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RECONSTRUCTION OF THE WAVE FUNCTION 

* FROM MATRIX ELEMENTS 

Charle.s Garwin 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 94720 

April 14, 1971 

ABSTRACT. 

. We demonstrate two methods by which the wave 

UCRL-20667 

functions of a system may be recovered from knowledge 

of the matrix elements of a complete ·set of 

· observables. 
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I. INTRODUCTION 

The test of any theory is its experimental confirmation, but 

as we all know the gap between theory and experiment is often well nigh. 

impossible to bridge. In ·this paper we wish to consider some aspects , 
I 

of the problem of-moving from experiment ,to theory within the context 

of potential theory. . In particular we shall consider ourselves to. be 

given the matrix elements of a complete set·of observables, leaving 

aside the question of the actual experimental technique and analysis 

required to obtain these matrix elements, and re·construct the wave 

functions of the system . from this data. We shall restrict our investi-

gation to the case of a one-dimensiona-l system. with a veloci ty•indepen-

dent potential and no continuum states, and :we shall illustrate the, 

techniques involved by a specific application to the case of the simple. 

harmonic oscillator. 

(i 
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II. THE INFINITE-ORDER DETERMINANT 

Our starting point in the first technique to be illustrated 

are the completeness equations for the observables x and p. These 

equations are: 

X1jr (x) = L wm(x) xmn n . (1) 
m 

-* ~ 1jr (x) 
1. dx n ::=· L wm(x) Pmn (2) 

m. 

where the subscripts label the observed energy states of the· system. 

Since w.e are given the matrix elements,. 1Jr is the transformation 

function between two knoWn representations of the irreducible set 

·. (x,p} and hence -by Schur's lemma_ wn(x) is det·ermined .by these 

1 
_equations up to a normalization constant.- The method of solution of 

· : these equations is. suggested by Halpern in Ref. 1 and in this section 

we shall merely implement .thi.s suggestion and construct a formal 

~elution. 

The technique to be used is to solve the· first set of equations 

for all the wave functions wm(x), m ~ 0, in terms of the ground

state wave function w0(x) and then substitute these results into the 

• second equation (we need only the e<luation for n = 0), which then 

.. becomes a simple first order differential equation for w0 (x), which 

can be integrated immediately. The formal solution of the first set 

of equations is suggest.ed by writing out these equations for some 

simple case., which we. take to be a harmonic oscillator potential. Then 

because of the vanishing of most of the matrix elements the equations 

assume the simple form: 

-4-

x1Jr o(x) = L *m(x) xmo. = wl (x) xlO 
m 

X11rl(x) = L *m(x) xml = Wo(x) XOl + 1Jr2(x) x21 (3) 
m 

X11r2(x) = I *m(x) xm2 = 1jrl (x) ~2 + *3 (x) x32 
m 

It is then obvious that we can solve the first equation for w1 (x) in 

terms of *o(x), the second equation for w2(~) in terms of *o(x) 

and wl(x), which we already know from the first equation, and so on. 

When we attempt to formalize this solution we are led to the following 

manipulation of equations (1), which separates out the .w0 (x) terms: 

X11rn(x) 

L *m(x)xmn 
m 

x 5 w (x) + x 11r0 w0 (x), mn m n 

L *m(x)xmn + *o(x)xOn • 

m~ 

m ~ 0 

Combining and rearranging these equations we get: 

\ (x - 5 x) 1Jr (x) L mn mn m (x 5on - xon) *o(x). 
mfO 

(4) 

(5) 

(6) 

This is an infinite set of inhomogeneous linear equations which may be 

formally solved for the 1Jr (x) by the usual determinental solution for m 

linear equations, _the only difference being that here the determinants 

are of infinite order. The use of in·fini te-order determinants does not 

pose a problem in many common potential problems since most of the 
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determinants will cancel, leaving us with ,a solution for 1jr (x) that 
m. 

is simply equal to a polynomial in X multiplied by *o(x). We shall. 

illustrate this by solving these equations for 1jrl(x) and 1jr2(x) for 

the simple harmonic oscillator. The formal solution is (expand in 

minors of the first row): 

X 0 0 0 0 .. ·I 

-xOl x21 0 0 0 ... 
0 -x X,2 0 0 ... 
0 x23 -x x43 0 ... 

X x-
1

. t 0 (x) 
0 . 

· t
0

(x) 1jrl(x) 

:l!J.o 0 0 0 b 

I -x x21 0 0 0 

I ~2 -x X,2 0 0 

0 x23 -x x43 0 

.. 
•' (7) 

xlO X 

-x -xOl 

~2 0 

0 0 

1jr2(x) 

:l!J.o 0 

-x x21 

~2 -x 

0 x23 

-6-

0 0 

0 0 

x32 0 

-x x43 

0 0 

0 b 

X,2 0 

-x x43 

0 

0 

0 

0 

0 

0 

0 

0 

~ 

2 X 
x -:l!]_o_ol1jr

0
(x) 

to(x) = ~Ox21 

(8) 

Referring to these solutions as 

1jrm(x) ......... -.-, 1jr 0 (x) (9) 

we may then substitute this result into the momentum completeness 

equation for t 0(x) to obtain a differential equation for 1jr0 (x): 

1 d 
I ax *0 (x) L 1jrn(x)pn0 

n 

- :Poo *o(x) + L Pme *m(x) 
m~O 

\ IMm(x) I ' 
Poo *o(x) + L Pmo lM(x) I to(x) 

m~O 

G \ l~(x)l) 
*o(x) 00 + L Pmo IM{x) I : 
. m~ . 

This equation may be immediately integrated to give: 

(10) 
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'.j.ro(x) exp [ i r X dx r:oo + I Pmo · Jb \:1 

nqio 

\Mm(x) i\. ] 
\M(x)l/ (11) 

where the constant b is chosen to fulfill the normalization require-

ment. For the harmonic oscillator this equation bec!ilmes :. 

*o(x) • "+ f dx G10 x:)] 
exp [i ~ (! 2 .1 2)]. x.. 2x --b 

.LO . 2 
(12) 

[
1 . Plo x2]. 

B exp 2 ~ ~0 

which is in, fact the correct solution (p10 is imaginary). 

Of :course once we have found w
0

(x) we may then .go back to 

our solut:i,on of Eqs. (1) to generate a1l the wm(x). The potential 

problem is now essentially completely solved. · We can use these wave 

functions and their observed associated energies ·to find the potential 

and the effective mass by solving the energy equations for two. wave 

functions, say w
0

(x) ·and w
1 

(x). These equations are: 

. 1 d2 
v(x) w0 (x) = E0 w0 (x) + --2 -:2 w0 (x) 

. mdx 

(13) 

v(x) wl(x) 
1 d

2 

El *1 (x) + 2m dx2 *1 (x) 

and the solutions are: 

-8-

V(x) 

. d2 d2 
E0 w0 (x) ~ w1 (x)- E1 '.j.r1 (x) ~ '.j.r0 (x) 

d2 d2 
1jro(x) 2 *1 (x) - *1 (x) -:2 *o(x) 

dx dx 

(14) 
;> 

~~-

m 1 

20(x) - E~ 

.d2 
dx2 vo(x) 

(15). *o(x) 

zy. 

&· 

<: 
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III. INTEGRATION OF CHARGE DENSITIES 

Another method for finding the wave functions is also mentioned 

in Halpern's paper.1 This method proceeds by using our given matrix 

elements to determine the matrix elements of the charge density and the 

charge density weighted with the momentum and then integrating the 

quo:tient of these two quantities. The relevant equations, given by 

Halpern, are: 

* 1jrm (q) 1jrn (o) (EmiB(x- o)IEn) (16) 

* d 1jrm ( o) do 1jrn ( o) = i(E jB(x- o)pjE ) m n (17) 

which may be .integrated to give: 

. {ix' i(EmiB(x - o)piEri} 
( ) . dO 1 

Vn xo exp (E IB(x- o)IE ) 
X m . n . 0 . 

(18) vn. (x') 

m arbitrary. 

The problem here is to decide upon a representation of the 5 

function which will make the calculation of these densities possible. 

in practice as well as in theory. The representation that we have 

found is relatively easily calculable, at least for the simple case 

of the harmonic oscillator, is the common Fourier integral represe~ta-

tion and we shall illustrate its use by calculating the grou~d state 

(diagonal) charge density fbr the harmonic oscillator •. The calculation 

proceeds as follows {where the constant A depends on the properties 

of the harmonic oscillator) : 

* *o (o) 11ro(cr) 

-10-

(E0 jB(x- cr)jE0 ) 

1 
2:rr 

<•oiL• d< ,i(x-cr), lEo) 

;, L" "" ,-'"' <•ol•'"l•o> 

;, L .. -icrK 
e \' 1 r(. )r L rr xoo l.K 

r 

~.f dK e -icrK L !.... iL.:_l):: 
r' 

r 
even 

!.._ . iK 2 2, - ... ->a>< .c.) /2 1
"' 

A
2 

2 
A 2 ° 
~e 

(2:rr)2 

Ar 
(iK)r 

(19) 

We can perform a similar calculation for Eq. (17) [using a 

complete set of intermediate states between B(x - cr) and p], insert 

the results into Eq. (18) and perform the integral to obtain the wave 

function. 
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IV. SUMMARY FOOTNOTES AND REFERENCES 

* We have discussed two methods for reconstruction of wave This work was done under the auspices of the U ,S. Atomic Energy 

f'unctions from matrix elements. These methods provide a relatively Commission. ): 

simple formal transition between experiment and theory. Unfortunately 

these techniques appear to have little practical value because the 

1. M. ~. Halpern, Phys. Rev. 164, 1878 (1967). 
6· 

v:arious infinite series used are not amenable to approximation. 
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.---------LEGAL NOTICE---------....,. 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or _process disclosed, or represents 
that its use would not infringe privately owned rights. 
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