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CONDITIONS ON THE STRESS TENSOR
AND POINCARE INVARIANCE IN-

THE INTERACTION PICTURE”

Charles Garwin
Lawrence Radiation Laboratory

University of California
‘Berkeley, California 94720

May 5, 1971

ABSTRACT
We show that certain conditions on the streés tenéor are
equivalent tofPoincaré,invarianée of thé ﬁYSon expansion of the § .
matrix of.a local perturbation theory. We show that the stress tensor
approach to cbvariance is conceptﬁally more geﬁeral than Lagrangian
‘'methods, being'independént of the specific form of the interaption
éﬁd'beiné aéplicable to noﬁ-Lagrangian fheories. We.also.study how
..the Poincare-transformation properties of operators are'altéred when

we move between the,HeiSenbe;g and Interaction Pictures.
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I. INTRODUCTION
Our purpose in this paper will be to investigate the use of
conditions on the stress (energy-momentum) tensor qu(x) ‘of a. local

field theory as a means of determining the Poincare invariance of the

theory. This departure from the usual Lagranéian approach is justified.

by thé.fact that it can be applied with ease to non-Lagrangian theories
sf currents (and shares with these tﬁeoxies the‘advantage‘of working
with observ&bles), and that it leads .to simpler ana more elegént proofs{
of the invariance of some canoniéal theories.

In particular, for derivative coupling we do not have‘to reso£t
to the artifice of defining a new time-ordered producf.with_derivativeS'
outsidé,;’g and in general our method will be a.simplifiéatioh'whenever
noncovariant contact tefms in the interaction Hamiltonian»denéity
GOOI(x) ("seagull" terms) are necessary for covarianceLB—é Our method
is'independent of the specific form of the Hamiltonian.

' The sort of conditions that we shall impose on Ouv(x) {and .

its free part quF(x)] will be ¢onditions on its equal-time commuta- -

tors with itself (generalized Schwinger conditions), togéther_with some
‘constraints on the interaction part of the streés tensor. These condi-
tions will be shown to be equivalent‘to specifying Poincafe invariénce
of the theory, and especialiy invariance,pf the S matrix through the
mechanism of cancellation of seagulls wiﬁh terms depeﬁdgnt on Schwinger
terms in the equal-time commutgtqr of the interaction Hamiltonian
density 9y, (x) with itself.

’ We shall also investigéte the related problem of hoﬁathe
Poincare tfansfofmation properties of operators differ_when these

operators are transformed between the Heisenberg and Interaction
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Piétu;es;.fhesé trahsformation properties being‘alteréd by.Schwingef
Tzrms in ﬁhe'equéi-tiﬁe’cgmmufator_of the operator with'ﬂGOOI(X);
Finally, We'shéll,illustrate Gur theorems and methodéiin the
specificféaséé'Qf;dérivative coupling of bosonsbto fermions and a

nonaLagrangian difeét‘coupling of currents.

-

II.  THE GENERALIZED SCHWINGER CONDITIONS

In'order'foerur-theory to be Poincare invariant the. :

generators7_9ﬁ Pﬂ _and ;Mﬁv‘-constrUcted from the stress %ehSdr {S.T.) -

as.

dJ
|

M -
pv

must be'time-independent and satisfy the Poincare élgebra

[Muv’Px] - ;(gvkpu B gukpv)’ o (%)
[Mpvfmxn] = g, M, - M T g M, g M), | ,(51_

In addition veuv must Ee symmetric (this is in fact guaranteed by -the
time-~independence of Mu"/)5 and must transform as a tensor upon -

commutation with the Poincare generators

IR (0] = 3 e ) o (6)

'[Muv,exn(x)]_ -1(x 9, -'xvau)'exn(x)

+1lg,,0 (%) - .0, (x) + g0 (x) - (x)1.(7)

.
VA 1T UA v guﬂ AV

We can gﬁarantee'these commutation relations by requiring-that

qu"satisfy'the conservation equation
()] - 1Mo A ‘ o qaYy
[(#6,,()] = 13 g, = 0 (8)

and the folloﬁing (geheralized) Schwinger conditionstO1? (a1l at

equal times)

_;,-dax[xuéov(x) Sxg, 1 | »_.. ;.(2)Zi.f'

g e

: )
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[gbo(’é)"eoo(l)] = H8g; (%) + 64 ()] 3% 8(x - 1), )

[800(%)580, (7! - ile,(x) o, + goo(x).akx] & (x - 1),
o ‘ (10)

190, (%),80, (01 = 108,(x) 3.7 + 0 (x) 3,1 &(x - ),

: . ' - (1)

[%0(5),9}{2(;[‘” [IH,GM(;()]" 65(5 -y "
aleg () 3% + 00, 38 Blx -y, (12)

”. [OOm(g))ka(X)] = i[Gké(f) amx._’ekn(x) Om anx

) 8 31 ¥ -y (13)

- The'Poincare rélations and tensor transformation laws are.obtained_
from these Schwiﬁger_conditions by appropriate integrationslj {sometimes

"using the consefvation equation to get the desired form). Tt may. be

shown that these conditions are in fact the most general possible if we
allow for certain additional model dependent terms,lo proportional to

higherfderivatives_bf"83(5 - X)’ on the right-hand side. -However, -

‘these model dependent terms must have the property of having certain

integrals and moments egual to zero [so as not to disturb Eqs. (3) -
(7)] and ‘in fact these constraints are such as to make the model

dependent‘térms-disappea: from'alllthe relations we shall be deriving;

accordingly we shall ignore them all the'way through._'
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III. THE INTERACTION PICTURE

Now we shall see how the generalized Schwinger conditions can

~aid us in the study of perturbation theories. We start in the-

Heisenberg Picture (H.P.) and go to the Interaction (or Dirac) Picture
by dividing up our S.T. into what we shall think of as "free";h and

"interaction" parts
oH F I, _ '
o Ty = 6, (F) +8 "(d) - (k).

where ¢H represents an irreducible set of Heisenberg fields. The.

transition to the I.P. is made. via the unitary transformation U(f):

B0 - uw g v, ()

0, (g

v“v

u(e) 9, g) UTHE)

- u(e) o Fg,) Uil(t) + u(t) euvi<gH) vH(t)

n

; F. I, S
Sy (Pp) +8,,7(9p)- (16)

We determine U(t) by requiring the "free" Hamiltonian HF(¢D) to
act as a generator in the I.P. in the same-way that PdH(¢H)-_does in

the H.P.:

R BT = 13 (), | - an

[ () Ay (0] = -1 3y g(x), | (1)

- f ax QOOF,(gD)

Po(gy) = H(g) + H()
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Thus® [using .':aO(IUU'lj =:o = oo™t + vau ‘_
. tﬁl(%)f,%(-x)] - ['POD%), A %)’%(x)‘]”'

'=_u(t>[:p @), ¢H I (t) +13 ny(x)

- .-1 U(t) 3 ¢H(x) v k) + i 3 ¢D(x)

'=  _-;[ao@(;) P (x) ,U'.]f(t.D‘ - 3, 0(t) ¢ﬁ_(x) U'-'l(t')b |

R ) QH(X) 3 U6+ 173 ()
- lao gy(x) +1 ao‘U('t)_.U.-l'(iz.) gnm - i .¢D(x) 3, U(t) UTH(t)
| | | +1 3y 1 (x)

= REU) UTHOLA ). B (20) |
Since ¢ is also en iIv'redgc;'bibie“ _s'et__we'havelj_.” |

3, ﬁ(Q = -i H?(¢Dj ’U(‘t)_ . i R - (21)
‘This_hag.the'u;uél‘sblutionl6 '(Tv is the usual time;orde%ing)

t

e) - Tem(- | ad@ey (@)

and the S matrix is °

w0
[}

T exp(-i jdtv H (#,t))

U(e) U ()

T exp(-i fa“x SRICAEY

oo T,

’vn=0_ ) n=0

Equgtion (23)*cohtinued next. page

© \n B
Y S fou far, w0t 0

'Equation (23) continued.

© n )y . )4 . . _/’?
. - : - T, F
= Z L_Lvn! fd.xl [d X T(GOO (¢D’_x_l)“' ‘
a=0 I &
S S )
00 Y'D’’n " ' '
As we have mentloned the Poincare generators in the I P. are :
defined in terms of the "free" part of the Dirac S. To o
F _ 3 o - o
P, -(¢D) = fd x @, (¢D), | @)
w Fg) - a5x[x 6 (¢)-x W TE) @)
pv VD Ov YD D’ ‘ s
Now let us see what conditions must'be imposed on -ngD,
quF, and é I if our pefturbétion theory is to have a chanéeth;be ‘ ‘f_
Poincare 1nvar1ant = Flrst we requlre that the total S.T. quD ~and. -
X
the "free" 5.T. gqu (out of which the Dirac Lorentz. generators are '
formed) satisfy generalized Schwinger conditions,18 i.e., .
o D ana 6 T satisfy Ees. (9) - (13) | L (26)
pv .. MV _ : . »
50 ‘that the total -and "free" Lorentz gengratois satisfy the Poincare - .
algebra and quD and quF have tensor transfofmation propertiesﬂ' -
" ‘Next we see what conétr&ints translational invariance in the
I.P. provides.. Starting from the-definingvrelations (for complete‘set
2y : o : S S ‘ R
H . :
[Pi (¢H)’¢H(x)] = -1 ai_ ¢H(x)’ . . (27) e
F o
(2" (Bp) 8 (x)] = -1 9y #(x) (28)



L

-we write [see Eq. (61)]

-i ai ¢D(X)"=

YRS AR AC) BRI O RS ERCORNCHE

" 86

(29)
[PiI(¢D))¢b(x)]» =7 I "for.al; ¢5(X)f' _ | (;O)

Thus 9220 B
2T - o v o | (31)

V_Similarly, by requiring the preservation of rotational charac-
teristics in the I.P. we start with the defining relations {sée'Eq.

(65)1

[, F(),8.5 001 = -i(xia - x9) 8,70 + 1(AlJ 280w,
' ' (32)
(e T (0) 2,201 = -i(xiaj'- 3,) #.2(x) + 1<A13 s 9.2,
' . (33)
gnd transforming as above we find that
oo (54)

Thus Egs..(26), (31), and (34) are necessary conditions for a
Poincare invariaht_perturbation theory and are the only simple condi-

tions we are likely to be able to derive. We shall see that these

condifions arein fact sufficient by using them to verify the Poincare

invariance of fhe's_matrix in the I.P.

4 u() 3, B0) U = u(e)lpR(g,) () 10N (e)

- -10-

Iv.: COVARIANCE OF THE S MATRIX

We now show that the necessary conditions on the S$.T., Egs.

(26), (31), and (34), are sufficient by using them to demonstrate the

covariance of the S matrix. We must show that

.[PHF(¢D),S] 0, : B

[

I € O

Equation (35) for up =1 follows directly from the fact that [using

Bas. (3) and (31)]

2, F(8,) KL = T2, E () - ()]
- 2R ) ()] = () - B ) ()]
SRR CNE 2(C'S) R R | oD

' Equation (36) for u,v = i,J follows from a similar argument showing

. [MijF(¢D):HI(¢D)} = O. B : (38) -

. For ‘p = 0 in Eq. (35) we have

| téoF(ﬂbj,snl
(A1) ﬁ_l- jdt fdt Z (8t CORE
m, £ _

oo (B ), ENE )] ), b =t
m’’ 2

LL Jdt ---jdt (7, (¢D) T(H (t )eoomt (t,)1]

(t)-H(t)}
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using the'ihdicgtéd.identity for moving a time‘dérivative through a
time-drdered<producfiané drbpping surface terms at temporal infinity.
'Eguati@n-(}S) for p,v = O;i»-présents moré difficulty._'As,a

preparation for the analysié we define two quantities. First;

L(t) = jE? ‘[A3y<x -y, )[eoo (x £),80 (x,t)z (80)

'whicﬁ ﬁili;tesf'for Schwinger terms in '. OO (x t), GOO (y,t)] [because
of thé.antisymmetronf-'(k.‘— Y5 ), terms proportlonal to 63(x -Y)
will vanlsh upon 1ntegrat10n] arising from moving a tlme derlvatlve
through a tlmefgrdered product similarly to the above calculation. We

will also need

z.(t) = jd5x,[[MOiF(¢D)_,éOOI

C(82)
which will be sensitive tofthe npncovariant tensor pa.rt21 -GOOT of
I T . I
_QOO H GOO_ is easily separatgd from 900 . as
I
QOQ = (gOO‘X scalar) + (OO component of teénsor)
- s T -
= %0 * %0 " _ (42)
Using the equgtion
I, I, 7 . ra F I I F
= 1[90l _3 + O _3] 5 (x -y (h;)
which follows from subtréctihg'Eq. (9) for QOOD and GOO , and Eq.
(31), we discover that
) \ : I F : I,
‘Zi(t) = Li(F)_ = de?g xi{[H~(t),Qoo_(§,t)] + [HF,GOO (x,t)1).

(k)

-12-
Now it is-easily shown by using Eq. (41) and pulling time

derivatives through the time-ordered producf that

e

Moi (¢D) s) Z GL-)T)"_ jdt "'Idt n(ty )"'H (tn 1)Z (t )) ’
- ‘ --;:. .. n o ‘ | _. i v | .

o | . | e o (h5.) |

the last equality'using-’.Li = Zi‘band cbapging the‘suﬁmatién parageter
invtﬁe sécond suﬁ to m=n - 1. .We see that each Shv‘is-pot‘by itself
covariant. |

For ény particular.interaction we can find a grquping_intbi

covariant terms. Suppose the interaction has an expansion in a

coupling constént Al ) S S . S .
-4 00
S T
B n,.n n ,'n
'QOO = Z Iy Qoo + Z A 900
. n=1 n=2
) . Wn_ ) : ué
= Z NGy (W =8y)s ' (b6
n=1 =

Then we can expand everything in poweps of " A,

s =y A8y, | I 0
r=l ’ . ’ ) . }‘&
" . ‘v—’/
n _(n) : : S e
zZ; = z AR | , (48)

n=2



~ is covariant.
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oo ) ©

Ly = Z A" Z prwq = Z A Lin), (49)

n=2 pH=n n=2

. WowW OWW
5 de’F 'J'd3y(xi>- yi)feog(ég),éog(x)'] = 1,*P. (50)

Here we have taken A >to he the coefficient of theulowest order scalar

term in © I

00 . 'We cannot have a tensor term with’:nlé 1 because then

the Zin) “expansion would start with' n = 1, which is iﬁpossiﬁle since

the L§n) expénsion clearly stafts with- n = 2 and we will of course

require

2™ o 6D

" This requires, for exaﬁple, that

S

2 1°1 o ‘ '
Z§ ) = Li 5 o o : (52)
CSW. WS CBIW, ' | '
() _ p12, 21 o2
L L SR ; 2
. W, . SW, WS W, SW
g _pee Li1 LA 1. Li2 240 Lil > (5h)

i i
[The last eqnality in Eq.. (50) followé from a change of variables. ]

Using Eq..(51) it is'a simplevméttér to show that each 8:1
22-24

We have Sr*' for r =2,5 as:

: L s s W '
sy = -3 fdhx Jduy'T[Go'})(x) 0s(¥)) - 1 Idlfx Qog(x)’, (55)

03]
1}

L ) s, s, 8, =
Db i [y [l w69

fdhx [ahy 1(9@%&)9‘8%@)] -4 f&‘x e‘é%(x).

" produce. a covariant S-matrix element.,

-14-

Removing the scalar part from the last term of Eg. (55) (this does not

= 0, we get’

affect covariance), or if eog

N 1 (s [ S 8 Cofa T -
S, = -3 fd X jd v T[Goo(x)eoo(y)} -1 dx QOO(x). (57)
This is the usual expression showing how to add a seagull term to

2-4

Finally, specializing our discussion to the common case of

only leading terms in the.s¢alar and tensor expansions:

s T - :
I 71 2 2 . . .
%0 = r8p ** Sy _ - (58)
we may use Eqs. (53) and (5k) to derive the interesting results

ST B.W

1% 21 AR S oy
L (59)
T.T, - S, W - '
272 . (%) 173 o
I =z el = 0. _ T (60)
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V. IRREDUCIBLE OPERATORS
‘We'héve already ehoountered in implicit form some of the
pecullarltles 1nvolved in transformlng operators between plctures.
These peculiarltles are of course traceable to the deflnltlon of U(t)

Us1ng the deflnlng relatlons for U(t) and rememberlng especially

that U(t) is & function of time only-we have | |
| U“>(ai?’ﬁ<”;’.j{‘,’-"l(t.’ _;.‘,-':»si.(g(t)¢H:(:"I)U"l<'#>) - -ai%(*x)., (61)
| U(t)®o¢H(x)) Ufl(»;) - . - »

%@(t)fé (x)U'l(t.))j- 3 .ﬁ(t)¢ uH(s) - u(e), (13,0 ()

Bo¢D(x) + iH (¢D)U(t)¢ Uty - 1U(t)¢H(x)U-l(t)HI(¢D

80¢D(x)+1[HI(¢D ,¢D(x)1 ' R (62)

) showing how derlvatives_transform between pictures. The inverse

relations are

il

LG, D) = g x), (63)
. U‘l(t)@osdb(;cbu_('t )

The 31mp11c1ty of the transformatlon law for spatial derlvatlves is

ao¢H<x> () g 0). (6

the reason for_the ease w1th which translational and rotational

,propertles may be handled Boosts, however are another'matter and

we now explore how behav1or under suchtransfbrmatlonsls changed when

" we move from one plcture to the other.

. 0perators ¢r (x) transform-lrreducibly in the H.P, if

uv'r

00, "B AT = a2, - x3) AT 1, )] 47
' a (65)

. We assume Q D tranSforms in the I.P. as ¢

-16-
with (Auv)r a metrix representation of the Lorentz group
A‘(o)—'Oif¢*"“ | | |
' = 0 i g =¢ isa scaler, : o (66)

(A(%)_)f _ o1
BV e

B (67)

Y L s s o
( N = gvrgp. - gurgv ‘]ff ¢r = Vr: (r = 0)1:2,3) is a
o ‘ ' :vector L (68)

Spatial rotation propertles will remain the same when we go to the
I.P. because of Eq. (61).- However, we may show, by Egs. (31), (61),

(62), and varlous deflnlng relations,
. ¥ . ‘ D K ' :
[, T 8,),8. 20001 - “H0xgdy - x,3,) 8, <x>+1(Aol)r¢ )

~ @y, RN (300, ,2(,)) ()

" so ¢ (x) does not transform 1rreduc1bly if there are Schwinger terms

in its equal-time commutator with 900 (¢b,y) We~can in.genersl find. .

an irreducible set ﬂr , w1th

ﬁr? ¢-+Ar S (o)

does in the H.P.
Then-we find from Eq.. (69),‘ defining relations, and the time indepen-
dence of MOi y ﬁhe following integral-matrix equation for the term .

to be added:
1(A)5 8. (5 t) = f.d%(yi = %) (80 (B35 0,8, 2, 01

o ppt), A (k01 ()

s o S Co
‘E[Tﬁfyo]r' if g =V »(r-=1,2,3,4) is a spinor,
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Written out for a vector field Vr this equatién becomes - » )
Written out again for a veetor field V, this becomes

L i.D't Soly 6. 1 6y D ] .
. -ia(x,t) = y(yy - %) {0850 (Fpoxst) Vg (%,t) Cx 3 . -
_ AT = [0y - v ey (B t) sy (x,8)]
> P - . X
- [QOO (¢D’X’t)’AO (},S)t)]}; (72) - ) 5 .
. -D 3 T, - oy Do
-1 8y &y (%t) = jd v(vy -]xi»){[goo (%f”x’t)’vj &t)] R [ 3 I H
. . . . _ 18585 (x,t) = a7y (x; - y;){[6y, (¢H’X:t),Vj (x,t)]
: H
o . + 00 (Fss£),057(,6) 1) (79)
The above eguations are not independent and do not provide for a unigue
solution'for AHD for the simple reason that AhD is not unique:
we can always add arbitrary amounts of a (Dirac) vector to. it (see the
examples in»fhe_next two sections).
¢ Conversel&, if operators ¢rD trensform irreducibly in the
. I.P::
. B - D s D,
: [Myy (Fp)s8, ()] = -i(.xoai - %,9,) #,.0(x) + 1(ay;)5 8, (x)
A ' ' (%)
we find that
H, ~ H R H . s H
[MOI (¢H))¢r (X)] = _1(xoal " xiao) ¢1’ (X) + l(AOl)I'¢S (X)
| 3 I H, :
O O O T Ao BN )
. and, introducing the irreduciﬁle_set
E _ JH,  H _ ' :
. Boo= oty | - (76)
_we find that

1000 a8t = [t - v, (10t B t),9, B, )]
) -0 s ‘ i "1 00 *VHIR.D T

S ON O AR N 6955 | N Ce)
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VI. A CANONICAL-EXAMPLE--DERIVATIVE COUPLING

To examine how our approach to.covariance COmes"in_contact with

the usual Lagrangian mei:hodis,g5 we apply our approach to an example of
derlvatlve coupllng, a Lagranglan theory the verlflcatlon of whose

. exp11c1t covarlance (of the S matrlx) is somewhat laborlous by usual
Lagranglan methods.ﬁ He:e we use the’Lagranglan_to find the S.$f and
difeatly esfab’lish‘ the céx}ariance of ‘the § matrix E'y verifying that
Z. = Lif We. start w1th “the Lagranglan (1n the H.P.) for ax1al-vector

1 -

derivative coupllng (here of course the interaction is easily

identifiable)
. : 1 ‘ Q - - /. : 1 H . »
L= 3005 - A5 Ty - wy o P T, ()
aH o g (81)
H HupS5H
Proceeding with usual Lagrangian methods we identify the
canoniéalAmomentum’(vector) and the fermion momentum as
.uH‘= —% = ap¢H - XJpH:‘ : . . o (82)
3(2d) ,
oL _ .3 Lt ‘
5155357 = 1¥yr, = 1 WH_ . _ (83)
_.The equations of motion are found to be
2 o H
(0 +id)gy = AP a),
o
(CV A m)vH = 7&75 WH ) ¢H’
- o Oy,
WH(ly +m) = -A0 ¢H WH YaTs. . _ _ (84)

‘The (equal-time) canonical commutation relations are

20~

tnoH(z):gH(i)] = ';i 8;(§ - X)

i) = 53'(3-.%)
D)) - U] = )]

[P (0] = U0 = 00 “(85)

The canonical S;T.vis given by

o ] vt -
T gHVi "3y s a(a“¢) 2

= i WHY ) W 2 guv(aa¢H31 R ¢H ) . x HavﬁH (86) ‘afv '%7

but this S.T. is not Hermitian or symmetric as»it,stands. The properly . -

§ymmetrized‘form 1526

B 1o X 1 Ly 2,2
e = % WH(Yug—y) * Y:gp)\vH - 58, (0 Py - vy )

CHGE g T8 | (87)
Using Eqs. (84) and (85) we then find

%0 - %V -17°8, + em)uy §C(“OH)2 * k¢u'°ak% * “25,”1{2)

+ x(JoHﬂOH'+ 5555, + b s B, (8)
i — k 1, H my
O = T Va(To + YoTi¥ O = ol 5 iy + 5l %y * 9o b .
' ' (89)
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' . H i— ga) 1 H ) 2 2
S ®35 7 TV iVu T 2 gij((“o )7 - Oy Oy - w )

o ' .;. : H H H

A + 03803 - K@ij“o A g+ Iy 0 H) -5 e 13> % % £

(90)

<. gince we have eliminated all time de;ivati&es the form of Egs. (88) -
(90) is not aitgred whép wé’go to the I.P. We make the oﬁvious séparé-b
tion of "free" and "interaction” parts of the §.T. and cén;verify_thét
the free ﬁgit; satisfy Egs.-(?) - (13) (Schwinger termsbin thié theory
arise from the varioﬁs derivatives acting on canonical commutators).

Por the interaction part we have

DD Dk 1..D.D
Mg g * IO+ 5T g ), : ‘(91) |

©
1

00

< %1 = O _ , (92)
The conditions (51) and (3&) are thus satisfied. Thus we have
all our necessary condltlons for covarlance of S. We may verify that
’ OOOI' is'in the'scalar-tensor form (it was not so before transfermation)
by calculating27

P U (afl - A ve)

It

3y + LIH (7)), 8]

T Ofp : | N )

S0t = M3 + Bl D) B (9%)

-22.

I
00

we can explicitly verify that Zi = Li' We get Z. directly from

This is of course the usual expression for © in this theory and

. the tensor transformation law [Eq. (7)] and L, - from the canonlcal

) ST TT - :
commutators. The results are [Li =L, = O, see Eqs (58) - (60)]

B0 = 1 < 0[R2 5w o)

To see how the theory of transfdrmationbpropeities of operators

applies in this theory wé may verify that starting from ﬁuH- as a

* vector a solution of Egs. (72) and (73) is

1 Iy | S (96)

"o
~D DD _ D L
T A O A R A NN )

In fact we can easily verify that the most general Diféc vector

~D D ' o o
1‘[“l = a.8u¢D+BJu _— (98)

is also a solution of Egs. (70),.(72); and (73).-
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' VII. A NON-LAGRANGIAN EXAMPLE—-CURRENT—CURFENT COUPLING
To see the_value’of the S.T. approach to nonfLagrangian theories
we use our ﬁethods to determine the form of the interaction ig a
current-current 1;heory‘28 qumulated as such directly.in the I.P. We

assume the following equal-time commutation relations. for our currents17

PE) - 1o at P -y
EATCIEA (x)] s
tJ 2,021 = 1e(0) P -y, Oy -Cyy (%)

1] Ji

and we assure that J D acts like a Lorenfz vector under boosts by
: takingeg (additional'restrictions would be needed if we were interested

in analyzing its rotational properties)

il

L0 (60,3701 = 1 3200 3% Px - p

. D »
-1 (z,ﬁ) (x - y)

I

(050 (60,7 >G )] = 5 30(0t) 37 &(x - 3)

- 100y 5,2x) - 3, I D(t)) Sk - ) - (100).

We must allow a tensor term in our interaction

. I v .
%0 = & qzi’ 833, | (101)

‘since L, L % 0. By requiring that Z; = L; and using Egs. (99) and
(101) we can determine g as a function of g.  We first mote that

L.8T _ 1. 88 TT _
_Li =3 Li » Ly o= 0. Thus

g = -21 0(g” + a) o (102)

‘fact that we have no onique SMH

'-2&4

which has. the solution

2 : . .
z . _=2Ce . : : .
g = 1 -920g . : : o ..(193)
Here of course we have an 1nf1nity of tensor terms-upon expansion in -4

By calculatlng the left-hand side of Eq. (h}) [using Egs. (99),

(lOO), (lOl), (103)] we dlscover that the rlght-hand side vanlshes‘

I I, ‘x 3 . ‘
. - = . 10k
%03 (x) + 85 (X)],BJ (x -y) = .0 - ( )
By-integrating this equation and its moment we determine thap .
i) = 0 - | (105).

in conformance w1th Eqs. (31) and (Eh)

If we try to flnd the 1rreduc1ble Helsenberg vector J . we use

Eqs. (78) and (79) with the trial solutlonBQ

b = ATy
ot - pat S ' S (106)

i i
and discover that Egs. (78) and (79) lead to the same relation
(L -2cg)a-B = 2Cg . , (107)

Thus we cannot find a unique solution and this merely reflects_the
Our general solution is [first take

A =0 in Eq. (107) to get a vector]
"~ H -, H g Hy :
Ju = "®(Jy ,(1 - 2Cg)Ji ) o (108)

and in fact the A and B defined by Eq. (108):

A‘{)

oo



e

e

>
i

(g - l);

B k(1 - 2cg) -

. solve Eq. (107) for any k.

N E

31.

C-25-

(109)

-26-

VIIT. SUMMARY
We have shown that necessary and sufficient conditions for
Poincare invariance of a local perturbation ﬁheoryrafe_that the total
stress tensor guvD and its free part Oqu satisfy generalized
Schwinger'cohditions_aqd PiI_= MijI - 0.7

stress tensor guarantee the Poincare invariance of the Dyson S matrix

These conditions on the

through the mechanism of cancellation of seagulls and Schwinger terms;
and we obtain a covariant grouping of S-matrix elements"s:' by

collecting terms of order xr._ We also showed how in the related

" problem of transformation of operators between the Heisenberg and

Interaction Pictures we can form a set of irreducible operators . ¢r

- from an.irreducible set ¢r in the other picture.
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