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DETERMINANTS ‘AND LINEAR EQUATIONS

1. Ihtroduction

Two pertinent problems confronting mathematiéianS'developing a
mathematigal theory afé the attainment of rigor complemented by ease of
exe_cution° This is particularly true in the numerical branch of mathematics
whefe extended.operatidns of a Simiiar nature are extremely tedious.

The application of the theory of determinants greatiy facilitates
the ﬁork required to solve simultanéous liﬁear equations. Moréover, this
theory has béen adopted to electrical domputing machineé. The advantages
as well as the limitati&ns of various.methods currently in use will be

outlined in this article,

2; Solutions of Simultaneous Linear Equations.

Consider the following first degree simultaneous equations in two
unknowns :

x and y are unknowns to be determined (1)
and a, b, ¢, d, k and £ are constants. (2)
‘ : 2

It
=

ax 4+ by

n
~

cx ¥+ dy
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If we multiply (1) by =-c and (2) by a and then sum the resultant
products, the unknown x is eliminated and we have

(ad - be)y = akl - ke .

If ad - be ?: O we can solve for y explicitly, i.e.

.y7 = a Z - ke
~ad - be (

If we multiply (1) by d and (2) by -b and then sum the resultant

- products, the unknown y is eliminated and we have

"(ad - be)x

dk - bx? A -~ whence, as -above,

x = dk-bl . | |

ad - be , R
Recalling that in éndlytical geometry the equation of a étraight linéj_"

isy = mx;f:b, We‘note that equations (1) and (2) can be put in this form.

"~ From (1) yv= -

X 4 }g_ ~and from (2) vy = - % x.'_,, L .

a
b c.

If (3) ¢=a , the slopes of the two lines are the same and

therefore the lines are'parallel or coincident;' Conseqﬁently, there will be
no uniqué simultaneous solution of equations (1) and (2). Moreover, if we
note that equation (3) can be expressed~5s ad ; be = O, we see why diﬁiéion
by ad - bc;: 0 was excluded previously. |

| In a similar manner three simultaneous linear equatibné of the first
degree in three unknownscan_be solved under éertain restrictions. Suppose,
for example, we wish to solve the'following.equationé:

a1x + by + ¢z = kg V ' (4)

ek by ez oz ky - (5)
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ax + bsy.{- °3z = kg .. v_ . R (6)
By multiplyigg (4), (5) and (6) by b2c3 - b3c2", \blc‘B - byeq ,
~and blczl- bsey respectively, and then summing the products, we find that
“the 'y and 2z terms have been eliminated. The coefficient of x is
aybacy - alb3c21- 32b3cl - a2b103-+ agby ¢, 4'a3b2cl » In a similar manner
one can solve for ¥ and z . (Note that their coefficients are exactly
the same és the coefficient of x.) Furthermore, if the‘coefficents‘of the
unknowns differ from zéro, we can solve explicitly for x, j, and z.

Again considering equations (A), (5), and (é) froﬁ the sﬁandpoint of
analytic geometry,. we see that each equation represents a plane in three-
dimensional space. If the coefficient of the unknowns 7ﬁ 0, the intersection. -
of two planes will be a straight line and the simultaneous intersection of
three planes will be a point. But, like our first example,bif‘the coefficient”
of the unknowns 1is zerb, the planes do nop_intersect in one unigque point, and"
theréfore the equations have no simultaneous solution, |

Simﬁltanebué_liﬁeaf'ééuations with more unknowns can be operated on
in a similar manner. However, in order to minimize these laborious computations,

mathe@aticians have deviséd aﬁ i@proﬁed method of operating on linear
simultaneous equations:by determinants. Let us return to our three equations

in three unknowns.
a)x +»bly +cyz = kl

asx + boy + coz

|
d
N

agX + b3y t o3z = kB.'.

A determinant may be defined as the value of a square array of numbefs.
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- by i[k2c3 - c2k3J+ cl"[ksz - b2k3]

the following symbols:
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Notice ﬁhat the déterminant operating on the unknowns is alw#ys the
same Whereas.the detérminants on the right hand side of the equations véry inl
a defin'it_é manner; i.e., the column of coefficients which multiply the partic'ular.
unknown in the given equatiéns is repiaced by a column of qonstaﬁis which are
: the:Qalues of the right'hand_side‘of the given equations.
‘If the determinant operating on the unknowns is not equal to zero,
we éan divide both sides of the equétion by this determinant, thereby obtéiniﬁg'
~an eXplicit solution for the unknown, This is known as Gramef's'rule;'
| The simgltaneous solutioﬁs;of n equations in n unknowns involvesv

X

a determinant of n2 elements as follows:

all 3-12 al3 s 60 a-ln ]

. 3,21 ass 8.23 oo asp |

841 32

The subscripts have the foliowing meaning:

| The first subscript denotes the row‘in which a particular element
' is_lécatéd.

| The second subscript dehqtés the column in which a particular element

ié lécated,

v v Fpr example, aij would be an element in th§ i 'th row and the -
J 'th column..

vThe defenninant D may be defined as
| nt  j

D - .EE:: ) aiii ai PIEEY ain n Wwhere
i=1 o
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 111 sos iy 1is an arrangement of 1, 2, ceo I @erived from the 1attér by Jj
"sucéeésive inte_z'changes°
For our purposes‘the three most valuablé properties of determinants .
which permits a circumlocution of the expanéion'definition'of a déterminént ares
(a) 'Intefchanging.any two rows or any two columns is equivalehﬁ to

_changing the sign -of the determinant.

(b) If any row or any column is multiplied by a constant c¢ , the

determihant is mnltiplied by e .

cal , b1 al mbl

t
¢

c§2 b2 e ,-b2

determinant remains unchanged.

By operating.with thesethree'transformations we can reduce é-determinaﬁt
to a special form designatéd as a triangular detérminént of a diagonal
determinant;' The value of the determinant is then equal to the product of
the diagonal elements.

For illustrative purpoées,consider a determinant of three simultaneous

equations in three unknowns:

U i(e) If any row or any column is added to another row or column, the .- 7 <
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al bl }.cl
D = a, b2 )
a3 b3 03 .

Let us oﬁerate on row one with the operator (b). Furthermore select

our:operator—to bé c = 1 . Then
' a
1 :
1 pl/al 'cl/al

1D T 2 |a b 2

a3 b3 -03 .
Next let us use a combiﬁation of operators (b) and (c¢) in the following
manners: ,
"(1).:Mhltip1y column one by ;bl/alv and add the result to column two.
(2) Multiply.column one by -cl/al and add the result to column three.

Under this transformation

1 0 0

D = al Dl = a.l 8.2 FZ . “(2

RN
: Similarly we operate on the element in the second row and the second
éolu’fnn°

Multiply column (2) vy - Zé/f?z and add to column three. The
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result is - !
1 0 0
D = 3y |ap /82 0
a3 f3 S

Therefore, D = ay [l X !32 X 83] .

,Exte‘nSion of this type of oﬁeration for determinants of higher ordef
is straight forward..

This basic method has been elaborated so that the number of steps
required to solve a series of simultaneous linear algebraic equations with

“the aid of an electrical compu’bing machine is a minimum.. In the Transactions

of the American Institute for Electrical Engineers, Volume 60, 1941,

Professor Prescott Crout has published a method which we shall now explore.

This process may also be found in the first chapter of Numerical Calculﬁs

r

by Milne.

3. A Short Determinantal Method for Solving Simultaneous Linear Equations.

Consider the following equations:

a;x+ byy + clz'"-ll» dyw = 'fl
asx + b}zy-l— Coz t dow = f2
a3x+ b3y+ 0321- d3w = f3
ahx-l' bhy + chz-!- dhwv = fl:,

where _the‘ aj, by, Cy di’ fi (i =1, 2, 3, 4) are known constants.

The given matrix has the following form:
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83 by 3 dg

This matrix is opérated on as follows:

ay bl/al cy/ay dl/ai | fl/a.l
a, <}2-a2 E;):A Co- an El d2-aé E; ' fo- as fl
) ay _ #je _“ a}=D S T E])F
A A S
o , o
ag é3—a3—l=B c —aBS_}_-B(>=G éB—aB fi_I_L_-BD f3-3.3 E-B_F
a ay a1 =H al =J
| . _ _ ' : \ G AN G /

b c d N £
ah (bl#- al.i» _é}_):K ‘Ch—&h 'a,—]-'.-K(9=L é‘h’- ah a—]'-'-KD—HI>=M' | fl#— ab{ 'a';l"_ KF- JL)
1 '3 1 2

In a more convenient form we have

ay by/ay cy/ay dy/aq fl/ ay

8.2 A C b F
a.3 B G H J
a K L M N .
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The solutions are obtained in the following manner

w =N =
‘Z:J—HW
y =F -Dw - Cz

X = fl/gl - dl/al(w) - cl/al (z) - bl/al(y);

This process is equivalént to transforming a matrix into diagonal form. )

A cbntinuous check may be éﬁﬁa;ned by ﬁeffofmiﬁé similar operations on
an'eitra‘column, each term of this column being'the sum of the terms of- the |
matrix in its particular row., -After completing,the opefations on the origihal'
matrix, the sum of the terms to the right of_the diagonal term in ahy
particular row will be one less than the vaiﬁe cémpuﬁea in-tﬁé.extra colﬁmn°

Let the matrix assume the following form with the addition of_the

checking column

a b o %Aﬁ g "m”é&=ﬁ+ﬁ+ﬁ+%+ﬁ
a, b, ¢, dy f, g g, 7 3+ b, 'fcz ‘-"dz +£,
a3 b3 o3 43 f3 g %:hfgf%f%*ﬁ
a byoo 4 fog| ;a;%+%+%f%fﬁ

After the operations, the form will be

8 bl/al °l/?i‘ “ dy/ay £1/a1" 8y /3y

a3 B G B ‘0

a, K L Mo N
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where

A = g -2 a/y
T A

& = g3- aB‘gl/al-Z}B
G

¥ sy e/ Ao
: M

Hence, we have

gy/a; = 1+ bl/al + cl/a.l-l— 'dl/ai+ fl/al
A - 14c+D+F
6 = 1+H+J
¥ = 1+N.

If the coefficients of the unknowns in the system of linear equations
are -of "divergent orders of magnitude, a change of variables may be made thus

permitting the significant figures to be retained,

& £ - P
a; 107 x4 by lO#y-i—cl 10" 24 dy 10 w = £y 10
2, 18 x+ by 108 5+ ¢y '_10w 2+ d, 108 w - f2‘1oe
2 10 x+ b, 10Py# oy 1052 44d, 105w = £, 10°
3 - °3 yT c3 3 = 13
« B R S . » €

2, 10 x + b, 10 yf-cblo 2 +d,10%w = £, 10 .
Let X = 167 x

¥ = lo‘ey

E = lO{Z

w

- lds w °



UCRL-2119

=12~
Then writing the matrix
10% 10f 0¥ 1 1€
ay ‘, by/aq cl/za.l 'dl/ai fl/al
8.2 A C D F
a3 B : G H J
a, K L M N

=

1] )
%[O

oy

1

(F-g—cﬁ( )

(fl/al - d]_/al(W) - C'l/al‘(z) 'bl/al(y)

N
!
W .
1

)

Let us consider the case where the coefficients are complex numbers.

~ For concreteness we shall employ four simultaneous equations in four unknowns,

the procedure being easily adapted to larger simultaneous systems,

zli fl(w);f-‘ lefz(w) "+' 213 f3("’) + zlh h(w) . 235

L1}

2

725

221 f;(w)f .222 fz(w) + 223 3(w) + 221+ fh(w)

>231 fl(w)+ 232 féw)-j— 743 f3(w)+ 73, fla-(W) = Zgs

NONEPEAOLENEACL 2, £,00)

8.5

We recall from the theory of complex numbers that if 2z - x+ iy

then z:x-iy., 22 = |z|
|off = @+¥ 1:-1.7:3
. ) Z A z lziz



UCRL-2119

~13-

Hencé, we can replace division by a complex member by multiplication.

Our primary matrix will be as follows:

711 ' %15 213 29, ' 215
21 222 223., 221, Z25
230 %32 Pz %3 P35

Z

211 21,2 213 L L5 -

We operéte on this matrix with the same sequence of stéps emplbyed
in the solution of simultaneous equations with real coefficients.

Therefore,

(see next page)
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%«z@z -mmzqu -m_H SN _§75y

S, =
£Em
_. _Amwsmmz _ .ﬂzﬁma _ m.mmv.
.mNB =
_Nmz_ ,
Ama 2, mmuv.
. N_HHN_
s

L od

e €T,

mms A

Nm €Ty - mm m.ﬂz - .w.w ﬁnz - 5Ty = ?&H
M.H ﬁN.B _ d.H A....~N3 - mN? - AZVN
;\w.w 4m3 _ Sty = .?&W.H
Amqs M, A&vnw
dqi.n €y = ey =
,|+~N3w¢3..¢.h3_d~m ij. €2,CTy, mHS,EN - mdm T, _2h,. T,
Ty = €y = cey =
#NBNma |¢H3Hmu |.¢mav Amwzmmzl m...,,HBHMN |m..m,mv NHB.mmN,_ |MNN Hmw
e = - I 22y =
T P
wMWMMwwAJHBHmN -2z wmw“m1|hmasama |mmmv. el I, 22, T2,
‘ 1, =
T, - N._ | i €1 m_.ﬂ_nn €T NIJII_ _N_ 2T I
M - HHN e M = HHN, Z . 1, % 2
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L4, Errors
Consider the_following transoendental>equation :
| tan'e’;' x .
Let us assume that this equatlon has been derlved theoretlcally and
_ “that an’ experlment has been performed in order to verlfy the theory. Let
us suppose that the angle 6 is very nearly equal to 2772 1. 57079633
Now-note the dlfferent valuesoof x when the measured valne_of .
6.‘is slightiy iess ﬁhan -2/72' and when € is slightly greater than 2772 .

For example, if

o = 1.5707  tane = +1038L.32742

) 1.5709  tan® = ~-9645.69385 .
Thus, we see that errors independent of mathematical manipulation
may be encountered. However, after considering the validity of improving the

‘ results'of a determinantal.computetion, i’e., eXtending'the range of

31gn1f1cant flguresi Crout offers an easy method for ach1ev1ng thls goal

- The method con51sts ‘of substltutlng the computed values 1nto the orlglnal

equatlons and subtractlng the results thereby obtalned from the glven result
jThese differences are then added to,the original matrlx as an extra column.
This added column is operated on in the same manner as the original columns.
The correctlons to the orlglnal answers are obtalned in the same manner as
"were the origlnal answers. Add the correctlons to the orlglnal answers to
obtain the first corrected answers. Thls method may be repeated until the

results converge to the des1red number of signlflcant flgures.
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5. Conclusions

‘. Crout's method may be considered éuperior to that of Cramér for the
followiﬁg reasons:
(2) Minimum number of computations required.
(b) Continuous check on the computations.

(¢) Number of significaht figufes may be readily extended.
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