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SCOPE 

This lecture covers the phase oscillation and the associated energy oscil-
lation about the synchronous energy for phase stable acceleration in first the fre-
quency modulated cyclotron (or synchrocyclotron) synchrotron and bevatron, and next, 
the constant frequency cyclotron 

FREQuENCY MODULATED CYCLOTRONS 

Synchronous Energ' 

The synchronous energy, E , is defined as the energy of a particle not os-
cillating in phaseo The a.ngular vefocity, co, of this non-oscillating particle is the 
same as the oscillator axigillar velocity, (io. From Lecture VI, Equation (5) 

v - Bee  

or 
E: = Bec where B is the magnetic field strength and is 

010 

constant within a few percent; e is the number of electronic charges; c is the velo-
city of light; and 	is the' oscillator angular velocity (0)9 = 2w x oscillator fre- 
quency in cycles per second)o E5 , then, varies inversely,with the oscillator angu-
lar velocityo 

In the synchro-cyclotron, the, angular velocity of the oscillator is decreased 
with time (hence the term "Frequencynodu1ated") so that the value of synchronous 
energy must increaseo Each time the particle crosses the dee gap it receives an amount 
of. energy equal to the product of the number of electronic charges, e, and the vol-
tage across .the gap, V0  sin , where V0  is the maximtfln gap voltage which varies sin-
usoidally. The increase of synchronous energy per turn, assuming two gaps per turn, 
is then dEs 	2eV0  sin 

is the synchronous phase angle and is measured from a point 90 0. behind 
the maximum voltage veôtor 	has a constant value (from, the definition of E 5 ). 

- 
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Now the log of Equation (2) is 

	

(4) Log (E5 ) = log Bee 	log Bec - log a.a)O 

or 
(4a) dE3 =0 
	

da0 	
first derivative of (4) 

or 
(4b) dE8 	

- 	
(3.)o 

but 
(40) dn 	dt 

50 	
dE 	27rEs 	dwo 	

dividing (4b) by (4c) an 	o •x o dt 

So the change in synchronous energy per turn is determined bl the rate of 
change of angular velocity (dc4jdt) as deterniihed by the character±sties of the ±o-
tating or vibrating condenser of the cyclotron. 

If Equation (3) is solved for sin , 

SLfl 	
2eV 

Bnergy gaim per turn required to stay at constant 
= 	 phase angle  

Maximum available energy gain per turn 

	

Most cyclotron are designed so sin 	= 1/2; or 	= 300 . 

Energy Oscillations 

VO 

I  
P 

P05ITION OF PARTICLE 

AFTER SMALL TIME 
1NTRYAL 

FiG; I 

Consider now a particle not travelling at the 
angular velocity, o, of the voltage vector, 
V0 . If the angular velocity of this particle 
oscillating in phase is called o, then from 
Figure 1, 

(7) dØodt-.,aD0dt 
and 

(7a) dn 

so 	dO  
'' 	dn 	'0) 
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This may be related to energy by substiuting (1) in () 
Bee 	Bee 

	

(8a) 	 3 
fE3 -E 

27rEI 
E5E' 

	

so. 	
= 27S. E 

The equation relating Ø and n q  in terms of dee voltage, V09  and oscillator 
frequency, f, called the phase equation is developed as follows: (derivation not in- 
cluded in lecture) . . . 

First multiply Equation (9)  by E3  and take first derivative, 

d(E82 	-) 	d .(2wE52  - 2rE B5 ) 

	

(10) 	dn 	 dn 

If both E. and B are variables, 

	

(lOa) 	d(E32 	
) = 27r(2E dE5 - B 	- B5 dn 	 dEs3 	 ) 

	

(lob) 	
. = Or [2E3  - B) dEs

- B5 dE  

but 
(U) (2E - E) = B3  + (B3  - E) 

From Equation (9) 
=E3_B 

ris  or (12a) (; -E) = _____ 

Substituting (12a) in (U), 

(2E3  - B) = E3  +. Es  

	

(13a) 	 = E3  (1 + 

Substituting (13a) in.iOb), 

n 	= 2w 	(1 + - 	) - E 	
E] 
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This may be simplified as follows: 

	

d 	dt 	d 
- 

	

dn 	dri 	dt 
now 

co=21r dn dt 
or 	dt 	2w (16a) dncc 

so Equation (15) becomes 

• 	 d 	27r 	d 
dn 	cc • dt 

or 	
d - 2w __ 

	

(17a) dn - cc ° 	__ 
dt 

but from Equation (8) 

	

d 	2lr( ) 

	

dn 	CO 

Equating (17a) and (8) 

2w 	d = 2Tr(_a)— ab) 

	

Cl) 	dt 

(18a)1  
dt 	cc 

(18 b)  
cc dt 

	

(18c)_._J ..(1 l 	d) 

	

0) 	coo 	cc dt 

From (17a) 

0 d1 	di 

	

cc 	dt 	2w dn 

and 

	

(18d) j = 	1  

	

CO 	Wo 2w dn 

Now from (17) 

	

dn 	CO 	dt 

Substituting (18d) in (17) 

	

(19)d2wi1 	d 

	

dn 	a 	2w dii 	dt 

	

or (20) dEs 	
x 	

dE5
dt 

UCRL 2114 
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Equation (14)  now becomes: 

(21) d(E52. 	
=2rr IS x27rx 	(l--- 	)('+.... 

	

dEs . 	
E d 

	

dt 	dn 

now 	 I 	 I . 	d,1+ _L d_ 1 	1 ,d 
' T2 	dn" 	2w dn' 	4T2 	dii 

and since 	small, _d )2 may be neglected, so Equation (21) be- 
comes: 	 dn 

2 dil  
• 	(22) 	n ). =[--2rrE5 dE5 - E5dn 

but 	= 	when f is the frequencyof the oscillator, so 

,2 dé' 
(23) dEs.dfl/ 	2W E dEs 	21rE dE • 	 dn 	f 6 dt 	dn 

Now the change in energy per turn, dE/dn equals 2eV0  sin 0, so 

(24) E 	 - 4IEØOVØ  sin 

Equation (24), the phase equation, s similar in form to that of a pendulum 
with a coflstant torque for which the solutton has already been worked oute The equa-
tton for the motton, of the pendulum s: 

d(I) 
(5) •. dt 	= T - a otn dt 

where 	0 = restoring moment due to force of 
gravity on pendulum 

I = moment of inertia of pendu:Lwn. 
T = Torque caused by an inerttaless 

wetght 
I, then is analagous to Ee2 . 
t, then is analagous to n. 
T, then is analagous to( 2w/f(dE3/dt) 
0, then is analaousta 47rE8eV0  
ji 

 
is then the rest positionof the 
pendulum 

INRTIILSS W1GHT 

FiG.2 

For small smplitudes of oscillatton, the pendu-
iwn frequency is:  

f = 	 and by analogy, 

the particle osotUation_frequency in cycles 
per turn io 

f = 	 cycles/turn 
••• 
eV0 00s0 - fo i-- 	$ cycles/sec 

	

- 	irE 



MM 
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The angular velocity of the pendulum is 

= 2Trf& - 

by analogy, the rateof chne of phase of the particle is 

=2TreVJ0 	 - dn 

also, since 	= 21(_E5- E 
	

uation (9I dn 

E5 - E IEsevo;os s 

Equation (30) is true for smai.l departures of from Ø, say a 10°  inaximumo 

Now, provided I and G change slowly, it can be shown by application of what 
is called the adiabatic theorem that the amplitude of the pendulum varies with 
so the phase amplitude of the particle varies with E 5 3/4, V1/4 and (cos 

Phase Stability 

Notice that in this torque-pendulum analogy, the restoring moment of gravity, 
G, the moment of inertia, I, and the torque, T, must increase with time if the analogy 
be maintained as E3  increases; but they must do so in such proportion as to maintain 
the same rest angle of the pendulum, o By design, this rest angle can be made any 
value from 	= a to 	= 90 ° c At Ø = o the analogy is that of a simple pendulum; and 
the pendulum may awing from -180 °  to +180°  without becoming unstable and starting to 
revolve. At 	= 90 0 , however, the pendulum is on the verge of instability and any os- 
cillations are not to1erated Thus it is apparent that the allowable phase oscilla-
tions are a function of the synchronous phase angle 

Now to study the condition for limiting the phase oscillation for stability, 
large energy oscillations must be considered0 For this study., let the synchronous 
energy, E 5 , be considered constant for a few cycles Now Equation (24) is 

d(E 2 _) 	___ 

dn • 
	= 	dE dn 	 - 47rE3eV0  sin 0' 

If Es is a constant, 

d(E --) = 2 _L 
dn 	 dn2 

or 	 2 	 dR5rr 
(32) E 2 	 E5 dt -. 4seVo sin 

or multiplying through by 

(33) 
Es d 	

= T__ 	
- eV0  sin 

(33a) 	 eV0(-f dt 
dE 
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But 	 dE5 = dE3 	dt 	dE5 
dn 	dt 	dii 	dt x  f 

and also from (3) 	dE5 = 2eV0  sin 

Equating (3) and (34) 

2eV0  sin is=dES X 

and 	 dE5 
Sin Ø = 2eV0f X 

 dt 

Equation (33a) becomes: 

E8 d2 = eV (i 	- sin ') 4ir dn2 	
0 

 
now 

d2  _d 	d 	d 

dn2 	dn 	d 	ii 
so 

(37a) ES di o d ( 	): eVoEin is  — sun 	dØ 

Integrating both sides, 

(7b) 	( eV0 	sin is  + cos ' +KJ 
but 	____ = 
	

ES -  E )  

:: 

37c 	
x 42(Es'E)2 V 
	sin 	+ cos '+ ]K 

(38:)
-(Es:E) 	

=2eVosiflØ5+cos+KJ 

• 0 

12s' 
Fio.3 

The constant of integration, K, may be evalua-
ted for oscillations of maximum stable ampli-
tde by placing d/dn = 0 at the critical angle 
for instability; and also, from Figure 3, the 
maximum stable j is when the pendulum swings to 
a vertical position over the rest position. 
(RestQrung moment of gravity becomes less than 
the applied torque., T, at positione above this, 
and pendulum revolves). 
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From the Figure 3, 

(39)  

or (.a) jzI=7r- is  

If 	0, from Equation (9) 

- 	(E5 - E) 
dn -O-2ir 	E. 

or 	(.40)  E0  = E 

• substituting (39a) and (40) in (38) gives: 

(4) ir(; E)2 	
2eV0  •7T - ) sin is  + cos ( - 1) 

+ 

0(ir-g15) sine +co$(71- ) + K 

Ic=-(ir-g15)sinj5 +coal8  

With this vaJue of K for the limiting stability condition, Equation (3 ) be-
comes: 2 	- 	• 	 - 

(42) 7T(E3 E) 	
= 2eV0 	sin 	+ cos 	- (ir - 	) sin 	+. cos 

(4) 
•2eV 	sin 	+ 003 	+ cos 	- (ir - ) sin 

or 

VH7F 
	

_\JI sin 	+ cos + cos 	- (ir - i) sin 
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Equation (43) is plotted on Figure 4° Each curve represents the limits of 
stability for some particular machine with a constant synchronous phase, 

An interesting interpretation of these curves is that if a machine were de-
signed to have the particle accept the full dee voltage each turn (sin 	= i), this 
machine would allow no phase oscillation, and few, if any, particles would reach the 
target. The other extreme occurs when sin 	= 0. This machine would accept +1800  to 
1800  phase oscillation; but in this case, te particle at the synchronous phase angle 
wouldnot be acelerated in passing through the gap because the dee voltage at that 
time would be zero. Most frequency modulated cyclotrons are designed half way between 
these extremes (sin Ø = 1/2). 

Im 

- 3O 

WIM 

LJ 
-J 

z 	Q 

LL1 	+30°  
<Co 

4: 

+90° - 

z 

Jif t l oo  

 

+ 	0.- 
ES  

flG. 513 

flG'.5 

Figure 5b shows the phase oscillation and corresponding energy oscillation 
for three different particles as the synchronous energy increases, in a machine with 
a synchronous phase angle of 30°  (sin = 1/2). From the pendulum analogy, the phase 

amplitude of the particle varies as E 5 '; so as the curves of Figure 5b extend many 
cycles to the right, their amplitude decreases. Figure 5a shows the energy and phase 
excursion for these same three particles for just one of the cycles. If the larger 
"orbit° for particle 1 happens to be the maximum stable condition, then this curve of 
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Figurè 56: -is similar to the sin 	= 1/2 curve of Figure 4, except that it sho.is the 
plus and minus energy excursion of the particle and the axes are .rotated 

Figure 6 shows the condition at the center of the cyclotron and shows the 
phase history of the accepted particles. All of the particles are shown as starting 
at the rest energy on the +900  phase lineo This is in agreement with the actual con-
ditions because of the physical arrangement of the cyclotron. The ions are ontiu._ 
ually introduced between the dees; nd at first they do not 

-90 

0. 
LLJ

Ui  
—I 

4O° 

.tsoe  

•HSO°  

21(( I)I\jyLl 

• , 	E o 	E,5 Eo E0  E5  

— (E57 

E5  
FIG.6 

have enough excursion to fully cross the gap; but by the time they do so, most are in 
phase with the peak voltage across the gap. In Figure 6 9  the synchronous energy, E 5 , 

is moving to the right. Two displacement orbits associated with Es  are shown for each 
position, and the instantaneous location of each particle is labeled 1 and 2. (There 
are an infinite number of orbits inside the maximum stable. orbit; only two are shown 
for clarity.) The trace each particle made is shown, and if continued, would appear as 
on Figure 5b. from Figure 6, a particle (i) starting on the maximum 'stable orbit only 
succeeds in arriving back at the rest energy in one phase oscillation, but particles 
starting on smaller orbits are accelerated. The ,  range of particles accepted is there-
fore (E - EO )4 and from Figure 4 ( = 30 0 , 	 = +900) . 

(E5E0) =*06jeVoEsx2 
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Figure 7 shows in review, the basic formulas of the frequency modulatédcy-' 
c1otron Note that the starting oscillator frequency is high':enough that the Synchro-
nous energy is below the rest energy. 

tU 
-J 

U- 
0 

LiJ 

dn 
Z.V.3iN 5  

Wo 

TIME 

The Constant Frequency Cyclotron 

From Equation (2), E5 = 	, there is no change in synchronous energy with- 

out a change in oscillator frequency. (exaept for the minor change in magnetic field)1 
so the constant frequency cyclotron is a special case of the frequency modulated cyclo-
tron in which dE 8/dn = o, sin 	= o, and 4 = 00 The voltage across the gap is zero 
when 4s  = 0; so a particle travelling at the synchronous phase angle is never acceler-
ated. It becomes apparent, then, that this synchronous particle is not the ±mpo±tant 
particle. 

The pendulum analogy reduces to that of a simple pendulum, and Equation (30) 
becomes: 	

EseVo 
• 	 ( 

Phase Oscillation 
Figure 8 shows the particle starting in phase 

• with the voltage vector V0, but ithas a lower 
• 	 velocity and it tends to drop behind. If be- 

• comes less than zero, however, the particle 
drops into the decelerating phase and islost. 
However, if the dee voltage is high enough, the 
particle will, pick up just sufficient energy 
before reaching = o to fall in step with the 

• 	 dee voltage vector, and will then turn back 
and gain and pass the dee voltage vector. Curve 
• B of Figure 9 shows the phase excursion of this 

• 

	

	 particle. The dee voltage required to make the 
particle turn back at zero phase angle is called 

r ij,ji iui',i OF i ir 	the threshold" dee voltage. 
TICLE LATE R 

PO$ITIOJ OF 'PARTICLE TO 5TART 

G.8 
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This particle continues to be accelerated after it passes the voltagevéctor, 
and would continue back through +180 phase angle and into the decelerating phase if it 
were not removed from the machine at its maximum energy. Curve A shows that a particle 
not receiving the threshold voltage passes through zero phase and is lost; curve C 
shows a particle receiving more than the threshold voltage. 

Curves A, B, and C are repeated in Figure 10 showing phase angle against 
energy. Figures 9 and 10 show that the constant frequency cyclotron achieves its ac-
celeration mostly as a result of phase oscillation, and if the particle is not removed 
from the machine in one half cycle of phase oscillation it will proceed back to zero 
energy. If particles were in some manner Introduced into the center region of Figure 
10 9  they would stably oscillate in the energy ranges shown neither returning to the 
center nor reaching the target. 	. . 


