some of
- the Siﬁgle.ékterﬁal iiﬁes 5y sgts of lines, then it is possible to
move the box diagram singularity into the physical region of the larger
précess. This might at first appear to produce a conflict with the
Steinmann relations.

However, the Steinmann relation aéserts,oniy that the double
discﬁntinuity assoéiated with crossed channeis vanishes if all the
other variables are fixed, and away from their cuts. By introducing
extra externél lines one introduces also extra variables. Thege
variables control, through the back-up rule, the ie's associated
with the'éuts that conspire to give the t cut of the s-channel
discontinuity formula. When this fact is taken into account one finds
that the box-&iagram singularity in the physical region does not produce
any conflict with the Steinmann relations. The Steinmann relations hold
at all real points. This fact is, of course, vital to the main conclu-
sion of this paper, which is that the discontinuity equation rgpresented
by Fig. 3 hblds at all energies, not just nearvthe thfeshold.

(¢} If one invokes a locality condition (e.g., that commutators
vanish outside light cones) then the analyticity in the upper and lower

half E planes discussed above can be extended to analyticity in
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correspondlng upper ‘and lower light- cones in the space of the imaginary

parts of the_correspond1ng four vectors: 6,10

4 (P) S k, (P) = 5(J+l) * ot Kpm)- ., | (‘7.la.)
Q_—Im_ EJ.V(P) >0, ImEJ... ;”o> N | | |
(}Im ij(P) >0, <§m kj(PZ>2-> o>.' | (7,lb)‘

The consequences of thls analyt1c1ty property, together with the spectral
cond1tlons and the stelnmann relations, have been studled in detall

by Bros, Epsteln, and Glaser 10 They der1ve by algebralc methods an

. equatlonll from whlch a Varlety of discontinuities across individual

channel~energy cuts can be derlved
The cones of analytlclty descrlbed in (7. l) do not intersect the
mass shell. Indeed, one of the outstandlng problems in fleld theory is
to show that the domalns of analyt1c1ty that follow from the axioms do
1ntersect the mass shell for the n-p01nt funCt1ons W1th n > h.' This
deep problem of field theory lies outside the scope of the present paper.
In S-m&trix theory the situation is simplifled by thelfaet that
the singularities are confined, by assumptioh, to the Landau surfaces
that are singular by virtue of the unitarity equations. It seems likely
that the cut-plane analyticity in Ei(P) space derived from field theory
will go over in S-matrix theory to local cut-plane analjticity in Si(P)
space. That is,the scattering function Src(k) will be analytic (in k)
in some,heighborhood of each real point k, except on the normal threshold

cuts Im Si(P) = 0, where Si(P) = (ki(Pi)z.' One of the outstanding.
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problems in S-matrix theory, at the fundamental level, is to prove this,
together w1th the relations between the various bo'undary values that

follow formally from field theory.
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APPENDIX'A DISCUSSION OF EQUATION (2. 15)
 Equat1on (2. 15) 1s formally derived as follows: Let (2 8) ve

written as

) - ) B, o @aa
P ' | - | |
where - ,’ o ' _.' . ‘
() fﬁ( > 1“'; k) (4.2)
(2ﬂ) : |
and
w(x) = Z px). o o (a.3)

P
Ej(P) j = l’-o.n+m“lo

runs juét_abo?e the real axis'in éach'of the variables

. Next write

TTx,) ()
J

) (m) . N — '
Z@*f M (TT 5D
[z (e - )

X Tpk) (A.6)'

1.
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(£.7)
) o)
, : (A. 9)

g v'I'I‘l‘e result (A.8) is substltuted in (2 3) and the llmlt € »0
is then moved to outside the 1ntegral.
The validity of these formal manlpula.tlons depend on the high
energy behavior of the off-ma.ss shell matrlx elements.' We do not wish 3
to delve}-lnto such matters here But the work of Hepp9 indicates that
the final result is alright, provided the timefordered’product is

~well-defined in the first.place.
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APPENDIX B. DISCONNECTED CONTRIBUTIONS

Notice that the sum of the. terms correéponding to the two

" orders of interaction shown in Fig. Bl lead to a factorized form of

the propagatof;

- Fig. Bl,‘ Two orders of two diéconnected cbntributions.

That'is,

1 ’ 1 17 1
E, -H E '

1 1

_ 1 1 (8.1)

The two parts can therefore be treated independently, as>indicated in

Fig. B2.

Fig. B2. An alternative representation.
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.- The point.is that the discontinuity does not'really occur in '

the variable E, +E,. It oceurs in R (See Fig. B3.)

and E

o

T, E

Fig. B3. The surface Im'El + Im E2 = O.

0]

1

Thus if oﬁe_stays away from the two surfaces Im El =0 and Im E2
slawn therebis no singularity. For this reason the factors Sc(k;) and
Sc(k") ‘ip (4.5) are connected parts. The discontinuity being calculated
is, by definition, tp be taken at points 1yiﬁg away from the various

other cuts.

&
LIy
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