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ABSTRACT 

We show that certain conditions on the stress tensor are 

equi valent to Poincare invariance of the Dyson expansion of the S 

matrix of a local perturbation theory. We show that the stress tensor 

approach to covariance is conceptually more general than Lagrangian 

methods,being independent of the specific form of the interaction 

and being applicable to non-Lagrangian theories. We also study how 

the Poincare transformation properties of operators are altered when 

we move between the Heis'enberg and Interaction Pictures. 

, .. ---'" 

I. INTRODUCTION 

Our purpose in this paper will be to investigate the use of 

conditions. on the stress (energy-momentum) tensor 9 (x) 
~v 

of a local 

field theory as a means of determining the Poincare invariance of the 

theory. This departure from the usual Lagrangian approach is justified 

by the fact that it can be applied with ease to non-Lagrangian theories 

of currents (and shares with these theories the advantage of working 

with observables), and that it leads .to simpler and more elegant proofs 

of the invariance of some canonical theories. 

In particular, for derivative coupling we do not have to resort 

to the artifice of defining a new time-ordered product with derivatives 

outside,1,2 and in genepal our method will be a simplification whenever 

noncovariant contact terms in the interaction Hamiltonian density 

GOOI(x) ("seagull" terms) are necessary for covariance.3-6 Our method 

is independent of the specific form of the Hamiltonian. 

The sort of conditions that we shall impose on G (x) 
~v . [and 

its free part will be conditions on its equal-time commuta-

tors with itself (generalized Schwinger conditions), together with some 

constraints on the interaction part of the stress tensor. These condi-

tions will be shown to be equivalent to specifying Poincare invariance 

of the theory, and especially invariance of the S matrix through the 

mechanism of cancellation of seagulls with terms dependent on Schwinger 

terms in the equal-time conimutator of the interaction Hamiltonian 

density wi th itself. 

We shall also investigate the related problem of how. the 

Poincare transformation properties of operators differ when these 

operators are transformed between the Heisenberg and Interaction. 
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Pictures, these transformation properties being altered by Schwinger 

" .' I' 
c:erms in theequal-hine commutator of the operator wIth 900 (x). 

Finally, we shall ,illustrate our theorems and methods in the 

specific cases ci:rderi vati ve coupling of bosons to fermions and a , 

non~Lagrangian direct coupling of currents. 
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II. THE GENERALIZED SCHWINGER CONDITIONS 

In order for our theory to be Poincare ,invariant the 

generators7-9 P and M constructed from the stress tensor (S;T.) 
!-t !-tV 

as 

M 
!-tv 

with Po == H, 

J d)x[x 9
0 

(x) - x 9
0 

(x)] 
, !-t V v!-t 

must be time-independent and satisfy the Poincare algebra 

[p ,P ] 
!-t V 

0, 

[M ,P, ] 
!-tV II. 

i(g ,P g p) 
VII. !-t - !-tA. V ' 

- i(g M - g M + g.M - g M') 
- vA. !-tTJ !-tX vTJ !-tTJ vA. vTJ !-tA. • 

. (1) 

(2) 

(4) 

.,. 

In addition 9 must be symmetric (this is in fact gu~anteed by the ~ 
!-tV 

time-independence of M )5 and must transform as a t,ensor upon 
!-tV ' 

commutation with the Poincare generators 

-i 0 9, (x) 
!-t II.!] 

(6) 

[M ,9 (x)] 
!-tV A.TJ 

-i(x 0 - x 0 ) 9 (x) 
!-t V v!-t A.TJ 

+i[g ,9 TJ(x) - g ,9
TJ

(x) + g TJ9,,;(x) - g TJ9, (x)].(7) 
VII.!-t !-til. ,v V.~ I-l II.V . 

We can guarantee these commutation relations by requiring that 

9 satisfy the conservation equation 
!-tV 

[pi-! ,9' ex)] 
!-tV 

-i o!-t 9 (x) 
!-tV 

o (8) 

, 10-12 
and the following (generalized) Schwinger conditions (all at 

equal times) 
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(9) 

i[ e.£k (?~) ().£ x + 900 (~) ok x] 5\~~ - ~), 
(10) 

i[90.£(~)dkX + 90k(~) d/] 53(~ :. ~), 
(ll) 

(12) 

The Poincare relations and tensor transformation laws are obtained 

from these Schwinger conditions by appropriate integrations13 (sometimes 

using the conservation equation to get the desired form). It maybe 

shown that these conditions are in fact the most general possible if we 

allow for certain additional model dependent terms,lO proportional to 

higher derivatives of' 53(~ - ~), on the right-hand side. However, 

these model dependent terms must have the property of having certain 

integrals and moments equal to zero (so as not to disturb Eqs. (3)

(7)] and in fact these constraints are such as to make the model 

dependent' terms disappear from all the relations .we shall be deriving; 

accordingly we shall ignore them all the way through. 
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III. THE INTERACTION PICTURE 

Now we shall see how the generalized.Schwinger conditions can 

aid us in the study of perturbation theories. We start in the 

Heisenberg Picture (H.P.) and go to the Interaction (or Dirac) Picture 

by dividing up our S.T. into what we shall think of as "free,,14 and 

"interaction ff parts 

. (14) 

where ¢H represents an irreducible set of Heisenberg fields. The. 

transition to the r.P. is made. via the unitary transformation U(t): 

-1 
U(t) ¢H(X) u (t), 

(16) 

We determine U(t) by requiring the "free" Hamiltonian tf'(¢D) to 

act as a generator in the I.P. in the same way that PoH(¢H) does in 

the H.P. : 

-i dO ¢D(x), (18) 

tf'(¢D) + HI(¢D) = Jd3X 90/(¢D) 

J 3 T 
+ d x 900 (¢D)' (19) 



[HI(.¢D)'.¢D(X)] = [PODC¢D} - J'(.¢D)'.¢D(X)] 

U(t)[POH(.¢H)"¢H(X}] U:'l(t) +.1 00.¢D(x) 

-i U(t) 00 .¢H(x) U-
1
(t) + i 00 .¢D(x) 

Since .¢D is also an irred~cible set we have15 

00 U(t) = -i HI('¢n) U(t) 

. 16 
This has the usual solution (T is the usual time ordering) 

u(t) T ... {_i Lt dt' 

and the S matrix is 

-1 s= U(oo) U (-00) T exp(-i J dt ~(.¢D,t)} 

T exp(-i Jd4
X eooI(.¢D'X)} 

(20) 

(21) 

(22) 

t (-~t Jdtl · .. J dtn T(HI(.¢D,tl ) ... HI(.¢D,tn )} 

00 

S 

n=O 

Equation (23) continued next page 
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Equation (23) continued. 

00 

J4 J4 I d x··· d x T(e (d,x ) •.• 1 n OOi"Dl 

As we have mentioned, the Poincare generators in the I.P. ~re 

defiIied in terms of the "free" part of the. Dirac S. T •. 

Now let us see what conditions must be imposed on D e, 
~v 

(24) 

e F and e I if our perturba.tion theory is to have a chance to. be 
~v ' ~v . 

Poincare invariant. 17 First we require that the total S.T. e D and 
~v 

the "free"S.T. e F (out of which the Dirac Lorentzgenl!rators are 
~v 

formed) satis.fy generalized Schwinger conditions, 18 1. e., 

e D and e F satisfy Eqs. (9) - (13) 
~v ~v 

. (26) 

so that the total and "free" Lorentz generators satisf'y the Poincare 

algebra and e D and e. F have tensor transformation properties. 
~v ~v ' 

Next we see what constraints translational invariance in the 

LP. provides .. Starting from the defining relations (for complete set 

(28) 

r' 
/ 

~ ..... 

,0 

;: .' 
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we write [see Eq. (61)] 

Sb 

-i 0i 9iD(x) '" -i u(t) <\ 9iH(x) U-l(t) = U(t)[PiH(9iH),9iH(x)]U-l(t) 

= [p/(9iD) + p/(9iD),9iD(x)] = -i 01 9in(x) + [p/(9iD)'9iD(x)], 

p.I = O. 
l. 

o 

(29) 

(30) 

(31) 

Similarly, by requiring the ,preservation of rotational charac

teristics in the 1:;P. we start with the defining relations .[see Eq. 

H r/.H [M .. (9i
H

),i" (x)] 
l.J r ' -i(XiOj - Xjdi ) 9ir

H
(x) + i(Aij)~ 9is

H
(x), 

(32) 

-i(XiOj - Xjdi ) 9ir
D

(x) + i(Aij)~ ?sD(x), 

(33) 

and transforming as above we find that 

I ' 
Mij = O. 

Thus Eqs. (26), (31), and (34) are necessary conditions for a 

Poincare invariant perturbation theory and are the only simple condi-

tions we are likely to be able to derive. We shall see that these 

conditions are in fact sufficient by using them to verify the Poincare 

invariance of the S matrix in the LP.' 
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IV. COVARIANCE OF THE S MATRIX 

We now show that the necessary conditions on the S.T., Eqs. 

(26), (31), and (34), are sufficient by using them to demonstrate the 

covariance of the S matrix. We must show tha~ 

[PJ.l
F

(9iD),S] 

[M F (9i
D

) ,S] 
J.lv 

0, 

O. 

Equation (35) for J.l = i follows directly from the fact that [using 

Eqs. (3) and (31 )] 

[p i F (9iD)'~ (9iD)] 

[p / (9iD) ,~(9iD)] o. 

Equation (36) for J.l,V = i,j follows from a similar, argument showing 

(38) 

For J.l = 0 in Eq. (35) we have 

[p F(d) S ] (~i)n Jdt ••• Jdt [p F(r/. ) T(HI(t )"'HI(t )}] 
O)"D' n = n! 1 n 0 i"D' 1 ' n 

{ _~ ,n 
,~ 
l. f n. 

0, 

m,t 

n 

L It I I 
T(H (t )"'0 m H (t )·.·H (t )} 

10m n 
m:l 

Jdt ... Jdt fdt .•• Jdt lm-l m+l n 
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using the indicated. identity for moving a time derivative through a 

time-ordered product. and dropping surface terms at temporal infinity., 

Equation (36) for J.L,v' = O,i presents more difficulty. As. a 

preparation for the analysis we define two quantities. First, 

which will. test for Schwinger terms in [900I(~,t),GOOI(~>t)] [because 

of the antisymmetry of ,(Xi - Y i)' terms proportional to 53(~ - ;:() 

will vanish upon integration] arising from moving a time derivative 

through a time-ordered product similarly to the above calculation. We 

will also need 

Zi(t) ~ Id3X([~/(~D):,9-00I(~,t)] + i(XOOi - xiOO)900I(~,t)} 
(41) 

21 T 
which will be sensitive to the noncovariant tensor part GOO of 

I T I 
900 ; GOO is easily separated from 900 as 

(goo X scalar) + (00 component of tensor) 

Using the equation 

[GOOI(~),GOOI(;:()] + [GO/(~),900I(;:()] + [GO/(~),90/(;:()] 

= i[90 /(;t) + 90i
I (YJ] 0/ 53(~ - ;:() 

(42) 

which foliows from subtractingEq. (9) for GOOD 

(31), we discover that 

and F 
Goo ' and Eq. 

Zi (t) = Li (t) = J d3x Xi ([HI(t),Go/(~,t)] + [~,GOOI(~,t)]). 
(44) 

.,12-

Now it is 'easily shown by using Eq. (41) .and pulling time 

derivatives through the time:"ordered product that '. 

the last equality using Li = Zi and changing the summation parameter 

in the second sum to m = n - 1. 

covariant. 

We see that each S n 
is not by itself 

For any particular interaction we can find a grouping into 

covariant terms. Suppose the interaction has an expansion in a 

coupling constant ~: 

co 

-I (46) 

n=l 

Then we can expand everything in powers of ~, 

co 

2: r * S ~ Sr ' 
r=l 

co 

Zi L ~n z~n) 
1 

n=2 
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Here we have taken A- to be the coefficient bf the lowest order scalar 

term in 900 I ..We cannot have a tensor term withn = 1 because then 

the z~n) expansion would start with n = 1, which is impossible since 
1 

1 (.n) the 
1 

expansion clearly starts with n = 2 and we will of course 

require 

z~n) 
1 

This requires, for example, that 

Z~2) SlSl 
L. '. 1 l. 

z~3 ) SlW2 W2S1 SlW2 1. + 1i 2 L. 
l. l. 1 

[The last equality in Eq. (50) follows from a change of variables. ] 

Using Eq. (51) it is a simple matter to show that each S; 

. 22-24 is covarlant. . 

S* 
2 

We have S *. for r = 2, 3 as : 
r 

-14-

Removing the scalar part from the last term of Eg. (55) (this does not 
S2 

affect covariance), or if GOO = 0, we get 

This is the usual expression showing how to add. a seagull term to 

. . t· 1 t 2-4 produce a covarlant S-ma rlX e emen • 

Finally, specializing our discussion to the common case of 

only leading terms in the scalar and tensor expansions: 

900 
I Sl 2 

A- 900 + A-
T2 

900 (58) 

we may use Eqs. (53) and (54) to derive the interesting results 

SlT2 SlW2 .~ Z(3) 0, (59) L. 1. 
l. 1 2 i 

T2T2 Z~4) L. 
l. l. 

SlW3 2 Li o. (60) 
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V. IRREDUCIBLE OPERATORS 

We have already encountered in implicit form some of the 

peculiarities involved. in transforming operators between pictures. 

Thes.e pecUliarities are of (!ourse traceable to the definition of U( t). 

Using the defining relations for. U(t) and remembering especially 

that U(t )is . a function of time only· we have 

U(t>(0i¢H(X») u-l(t) =Oi(U(t)¢H(x)U,"l(tV 

U(t>(0Jli(XU u-
1
(t) 

(61) 

00@( t)¢H(x)U-l(t~-OoU(t )¢H(X)U-l(t) - U(t )¢H(x)OOU-l ( t} 

. 0Jn(x) + iHI(¢D)U(t)¢H(x)U-l(t) - iU(t)¢H(x)U-l(t)~(¢D) 

0JD(x) + i[~(¢D)'¢D(x)J 

showing how derivatives transform between pictures. The inverse 

relations. are 

U-iCt)@i¢D(XUU(t) 

u-l(t) ~JD(xDU(t) 

(62) 

(64) 

The simplicity of the transformation law for spatial derivatives is 

the reason for the ease with which translati6naland rotational 

properties may ·behandled· .. Boosts, however, are another matter and 

we now explore how behavior under such transformations is changed when 

we move from one picture to the other. 
.... H 

Operators ¢r (x) transform irreducibly in.the H.P. if 

[M. H(nCH· ),¢ H(x») = -i(x ° _ x ° ) ¢ H(x) + irA )s ¢ H(x) 
~v r r ~ ~ v ~. r ~v r s 

(65) 
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with a matrix representation of the Lorentz group 

= 0 if ¢r =¢ is a scalar, (66) 

.'. - ~[r~,r)! if ¢r = 1jrr ,(r = 1,2,3,4) is a spinor,' 

(67) 

vector (68) 

Spatial rotation properties will remain the sarilewhenwe go to the 

I.P. because of Eq. (61). However, we may show, by Eqs. (31), (61), 

(62), and various. defining relations, 

F d. D D 
[Mei ("'D)'~r (x») = -i(xOO' - x.OO) ~ (x) + i(A_ .)s rI. D(x) 1 1 r 'U1 r"'s 

(69) 

d. D(x) so rr does not transform irreducibly if there are Schwinger terms 

in its equal-time commutat.or with 9 I(d. ) LT . ' 00 rD'Y' ne can 1n general find 
~D 

an irreducible set ¢r' with 

We assume !'Ir.D tr.ansforms in the I.P. as nC
r
H d . th r roes 1n e H.P. 

Then we find from Eq.(69), defining relations, and the time indepen- , 

dence of Me/, the following integral-matrix equation for the term 

to be added: 

~d3Y(Yi - xi)([900I(¢D'l,t)'¢rD(~,t») 

~ [QOOF(~,~,t), ~D(~,t»)}. (71 ) 

'j<: 

,. 
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Written out for a vector field Vr this equation becomes 

-i 6/e~,t) = Jd\eYi - xi)([eoole.¢D,;vt),VoDe~,t)] 

- [eooFe.¢D,~,t),~D(~,t)]}, 

The above equations are not independent and do not provide for a unique 

solution for 6 D for the simple reason that 6 D is not unique: 
~ ~ 

we can always add arbitrary amounts of a (Dirac) vector to it (see the 

examples iri the next two sections). 

. rI. D Conversely, if· operators r 
r 

transform irreducibly in the 

J.P. : 

we find that 

and, introducing the irreducible.set 

we find that 

(n) 

-18-

Written out again for a vector field V this becomes 
r 

-i 61, He?:C,t) = Jd3yeX1' - y ) 1[9 l(rI. Y t) V Hex t)] 
- i l 00 rH' ~J 'o.~' 

H -i 0 .. /\_ (x, t) 
1J -u ~ J d3

y(xi - Yi){[gooI(¢H'~,t),VjHC~,t)] 

+ [goOH(.¢H'~,t),6jH(~,t)]). (79) 
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VI. A CANONICAL EXAMPLE- -DERIVATIVE COUPLING 

To examine how our approach to covariance comes in contact with 

the usual Lagrangian methods,25 we apply our apprQach to an example of 

derivative coupling, a Lagrangian theory the verification of whose 

explicit covariance .. (of the S matrix) is somewhat laborious by usual 

Lagrangian methods. 2 Here we use the Lagrangian to find the S. T. and 

directly establish the covariance of the S matrix by verifying that 

Zi = Li • We start with the Lagrangian (in the H.P.) for axial-vector 

derivative coupling (h~reof course the interaction is easily 

identifiable) 

JH 
I-l 

Proceeding wi thusual Lagrangian methods we identify the 

canonical momentum (vector) and the fermion momentum as 

H 
Jl 

I-l 

. ",t 1. ~H 

The equations·of motion are found to be 

- -1jrti(f1 + m) 

(80) 

(81) 

(82) 

(84) 

-20-

The (equal-time) canonical commutation relations are 

T 
I-lV 

3 . 
-i 0 (?5 - ~) 

t . 
. (1jIH(?5),1jrH(~)} 

[.¢H(~)'.¢i~)] = [noH(~)'1l0H(~)] = [.¢H(?5),1jrH(r)] 

The canonical S. T. is given by 

(86) 

but this S. T. is not Hermitian or symmetric as it stands. The properly 

t ·· d· f . 26 symme r1.zeorm 1.S 

9 H 
I-lV 

+.~«(1l H,d .¢H} + (n H,d .¢H}) 
~ I-l v· v I-l 

Using Eqs. (84) and (85) we then find 

(87) 

(88) 

~ f
H
(lo1\ + IOlilkd'k - IOl~'kI)1jrH + ~(1l0Hdi.¢H + di .¢H1l0H), 

(89) 

'. ,-
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+ di~Hdj~H'- A~ij~OHJOH + i(JiHdj9H + JjHdi~HI) - ~ gijA2JOHJOH. 

(90) 

Since we have eliminated all time derivatives the form of Eqs. (88) -

(90) is not altered when we go to the LP. We make the obvious separa-

tion of "free" and "interaction" parts of the S.T. and can verify that 

the free parts satisfy Eqs. (9) - (13) (Schwinger terms in this theory 

arise from the various derivatives acting on canonical commutators). 

For the interaction part we have 

9 .I 
o~ 

O. 

(91) 

(92) 

The conditions (31) and (34) are thus satisfied. Thus we have 

all our necessary conditions for covariance of S. We may verify that 

900
I . is' in the scalar-tensor form (it was not so before transformation) 

by calculating27 

D U(t)(do¢H - AJO
H) U~l(t) ~O 

do¢D + i[~(~D)'~D] -
·D AJO 

do¢D' 

So 

900 
I (Dd~¢ 1 'D D) A J~ D + 2AJO JO ' (94) 

-22-

This is of course the usual expression for in this theory and 

we can explicitly verify that Zi = Li • We get Zi directly from 

the tensor transformation law [Eq. (7)] and L .. from the canonical 
~ 

commutators. The results are [LiST = L/T = 0, see Eqs. (58) - (60)] 

To see how the theory of tran~formation properties of operators 

applies in this theory we may verify that starting from ~~H as a 

vector a solution of Eqs. (72) and (73) is 

~D o , 

6.
D A J D (96) ~ i 

leading to the vector [see Eq. (93) ] 

~D D do¢D ~O - no = 

In fact we can easily verify that the most general Dirac vector 

(98) 

is also a solution of Eqs. (70), (72), and (73). 
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VII. A NON-LAGRANGIAN EXAMPLE--CURRENT-CURRENT COUPLING 

To see the value of the S.T. approach to non-Lagrangian theories 

we use our methqds to determine the form of the interaction in a 

t 
28 . 

curren -current theory formulated as sUch directly in the loP. We 

assume the following equal-time commutation relations. for our currents17 

DD 
[JO (~),Ji (~)J 

[Jo
D (~) , J O

D(;{)J o 

D D [J. (x),J. (v)J 
~ ~ J l<.. 

C
1
.
J
. = C •. Jl 

and we assure that J D acts like a Lorentz vector under boosts by Il . 

taking29 (additional restrictions would be needed if we were interested 

in analyzing its rotational properties) 

i JkD(~,t) 0k
x 53(~ - r) 

- i oil J D(x,t) 53(x - v) 
J..L I'V "" K.. 

(100) 

We must allow a tensor term in our interaction 

(101) 

S S 
since LillI o. ,By requiring that Zi = Li and using Eqs. (99) and 

(101) we can determine g as a function of g. We first note that 

L· ST ~ !. L SS L TT - 0 Thus 
. i - 2 i ' i - • 

-ig (102) 

which has the solution 

g 
2ci 

1 -2Cg 

-24-

Here of cours'ewe have an infinity of tensor terms U.pon ~xpansion in g. 

By calculating the left-hand side of Eq. (43) [using Eqs. (99), 

(100),(101), (103)] we discover that the right,..hand side vanishes 

O. 

By integrating this equation and its moment we determine that 

o 

in conformance wi thEqs .(31) and (34 ). 

If we try to find·'the irreducible Heisenberg.vectbr 

Eqs. (78) and (79) with the trial solution30 

t>oH AJ H 
0 

6. H 
~ 

B J.H 
1 

(104 ) 

J . we use 
\.1 

(106) 

and discover that Eqs. (78) and (79) lead to the same relation 

(1 -2Cg)A - B = 2Cg. 

Thus we cannot find a unique solution and this merely reflects the 

fact .that we have no unique -H J . 
Il 

Our general solution is [first take 

A = 0 in Eq. (107) to get a vector] 

- H - ( H ( ) H) J = K J O ' 1 - 2Cg J. 
Il ~ 

(108) 

and in fact the A and B defined by Eq. (108): 
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A (I': - 1), 

B 1':(1 - 2Cg) - 1 (109) 

solve Eq. (107) for any , 1':. 31 

~) 

VIII. SUMMARY 

We have shown that necessary and sufficient conditions for 

Poincare invariance of a local perturbation theory are that the total 

stress tensor 9 
\-LV 

D and its free part 9 F satisfY generalized 
\-LV 

Schwinger conditions and 0. 32 These ,conditions on the 

stress tensor guarantee the Poincare irivariance of the Dyson S matrix 

through the mechanism of cancellation of seagulls and Schwinger terms; 

and we obtain a covariant grouping of S-matrix elements S; by 

collecting terms of order Ar We also showed how in the related 

problem of transformation of operators between the Heisenberg and 

Interaction Pictures we can form a set of irreducible operators ' ~r 

from an irreducible set ¢r in the other picture. 
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