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ABSTRACT

An inequality relating the pérameter Ay of

Kf decays to the spectral function of the isovector

35
electromagnetic current is derived, assuming only
Weinberg's first spectral function sum rule. It is

shown that a large value for A, (e.g., A, = 0.045)

is not cémpatiblé with p saturation of the isovector

. spectral function. Sinée the principal tests of the

‘sum rule have relied on the additional assumption that

such resonance saturations are possible, some doubt

 is cast on the validity, or at least on the previoué

applications, of .the sum rule. Implications for the
Weinberg mass relations, c-number Schwinger terms, and

o et saoas . .
the e e dnnihilation cross section are discussed.
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I. INTRODUCTION
+ 0, + .
The KE} decays, such as K —x £ Vyr vhere £ 1is an

electron or muon, have received a great deal of experimental and

theoretical interest recently.l The most irteresting aspect of these

~decays is that the form factor f_(t), which would be zero if SU(3)

were an exact symmetry, has a surprisingly large magnitude. Another

- interesting experimental fact is that the slop'el K+ of the approxi-

mately linear form factor f+(t) is around 0.045; this is much larger
: : : L * ' :
than would be expected from simple K  dominance of the AI = i,

AS =1 weak current. In part II of this paper we will derive a

'rigorous inequality relating k+ to an integral of the spectral

function of this éurrené. For the present experimental value of X, s
we will find, as expected,‘that the spectral function canhét be
domihatéd by the k" resonance. In Sec. III we will ﬁentatively
accept the validity of the first WEinberé sum rule2 in order to derive
en additional inequality relating Ay and the spectral function
integrals of the isovector and isoscalar elecﬁromagnetic currents.

The Weinberg sum rule, of céurse,’depends on the assumption of c-number
Schwinger terms and on the coﬁvergénce of certain integrals. For the
cuirent éxﬁerimental value of Aps tﬁe inequalityvis ﬂot cqmpatibie
with»the assﬁmption of resonance saturation of the spectfal functions
of the electromagnetic current. This in itself does not contradiet tpe.
Weinberg sum rule; however, most of the application§ and tests of the
sum rule have depended crucially on this extra resonance saturation
assggption, Hence, if A, really ié large, either the sum rule is
wrong or it will have to be reinterpreted. This and other implications'

of our result are discussed in Sec. IV. Finally, in Sec. V we discuss

the possible errors in our numerical results.
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II. - DERIVATION
Now let us derive the bound. The hadronic part of the matrix
0,+.

+ .
element for K —gx £ vy is

= (2" ), T(0) [ (p))
EENC/COECEND XOCLEEONEENOCEE D) BRI

where VuT is the AS =1, AI =1 vector current (VHT /e iv
. : - S

in octet notation) and t = (p - p’)z. In the 8U

5 symmetric limit

we would have f_(t) =0 and £,(0) = -1/1/2.
By analytically continuing (1) to the matrix element -
(Ofvpflno(p')K+(b)) and by applying standerd reduction techniques,

one can show that

me ) - (20® 2 ¥ o) e v pr - py)
| | YL Rl

X &l OmaEyeer. (@)

Here, k is the center of.massithree-momentum of the K+no system,
E: is a sum.ovér intermediate states n with ﬁomentum pn, apdA
j: is1the pion spu?ce function.' The hatrix elemeﬁt of j‘]T is propor=-
tional to the éomplex,conquate of the scattering amplitude for
k+no —»n. Because of the octet nature of Vﬁ~ only intermediate states
r of total isospin 2 are included in the sﬁm. Also, we have
selected a space cpmpqnent of Vu, so only states witﬁ totél angulax_
momentum - J = 1 enter the sum (the fime component of the noﬁconser?ed
current would couple with sfates of J = 0).

of course, f;(t) is snalytic except for a right-hand cut

starting at the K+no seattering threshold t, = (mK + u)E, where p

S,H

b

£3

is the pion mass. The physical region for K

2 2
t=m° to t= (mK - ).

decays is from

The Schwarz inequality,

B An*’Bnl?s (z IA,,F)(QE:_IB;F) :

n

true for any cdmplex numbers An and Bn; can now be applied to-(2), -

yielding:
w1 < (e M) o Piays
(2x® e7/20) s1n® 51 oM (e)/e . )

In (3), d{l)(t) is the total J = 1, I=4%, Kn  cross section and

'Sll(t)‘ is the p wave, I =% elagtic phase shift. We have used the
fact that the total cross section for K+no to scatter into states of -

J=1, I=% is just

= E% sin® 811 .
k .

In (3) the spectral function p(l)(t) is defined by

(2 Y 8%(a - 5,)(01v, T In) w1V, (0) o)
- |
- (e, + a0/ oM@ ra9, 0@ . @

By using the Schwarz inequality again, now in integral form, we have
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6k 6(+)°

where G(t) is any positive definite function of t and GB(t) is
rany upper bound on cil)(t). [We haye usedvthe fact that p(l) is
positive definite. . In Sec. III we will also use the positive definite-
‘mess of p(o).] |

By choosing G{t) appropriétely, the left-hand side can be
made_into'a‘dispersion integral for experimentally known values of
 f+(t);"For exampie, if we choose 6(t) = ﬂt(t - tl), vhere t, is in

the range O <t; < (mK - p)z, thé‘left-hand side'of (5) becomes

2 2
1 [7 Imet (t)at ) >;f+(tl) - £ (0) | )
T t{t - ) R :
4 _ _
0

In the physical region for Kz3' decays, f+(t) is well fitted by the

formula’

£.(t) = £+(o)(1 + K+t/u2) . ‘_ (7).

1
are known experimentally up to about (t)2 = 1.2 GeV (51l
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Hence, the left-hand side of (5) is just (}+(O)k+/u2>2. Hotice that
at this point we are not making any érucial_use of the approximate
linearity of f+(t). We are merely using (7) as a reasonably accurate
parametrization of the experimental data in.fhe region in which f+(t)
is actually measured. There is a great deal of experimental uncer-
tainty in the value of X+. We shall tentgt;vely_use the valuel

. . * _
A = 0.045 + 0.012. This is to be compared with the K dominance

value of A _ = pz/m *? =.0.0225. Unfortunately f+(0) is not well
K : : ’

. known experimentally, but by combining results of Refs. 3 and_h we can

estimate’ £ (0) ~ -0.89/V2.
Now that the left-hand side of (5) is known, we can use (5) as
a lower bound on the integral of p(l)(t). In order to do this we must

on Uil). The values of Sll(t)

find some appropriate upper bound o
' 6

B
is fit
beautifully by a K* Breit Wigner formula in this iegion, but we have
used the actual data points given in Ref. 6. Above 1.2 GeV we have
upper bpunded. sin® 8llv_by unity (probably a gross overestimation).
We have estimated that the expgrimental eérrors in the low-energy values
of sin2 811

All quantities in (5) are therefore knoWn'exéept for the

will not affect our fimnal results by more than 10%.

spectral function integrasl; for this quantity we have a very conserva-

tive lower bound. Defining
® o (t)dt
1. ‘B
I(tl) = 3 —_ s (8)
kt2(t - t.) .
to 1

we have
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III. APPLICATIONS

. .
1 T (0 2 : )
l‘](’ 9( )gt!dt S <:5( )K+:) (l ) (9) Our inequality (9) is not in itself very interesting. From
2 t - 2 I{t * ’
1 b X
. tO . _ K » the largeness of x+ we could have guessed that K* domination of
p( ) is not valid. However, it has been shown by Glashow, Schnitzer,
»We can parsmetrize the leftihand side of (9} as and Weinberg‘2 that if the relevant Schwinger terms are c-humbers and if
2 2 2. : -
C X 0.037 f+(O) GeV', where 0,037 f+(0) GeV2 s the value the the integrals converge, then ' ‘
- . N . . d r . -
- * - } S . A . N2 2 . ) .
integral would have if K dominance were valid [0.0375 £ (0)” Gev , N
. . ' ' - B . "
. 2 @ . © . . © . .
in the narrow-width approximation].- Cancelling the common f _(0)° 1 1 {0 .
. o . + ) 5 v@( )(t)/t>+ p( )(t))dt pv(t)/t at = ps(t‘)/t at,
factor and evaluating I(tl) for t; =0, we find . ) ty v hug )
- (11)

¢ > 1.6X1002° . _ (10) |
: ' : vhere o (t) and ps(t) are the spectral functions of the-conserved

F rimental val - 0.045, this implies C > 3.3. That is o
For the experimental value _K+ 2 § imp 3:3 ? (electromagnetic) isovector and isoscalar currents. The 1/2 is due

the spectral function intégral must be more than three times as large o
) : to our normalization of Vp.

i . = 0.0 the one standard
as the resonance saturation value Eor Mo 32 ( : : Equation (11) is a special case of what 1s known as Weinberg's

dév%atlon value), C > 1.8. first (fast convergent) sum rule. Combining (9)'and (11) we find

. v *
“As a check on the correctness of (10) we insert the K

; . [ © )
inan: ’ = 0.0225, for which C = 1. Our inequalit _ ‘ ' : B
dominance value of k+ | 5, for ic q Y pv(t)/f at > v% p(l)(t)/t at = .
yields - C > 0.82, suggesting that our inequality is not too far from hp2 N tO ' '
an equality. .
2 o )
> A9 2, L ' (12)
= 2 I(t,) ° ' .
i . 1 : ’

Let us define the number L by

-

o (t)/t at = L mpz/fpz ~ L X 0.024k4 GeVz, (13)
.- hug ' |
- o where m, is the p  mass, and nbe/fp is the photon-p '"coupling
‘constant."! If the common assumption that (13) can be saturated by a
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zero width p resonance is true,8 then L = 1. The finite width p

saturation hypothesis gives L =~ 0.92. Therefore, (12) becomes

| T £ (o 2 1 |
L 2 (:;E . 3 i:) () (1%)
o pH »

: . . oo y 2. . . .
Choosing - t; =0 yields I > 97h|x+l 3 for A, = 0?045, this gives

L >.1.97. If we choose - tl in the physical region- (where Ay is

actually measured), we obtain bounds that are almost as stringent.

2 : _
For t, = 0.03 GeVz, for example, L > 9oo|x+| ; for A, = 0.045,

1
L >1.82. It must be noted that the stated error for e is ¢0.012.l
For x+'= 0.033 the bounds on L..are around 1.

A similar but'strongér bound can be obtained by taking
a(t) = =(t - tl)a/(t -m *2) in (5). This ‘G(t) 'efféctive;y suppresses

* o o (1)
the K contribution to the Gl

) integral. Tﬁe left-hand side 6f
(5) bgcomes I|f'(tl) + (tl - mK*?) f:(tl)/élg. We can then repeat all
of the stepsvthaﬁ led to (1) to derive a lower bound on L in terms of
the secoﬁa derivativé fi(tl),'the form of which ﬁhe rea&er can easily
write down. »

‘Little is known experimentally'about f:(tl) [the data fitted

by (7). are relatively insensitive to it], but if we make the ad hoc

assumption that £7(t))/f,(0) 1is no larger than it would be if f (%)

were dominated by a K* pole, and that still f;(tl) = f+(0)x+/p2,
then we can show, for example, that L 5 10.0 for. A = 0.045 and
,L > 2:3. for A, = 0.033 (all‘ t, wp fo 0.05 GeV2 give bounds this
big). Because of the uncertainty in fz(tl) we shall make.no further

use of this second bound on L.
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IvV. TIMPLICATIONS
We have seen in Sec. IIT that if oy really is much larger than
the K pole value, aﬁd if the Weinberg sum.rule is true, then pv(t)
must pave important contributions other thén the pv resonance. The
principal tests of the spectral function sum rule (aﬁd fhgrefore of the

c-number Schwinger term hypothesis) have relied on the additional

" assumption that each spectral function can be saturated by a resonance.

(the o for pv). In Ref. 2, for example, this éxtra assumption is
used to predict mAl/mp = \/5; which agrees very well with experiment.
(Actually, this particular result also requires the second and less
convergent Weinbergvsuﬁ rule.) We now see, however, that if X, > 0.04s,
then the resonance séturation approximation is false. In this case, we
would have to conclude that either: (i) the Weinberg sum rules are
still true, and they are satisfied separately by thé resonance and
nonresonance parts of the spectral functions; or (ii) the sum rules are
not true, and the succéss of the masé relaticns must be accidental or
due to some other origin. |

47,10

. It has been suggeste that the spectral function integrals

might not converge (the convergence of the p_ and p_ integrals
: _ - Py s

'reqﬁirés that the total cross section for e+e' — hadrons through one

photon must decrease faster than l/t2 for large t). In this case-
the sum rules cannot be valid [possibility (ii) above]. It is also
conceivable that the integrals diverge but that the sum rules are still

true for the resonance part of the spectral functions. We will include

this (in some formal sense) as a special case of possibility (i). We

must emphasize that if possibility (i) is true it is empirical. It

does not follow from the arguments in Ref. 2.
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We consider our results [that large A, implies (1) or (ii)]
to be much more modest than the possibility that the spectral integrals

: divergef9’lo 2

However, Pestieau and Terazawa's result” is based on the
(experimentally ﬁhknbwn) asymptétic Behavior of fhe reaction

¢+é- SH + anything wﬁere H is a hédron, and the.concluéion of

Beg et al.lo'depends.on the assumption of asymptotic scale in?ariance.
vOur'result, though iimited, is yery.direét gnd does nof require any
additional assﬁmptionsf o

The spectral'function oy is related to the e+e- annihilation

cross section (into hadrons with I =1) by
o 2 2 _
py(8) = % oy 1 (6)/16 0 o (15)

to lowest order in o. Again, we can say that if Ay > 0.045 [and if

(11) is true] then this cross section must contain something besides the

Io! resondncel This is supported by recent measurements of the pion form.

11 . . + = + - . )
factor,” measured in the reaction e e -y 5 , which does not decrease

neaily as. fast as would'be'expected‘from simple p dominance.
-Using (11) we can also place a lower bound on the integral of

ps(t)/%u For A, = 0.045 and t, = 0, the bound is 1.18 times greater

1
than the eétimated w plus ¢ saturation value (the experimental’
widths for w,d —>e+e-. have been usedle). The isoscalar spectral
function is related to the cross section for e'e” —T = 0 had;dns‘by
-a relation like_(li), excépt for an additional factor of 3 on the right.

" From (11) we can combine the I =0 and 1 cross sections to

give:

(3/64 7o)
hpE,

t o, _(t) at,
e €

Gy (8)/Das - (16)
2

by
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where ¢  1is the totalv (I =0 plus I =1) annihilation cross
. e e C- :

section. Using (12), this gquantity must be larger fhan

- -

23.815. |° Gev©.

For A, = 0.045 this is O.Qh82-GeV2. This is to be compared witk the

estimated p + w + @ value of 0.026k4 Gev©.

We might mention that if o 4 -
ee ‘
to a high enough -t, then our result can be used as an upper-bound on

is ever known experimentally

A,

+.

Let us now return to the Weinberg sum rule. It has been shown13
that if the first sum rule and the resonance saturation approximation

are true, then

1 mp r'p —>e+e-) = mwr(m —ae+e-) + m¢r(¢ —>e+e-) . '_ (17);

3

This agrees roughly, but not terribly well, with éxperiment.lh, Aggiﬁ
we claim that the resonance approximation probably fails badly, so
again we are led to possibilities (i) and (ii) above. Because of the
partial successes of the saturated>first Weinberg sum‘rule we would
like to speculate that; for some unknown reason, it holds approximately
[perhaps bnly in tﬁe SU(3) symmetric limitj for the resonanc; part of
the spectral functions.‘ The nonresonance part may either diverge or
satisfy the sum rﬁle separately. Weinberg's secénd sum rule may also
héld in this'resonange domination sense, butbonly iﬁ tﬁe limitfof

SU(3). This is because the analogue of (17) for the second sum rule is

W=

n’ 1 —e'e) = m)rwoee) +n rg ey, - (18)

which is badly broken.lh

e
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V. ERRORS
We would‘like to br;éfly discuss the numerical errors in our
results. Our estimate of vf+(O) is probably accurate to about 10%;
a 10% error will affect (1k) byiao%.- We have béunded- gin® 811 by

¥*
unity above l.2»GéV. Variatiqns of the K position and width in the

low—energyvregion have béen estimated. They should not affect {14) by

over 10%. The. saturation value given in (13) is uncertain due to

uncertainties in fp; The value we have quoted correspondé to

fpe/hn = 1.9. Most othér values that have been dbtained_for fp are

larger,? corresponding to even smaller values for the spectral integral

. in the zero width saturation hypothesis. Also, the spectral integral

is about‘B% smaller when a finite width is given to the resonance.
Hence, the coefficient of L -in (13) is the largest value compatible

with. p saturation. Finally, the most uncertain quentity is x;

" itself. 'All of our conclusions depend strongly on X+ being almost

as large as O.Qh5._ Until A, is more firmly established, all of our

conclusions must be regarded as tentative.

=1k~
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