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RECONSTRUCTION OF THE WAVE FUNCTION.

*
FROM MATRIX ELEMENTS

Charles Garwin
Lawrence Radiation Laboratory

~ University of California
Berkeley, California 94720

April 1k, 1971
ABSTRACT .

. We -demonstrate two methods by which the wave

functions of a system may be recovered from knowledge

-of the matrix_elemﬁnts of & complete set of

‘observables.
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I. INTRODUCTION
The test of any theory is its experimentél confirmation,‘but
as we all know the gap between theory and experiment is often well nigh:ff
impossible to bridge. In this paper we wish to:congiQer fome.aépecﬁéhl‘:
of the problem of moving from experiment to theory within thebdontéxtv m

of potential theory;> In particular we shall consider,ourselves_tozbef_:*“

» given the matrix élements of a compiete éet'of observables; leaving .

aside the question of the actual experimental technique and'analysis

required to obtain these matrix eleménts, and reconstruct the wave -~

functions of the system from this data. We shall restrict our investi-

gation to the case of a one-d1mens1onal system.w1th a velocity- 1ndepen—‘

dent potential and no contlnuum states, and We shall 1llustrate the‘
techniques 1nvolved by a specific appllcatlon to the case of the s1mple  }

harmonlc oscillator.

@



_5_

II. THE INFINITE-ORDER DETERMINANT
Our starting point in the first technique to be illustrated
are.the completeness equations for the observables x and p. These

equations are:

x (x)

.

IRACES (1)
m .

1
=
~—
M
~

i

W) = Y ) By (@
m o .

'ﬁhere_the éﬁﬁséripts label the observed energy states of tﬁe‘system.
Since we are given the matrix elements,,.w _is the transformation
function bétween two knoﬁﬁjrépresentations of the irreducible set
:Ex?b}’ and hence by Schur's lemma Wﬁ(x) is determined by these
equations up to a normalization constant.% The method of solufién of

" “these equétions is:suggesfed’by Halpern in Ref. 1 and in this section
“we shall merely. implement this suggestion and construct a formal
,zgglution. - ‘

> The techniqué to bé used is to‘solve‘the~fir$t set of equations
. for éil ﬁhe.wave functions wm(x), m.# O,‘ in terms of the ground-
:Estate wave fupction Wo(x)' and then substitute these results into the

l ;éeéon§ equation (we needjcnly the equatiorn for n = 0), wﬁich then
iibécomeé;a simplé firsf'order differential equation for Wo(x), which

ca.n be integrated immediately. The formal solution of the first set

Ctbf‘quations is suggested by writing out these equations for some
simplé case, which we take to be a harmonic oscillator potential., Then
jbecause of the vanishing of most of the matrix elements the equations

assume the simple form:

wo() = ) ) xy = ¥ () Xy,
W (x) =Y ) xy = w00 ko a0 xy  (3)

x¥,(x) |

2:'Wm(x) )

m

. '!fl(X). X, + ¢3(X) a0

It is then obvious that we can solve the first equation for wl(x) Vin
terms of wo(x), the second equation for we(i) in terms of Wo(x)
and Wl(x), vwhich we already know from the first eguation, and so on.
When we attempt to fofmalize this solution we are led to the following

manipulation of equations (1), which separates out the ,Wo(x) terms:

w () = x B b (x) +x¥y vy(x), m#O (1)
N vl = v lx v (%, - (5)
m m#0

Combining and rearranging these equations we get:

Y Oy = B ¥ () = (x5 - x0) (). (6)
m#0 . '
This is an infinite set of inhomogeneous linear equations which may be
formally solved for theb wm(x) by the usual determinental solution for
linear equations,:the only difference beiﬁg that here the detérminaﬁts
are of infini%e order. The use of infinite-order determinants does not

pose & problem in many common pbtential problems since most of the

<«
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determinants will cancel, leaving us with a solution for Wm(x) that : - X0 x 0 0 0 s
is simply equal to a polynomial in x multiplied by wo(x). We shall. -X -201' 0 0 0
illustrate this by solving these equations for wl(x) and wz(x) for X5 0 %50 o} 0 .
the simple harmonic oscillator. The formal solutioﬁ is (expand in _ 0 0 =X

minors of the first row):

¥ (x) =

x . -0 0 -0 .
X X 00 © g
v [¢] -X x32 . o] 9

0 ;25 -X 'xhj . 9

: : : : : :
X0 0 0 o Q .
X Xpm 0 00
Xp X Xz 0 Qe

0 Xy X X, 0

. N 2
X =X, X
Vplx) = - Vo(x) = 2O ()
' - *10%21 .
. X, 0. 0 0 0 ‘e ) .
-X XEl 0 b 0 .o
Xo X X O .-O
0 x25 -X xu3‘ 0 e
| | EEE S SR C®
Vo(x) = == ¥, (x) , (
Referring to these solutions as
I ()] '
Yo (x) = T%;;ﬂ—wo(x) : -9

-( we may then substitute this result into the momentum completeness
7) ‘

equation for Wo(x) to obtain a differential équatioq for wo(x):

TE o) - Z ¥ ()pyg = Pog Yo(x) + Z P Vu®)
’ n - v ’ - mf0
IM_(x)]
= Pog Yo(x) + Z Pao TR Yol*)
m#O
R WE3 -
= WO(X) Poo + Z Pmo MMInx . (10)
o m#£0 . ’ ‘ ,

This equation may be immediately integrated to give:



X

. ) E: |Mm(x)| '
Yolx) = expti X P00 * /. Pmo TH)T (11)
. V(X) =
b w0 »
where the constant b is chosen to fulfill.thevnormalization require-
ment . For the harmonic oscillator this equation becomés;
. m =
' [ o1 18y ' '
- exp i;% 5 x —§b> ' (12) .-
' 0 - . : o .
= B exp J; i 3]:9 x2
2 %o

uﬁich is in fact the correct solution (p10 is imaginary).

Of ccourse once we have found wo(x) we may then .go back to
our solution of Eqs. (1) to generste all the wm(x).” The poﬁential
problem is now essentially completely solved. We can use these'wave
functions and their observed associated energiés’to find:the potential
,and the effective mass by splviﬁg the-gnergy equétiqns for two, wave'

functions, say vwo(x) " and wl(x).],These equations are:

; R 1 d2
V(:x) ‘l’o(x) = EO “ro(x) + "2; 'd? \'ro(x)
' (13)
, ' 1 ,de o
v(x) ¥, (x) = Ey Wl(x) t 5m g;g Wl(x)

and the solutions are:
: i

By ¥ (x)

n

g |
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¥y (%) - By ¥y (%) o Vo (x)

VYo (x)

7]
no

&

n

d2
0 -0 S

2
d

—5 ¥ (x)
dx2 0

. n, .f. 2(§(x) -

t=

WO (X)'

(14)

(15),

%)

V:S{?'
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ITI. INTEGRATION OF CHARGE DENSITIES

' ' *

Another method for finding the wave functions is also mentioned WO‘(U) WO(U) = <Eol5(x - q)|E0>

in Halpern's paper.l This method proceeds by using our given matrix ©
‘ . . . ’ . 1 ( i(x—U)n
elements to determine the matrix elements of the charge density and the = By EO‘ dk e ,EO>
-. ’4, . . - -0 .'

charge density weighted with the momentum and then integrating the

. . -
quotient of these two quantities. The relevant equations, given by l' ) -iok ixk

. . o = 5 dar e 0 (Bl E)

Halpern, are: o . : . _ . o .

v, (@) v () = (B |8(x - o)|E,) - (16) 1 de et L, T(ar

= ox re T %oo (1)
. . ] - r
v (o) aﬂ (0) = 1le,ox - i) _an - o |
: ’ ’ . -1 - vy
= ]2'—1( dk e ¢ Z %--L-——)—r rl =t (ik)"

vhich may berintegrated to give: _ o - : ‘ R . - r A

’ : ’ even

xl

v (x') = ‘lfn("o)_ AN Ado - V[ oo | | o ) eTlor B >/

|D—‘

(® 18(x - 0)E) [ . , .
X ] m‘ . n . = B dk
) -0
T m arbitrary. :
a2 2 S
The problem here is to declde upon a representatlon of the 5 _ ' . - A e 2 - . (19)
: . . ‘;;jg . s
beUnctlon whlch will make the calculatlon of these dens1t1es poss1ble ' ( )
in practice as well as in theory. The representatlon thgt we have ' o We can perform a sihilar calculation for.Eq. (17) [using a
found is relatively easily calculable, at least for the simple case complete set of intermediate states between 5(x - g) and pl, insert
of the harmonic osciilator, is the rqmmon Foprier integral representa- = the results into Eq. (18) and perform the integral to obtain the wave

tion and we shall illustrate its use by calculating the ground state - i function.
{diagonal) charge density for the harmonic oscillator. .The calculation' o0 -
prbceeds as follows {where the constant A debgnds on the properties

of the harmonic oscillator):
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IV. SUMMARY FOOTNOTES AND REFERENCES

We have discussed two methods for reconstruction of wave This work was done under the auspices of the U,S. Atomic Energy

1%

functions from matrix elements. These methods provide a rglativély Commission.

simple formal transition between experiment and theory. Unfortunately 1. M. B. Halpern, Phys. Rev. 16L4, 1878 (1967).

: , : 5.
these techniques appear to have little practical value because the y

various infinite series used are not’ amenable to approximation.
oS
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LEGAL NOTICE

This report .was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees makes
any -warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not 1nfr1nge privately owned rights. '
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