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- I. NUMERICAL DIFFERENTIATION

1. Intro‘ductim

Fomulas for numerical differentiation may be derived in a natural
way from the ‘interpolating polynomial formulas, The errors involved may

be determined and the methods may then be used to practical advantage.

2. Relations bstween Differences and Derivatives

By means of induction arguments it may be shown that
- o ‘

| ~ n IO :
(a) Un A £(x) = £  (x) = d f(x) and
ax=30 @ax)t - oA

(n) - S
(b) ﬁvf(x) -~ (Ax)n.'f n, (x+ BnAx)"where 049 41 .

Relation (b) shows that there is some point between x and XxX+ndx
such that - o .

() £ (x+1n8lx) = D f(x) for 0£0L1 .
. n
Ax)
When the function £(x) is unknown, formulas (a) and (c) aid in the

evaluation of the error term arising when the difference quotient is



:b.;:j‘f(x) RPN "o)(" ) s )
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. substituted for the derivative,
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" 3. Evaluatlon of the Error f o

It may be shown that 1f F(x) 1s a polynomlal of degree m an

:v'.1s equal to the true functlon f(x) at m 4— l p01nts Xo’ xl, _.@., xmﬂ.j_jl
_’;then kS ' T :

(m+l)

(m+ l)'

' where f lies in the range xo 7":}}0 melfferentiat.ing, o

R (m+l :
df(x] dF(x) (f )
R R CEE IR dx:.

(x il ) S (x g xm) df(m H) (f )

(m + 1)‘ ": dx

. From thls equatlon it may be seen that the error can not be evaluated at

(+)

every pomt 1f f(x) is unknown, since df (_f) can not be evaluated

- -_However, the error can be evaluated at. the t,abulated pomts xo, xl, 10'.".1,'..Xm'

Let g(x) (x -x )(x - xl) gy (x - Xm)

then .-

:% (x -vx )(x.f.'x?_.) °7°,f(x..j:ﬁ_

&E:

= (g o)y = xg) e (g -k

Also g(x) [ - 'z 0 . Thus the error or femairder term at X ='x is. |
' : xexs oo T e e s T e



'-'i'-'f"'_,zn(x>

A leferentiatlon of Newt.on‘s Interpolatio, Formula..,"_,:.

: ' 0 LUCRL-2085. Gl

(m+l)

(f ) Gy m % ) j’xj1>(x -

Newton's interpolation fonnula. in. »t ro _;.o‘f fo;‘ '_,ard differences is

. F(x)- f(a) + nAf(a) + ngn - 12 A f(a).;.-,- ,.;..ngn “~ 1). ,..(n m+-1) A f(a)

: where x -‘ a.+ nh

. » 'Differentlating, - ST o
P =14 [f(a)+ nAf(a).;-...J
C : h dn -

- F(atnh) o __t__ ;[Af(é‘)«.;_,-» 2n 51 £) £(a)p 30 = £6m+2Af(a)+ IR

CE e

‘F_.».(,a)‘: "*é}_%_[Af(a) - 5 A f(a)+ 14 f(a)+ ...,,g_) 4 f(a):,

Evaluating the remainder term for the derlvative of Newton s int.erpolation o
'formula, el |

Tk m (m+1)
el g (£ )

“Now if the analytlc form of - f(x) is unknown, t.he best approximatlon ]
- (m +l)
5 _to the error is: obtamed by approxmately evaluating f ( f ) by means

of relation (c)

Since f | £ + emh nd xo < }_4 xm

(m+1) (f)
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Now R ’v ( 1) h zﬁ f(x ) = ‘—l) 15 f(x )
IR mfl)ﬂ+l o m+1)hQ+
Thus as" h becomes smaller, the approx1matlon becomes better by formula (a)

The second and hlgher derlvatives are obtalned the same manner.

For example,,ﬁ'gﬁi.

C -

E(x) _; _;L___Q__ F’ (a+ nh)
. Th dn

5a Comparlson °f Standard Formulas,~f:fiJlﬂi'f?3£:: v;?. .
Lettlng Xz ao‘*:nh the first three terms of the standard

Vo

formulas are ‘"-'”75“

U (a) Newon's

. F_'('ao-f-_nh_)“ = o1 {A'f(ao.)‘-+- 2n =1 A f(acf,‘)_-,-,'.ianyze‘één.-f— 2Af(a6)+]
o TR B T S T T T e e

® JSPifiing'sf]?~ﬂ“” ‘

v s [Am-l» busd it

Newton s formula 1s a polynomlal of order
(e

I at the beglnnlng or: end of tables Stlrling s formul

15 ‘generally used




_."L e

.' :“ v.‘_'v."]_/z‘<\n <'_ 3/h L

For the tabulated

Newton's . - F~(3¢)fm

" Stirling's - ‘Fo(ag) = = f“

‘Bessel's ~ - F'(ag)”

E uf By obaervation it is seen that Newton 8 formnla for tabulatad 11¥}f§3f‘jfa

o -f‘values is the eaeiest to compute with However, if only first approximations

‘are wanted then the flrst term of Stirling's equation is the most satisfactory..:,ﬂ

e

' ‘.:6; Maxima and Minlma

These formulas can be used to calculate the value of x at a 'L; o

 ." maximum or~min;mnm. Using Newton s formula, where x = & 4- nh -5  .£'ff’?:I' 

» F’(ao‘f nh)t . [Af(ao) + 2n - l A f(ao

+ Bn '_66n t 2 A f(a )+ ] RESITEY

Using the flrst three terms,-




... where

If upon solv1ng thlS formula, n 13 greater than one then shlftlng -
. p051t10n 1n the table w1ll 1mprove the- solution.,: Also ) taklng more terms

o _'vw111 mprove the accuracy of X L

T, Partlal Derlvatlves oo . - . o z

Usmg the double 1nterpolat10n formula., : 9 z and _a_z may be
, L : : o ax ay EURR
o »com'pgt;ed ‘for gz- f(x, y)..:,v Us:.ng arguments, x =.a, ot uh and y = b + vk,

. ,“h = ay = -39 S - 372}-‘”,3.1' ) , = ém' _a‘m—l ' an_dA c T :

ko= Bpmbg E bpoby Fom Wby

-_ z ‘_. ‘:_f‘()‘t,;y){;:,:' _'Zp‘o A]_-l—o A +_ vA o
+% [u(u - l)A : oo+ 2uvA + v(v -‘l)Ao oo]
+-—_ [u(u - l)(u - 2)A + 3u(u - 1)vA oo e

+3uv<v . 1)A + v(v g 1)<v Z z)A *3 |

where

P

“oo -

oon . L s

woo

)

A oo T

DTS ;

..and‘ *-?ik'_ |



R R

+3, [(Bu s 6u+ Z)AB-‘P.;'__

PE Slmilarly obtained.. Co ;_'-',"i: s

S
e Lo ‘
3
A
. ;1
: %%

+3V(V - 1)A '.: Zoo +’ ‘ ' | ’
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" II. CURVE FITTING

1, Introduction

The éubject-of éurveifiit;ng-is'ﬁwofqldg First'a?funption mﬁéﬁAb¢~'
foﬁnd tQ fit the given daiavand sccéndly.tﬁe cqnsﬁants of ﬁhe function
must be eQalthed iﬁ order to 5bta;n,tﬁe'bes£ fit of the function. The
.first problem is concerned with finding an embiribal.fuﬁ¢tign.ofLWﬁichgi
there mayvbé many. In the sécond case ﬁhe exact'fﬁnctional féfm of the
curve may be known and the prqblem.is to fin@vthe best fit to the; |
observational data. Since there is such a large‘nuﬁber pf.§o§sibl¢ ,
apprdximating functions, no sysiematic method of finding'the best empirical:

function is possible,

2. Graphical Methods

It is very often possible to use function séales whichvére s§ '
chosen that the graph of the function becomes approximatelj a sﬁfaight.
line. Semi-log and log~io raph papers are COmmonly used, | _

If y=k amx-,.thén log y = log k 4 (m log a)x and log y and
X are linearly rélaﬁed;

If y=0bY x?  then log y = log b+ n log x and lég'y and logfx .
are linearly related. | , _ | -

In general, if N(y) = ‘m-F'(x)-f?b,_whéfe f and N‘vafé fﬁncbion

scales for x and .y, then»v-f (x).and' N(y) . are linearly related.

3. Use of Differenghs .

Using the obsered pairs, (Xi yi), a table of differences.of the |
Yy is set up. If the x4 formAan arithmétic progressién,' X5 - xii’i =

“for all i, and if the r'th difference of the y; is constant all hlgher‘
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differences being zero, then y is va polynomial in x of degree r. If the
r’tﬁﬁitf‘eteﬂce is almost constant,, then a polyno'x‘nicl of degree- r  will be
a good approximation to y(x).

Modifying the conditions on the x's and y's, other posslble
representations of y(x) may be found. If the values of xi form an

arithhetic progression and if the r'th dlfference of yi 1s constant or

almost constant ‘then Yi = a + alx + 32(x ) 4 oot i, (xn) .

If m = n = -1 and r = 1, then y = __X and the
function y has asymptotes x = - f_l_ and y =1 . In this case
a9 .. 8 '

1/y versus 1/x is a straight line.
If the xi 8 form an arithmetic progreseion and the r'th differenceq

of the yi form A8 geometric progression, A yi = kA yi +l for all i,

b

thenw
' . r-l X
¥y = ata x4+ .o X + ka
, ' . U

If r-1, then y=a,+ ka

If- a > 1, then y increases indefinitely with--x,

If. 04 a { 1, then y decreases with x -and.is asymptotic to
y :’ao .

’

Now if the xi's form a geometric progression, and the yi s also

form a goometric progression, then y = a xn .

b. Evaluation of Arbitrary Constants

4.1 Introduction :
Substituting the observational values, (xi, yi), i=1, ..., D,

into the approximating function f(x), relationships which the constants
muet satisf{y are obtained

yi—f(xi): o ~ fOI' i:l, .no,no
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If there are r, less than n, arbltrary constants,.then r of the
: equatlons 1nVo1v1ng the constants may be selected in hooes of obtalnlng
the best approxmatlonn An alternatlve is to stlpulate that
f(x)~yl = f(x)“YJ
Ifor certain pointsc“ However care must be exerted 1n order that a very
» large negative error, does not cancel a large pos1t1vs error,
In‘these two common orocedures there is no systematlc metﬁod 'nor
is there a reliable estimate of the orobable’error at every point ‘nor is
there assurance that the best flt has been found On the other hand-the
method of least squares has the‘advantage that it sstifies these,fhree

requirements.

L.2 Method of Least Squares, ‘
If the function y(x) .1is to be approx1mated by

f(x) = g a, g, (x) where the g (x) are linearly
kzO_

independent'andi n > my then the method of least squares asserts that

the’residuals v; T f(x ) - y(x ) should be such that :E vy is a
.. ' i=1
minimum,

By partlally dlfferentlatlng E v with respect to the m4-1
i=1 " - '
arbltrary constants and equating to zero, .the "normal eaquations™ are.

obtained whlch must be satlsfled by the arbltrary constants in order that

E vg shall be a minimum.

i=1



i Z go(xl)gl(x )+ :

i::l‘. S

1(x1)so(xi) + 8 31("1)+ ""‘"amz gl( "')gm(xi

. 1

e viae & EEXEEEN e e e b e 0 . R

N eee0. - . 6 ae e - e T

;.‘-.9

There are m +1 equations m the m+ 1 unknowns, |

, o’ ,al y ese s am There will be a solution if the_v[determinant of the

: _-:.coefficients is not, Zero._&f._

If y is to be approxma.te_d _by f(x) a.x+ b ,then 'foh'e,"l"‘-"?._'

-noma.l equations are

bn+a "y

.""‘-




 wnere: g {t) =, Now Z t_l__ o when y ‘is tabulated i

cor. ..

Zx Zyl e nlle‘ yi
z:xl ZXi : “Z*if-‘j‘;;

. Th;en .x :'. a4 b - a - _b t and f(t) = o+ clt+02t -f; -{-cnt - ) T

. eaual fatervals of x.-The mormigl eqiiégtiohswbe_cémé o
| nc?.-‘ : +C2Z t’ o T +cl+ 1

°1Z’° tey Zt +

cozti '. . -}—02 Z t, "I +cl+ Z t +, W '

The nor'mal eouatlons thus d1v1de 1nto two groups, one: wzth evex;numbered
coefflcwnts and the other w1th odd numbered coefflc:.ents. Thesolutlon B

‘now is :muc?n__ eaagsi.er o fl.nd o
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?b§ 4 33 ngputlng procedures

f?cOmputatlon w1th-a calculator may be reduced A tabulatlon form w1th

calculatlons at the stage of tabulatlon.

The abrldged form forgsolv1ng

'” :of thé same order of magnltude,,l.5-5

"Example 1 Applled least square method

'5..

Let z(x y) g a x-f'b y-+-c fﬁ where (#&;;&1;Jéi).~é§émob§érie§sz} k
values. e ” 1 T TN




o




!xunplo 2:

L

%00

' 4a'- k-‘-9-1<>'z"' 45‘67‘"‘ =

k#-alzl'/' a22 mv :

ol k+ au[+ a21 m

I x' "lo ’ a; a'lc>

..._;,,:,lset;. t@g normal gqﬁgt‘iqﬁéf ve L

=820t "boalo

‘°°

a

Doolittle s Abridged nathod;_"f'_-_f;; RO

oo - o0 .

3 5 ';whero akl Zk :
“-4check colnmn S TR

,"«

| ‘- o“" aoo”' a1°+ a2°_ L
b+ "1c>+ ‘*11 * 321,"

ot bl ].:;’ L o+ a10+ an - az:.jtaj,-
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Voo Y A

: II : l‘('z)‘+f(u)"'-‘ 211 ‘,‘._'_“”a;\_ziz_ bl b1+ an* azl (check) ;

T CUoo e L . -a ~a “a '

O mxZE o v IA L bty |

‘1*;1 f:(s’)"_;- +(5) (6) N ;;é-{:? {‘;;.i by by al (check> o

- Now the normal equations can be solved ea$ily. . !

22 m :ﬁ.‘-l b2 ‘: L

( ; o allwz +' a : b ". :'.'.-:j:

23 ]
o v Tl

k’* alo‘z +_ a ;1£ f;ﬂ

II; A h Integral Cases

If contlnuous curVes rather than dlscrete observatlons are belng
"':'con51dered then: ‘ :; [ f(x) - y(x)j dx “is mlnlmlzed In the normal
" equations . S s _substi,tuted, for. i Transforming’the int

- (R



" Por the general te

2J1 C

:vr B ‘_.nr;_: ’ : e

‘The normdl equations are now . ..~ .
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S Lap

o B .
o}k

LR ST AL

etCo‘<'

’vThle set of normal equatlons leldes 1nto odd

.'can be wrltten in terms of the J’s,.yffﬁ

B
t

The dlsadvantage of the power serles.approklmat;on is thao the vififgl'];
constants must be reevaluated 1f addltlonal terms are added for greatef'% i?;ff
If °rth030nal.p01yno§1ais are usedA then only the dlagonal tenms.Ti_;"‘
f 1n the . normal eauatlons remaln and as a eonsequence,,the prev1ousQf:ffx
_ calculatlons do not change w1th the addltlon of more terms‘. ?hEn“o7”“'e'\*

"L

a '~&-':1 f;"E;, (t) y dt ff[”fwberéjw]lo'ﬁff}i?kigvohi?f*L{Coﬁgi;ffJGf"‘fi;7o11257“

R ] “.

A 5 Fundamental Theorem

The fundamental theorem states that the aoprox;mqtlng funetlon determlned

1\-

'by the leqst square method 1s closer to the true functlon thanf_‘e observed

PR . S |
L . ) .

'functlono .f

‘ Let 'Z be a contlnuous functlon 1n (a, b) whlch 1s to be fif':

‘approx1mated by




'xilfvthe«integral

"n("function, 1s “a continuous non~negat1ve function of x:“n (a,A :

‘_,there were no errors in observation.

' (X) ’ .
“23 °f x in the 1nterval (a, b)

The at s are determined so ”s'to minimize

Now z(x) has been obtained from observations Subject to random

: :1:errors., There 13 a true function u(x) which would have<been‘found if

‘Theorem.v If the true functloiﬁ:u(x) .can beArepresented,by" V'S,‘which are v‘Jw'

'“"linearly independent, SO'thab

L Aa';nd_,ifj’;la'vfs ané'v~digt.er&ninad' so”that L



"af'but 1f an approx1mate solutlon to the problem 1sf

.lff correctlon method

‘. UeRL-085

llnearly 1n the equat10ns° Thls 1s not the case 1n general

Jflf thlS method 1s to be aoplled to non—llnear eauatlons, they must {V::
"'transformed by some means 1nto a llnear form "
oI N(y) §’ <x)+b

7ffobservatlonal values, then

ff and 1f (x b yi) are the;_ < J

A N ‘h?‘ff'lNi —af 1P W) Ayy

AN 'j_-::gNi {

re? J

S 3 N (y ) N (yl) ;t,

'fﬂfThe normal equations are

&ZAyZ
ab

_‘.,

If 1t 1s not p0551ble to transform the equatlons 1nto a llnear form,

_ ~.

'.jTaylor s expan51on about the approx1ma£e solutlon,

ajllnear equatlon”for

vf‘correctlon terms can be wrltten Thls 1s sometlmes called a- dlfferential




Let y f(x, a, b 5. c) be the equatlon 1nvolv1ng th‘;{f onstan

aa non—linear

vz f(xl, e, b, C) - y

1

[f(x,a +Aa,vb +Ab C +AC)'-Y1]

(xi;.;;_a'a,';qu;~ -",c‘;,)L Aa] e e

| -. [f(x‘l" fa :"'-o’ o )+

1

; ?Q)

If the hlgher order terms are neglected then Aa, Ab, Ac will be 1n 3. R
1inear form and the terms for the normal equai;ions can be comput.ed Thls |
g'-WeS a SolUtion for Aa, Ab Ac Repetition of thxs process will prov1de

K check on t.he omputatlon and Wlll also mprove the evaluatlon fof a. A b and s

c to within the limts of the experimental error

5. Crltlcism -

It must be recogmzed that the argument was a.ssumed all along to be '
é:ta.ef" ThlS 1s not true in general for most experimental data It 1s hoped n
that the error made in assumlng the argument exact 1s small and unimportant

in the desired answer., E i
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