UNIVERSITY OF CALIFORNIA _ ' UCRL 2114
Radiation Laboratory :
Berkeley, California

Course in the Theory and Design
of Particle Accolerators

LECTURE VIII
January 21, 28 and February, 4, 1953

~ Wo Mo Brobeck
(Notes By:s Ro. Marker and LoALucag)

O am a - wm ww e

¢

SCOPEs

‘This lecture covers the phase oseillation and the associated energy oscil=
lation about the synchronous energy for phase stable acceleration in first the fre- .
quency modulated cyclotron (or synchrocyclotron) synchrotron and bevatron, and next,
the constant frequency cyclotron.

FREQUENCY MODULATED CYCLOTRONo

§xnchronous Energy -

The synchronous energy, E,, is defined as the energy of a particle not os-
cillating in phase. .The gngular vefocity,_a» of this non-oscillating particle is the
same as the oscillator angular velocity, ayo. From Lecture VI, Equation (5)

_ ¥ - Bec
(l) mo"R ES
or :
Bec_ ihere B is the magnetic field strength and is

2) E
,()S% |
constant within a few percent; e is the number of electronic chargeS° ¢ is the velo-
city of light; and w, is the oscillator angular velocity (w, = 27T x oscillator fre-
= quency in cycles per second)o Eg, then, varies inversely with the oscillator angu-
s .lar velocitye '

In the synchro-cyclotron, the angular velocity of the oscillator is decreased

"with time (hence the term "Frequency-modulated®) so that the value of synchronous .

energy must increase. Each time the particle crosses the dee gap it receives an amount

of. energy equal to the product of the number of electronic charges, e, and the vol-

tage across the gap, V, sin #; where Vo 'is the maximum gap voltage which varies sin-

usoidally. The increase of synohronous energy per turn, assuming two gaps per turn,

is then , dBs — - .

: o (3) =4 7 2eV  sin gy

¢ is the synchronous phase angle and is measured from a point 90° behind
the maximum voltage vector. ﬁé has a constant value (from the definition of Eg)e
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Now the log of Equation (2) is

(4) Log (Eg) = log B:)c = log Bec - log wg
(e}
or _
' (4a) dES =0 = dgg first derivative of (4)
or Be '
(Lb) dEg = - — dm,
: ()
but -
.(40) dn = —5— dt |
so o
. . 2B a o
(5) gﬁs = . & rxsa) d<:° d1v1-d1ng (4b) by (4e)
" : o . .

So the change in synchronous energy per turn is determined by ‘bhe rate of
change of angular velocity (d(.oo/dt) as determined by the characteristics of the Po-
tating or vibrating condenser of the cyclotron. o

If Equation (3) is solved for sin ds,
_ dE
(6) —
_Sin"‘ s~ 2eV,
Energy ga:l.n per turn required to stay at constant
phase angle
' Max:.mmn avallable energy ga:l.n per turn

Most cyclotron are de51gned so sin dg = 1/2° or 7‘3 = 30°.

Energy Oscillations

- Consider now a particle not travelling at the
angular velocity, W,y of the voltage vector,
V_ o If the angular velocity of this particle
oscillating in phase is called w, then from
Figure 1,

(7) a¢ = @t -0, dt
and .
Ao Ty
POSITION OF PARTICLE = °° 48 _ . -y
| (8) L = or (2%
AFTER SMALL TIME , ,
INTERVAL

FlG.
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Thls may be related to energy by substituting (1) in (8)
Bec “Bec
' i _ E Eg
(83-) dn =2m Bec L
’ E

dn

RO A

The equation relatlng # and n, in terms of dee voltage, Vg, and oscillator
frequency, f, called the phase equatlon is developed as follows: (derlvatlon not in-
cluded in lecture) : :

Flrst multiply Equation (9) by Eg 2 and teke first derivative,

a(E2 %) 4 (arE? - 2mE Bg)
(10) dn e dn . .

If both Eg and E are variables,
| 2.4,
(10a) d(Es ~ar )

- dEg » 4Bs dE
™ (B g =By~ B )
(10p) _
(2Eg - E) 5. g dE
S 77 an S dn

but ' ' '
'(n)(m'-m=Es+ms-m'
From Equation (9)

(2) o _ ., ,  Bs =-E
an - 2t Eg )

or D '
(12a) (Es - E) =._E_§__‘ié_.
Substituting (12a) in (11),
2r dn

144 )
2r dn

(13) (2E, - E) = By + —= 36
(13a) =Eg (1 +

Substituting (13a) in (10b),

a(Eg2 24 |
(14) Sd dn "Zﬂ'[ -—-§-(1 +-——-——L‘ --a;]
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This may be simplified as follows:

a4 _ dt 4
| 05— =@ ° &
now

- dn
(16) w=o2r Gt
or .
‘ oy _dt - 2T
(léa) dn o

so Equation (15) becomes

A _ - 2r __d
Q) o "o &

or
7a) M- &

w - dt ,
but from Equation (8)
44 o ® =y
i ()
Equating (l’?a) and (8)

(18) 2r_ . dd - ® - ay
2r(S—20)
. w dt a.
(18a) 1L, df -7 _ _an
o dt w

o @ dt

"(185)_1_=1. (1 - -l g

W . @y o dt
From (17a) o

L ° _El.é.., =1 _gé_

o dt 2r dn
and

' w @ ~  2r dn

Now from (17)
| - I T

in T e

Substituting (18d) in (17)

(19) 4. - <1 -
=X P~ (1
or . :
(0). 88, _ oy p 2 (gL 48 (3Bs

dn ()
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Equation (14) now becomess:

1) a(g Rl , (v vy
: (21) a(Eg dn ,=21rEsxzﬁx*a%‘(l'%%)(l,+'.§w];%)x

dn
dEg- L _E dE -
dt - S dn

n°w, (1 2". _L)(l.,. 1 __é._)=1__.1-_.(_‘1é._)2

and since ,_.L is small, (—-é--)2 may be neglected, so Equation (21) be-
comes:

2 dé
(22) d(E ) =or [-Zp, B _gp B
dn , ) at ® “dn
“put -51-7— = —,’Z’r;r'f— when f is the frequency_.of the oscillator, so
» . d(-E - ) aE
(23) 278 _dn =2 g, S or, L
dn h Bs 3%~ ~ %8 ~gn~

Now the change in energy per turn, dE/dn equals ZeV sin 4, so
(uy 4%° ) op . amg

— e——

an 7 By 5o

Equa‘t-icn (24), the phase equation, is similar in form to that. of a pendulum
with a constant torque for which the solution has already been worked oute The equa-
tion for the motien 0f the pendulum is: '

47TE59V° sin ;J

a(1-48.) '
(25) -—-—-(-*—di'*———- =T7-Geing

where G = restoring moment due to force of
gravity on pendulum.
I = nioment of inertias of pendulum.

T = Torque caused by an 1nertie.less
welight.

I, then is analagcus to Eg 2,

t, then is analagous tc n.

T then 1s analagous to(2m f)E (aEs/dt)
y then 1s a,na.lagoua “to 4T 8evg S/

. ;55 is then the rest posit;l.on of the
: pendulume .

For small amplitudes of oscillation, the pendu-
lum frequency is: -

:":" VGV 305 P
¢ . , (26) £ = e 2220 Fo

- _ 2
c% , the particle cscillaticn frequency in cycles
- INERTIALESS WEIGHT per turn is :

F1e6.2 -0 év' ——
, - = £4 |=2———"EB cycles/sec
| | | : "By e
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The angular veloclty of the pendulum is

(28) —i- 724 - 4,)

by analogy, the rate of chgnge of phase of the particle is

(29) _ag_= ‘II eVo cos ¢‘s % (F‘ o ﬁs

TEq - o
Eq = E _— R |
also, since d¢ = 2m( SE_ ) [éouation (91]
_ s - ~ -
lEseVo cos gq ?:- (4 - ¢S)

T

(30) Eg -E=

'Equation (30) is true for small departures of ﬁ from Bas say & 10° maximume

Now, proV1ded I and G change slowly, it can be shown by application of what
is called the adiabatic theorem that the amplitude of the pendulum varies with_ 5%;)
so the phase amplitude of the particle varies with E f3 b, v=1/4 gna (cos Bs )1

Phase Stability

Notice that in this torque-pendulum.analogy, the restoring moment of gravity,
G, the moment of inertia, I, and the torque, T, must increase with time if the analogy
be maintained as Eg increasess but they must do so in such proportion as to maintain
the same rest angle of the pendulum, ¢So By design, this rest angle can be made any
value from'gy = o to g = 90° At g = o the analogy is that of a simple pendulums and
the pendulum nay swing ®from -180° to +180° without becoming unstable and starting to
revolve. At % = 90°, however, the pendulum is on the verge of instability and any os-
cillations are not tolerated. Thus it is apparent that the allowable phase oscilla- .
tions are a function of the synchronous phase angleo

Now to study the condition for 1imiting the phase oscillation for stability,
large energy oscillations must be considered. For this study, let the synchronous
energy, Eg, be considered constant for a few cycles. Now Equation (24) iss

2 _dg -
d(Eg ) 1 dEg X
dn'dn = ’?" By ~ 3¢ = kﬂEseVb sin &

If Eg is a constant,
2 _dd
y QB =)

(31
T s “an?

- or

- 2 . dEg '
(32) E-S2 —%;g—'= g" ES dt“_m-ﬂﬂESeVO sin 4
or multiplying through by A;E

2 . 4 .
(33) —=- 47 —%—%— = 5%— dts - eV, sin 4

n
‘ 1 . dES = 8i
Vol mevr ax - it A

(33a)



(34) :ﬁs = 9B gt . 9B 1

dt dn ~  dt f
vandalsofrom() ‘dnA,—ZGOSln S
Equating (3) and (34)
| . . _ dBg - 1
| (35) 2eV, sin y!s % X -5
. o1 s
(36) sindy = 57 * gt

Equation (33a) becomes: |
- sin ¢)

(_3'7) -—ET?—-—:E'%- = eV" (sin B
" now S
| ___é_ = _Jé.‘v (__é_)
dn dn ﬂ‘
so

Es _d ad . -
(37a) 8- 4L, g (,—55—)7"

eV, Eain gf‘s - ;1n£l ad.
'Integratlng both eides,

(ﬂb) 88 (—é—) —GV E&sin;{s +cos¢+K

but

BENOR 21r(—-§E:—-) | |

% (37¢) Es x 41r2 (F—-fi){ev L{f sin g, + cos 4 + K
_ ©o8m Eg ° .

or

2 ' . '
(38) W(ESE- E) — = 20V, E5 sin By + cos g + IJ
B s , _ o

tude by placing dg/dn =

and pendulum revolves).

" UCRL 2114

The constant of integration, K, may be evalua-
ted for oscillations of maximum stable ampli-

O at the critical angle
for instability; and also, from Figure 3, the
maximum stable g is when the pendulum swings to
a vertical position over the rest positione
(Restoring moment of gravity becomes less than:
the applied torque, T, at positions above this,
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Frorﬁ the Fig;q.re 3,
(39) T - ¢ = ¢S
or
(Pa) g=m - ﬁ5
If -‘é-' =0, from Equation (9)
oy (BB

dn
. (40)  Eg E .
substituting (39a) and (40) in (38) gives:

. _ 2 » ' v
(41) W(Est E) =2V, | (T = 4g) sin ;f + cos (T - #) +E‘I

Es
(v-;{s) s:.n# + cos (Tr-d)+K

(41a) ©

(.415) K== (T ~dg;) sin gg + cos g

With this value of K for the limiting stability condltlon, Equation (3 ) be-~

(42) (s - B)° 2 | . ,
B = 2eV, gf}sin.ﬂs + cos g- (- ;{s) sin go + cos g

s
Eg -E [ | - :
————-—-——(zgs eﬁi =_E{ sin gy + cos g + cos 4, - (m - g.) sin y!;l

e

comes:?

( 42)

or

(43) _E_:S._E ‘\/gf sii;x ds + cos '3 + cos gfs -.(TT - ﬂs) '”sin ;ﬁs
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" Equation (43) is plotted on Figure 4. Each curve represents the limits of
stability for some particular machine with a constant synchronous phase, ﬁse
- An interesting interpretation of these curves is that if a machine were de-

signed to have the particle accept the full dee voltage each turn (sin g, = 1), this

- machine would allow no phase oscillation, and few, if any, particles woufd reach the
targete The other extreme occurs when sin g§_ = 0. This machine would accept +180° to
=180° phase oscillation; but in this case,‘tﬁe_particle at the synchronous phase angle
would not be accelerated in passing through the gap because the dee voltage at that
time would be zero. Most frequency modulated cyclotrons are designed half way between
these extremes (sin g4 = 1/2).

-180’
"3Cr
. |
Ll
|
O
Z |
<g
N o
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D-—
1O
z
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<
we
—

Fie. 5A Fle. 58
Fl. 5 *

Figure 5b shows the phase oscillation and corresponding energy oscillation
for three different particles.as the synchronous energy increases, in a machine with
a synchronous phase angle of 30° (sin g, =1/2). From the pendulum snalogy, the phase
amplitude of the particle varies as Es"ang so as the curves of Figure 5b extend many
cycles to the right, their amplitude decreases. Figure 5a shows the energy and phase
excursion for these same three particles for just one of the cycles. If the larger
"orbit" for particle 1 happens to be the maximum stable condition, then this curve of
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Figure 5a is similar to the sin g, = 1/2 curve of Figure 4, except that it shows the
plus and minus energy excursion of the particle and the axes are rotatedo

Figure 6 shows the condition at the center of the cyclotron and shows the
phase history of the accepted particles. All of the particles are shown as starting
at the rest energy on the +90° phase line. This is in agreement with the actual con-
ditions because of the physical arrangement of the cyclotron. The ions are contim= _ .
ually introduced between the dees; and at first they do not :

-180"

PHASE ANGLE ;15
OO

+30°|— —
+50‘
+180°

ES 'Eo E_s Eo Eo ES EO ES

o L]

(EsE) ~(E5E)

Es—
Fl16. 6

have enough excursion to fully cross the gap; but by the time they do so, most are in
phase with the peak voltage across the gap. In Figure 6, the synchronous energy, Egs
is moving to the right. Two displacement orbits associated with Eg are shown for each
position, and the instantaneous location of each particle is labeled 1 and 2. (There
are an infinite number of orbits inside the maximum stable orbits only two are shown
for clarity.) The trace each particle made is shown, and if continued, would appear as
on Figure 5b. From Figure 6, a particle (1) starting on the maximum stable orbit only
succeeds in arriving back at the rest energy in one phase oscillation, but particles
starting on smaller orbits are accelerated. The range of particles accepted is there-~
fore # (Eg = Ey)§ and from Figure 4 (dg = 30°, 4 = +90°) :

eV Bq x 2
(Bg - B,) = = o,é\/ o=
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Figure 7 shows in review, the basic formulas of the frequency modulated cy-
clotron. Note that the starting oscillator frequency is high .enough that the synchro-
nous energy is below the rest energy. - ' ,

' - We.

S NZz7

% §

nu: T I* L _gl_f_s= 2eV. SING,
S n '
' -F =, eVoEsx2

2 e N

g | , l |

= ) |

v} . _ _ _

Wo-) Wo -2

TIME
Fie 7 ,

The Constant Frequency Cyclotron

From Ecuation (2), Eg =».2f° sy there is no change in synchronous energy with-
o

out a change in oscillator frequency (except for the minor change in magnetic field)s
so the constant frequency cyclotron is a special case of the frequency modulated cyclo-
tron in which dEg/dn = o, sin g = o, and gds = 0. The voltage across the gap is zero --
when ds = 03 80 a particle travelling at the synchronous phase angle is never acceler-
ated. It becomes apparent, then, that this synchronous particle is not the important
particle.. : : :

The péndulum'analogy reduces to that of a simple pendulum, and Equation (30)

becomes: v . —
' , () Bg~-E =_/AE$EYQ~ o sin 4

Phase Oscillatioq

Figure 8 shows the particle starting in phase
\OV¢' - with the voltage vector V,, but it has a lower
q - velocity and it tends to drop behinde If g be-

.comes less than zero, however, the particle
drops into the decelerating phase and is loste
However, if the dee voltage is high enough, the
particle will pick up just sufficient energy
before reaching g = o to fall in step with the
dee voltage vector, and will then turn back
and gain and pass the dee voltage vector. Curve
_ -B of Figure 9 shows the phase excursion of this
Q _ particle. The dee voltage required to make the
&:;;' particle turn back at zero phase angle is called
POSITION OF PAR- ‘the "threshold®™ dee voltageo .

| TICLE LATER
POSITION OF PARTICLE TO START

FlG.8
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This particle continues to be accelerated after it passes the voltage vector,
and would continue back through +180 phase angle and into the decelerating phase if it
were not removed from the machine at its maximum energy. Curve A shows that a particle
not receiving the threshold voltage passes through zero phase and is lost- curve C
shows a particle receiving more than the threshold voltage.

. Curves A, B, and C are repeated in Figure 10 showing phase angle against
energy. Figures 9 and 10 show that the constant frequency cyclotron achieves its ac-
celeration mostly as a result of phase oscillation, and if the particle is not removed
from the machine in one half cycle of phase oscillation it will proceed back to zero
energy. If particles were in some manner introduced into the center region of Figure
10, they would stably oscillate in the energy ranges shown nelther returnlng to the
center nor reaching the target. ,



