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The statistical thermodynamics of the gas-in-glass system provides 

a basic model of the solubility. Equations are derived which give the 

solubility (in molecules per cubic centimeter of glass) as a function of 

gas pressure, temperature, fundamental constants, and material para-

meters. Both physical and chemical solubility are considered. The 
~ 

physical solubility result"is essentially equivalent. to that for mon-

atomic solubility. The chemical solubility result. is·dependent upon the 

specific system involve~. 
-.~ .... 
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INTRODUCTION 

Glasses are used in a wide variety of gas atmospheres. A statistical 

mechanical model of monatomic gas solubility in, glass has recently been 

1 developed. The purpose of this paper is to extend the approach used 

'in treating the monatomic gas solution to a general model of polyatomic 

gas solubility in glasses. A comparison of the general model with ex-

perimental solubility data will be given in the concluding paper in 

this series. 2 

It should be emphasized that the solubility to be discussed is in 

gla.sses below their glass transition temperature where glass is truly a 

rigid solid rather than a supercooled liquid, as it is above the 

transition temperature. Solubility in the solid glass is that which 

would arise from exposure to gases during material use while that in the 

liquid glass would arise during fabrication. 

THE MODEL 

The model assumes an ideal gas in equilibrium with the species in 

solution. The ideal gas is represented by free particles in a three­

dimensional box (translation) with any internal molecular motion repre-

sented by independent rigid rotors (rotation) and simple harmoni~ 

oscillators (vibration). The dissolved species m~ be considered as a 

similar combination of fundamental modes of motion. However, the 
,.. 

restriction of any molecular motion in the dissoived state is assumed 

to produce a corresponding vibrational mode of the simple harmonic 

oscillator type. 

Various types of solubility are possible. Noble gases dissolve as 

atoms. Polyatomic, gases m~ dissolve with or without dissociation. 
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Here, physical solubility is defined as solution without molecular 

dissociation and with relatively weak van der Waals bonding of the 

dissolved atom or molecule with the glass. Chemical solubility infers 

molecular dissociation and relatively strong chemical bonding of the 

dissociated species with the, glass. However, it must be noted that the 

solution of gases in the glass solid is generally restricted to the 

smaller molecular species which can interstitially diffuse through the 

glass network structure. 

Again, i tshould be emphasized that the glass being discussed is 

a rigid solid, i. e., below its glass transition temperature. This is 

important in the development of the model as the rigidity allows the 

assumption that the dissolved species are localized. 

Physical Solubility 

Equilibrium between the gaseous and dissolved states requires that 

the Gibbs free energy of the gaseous state, G(g), equal that of the 

dissolved state, G(s). ' Expressions for the Gibbs energies can beob­

tained from the assumed atomic model using3 .. 

G = kT (aln Q/aln V)T,N - kT In Q 

where Q is the canonical ensemble partition function, k is Boltzmann's 

constant, T is the absolute temperature, and V is the volume containing 

a number of particles, N. 

For convenience, a specific example will ~e uSed, viz. the homo-

nuclear diatomic. Assuming the gas to be ideal, the Q is that for a 

system of N indistinguishable particles in a three-dimensional box 
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wi th m the mass of one molecule, h the Planck ',B constant, q the partition 

function for a single molecule, a the symmetry- number (0 = 2 for H2), 

8 the characteristic temperature for rotation (8 = h2/8TI2Ik where I = r r 

moment of inertia), and 8 . is the characteristic temperature for 
v~ 

vibration (8 . = hV/k). This assumes the rotation to be that of a rigid 
Vl. • 

rotor and the vibration to be that of a simple harmonic oscillator and , 

that rotation and vibration are independent. Substitution of Eq. (2) 

into Eq. (1) and using pV = NkT (the ideal gas law) gives 

where R is the gas constant andp is the pressure of the gas atmosphere. 

For the dissolved state,4 

G(s) = G(Q) + E(O) - TS 
m 

(4) 

with G(Q) given by Eq. (1) where Q is now the partition function asso-

ciated with the motion of the gas molecule in the dissolved s~te. 

E(O), the binding energy, -:Lsthe energy of the atom at rest (the lowest 

quantum state) in solution relative to the similar rest state in the 
" " 

free gas, i.e., removed from the potential field or the solid. S is 
m 

the partial molal entropy of mixing for the gas. It is of the form 



" 

" 
f 

" 

" .:.: 

-4- UCRL-207l6 

where N is the number of solubility sites available per cubic centi­
s 

meter, and n is the number of. gas molecules dissolved per cubic centi­
s ' 

meter of glass. The value of n at one atmosphere pressure will be s 

called "the solubility." The derivation of Eq. (5) assumed that N and s 

n were la,rge numbers and that N »n • 
s s' s 

These assumptions should be 

valid for all real systems discussed in this paper. 

For the dissolved state, the internal vibration is assumed to be 

retained, i.e., the molecule does not dissociate and the vibrational, 

frequency is not significantly altered. This leaves nine possible con-

figurations depending upon the number of rotational and translational 

degrees of freedom that would be transformed to vibrational degrees of 

freedom. For the specific case to be discussed in the next paper 

(Hz in fused silica), the solubility sites are slightly larger than the 

dissolved molecule and are separated by slight structural barriers. 

The dissolved state for this case would be assumed to retain the two 

~ 
degrees of rotational freedom but have the three degrees of trans~ 

lational freedom become three degrees of vibration. Basically, the 

undissociated molecule is assumed to retain its internal motion but 

loses the translational motion of the center of mass. The single 

mOlecule partition function for this case is ,', 
-ev/T)]( -ev/2T (" -ev/T)]3 
eel 1 - e ' 
, , 

(6) 
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where 8 is the characteristic temperature for vibration of the center v 

of mass of the dissolved molecule. The resulting G(s) is 

with q given by Eq. (6) •. Equating G(g) and G(s) and rearranging terms 

gives the final solubility equation for homonuclear diatomic physical 

solubility 

which is equivalent to the result for the monatomic case. l 

Actually, Eq. (8) is quite general for any polyatomic physical 

solubility in which the internal degrees of freedom are retained and the' 

external translation is transformed to localize vibration. The internal 

rotational and vibrational motions contribute to both G(g) and G(s) 

similarly so that these factors cancel when G( g) and G( s) are equated • 

In applying the model to hydrogen, speci~ care must be exercised. 

The high characteristic temperature of rotation for H2 (8 = 87.~) 
. r . 

means that the high temperature (classical) form of the rotational par-

tition function (q = 8n2IkT/crh2) is not valid at room temperature where . r 

physical solubility is exp~cted. The rotational partition function for 

this case must be a summation over quantum states including a distinc-
.. 

tion between the nuclear spin multiplicities for o~thohydrogen (even 
. .~ 

rotatio~al states) and parahydrogen (odd rotat'1ona:l states).5 However, 

the increased complexity of the q in this case does not affect the r 
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final results because the rotational motion of the molecule appears in 

both the free- gas and dissolved states producing a cancellation of the 

qfrom the final result equation. 
r , 

Chemical Solubility 

The treatment for chemical solubility is basically a simple exten-

sion of the physical model Just presented. The ideal gas is represented 

exactly as in the previous section but is assumed to be in equilibrium 

with a dissociated species in solution. There are two main results of 

this dissociation. First, the final solubility equations are more 

lengthy because the G( g) and G( s) expressions are more dissimilar. 

Second, the solubility, n, does not vary with the first power of s 

pressure. 

G(g) is still given by Eq.: (i) using the appropriate gas partition 

function. However, G(s) is now given by 

G(s) = G(Q) + EE. (0)' - TS 
, 3. m 

where E. (0) is th~ binding energy of the ith dissociated species and 
3. ", 

§ is the partial molal entropy of mixing of all the dissociate~ecies 
m 

among the solubility sites. 

The form of the final solubility, equation depends greatly upon the 
" , 

specific system iIivolved. "Therefore, a simple but representative 

example will be developed, viz. the solubility of a homonuclear diatomic 

gas as dissociated monatomic species assumed to be~~ocalized simple 

harmonic oscillators. 
" " 
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The dissociation of the diatomic molecule requires consideration of 

the electronic partition function. For non-dissociation, the electronic 

t.erms would have appeared in both G( g) and G( s) and would have cancelled. 

By choosing the zero of energy as the separated atoms at rest, one can 

write 

Qdiatomic (10) 

where 

(11) 

where ~el = -De and De is the dissociation ene.rgy of the diatomic 
./;.::. 

molecule. 

Also, 

(12) 

where the dissolved atom is assumed to be restricted to vibrational 
~' , 

I' 

motion. The factor 2N'arises from the dissociation of N molecules into 

2N atomS. Substitution of Eqs. (11) and (12)'into Eqs. (I) and (9) 

-
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respectively, gives 

G(g) = -RT Inl( 2_T/h2 )3/2(kT/p) [TI (2 Sr}] [e -~n/2T 1(1-. -SnIT)] 
. ' 

, " 

and 

( 14) 

Equating G(g) and G{s) and rearranging terms gives the final solu-

bili ty equation for the chemical solubility of a homonuc1ear dia-~omic 

. gas 

where m is the mass of the diatomic molecule, e is the characteristic 
r 

temperature for rotation of the diatomic molecule, e . is the cnaracter­
Vl. 

istic.temperature for internal vibration in the diatomic molecule, e is 
v 

the characteristic temperature for vibration bf thl' monatomic species, 

Eel is the negative of the dissociation energy of the diatomic molecule, 

and E( 0) is the binding energy between the mona.tomic species and the 

'\ 
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glass. Also, n is now the number of dissolved atoms per cubic centi­
s 

meter of glass rather than the number of molecules as in the physical 

solubili ty case. 

The low temperature complexities of the rotational partition func-
I 

tion mentioned in the previous section have been omitted here for 

simplicity. This can also be omitted from a practical standpoint as 

the chemical hydrogen solubility to be discussed in the next paper2 

occurs at sufficiently high tempe~atures that Eq. (15) is valid. 
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