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ABSTRACT 

UCRL-20831-Rev. 

* DECAYS 

An inequality relating the parameter A+ of 

Kt3 decays to the spectral function of the isovector 

electromagnetic current is derived, assuming only 

Weinberg's first spectral function sum rule. It is 

shown that a large value for X+ (e.g., A+ = 0.045) 

is not compatible with p saturation of the isovector 

spectral function. Since the principal tests Of the 

sum rule have relied on the additional assumption that 

such resonance saturations are possible, some doubt 

is cast on the validity, or at least on the previous 

applications, of the sum rule. Implications for the 

Weinberg mass relations, c-number Schwinger terms, and 

the + -e e annihilation cross section are discussed. 
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I. INTRODUCTION 

The decays, such as + 0 + 
K --> 11 .e v.e' where is an 

electron or muon, have received a great deal of experimental and 

1 theoretical interest recently. The most interesting aspect of these 

decays is that the form factor f_(t), which would be zero ifSU(3) 

were an exact symmetry, has a surprisingly large magnitude. Another 

interesting experimental fact is that the slopel A+ of the approxi­

mately linear form factor f+(t) is around 0.045; this is much larger 

.* than would be expected from simple K dominance of the 6I = ~, 

~ = 1 weak current. In part II of this paper we will derive a 

rigorous inequality relating A.+ to an integral of the spectral 

function of this current. For the present experimental value of X+, 

we will find, as expected, that the spectral function cannot be 

* dominated by the K resonance. In Sec. III we will tentatively 

accept the validity of the first Weinberg sum rule2 in order to derive 

an additional inequality relating A+ and the spectral function 

integrals of the isovector and isoscalar electromagnetic currents. 

The Weinberg sum rule, of course,depends on the assumption of c-number 

Schwinger terms and on the convergence of certain integrals. For the 

current experimental value of A+' the inequality is not compatible 

with. the assumption of resonance saturation of the spectral functions 

of the electromagnetic current. This in itself does not contradict the 

Weinberg sum rule; however, most of the applications' and tests of the 

sum rule have depended crucialiy on this extra resonance saturation 

ass~ption. Hence, if A+ really is large, either the sum rule is 

wrong or it will have to be reinterpreted. This and other implications 

of our result are discussed in Sec. IV. Finally, in Sec. V we discuss 

the possible errors in our numerical results. 
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II. DERIVATION 

Now let us derive the bound. The hadronic part of the matrix 

+ 0 + element for K ~rr £ v£ is 

(1) 

where V t is the .~ ~l, ~ = ~ vector current (V t = V4 - iV 
.~ ~ ,~ 5,~ 

. 2 
in octet notation) and t = (p - p'). In the SU

3 
symmetriq limit 

we would have f (t) = 0 and f (0) = -1/~':2. _ + vc . 

By analytically continuing (1) to the matrix element 

(0 tv t\rrO(pl )K+(P» and by applyiIig standard reduction techniques, 
Jl 

one can show that 

@2rr)3 2p;;y~ 14~ 44 
( (2rr ) 5 (p + p' - p ) n 

n 

x (K+(P) Ij (0) In)(nlpoV(O) 10) J 0 rr ~ 
(2) 

Here, k is the center of .massthree-momentum of the system, 

[ is a sum over intermediate states n with momentum Pn' and 

is the pion source function. The matrix element of j 
rr 

is propor~ 

tional to the complex conjugate of the scattering amplitude for 

+ 0 
K rr ~ n. Because of the octet nature of V - only intermediate states 

~. 

n of total isospin tare included in the sum. Also, we have 

selected a ·space component of V, so only states with total angular 
~ . 

momentum J = 1 enter the sum (the time component of the nonconserved 

current would couple with states of J = 0). 

Of course, f+(t) is analytic except for a right-hand cut 

starting at th~ t+'rO s-eatterillgtbreahold to = (m!: + ~)2, where 11 

.-4-

is the pion mass. The physical region for K£3 decays is from 

2 2 
t = m£ to.t = (~ - ~) • 

The Schwarz in·equali ty , 

I [ A * B 12 < 
n n -

n 

true for any complex numbers A and B, can now be applied to (2)., n n .. 

yielding: 

lIm f+(t)12 :::: (rr t 3/ 2/6k)ail )(t) p(l)(t)jt 

(2rr2 t3/2/~) sin2 5
1
1 p(l)(t)/t 

In (3), c{ 1 ) (t) is the total J = 1, 1= ~, K!(cross section and 

51
1 (t) is the p wave, I =~ elastic phase shift. We have used the 

fact that the total cross section for K+rrO to scatter into states of 

J = 1, .1 = ~ is just 

In (3) the spectral function p(l)(t) is defined by 

n 

2 (1) 2 (0) 2 (-g + q q /q ) p (q) + q q p (q) 
~v ~ v ~ v 

(4) 

By using the Schwarz inequality again, now in integral form, we have 

• 
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r Im f+(t) 
2 r lIm f+(t) Idt 

2 

G(t) 
dt < G(t) 

0 to 

[f2' t 3/ 2 a(l) (t) dt] ~ f: p(l)(t) < 1 X dt - 6k G(t)2 
2t . 

to to 

~~o· 211 t 3/ 2 a (t) 
dt J ~f f2(1){t2 dt B X 6k G(t.)2 t 

lih€re G(t) is any positive definite fuhction of t and aBet) is 

.arJiy upper bound on ail)(t). [We have used the fact that pel) is 

positive definite. ,In Sec. III we will also use the positive definite­

ness of p (
0 ) .] 

By choosing G(t) appropriately, the left-hand side can b.e 

made into a dispersion integral for experimentally known values of 

.f+(t). For example, if we choose G(t) = llt(t - t l ), where tl is in 

the range 0 ~ tl ~ (~ - ~)2, the left-hand side of (5) becomes 

2 
f+(t l ) - f+(O) 

tl 

In the physical region for K£3 decays, 

f:o~ulal 

2 

(6) 

is well fitted by the 

-6-

Hence, the left-hand side of (5) is just (f+(0»,j~~2. Notice that 

at this point we are not making any crucial use of the approximate 

linearity of f+(t). We are merely using (7) as a reasonably accurate 

parametrization of the experimental data in. the region in which f+(t) 

is actually measured. There is a great deal of experimental uncer­

tainty in the value of A+. We shall tentatively use the value 1 

* A+ = 0.045 ± 0.012. This is to be compared with the K dominance 

2 2 
value of A+ = ~ /m * = 0.0225. Unfortunately f+(O) is not well 

K 
known experimentally, but by combining results of Refs. 3 and 4 we can 

estimate5 f+(O) ",,-0.89/V2. 
Now that the left-hand side of (5) is known, we can use (5) as 

a lower bound on the integral of p(l)(t). In order to do this we must 

find some appropriate upper 
(1) bound a

B 
on al • The values of 

are known experimentally up 
.1. 6 

to about (t)2 = 1.2 GeV 

beautifully by a K* Breit Wigner formula in this region, but we have 

used the actual data points given in Ref. 6. Above 1.2 GeV we have 

upper bounded sin2 0Il by unity (probably a gross overestimation). 

We have estimated that the experimental errors in the low-energy values 

of sin2 0Il wili not affect our final results by more than 10i. 

All quantities in (5) are therefore knoWn except for the 

spectral function integral; for this quantity we have a veryconserva-

ti ve lower bound; Defining 

(8) 

we have 



We can parametrize the left-hand side of (9) as 

C ¥ 0.037 f+(0)2 Gev
2,where 0.037 f+(0)2 Ge~ is the value the 

integral would have if K* dominance were valid [0.0375 r+<0)2 GeV
2 

in the narrow-wi~th approximation]. 
2 

Cancelling t~e common f+(O) 

factor and evaluating I(tl ) for tl = 0, 'we find 

(10) 

For the exp~rimental value ~+ = 0.045, this implies C > 3~3. That is, 

the spectral function integral must be more than three times as large 

as the resonance saturation value.' For ~+ = 0.033 (the one standard 

deviation value), C > L8. 

As a check on the correctness of (10) we insert the K~ 

dominance value of ~ = 0.0225, for which C = 1. Our inequality 
+ 

yields, C > 0.82, suggesting that our inequality is not too far from 

an equality. 
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III. APPLICATIONS 

Our inequality (9) is not in itself very interest.ing. From 

-* 
the largeness of ~+ we could have guessed that K domination of 

pel) is not valid. However, it has been shown by Glashow, Schnitzer, 

and weinberg
2 

that if the relevant Schwinger terms are c-numbers and if 

the integrals converge, then 

and p (t) are tbe spectral functions of the conserved 
s, 

(electromagnetic) isovector and isoscalar currents. The 1/2 is due 

to our normalization of v. 
f.1 

Equation (11) is a special case of what is known as Wein~erg' s 

first (fast convergent) sum rule. Combining (9) and (11) we find 

Let us define the number L by 

L m 2/f 2 "'" ,LX 0.0244 Ge~, 
p p 

(12) 

2 
where m is the p mass, and ,m /f is the photon-p "coupling 

p p p 

"constant. ,,7 If the common assumption that (13) ,can be satura,ted by a 
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zero width p 
8 resonance is true, then L = 1. The finite widthp 

saturation hypothesis gives L ~ 0.92. Therefore, (12) becomes 

L > (14) 

A = 0.045, this gives + . 

L > 1.97. If we choose' tl in the physical region (whereA+ is 

actually measured), we obtain bounds that are almost as stringent. 

For tl = 0.03 Ge~, for example, L > 9ooIA+12; for 

L > 1.82. It must be noted that the stated error for 

For A+ = 0.033 the bounds on L are around 1. 

A+ = 0~045, 
1 

A+ is ±O.012. 

A similar but stronger bound can be obtained by taking 

G( t) in (5). This G(t) effectively suppresses 

the 

becomes 

ail) integral. The left-hand side of 

If' (t
l

) + (tl - m *2) fff(t l )/21
2

. We can then repeat all 
K + 

of the steps that led to (14) to derive a lower bound on L in terms of 

the second derivative f:(t l ), the form of which the reader can easily 

write down. 

Little is known experimentally about fff(t ) 
+ 1 

[the data fitted 

by (7) are relatively insensitive to it], but if we make the ad hoc 

assumption that f~(tl)/f+(O) is no larger than it would be if f+(t) 

were dominated by a K* pole, and that still f~(tl) = f+(0)A~~2, 
then we can show, for example, that L > 10.0 for A+ = 0.045 and 

L > 2.3 for A+ = 0.033 (all tl up to 0.05 Ge~ give bounds this 

big). Because of the uncertainty in 

use of this second bound on L. 

fff(t ) 
+ 1 

we shall make no further 
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IV. IMPLICATIONS 

We have seen in Sec. III that if i,+ really is much larger than 

* the K pole value, and if the Weinberg sum rule is true, then p (t) 
v 

must have important contributions other than the p resonance. The 

principai tests of the spectral function sum rule (and therefore of the 

c-number Schwinger term hypothesis) have relied on the additional 

assumption that each spectral function· can be saturated by a resonance 

(the p for pv)' In Ref. 2, for example, this eXtra assumption is 

used to predict ~ /m = 1/2, which agrees very well with experiment. 
1 p 

(Actually, this particular result also requires the second and less 

convergent Weinberg sum rule.) We .now see, however, that if A+'::: 0.045, 

then the resonance saturation approximation is false. In this case, we 

would have to conclude that either: (i) the Weinberg sum rules are 

still true, and they are satisfied separately by the resonance and 

nonresonance parts of' the spectral functions; or (ii) the sum rules are 

not true, and the success of the mass relations must be accidental or 

due to some other origin. 

It has been suggested9,lO that the spectral function integrals 

might not converge (the convergence of the and Pv Ps 
integrals 

requires that the total cross section for + -e e -> hadrons through one 

photon must decrease faster than l/t2 for large t). In this case 

the sum rules cannot be valid [possibility (ii) above]. It is also 

conceivable that the integrals diverge but that the sum rules are still 

true for the resonance part of the spectral functions. We will include 

this (in some formal sense) as a special case of possibility (i). We 

must emphasize that i~ possibility (i) is true it is empirical. It 

does not follow from the arguments in Ref. 2. 
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We consider our results [that large A+ implies (i) or (ii)] 

to be much more modest than the possibility that the spectral integrals 

di . 9,10 t· 9 verge. However, Pes ~eau and Terazawa! s result is based on the 

(experimentally unknown) asympt~tic 'behavior of the reaction 

+ -e e ~H + anything where H is a hadron, and the conclusion of 

10 
Beg et a1. depends on the assumption o:f asymptotic scale invariance. 

Our result, though limited, is very direct and does not require any 

additional assumptions. 

The spectral function Pv is related to the 

cross section (into hadrons with I = 1) by 

+ -e e annihilation 

p (t) 
v (15 ) 

to lowest order in a. Again, we can say tb8.t if A :> 0. 045 +..,. [and if 

(11) is true] then this cross section must contain something besides the 

p resonance. This is supported by recent measurements of the pion :form. 

11 +- +-factor, measured in the reaction e e ~~~, which does not decrease 

nearly as fast as would be expected 'from simple p dominance. 

Using (11) we can also place a lower bound on the integral of 

ps(t)/t. For A+ = 0.045 and t l = 0, the bound is 1.48 times greater 

than the estimated w plus ~ saturation value (the experimental 

widths for w,~ ~ e+e-. have been used12). The isoscalar spectral 

function is related to the cross section for e + e - -+ I = 0 hadrons by 

a relation like (15),' except ·for an additional :factor of 3 on the right. 

From (11) we can combine the I = 0 and 1 cross sections to 

give: 

(16) 

-12-

where cr + _ is the total (I = 0 plus I = 1) annihilation cross 
e e 

section. Using (12), this quantity must be larger than 23.8Ii)':: Geif. 
For A+ = 0.045 this is 0.0482 Ge";. This is to be compared with the 

estimated p + w ... % value of 0.0264 GeV2
• 

We might mention that if cr + _ is ever known experimentally 
e e 

to a high enought, then our result can be used as an upper ,bound on 

~ 5 
Let us now return to the Weinberg s~ rule. It has been shown13 

that if the first sum rule and the resonance saturation approximation 

are true, then 

1 + -3' mp rep ~ e e ) 

This agrees roughly, but not terribly well, with experiment.14 Again 

we claim that the resonance approximation probably fails .badly, so 

again we are led to possibilities (i) and (ii) above. Because of the 

partial successes of the saturated first Weinberg sum rule we would 

like to speculate that, for some unknown reason, it holds approximately 

[perhaps only in the SU(3) symmetric limit] for the resonance part of 

the spectral functions •. The nonresonance part may either diverge or 

satisfy the sum rule separately. Weinberg-'s second sum rule may also 

hold in this resonance domination sense, but only in the limit of 

SU(3). This is because the analogue of (17) for the second sum rule is 

1 3 + -. -3 m. rep ~ e e ) p . 

14 
which is badly broken. 

(18) 
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V. ERRORS 

We would like to briefly discuss the numerical errors in our 

results. Our estimate of f (0) 
+ 

is probably accurate to about 10i; 

( 4) ." d d . 2 <: 1 b a 10% error will affect 1 by 20",. We have boun e· Sl.n u l . y 

* unity above 1.2 GtW. Variations of the K position and width in the 
~ 
; ... \ low-energy region have been estimated. They shoul4.not affect (14) by 

J over 10i. The. saturatio.n value given in (13) is uncertain due to 
(i 

uncertainties in f. The value we have quoted corresponds to 
p 

2 . 
f 14~ = 1.9. Most other values that have been obtained for fare 

p p 

larger,7 corresponding to even smaller values for the spectral integral 

in the zero width sa.turation hypothesis. Also, the spectral integral 

is about 8% smaller when a finite width is given to the resonance. 

Hence, the coefficient of L in (13) is the largest value compatible 

with p saturation. Finally, the most uncertain quantity is A+ 

itself. 'All of our conclusions depend strongly on A+ being almost 

as large. as 0.045. Until A+ is more firmly established, all of our 

conclusions must be regarded as tentative. 
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