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FOURIER ANALYSIS

1. introduction

Fourier in 1822 was the first to assert that an arbitfary function
defined in the interval-(-ZV';x/) could be expressed as a trigonometrical

series of the form

: asif-(al cos x + b, sin x) + (32 cos 2x + b, sin 2X)+ ... ;”;

1
where :, Yy | o 7 .
a, = 1 f(x)dx ; a, = _1 \f(x)cos xdx ; b T 1\ f(x)sip nxdx
o 57 | n ﬂ“jg X, | | n = = ), p nx
5 4 7

He rigofously proved thaﬁ the expansion was pOsSible for certain simple functioﬁS"‘
he needed in the problems_ef-heat conduction. About the same time D'Alembert,
'Euler;_D,‘Bernaulli found phaﬁ_thevsolﬁtioh:§o theﬁvibrating etringﬁproblem

" could be expressed as the sum or the.integral of a sum of terms similar to
feufier's series, From this beginning tﬁe theofy of Feurier enaIYSis‘hasie.
gfownikblts major application is still in the solution of boﬁndary value

- problems.
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' Dirichlet in 1829-1837 proved that for the class of functions which
are piece-wise continuous and'bounded;thé.t”' .
% [f(xoi— O) +1f(,xo -.Q)] K : ) + z a cos nx, +b ‘sin nx

| . 2 nad |
- for all points in the e,pen intei've.l _ 7]/ to 7f and % [f( 77+ O)-l- f(//— 0)]
at x= F 7/ . f(xo+ 0) = 1lim f(xo-’- 2 ) is the right hand limit
_ _ A0

at a point in thé interval. f(_ico - O) - i]ﬂ? f(x -2 ) is the left

hand lﬁit at a p01nt in the 1nterva1 ‘Notice that if xo is a pomt e,t
which ' f(x) is continuous then é[f(xo-i- o)+ f(xé -_O)] = f(x_) and
if X, is a pcint at ‘v'.'h"ich f(x) is piece—;rise eontimioué then )

3 [f(x + 0) + f(x, - O)] is the arithmetic mean of the left and rlght

hand limits a.t\the _po:.nt.,

2. The Fourier Expansion Theorem.

§{ The Fourler exnan31on theorem was proved us1ng the follow1ng lenunas.

2,1 Rlemann—Lebesgue Theorem. Let f(x) be bounded and 1ntegrable

in (a, b), or, if f(x) is unbounded, let S - f(x)dx be absolutely
. . N ) i, . a . . .
“convergent ., Then .

b e sin Sl e :
S f(x) "nkxdx = O.
_  cos

2,2 If CE(x) ’:i’s'“'bounde;i"ahdi piecj'eé-wieev continuous in (0, a) where
0 < a ‘and if £(40) exists, then
. L | _

2im C £(x) sindx ax = 7 £ 0) .
k —%0 R X ' 2 -
O .
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g_;g If f(x) is bounded and piece-wise continuous in (a, b) and
“has a right hand and left hand derivative at x = X, where aZ x ,<b ,
then | o

5

kli‘.)mcos £(x) sin k(x - x,) dx = _ZL :’f(xo+ 0) + £(x, - o_)] .

" a. . X = Xy

The right hand derivative = f' (x4 0) = lim _ f(x,+2) - £(x,+ O)

and the left hand derivative = f£'(x, - 0) = lim _£(x - 0) - f(x, -2 )

Now consider

8, (x) v= | °+Z (a.v cos vx + b sin vx)
‘ : v=l v/ ~
4 n>
?2_]7.75 f(f)d}'-{-%_ %{cosvx S f(f) cos vf df
= , _7/ : v i
sin vx Sf(f) sin vf d}'}
-7

jf(})?%,u% éos v(} -x)g f

. By Lagrange's trigonometric identity;

. S : | : ‘ :
Z'_. cos v(}’ -.x) - -4+ 3% sin(n4 %)(r - %)

v=l : _ : V‘sih (}‘ 5 x) |
thus 77,

Sn(x) = 1 j‘f( ) % s:m (n+i)(r -Jg) d.
- _7)7__7/ 'f{ sin(-st‘x ) 2 f
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and o R R
s 5 mleeno ]
V” :sn.n(£==X)‘ ."F.,‘x

Now 1f f(f) is bounded and p*ece—w1se cont:muous in ( -7)’ 7/) 5

| sn(x_) =

then so is o , o S
f(f) -2 '. = F(f) o
e E o)

Thus 'by lemma 2.3, :
' 4

lim S (x) 1im | F(f) ‘sin [(n-t- 2)(P xLL }:

n_%g;o - | n —>60 _7?"7/ f

g[F(x+ o)+ F(x - o)]

_,% £0x¥ 0)4 £(x - o)]

"I‘hus 1f’ f(x) is bounded and piece-wise contlnuous in ( —7, 7%), then
i a + E (a cos nx+ b, sin nx) lnfconverges to-the value o

[f(x 4+ 0)+ f(x - O)] at every point where f(x) has a right and
left hand derlvat:we., . L ' -

3 Specml Case of Fourler Senes

4
--_ o ‘ an@__. bn: 2 5 f(x) sin n x dx

3.1. Odd functlons (f(x) = = f(—x)).

. thus . C o

£(x) = Z___ b, sin nx , or f(x_) is represented by a sine series.
n=1 ‘ S
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3.2 Even functions (£(x) = £(=x)) .
o r o '
énf 2 gf(x) cos nx dx aﬁnd:’bn:O

thus

f(x) = 2o a, cos nx , . or f(x) is represented by a-

cosine series.

3__2 Partialiy—defiﬁed furictions.
Ir f(vxv)' is defined only on part bf the interval (=77, W) ; say
(0, 77’), _th'en f(x) may be defined as either an odd or even flinction and
ééﬁéidered._as either a sine or cg_sine series. |
. | 3.4 Functions defined on arbitrary i_nterfra‘lé. _
It f(x) 'is defined in.'..the interval (- L y L), then by a 'changé

of variables, y = 1 X ,
T

£(x) = 2% -,»E .(va.n cos nff x v-f-'bn':sin'n__f_f_ x)
2 L : L

n=1

where

L L .
ao:_l__S f(x)dax a, = _1_ f(x) cos n x d&x ,
L ' L L
g . ‘
L .
b = 1 S f(x) sinn] xdx . -
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4. Properties of Fourier Coefficien‘ts'
| 4ol Bounds on Fourier coeff1c1ents P C e -
| 5_ Suppose f(x) is. piece—wmse continuous in <—‘ 7)/ 7/>
and has a finite nuuber of;maxime and mlnima Div1de the 1nterval into-

-

subintervals in which .-f(_x) is monotonic, Then aj = 1 f(x)cos nx dx

can-be expressed as the sum of a finite number of 1ntegrals of the form

b o e

8 £(x) cos nx dx, Consider g f(x) cos nt dt ., By the second mean

- T 8 S -

value theorem this is equal to U .
S . o b SR |

' ?-,-f;(a-+-g)'r '\ cos nx dx+ f£(b-) | cos nx dx »-where‘.}a_éj;,é-_ b .

Integrating,

§ f(x) cos nx dx = f (a _t) [s:.n nf - sin, na]-/— gb-z sin nb - sin nf]

8

_Since f(_;x_) is piece-w1se continuous and bounded a.nd (31n a - sin b) £ 2

b
- and independent of n, then é £(x) cos nx dx A . _Thus,.
. k _ '
,an1 = 5 _i , M.  some real finite number,(k finite). Similarly

some real number, (m finite). Let

jon

=

-
IIME

M '.:..‘ma.x(k M; , k 'M‘j)" for all i and 3. Then I an, and ’ bnl 2. M
. (\ :
~and a, and b, are of order 1, i.e., ap and bnNO( J_. ) .

4.2 Suppose f(x) is continuous and £ (x) piece-w:Lse

continuous in < 7f f> f (x) hav1ng a finlte number of maxima or mlnima
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Then . ‘ , : T T T PUF SR TIPSR SN, .
v ' a, 1 Sf(k)cosbnx"dx : - _1_ 5 f (x‘) ‘sin ‘nx dx

when int'egrated by parts. But f (x) can be expressed as a Fourier series

with coefficient.s of order " 1 from case -h.ll 80" a NO( 1) and
) ‘

°

correspondlngly b ~ O( 1
a2

L

4.2 General Theorem.

Theorem: If f(x) and its first (k-1). derivatives.are ‘eon,tinuous
in (— D",, WJ > and the  k'th derivative is -pi,epe—wise continuous with a
finite number of maxima ia‘._nd minima, then the Fourier c_:qefficieﬁt’s are of. .

order 1 .
nk'l'l

Convergence criteria:

. . ad ) -1
, f(x)' . = \ & +Z a, cos.nx‘f'bﬁ sin mx

T n:l ‘
o0
é_ i‘-’a. + E a_cos nx T bn sin nx
2 n=1
Lila, | + E M .
: n=1 - n

The series of constants converges forv k > 0. Therefore, £he Fourier
series converges unifonhly for k=1, 2, 3 ... . We can sey then:
(1) Due to uniform convergence for k=1, 2, 3 ... (k denotes which of
the derivatives of f(x) is piece-wise continuous with a finite number of
maxima and mlnima) one can 1ntegrate Fourier series term-wise and the result
will converge to S f(x)dx |

If k=0, i.e., the function itself is piece-wise continuous, we can

also integrate term by term and the result will converge to 5 f(x)dx .
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(2) For k=1, 2,3 ... ~we can dlfferentlate term—w:.se and the series will

cenvverge‘to f'(x) . If k=0 dlfferentiatlon is Jmpossmle, " \

5. Approxmatlon of Functions by L1near Interpolatlon.

A functlon tabulated in arbltrary 1nte1~vals can- be approxlmated by '

- using linear :Lnterpolat:.on and Fourier analysls.,

The tabulated p01nts are connected by straight lines: and then the .
F.ourier-‘serles is obtalned for this functlon, o

For example, suppose the tabulated-points are ‘(}x\i,-yi)f ,1: 1, ..oy n,
v_and assume the true functlon to have perlod 2( It maywelSo be e.SSumed_

t_,hat X, =X = 2,? and x) = -1 and xn= +1 Then

n
£(x) = fl.(‘x.) .' o :;15 x & x,
\ f2(x) X, & X & %
fn*l(x) X, 1 _\é x & x
where
fi(x) = yk+1 , yk (x -x) 4+ 7
Then : . !
f(x) = R E B (am cos mx + b sin mx)
- _m=O : v
where ' ’
L X2 R < I -
ay’ = __}._ S f»l(x)dx.* g fg(x)dx-/- +5 f l(x) dx

[ % ey

X2 o . L Xn S ; e,
1 S £,(x) cos mf % dx 4 ... S £ (%) cos nf x dx
| X | Y 4

;’.

Xy | . B |
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x - X,
1 S fl(x) sinﬁf_x,dx oot S fn_l(x) sinm7 x dx
D S Wit S

Xn-1

6, 'Approxima‘tvi-on of Functiohs Using a Finite .Number of Trigonom‘etric' Terms.

. A periodic functlon, tabulated in arbltrary 1ntervals, may be approx1matei
. byva Fourler serles 1nvolv1ng a flnlte number of terms° |

| | The coefficients are determlned so as to mln;mlze the suuﬁsf the
’squares of the differences obtained at the ﬁabulated points, ’(This is an
;,appllcatlon of the method of . least squares which leads to the Fourler coeffic1ents
in the 1nf1nite series expan51on )

| If the functlon is tabulated) in equidiStanﬁ intervals, the'calculaﬂioﬁs
_maybesmpln.fledv o L |

| Let f(x) be the tabulated functlon and its perlod may be assumed to be

' Zﬂf; Let the interval (- W’,?f) be divided into 2k equal parts and let the
Hpoints efasubdivislon‘be_denoted by X3 where ij: j£21 s J= -k;,,o,fl, 0, .
'l,..;, k. Then‘minimizingv | |

k-1

E' _[f.'(xj) - Z v(am.cAos"‘nch-l" bm sin me)] v

==k m=0

by 1partially differentiating with respect to the a's and b's and 'equatingrtov '

zero s the normal equations -invo_lving the coefficients are obtained,

n | . ' 1 k=1 :
E: . am E cos mx cos qx + b 2 sin mXs COS QX | = E f(xj)cos x5

-..k ' | J= ——k ==k

ﬂand' '
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n [ k1 . k-1 . k-1 |
; ' a ; cos mx:j ‘'sin qxj+ bm E - sgin mxj sin q:w:.j = E f(xj)sin ax
“m=0 | 3=k =K ] 3=k

where q =0, 1, «os, D .

‘Nowif 0Z m<k- and 04 qZk, then

’ E sin mKy COS Xy = 0

J==k

kel (0 if msq -

cos mX4 CO8 X5 = k if m = ‘q#0 and ~;ék

j=k | (x 1 m=zaq =20 or =k

k-1 (o if mFEQ T
_ E ) _sin mx‘j sin qxj = k if m ': .qf 0 .and 7£ ko
_3='k : _ .0 if m = q = »O . or = .k .

Usihg these relatiohs, the coefficients may be obtained.

k-l
a. = .1 £f(x.)
o E /o
J
2K T
a = 1 o f(x,)cosqx, , 0<&Lg<dk
q TE Tyl TR Fy
==k - ' : o
| ' k=1 o .
bq = %_E f(‘xj) sin qxj .
J=-k

For modifications of procedure see Milne.
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