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CONVOLUTION INTEGRALS

1. Introduction '

Let'ue set- up a'hypothetical experiment in which we are to observe

a distribution spread. This observed spread will consist of two or more

omnponents-éthe "true" distribution which we wish to observé,'andré ”Bpreadﬁ-“

due to other effects, notably the resolution of the instrument used in the
observation, '
It is often de31rable to separate these components, if possible,

and this is the problem under consideration in this paper.

2. The Faltung Iﬁtegral

Let the "true" distribution be. denoted by f(x), ‘the. resolution
"spread" by g(x), and the observed distribution by F(x).

If we examine these separately, they might appear as follows:
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Let us examine an arbltrary X, say Xgs and consider f(x ) é.nc_I the
spread g(x, - x) associated with f(xo)
ch
,
X
—Bs{ 2 '@— ° ' .-
Flgo &.03 ‘ b .
Let g(x) be a Gaussian of width 28. It is séen that "

¢(xo) = kf(xo)+ contributions of the form f((x‘.)g(ico‘— x) ,

Xo -8 < x ¢ xo-}—g where k 1is an arbitrary normalizing const_ént.
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The expression ¢(XO) may be expressed as

v xo+8 . ) '
Blx,) = S £(x) glx, - Dax .
. - %5=8
If the integration is carried out from_‘-<29 to +o0 -
O
Plxy) =. | f(x) glxy - x)ax . .
Lo :

This is known as thé‘Féltung Integral,(Faitung = German "folding").

The process of evaluating ¢ may be graphically répresented as

folldWs:

F;xh7

Fige 2.4 °

‘Beginning at ™ x = x_ (at the left of the diagram) the integral

is evaluated with the origin:of g(x) at x, .
> © _ —~ | v

) B(xy) = jg f(i) g(xo - x)dx .

—~ D

- Then the origin of g(x) "slides"'along X, assuming successively values

xlg Xns ooos Xy o ,The.ihtegral evaluated at ﬂbese points gives
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g(x1), ¢(x2), oo » B(x,). Numerically, the integral is treated as a

-summation:

B(xy) = Z fxy) glxg - x5 A x

J

"3, Commutativity of the "trﬁe" and "resolution" Functions?

Aé a matter of terminology, we will refer to f(x) as fhg,

' "gtationary" function énd ‘g(x) as the “sliding"functipn:

Given arbitrary £(x) and g(x),zwhigh ié'to be treated as
"stétionafy" and which is to be»treéted assliding?- It is immaterial,

as will be proved.

o0 &0
Theorém: ' CS# £(x) glx, - i)dx = f(x0 - x) gx)dx .
. .v Lo .—w . . . ~w - =
Let:
Yy = Xg-Xx X —00, y—>-00
dy: - = dx | X—>-—00 , y—p»pOO
X = X -y
Then
(V] -0
Sf(x) g(xy = x)dx = =\ f(x, ~ y) g(y)dy
-2 | S ' _
= S f(x, - v) g(y)dy
. -w - R
Let  g(x) = a delta function (g (x), and evaluate @(x;) .
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It is readily seen that the resultant @

1 ¢Cx;)

R

Figo 3'02
is identical in form to f(x), except for a constant scale factor.
Now, let $ (x) be stationary, and let f(x) be the "sliding"

function. A seemingly contradictory result is obtained,'for, by the

i prgceding proof, the resultant @ should be identical in both casés.

S

- > - -y

Fige 3.3 -
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The resultant is apparently the.mirror image of the previous resultent' .
However, this seeming contradiction is removed when we consider the

argument of the. sliding function, f(x - x) is a reflection of f£(x) about

- the. point xo ;> and we are actually folding not the sliding function itself,

but its .mirror image about its origin. If the sliding function is

- symmetric about its 'o.rigin, no modifications of form are-necessary,

| If, however, we are dealing with asymmetric functions, the sliding

function must be inverted before the integral is computed.

b, Condltions for Existence of the Faltung Integral,

There are several restrictions upon the functions f(x) and g(x)

In most cases,l"‘ . e
S f(x)dx and ‘S g(x)dx
' et

must' _converge,
When the Fa.ltung is numerically 1ntegrated it is treated as a

definite integral with the limits so chosen that
o
.a

5 f(x)dx ° and 5 f(x)dax ~v 0 .

Qo

Then we have
b

S | Af(x)dx ~

a

“If f£(x) has a singularity of degree {1, it may be used,
,although its infinite integral does not converge.
If f(x) has an integrable s,ingularity at x = xy , it may be

treated as follows:
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A Bxy) = g £06) glx, - x)x as
S ,
CP(x,) - S f(x)glx, - x)dx + S £(x)gl(xe - x)ax ¢ S f(x)g(x, - x)dx -
If the singularity is integrable,
X t+€ |
S f(x)dx
e o |
is defined. (It is usually convenient to choose € = 4_  , where A 1s
o : . 2 :
the tabular interval.)
We define g X, - X) -as a mean value of g(x, - x) in the interval
x - &g x & xl. 4 € ,and approximate | )
X +e |
S f(x)g(xo - x)dx
x - €
. ' x y -
1t€ .
by - :
glx, - x) f(x)dx
xl"é
% 5. Applications of Transform Methods.
Let T(f) = the Fourier or Laplace transform of f , ‘and denote
" the faltung . 90 | o
f(x)g(xo - x)dx by £ @ g .

-0
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A theorem due to Borel states:

T(£) * T(g) = T(f » g) or
fwg = 18 { 7(£) - T(g)g :

vThié is a bqwerfﬁl méthod of finding an explicit expression‘fof'the:faltung
if the transforms of f and g are known, and the inverse transform of

their product‘cah be foﬁdd;

6. Applications to Linear Integral Equations.‘

Consider a linear integral equation of the form
e = nexo) G, ) e

a

'There are several methods of solution of this equation. In '

- particular, let us examine the method of solution by successive épproximétibn.

 .If'the.kernei-fK(i}’ia) can be expressed as a function of the form
g(xo - x),'the'definite integral takes the form ofvthe féltung integral
with limits a, b,
h ) éhoose'any real function fl(xo) which is continuous inv atx 4hb,

~Then define f5(xo) 5 f3(x) 5. ... f£,(x,)

. b .
£2(x,) ‘= hlx)) # &l - x) fy(x)ex
a

f3(xo> : ' h(xo) + '3<*o" x) f2(x)dxl

oe_ 0T

o ! . b . .
fn(x') = h(xo) + S g(xO -x) f
a - :

(x)dx

0o nz-l
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I will state without proof that.

//ﬂi lim f (x) = -f(x,)
.\;? C . N —pOO nool = ‘ °
Ny |

" and ‘that this limit is independent of the choice of flfio). The form of
fn(xO) is dependent upon fy(x.) , so the rapidity of corivergénce of the
seqﬁencp is affected by this choicé; | |
‘Examgle:  Conéider an infinitely long cylinder with an a?sorberﬂérraﬁged

coaxially as follows:

¥ Sovvce

- Figo bol
- Particles are injected into the cylinder with an isotropic angular -

distribution. If they strike

Figo 6.2

- B the absorber they are lost. If they strike the walls lthey are absorbed,

then reemitted with an isotropic angular distribution.
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Suppose that we are interested in the flux incident upon the area.

defined by 'a ring of width dx. .

" Let total flux = f(x) the number of particles arriving directly
from source = ~S(x) . As-a particle reemitted at xo has an isotropic
angular distribution, it may be treated as a "random wa.lk" problem. The
flux incident upon the area under consideration, therefore, is

P(x, - x)S(x )
'4-where P(x - x) is a probability function obtained from other coneidera.tione »
::notably the geometry of the experiment " The total-flux is
: 0
.f(x) = s(x) + S P(xo - x) S(x,)dx,

-0 .
which may be treated by the method of successive approximation
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