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LEAST EIGENVALUE APPROXIMATION FOR A 
PROPER STURM-LIOUVILLE SYSTEM BY 

USE OF CU-BIC SPLINES 

* JONATHAN D. YOUNG 

Abstract. The method of Stodola and Viannello for approx-

imating the least eigenvalue for a proper Sturm- Liouville system is 

numerically implemented by using cubic splines as successive approx-

imations Jor a corresponding eigenfunction. 

1. Introduction. We consider a differential equation 

( 1) py" + p'y' + (q + r \) y = ° 
subject to boundary conditions 

(2) y(O) = ° y(1)=0, 

where p, p', q and r are continuous on [0, 1], with p and r 

strictly positive and q nonpositive thereon. The values of \ for which 

there are nontrivial solutions are real, distinct, and positive [1], [2]. 

Hence, there is a least eigenvalue ~ and a corresponding nontrivial 

solution, called an eigenfunction, unique except for a multiplicative 

constant. 

Transposingthe terIl.; involving \ in (1) we obtain 

( 3) py" + p'y' + qy = - \ry. 

Multiplication by y and integration yields 

(4) 

':'Lawrence Radiation Laboratory, University of California:, Berkeley, 
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or 

(5) 

for any nontrivial solution y cor re sponding to \. 

For any function z having piecewise continuous second deriv-

ative s on [0, 1] and such that z(O) = ° and z( 1) = ° we define 

( 6) 

We plan to compute consecutive cubic splines sk defined on [0, 1] 

so that 

(7) 

exists, and such that for sufficiently large k, we may accept R( sk) 

and sk' respectively, as approximations to ~ and an eigenfunction 

therefor. 

2. Stodola- Vianello method. The Stodola- Vianello method is 

a process 'with successive approximations zk converging, except in 

very unlikely circumstances, to an eigenfunction corresponding to the 

least eigenvalue. 

As a first guess, we may take any function z1 having piece

wise continuous second derivatives on [0, 1] and vanishing at ° and 1, 

then compute R(z1) by (6). 

To obtain an approxi~ation zk from zk_1 we solve 

( 8) pz " + p'z ' + qz = - rz k k k k-1 

subject to 

0, 

and we then compute R(zk)' 
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As the process converges [Z] we have for sufficiently large k, 

say k = n, approximations 

for 

a.nd zn for an eigenfunction corresponding thereto. 

Except in the most simple examples, analytic solution of (8) 

__ and integration in (6) become impractical and it is necessary to use 

- numerical methods. We elect to use cubic spline s for these pro-

cesses. 

3. Numerical solution by use of cubic' splines. We shall par-

allel the process above replacing the approximations zk by cubic 

splines sk defined on [0,1] with uniformly spaced interior knots 

the rein. The linear space [4] of cubic spline s having knots: 

o = xi' xz' .. " xm = 1 

and vanishing at 0 and 1 has dimension m. A convenient basis for 

this space consists of the cubic splines, t., j = 1, ... m defined by 
J 

( 9) 

t 1 (xi) = 0 

t. (x.) = 0 .. 
J 1 IJ 

tm(xi ) = 0 

all 

all i 

ti (0) = 1 

t~ (0) = 0 
J 

ti (1)~ 0 

t~ (1)= 0 for j=Z, .. ·m-1 
J 

t' t' m(O) = 0 . m( 1) = -1 

\ 

It may be readily verified that for any cubic spline s in the space, 

there is a unique set of coefficient a. such that 
J 

( 10) s = ~a.t., 
J J 

and further that very such linear combination of the t. is in the space. 
J 

For our fir st approximation, we select an initial set a l' In 
. . J. 

the absence of other information a
1j 

= 1 for j = 1, ... m may be used. 
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(The choice a
1

. = 0 for all j must be avoided since it leads to a trivial 
J . 

solution. ) With the. choice of a
1

. we have . J 

( 11) 

s1(x.) ~ a
1
·t.(x.) 

1 J J 1 

s 1. (Xi) 

s'1(xi ) 

~ a
1

·t'.(x.) 
J J 1 

~ a 1j t'j(xi ) 

i = 1, "'m 

from which we can compute R( s 1) by (6), performing the integrations 

numerically. (Since the integrands involved are likely to be of at least 

sixth degree in x on each subinterval, we used\seven interior points in 

each subinterval between knots with an open end Newton-Cotes quadra-

ture formula [3] exact for sixth-degree polynimials.) 

From an approximation sk_1' we obtain the set a kj by solving 

the -linear system 

( 1Z) ~[{pt~I(X.)+p't.(X.) +qt.(x.)}a
k

. = -rs
k

_
1
(x

i
)]for i=1,"'m. 

j Jl. Jl Jl J 

Then, as before, we compute sk' ~, and sk as in (11) and compute R(~). 

The process may be terminated when 

( 13) (a) ( spe cified), 

in which case R( sk) is accepted as an approximation to ~ and sk is ac

cepted as an approximate eigenfunction; or when 

'( 14) (b) 

in which we conclude the process is not converging; or when 

( 15) ( c) k:;;'K (specified), 

in which case we conclude convergence is impractically slow. 

4. Error estimates. The limit of the cubic spline approx-

imation process'is that c\lbic spline, in the space considered, which 

best approximate s an eigenfunction. Consequently even with accept-

able convergence there is, in general, residual error. 

l' .... ' 
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Now if an accepted approximation sn were actually an eigen

function with R( s ) as the eigenvalue, then certainly we should have n -

( 16) e(x) = pSn"(x) + p's'(x) + {q + rR(s )}s (x) = 0, n n n 

for all xE [0,1]. 

Otherwise, the magnitude of the e(x) indicate the extent of residual 

error. However, these magnitudes are affected by the multiplicative 

constant which appear s in s and by the magnitude of R( s ), hence we _ n n 

define a relative measure of residual error on [0, 1] by 

( 17) 
J1[pSll + p's' + {q+rR(s )}s ]2dx 
o n n n n 

~ = ~--~~--~~----~~~--~----
J1[R(s ) s ]2 dx 
o n n 

Other measures of the residual error could be devised, but the one 

given above has the merit of simplicity and is strongly indicative of 
, 

the validity of an approximation. 

The numerical examples in the next section illustrate the pro-

cess in more detail. A computer code, STROBS, has been written 

which performs the computation involved for any value of m from 3_ 

up to 51. The user need only append a subroutine which compute s p, 

p', q, and r for any given x E [0,1]. The functions must meet the 

-j requirements mentioned in the Introduction, and of cour se p' must be 
, ~i 

the derivative of p. A source listing of this code is available from 

the author. 

5. Numerical examples. 

Example 1. y" + Ay = 0 

y(O) = 0 y( 1) = 0 

(p 1, pi = 0, q = 0, r 1 meet requirements). We luay obtain 
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analytically 

2 . 
~ = 11" = 9.8696044 and y = c sin 11" X , c of O. 

Results for numerical approximation with-m = 3,5,11, and 21 

are given below. In all cases we began with a
1

" = 1, j = 1, ... m and 
J -

tested convergence with 

E = 0.00000001. 

All results were normalized so that they had for initial slope 

s'(O) = 1 

and compared with the normalized eigenfunction f = 1 sin 11"X 
11" 

For m = 3 

x s3 E f s -f 
.3 

o. O. o. o. O. 

0.5 0.3333333 -.70588235 0.3183099 0.0150234 

1.0 o. o. o. o. 

~3 = 9.8823529 ~3 = 0.1091090 n = 3 

For m= 5 

x s5 E f s5- f 

O. O. O. O. O. 

0.25 0.2255921 -.1166332 0.2250791 0.0005130 

0.5 0.3190350 . - .1648970 0.3183099 0.0007251 

0.75 0.2255921 -1166332 0.2250791 0.0005130 

1.0 O. O. O. O. 

~5 = 9.8697063 ~5 = 0.0242813 n = 3 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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For m = 11 (in view of symmetry, table is abbreviated) 

x s11 E. f s11- f 
1 

0 O. O. O. 0 

0.1 0.0983685 -.0080197 0.0983632 0.0000053 

0.2 0.2575319 -.0209763 0.2575181 0.0000138 

0.4 0.3027468 -.0246488 0.3027307 0.0000161 

0.5 0.3183268 - .0259132 0.3183099 0.0000169 

~ 11 = 9.8696047 1111 = 0.0037125 n = 7 

For m = 21 

x s21 E. f s-f 
.1 

O. O. O. O. O. 

0.05 0.0497948 -.0010179 0.0497946 0.0000002 

0.01 0.0983635 - .0020094 0.0983632 0.0000003 

0.15 0.1445101 - .0029492 0.1445097 0.0000004 

0.2 0.1870984 -.0038136 0.1870979 0.0000005 

0.25 0.2250796 - .0045815 0.2250791 0.0000005 

0.3 0.2575186 - .0052346 0.2575181 0.0000005 

0.35 0.2836166 - .00575804 0.2836162 0:0000004 

0.4 0.3027311 - .0061401 0.3027307 0.0000004 

0.45 0.3143913 -0.0063726 0.3143910 0.0000003 

0.5 0.3183103 -.0064507 0.3183099 0.0000004 

~21 = 9.8696044 1121 = 0.0009217 n = 7 

For m =26 

~26 = 9.869044 1126 = 0.0005894 n = 7 

For m = 51 

151 = 9.86960440 1151 = 0.0001474 n = 10 
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Example 2. y" '- 2y' + >..y = 0 

y(O) = 0 y( 1) = 0 

Coefficients do not meet requirements; however, multiplying through 

by e -2x we obtain [2] 

-2x -2x -2x 
e y" + 2e y' + e >..y = O. 

Wl·th ':2x, -2x • 2x , P = e ,p =-2e ,q = 0, and r =' e ,all requirements are 

met. 

:r:he exact value of ~. is TT2 + 1 = 10.869044 and the correspond

ing eigenfunction is 1: = cex sin1Tx, c =f O. SUmmary of results is 

given below with s - f takenat greatest magnitude and f =.! eX sin1Tx. 
1T 

m n >.. 
m Ilm s-f 

.3 3 11.0288523 0.0744190 -0.0664710 

5 11 10.8782494 _0.0227613 -0.0303412 

11 14 10.8699230 0.0037356 -0.0052968 

21 11 10.8696110 0.0009370 -0.0013379 

26 11 10.8696100 0.0006000 -0.0008571 

Example 3. 
_2 

(1+X)Y"+y'+ {(x -x)+(2.-x)>"}y=0 

y(O) = 0 y(1) = 0 

Wl·th 1 + '1 2 d P = x, P = • q = x -x, an r = 2.-x, all requirements are 

met. Summary of numerical results is given below 

m n 

3 11 

5 11 

11 11 

>.. 
m 

9.7334643 

9.4385179 

9.4231721 

Ilm 

0.4725730 

0.1369278 

0.0232826 
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m n 

21 9 9.4228171 0.0058777 

26 9 9.4228032 0.0037662 

51 11 9.4227942 0.0009434 

6. ,Conclusion. The use of cubic splines provides a conve-

nient numerical implementation of the Stodola- Vianello proce ss. 
) 

Some approximation error does occur, arising from the numerical 

solution of (8) and from the numerical integration. This approxima-

tion error is substantially reduced as the number of knots is increased, 

the limit on this being the "size" of the linear system, (12), one is 

wqling to solve. From our experience, increasing the nwnber of 

knots, after a certain point, does not seem to appreciably increase the 

number of iterations required to obtain a reasonable approximation. 

A considerable advantage afforded by the cubic spline approx-

imation is tha.t the value for the approximating spline s and tho se of 
n 

its first and second derivative are known at all the knots, and the value 

s (x) can be readily computed for any x co [0, 1] by interpolating on a n 

cubic segment between two knots adjacent to x. 

The error estimate we offer is suggestive and can best be 

,(1 interpreted as a relative measure C?f how well our approximations for 

the eig~nfunction and eigenvalue satisfy the differential equation. 

Acknowledgment. This work was done in part under the 

auspices of the U. S. Atomic Energy Commission. 
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