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CONVOLUTION INTEGRALS 

Introduction 

Let us set. up a hypothetical experiment in which we are to observe 

a distribution spread. This observed spread will-consist of two or more 

amponents--the "true" distribution which we wish to observe, and -a "spread" - 

due to other effects, notably the resolution of the instrument used in the 

observation 0 	 - 	 - 

- - . 	 It is often desirable to separate these components, if possible, 

and this is the problem under consideration in this paper, 

The Faltung Integral 

-. 	Let the "true" distribution be. denoted by f(x), the- resolution 

"spread" by g(x), and the observed distribution by 

If we examine these separately, the'nrtght appear as follows: 
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Fig0 21 
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• 	 • 	 Fig0 22 

Let us examine an arbitrary x, say x0 , and consider f(x0 ) and the 

spread g(x0  - x) associated with f(x 0 ). 

A O  

Fig0 23 	• 
Let g(x) be a Gaussian of width 26. It is sen that 

0(x0) = kf(x0 )-f- contributions of the form f(xg(c 0 - x) , 

x0  -& ( x . x0 -f- E where k is an arbitrary normalizing constant, 

0. 
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The expression 0(x0 ) may be expressed as 

xo f .  

• 	 O(x) 	f(x) g(x0  x)dx 

• 	 xo_ 

If the integration is carriedout from - 	to -  f -° 

Ø(x) 	f(x) g(x0  - x)dx 

This isknown as the Faltung Integral. (Faitung German "folding"). 

The process of evaluating 0 may be graphically represented as 

follows: 

cLXO..5I/ t_?\E,.:i: 
>( 

Fig0 24 

Beginning at x = x0  (at the left of the diagram) the integral 	• 

Is evaluated with the origin of g(x) at x •  

O(x) = 5f(x) g(x0  - x)dx 

Then the origin of g(x) "slides" along x, assuming successively values 

1 ; x2, x 	 • The integral evaluated at these points gives 
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0(x1), 0(x2 ), 	, Ø(x). Numerically, the integral is treated as a 

suxrgnation: 

Ø(xj ) 	 f('x, ) g(x _x j)x . 	
0 

3. Conmiutativity of the "true" and "resolution" Functions., 

As a matter of terminology, we will refer to f(x) as the 

"stationary" function and g(x) as the "sliding"function. 

Given arbitrary f(x) and g(x), which isto be treated as 

"stationary" and which is to be treated asSliding? It is immaterial, 

as will be proved0 	
0 

00 

Theorem: 	 f(x) g(x0  -. x)dx 	f(x0  x) g(x)dx 

—00 

Let . . 	 0 

Y ._ 	- 	 x —°o, y 

dy 	- dx . . 	 x - -CO y —p °° 

x = x0 -y 

Then 

S f(x) g(x0  - x)dx 	7  f(x0 - y) g(y)dy 

- y) g(y)dy 

Let g(x) 	a delta function 	(x), and evaluate 0(x1) 0 
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Fig0 3.1 

It is readily seen that the resultant 0 

Fig 0  32 

• is identical in form to f(x), except for a constant scale factor. 

Now, let cS (x) be stationary, and let f(x) be the "sliding" 

function. A seemingly contradictory result is obtained, 'for, by the 

• preceding proof, the resultant 0 should be idntical in both cases 

•/ 	'. 
• 	 •, •• 
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• 	 Fig. 3.3 
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The riltarit is apparently the mirror image of the previous resultant! 

However, this seeming contradiction is removed when we consider the 

argument of the. sliding function. f(x0  - x) is a reflection of 1(x) about 

the. point x0 , and we are actually folding not the sliding function itself, 

but its .mirror image about its origin. If the sliding function is 

symmetric about its origin, no modifications of form arenecessary. 

If, however, we are dealing with asymmetric functions, the sliding 

function must be inverted before the integral is computed. 

4 Conditions for Existence ofthe Faltung Integral. 

There are several restrictions upon the functions 1(x) and g(x). 

In most ,casea. 	. 	'. 
Cho 

S r(x)dx 	and 	g(x)dx 

must converge, 

When the Faltung is numerically integrated, it is treated as a 

definite integral, with the lImits so chosen .that 

a 

çf(x)dx , and 	f(x)dx #41 0 

Then we have 

f(x)dx -._' 

If 1(x) has a singularity of degree 41, it may be used, 	. 

although.its infinite integral does not converge. 	 . 	. 

If f(x) has an integrable singularity at x 	x1 , it may be 

treated as follows:. ; . 
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Write 	
b 

f(x) g(x 	 as 	

b 

Ø(x) = 	f.(x)(x0  - x)dx + 	f(x)g(x0 - x)dx 	f(x)g(x0  - x)dx. 

a 	 x1- 	 x1+ 

If the singularity is integrable, 

x14-E 

'S f(x)dx 

xl- 

is defined. (It is usually convenient to choose 	AL , whére 4. is 
2 

the tabular interval.) 

We define 	- x) as a mean value of g(x0  - x) in the interval 

x1 -. E . x 	x1 4.. 	, and approximate 

f(x)g(x - x)dx 

xl- 

x1tE 
by 	 (I 

R(xO 
 

- x) 	f(x)dx 

x1-& 

5. Applications of Transform Methods. 

Let T(f) = the Fourier or Laplace transform of. f , and denote 

the faltung 	COO /  

S f(x)g(x0  - x)dx 	- 	by 	f g•.. 
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A theorem due to Borel states: 

T(f) 0  T(g) 	T(f * g) 	or 	 /\ 

f * 	T 	T,(f) ° T(g) 

This is a powerful method of finding an explicit expression for the faltung 

if the transforms of f and g are known, and the inverse transform of 

their product can be found. 

6. ApDlications to Linear Intera1 Ecivations. 

Consider a linear integral equation of the form 

• 	f(x0 ) 	h(x0 ) 	K(x ; )f(x)dx, 

There are several methods of solution of this equation. In 

particular, let us examine the method of solution by successive approximation. 

If the kernel - K(x , x0 ) can be expressed as a function of the form 

g(x0  - x), the definite integral takes theform of the faltung integral 

with limits a, b, 

- Choose any real function f1(x 0) which is continuous in a . x b 

Then define f2(x0 ) ; 	f3(x0 ) ; 	•., 	f(x0 ) 

f2(xo ) 	h(c) 	g(x0  - x) f1(x)dx 

f3(x0 ) 	h(x0 ) + S 	- x) f2 (x)dx 	 V 	
f) 

h(x0) + S g(x0 	x) f 1(x)d.x • 	 V 
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I will state without proof that 

limf(x0 ) 

lip 

and that this limit is independent of the choice of f 1(x0 ). The form of 

f(x0 ) is dependent upon f1 (x0) , so the rapidity of convergence of the 

sequence is affected by this choice. 

Example: Consider an infinitely long cylinder with an absorber arranged 

coaxially as follows: 

Fig0 6.1 

Particles are injected into the cylinder with an isotropic angular 

distribution. If they strike 

Fig. 602 

the absorber they are lost. If they strike the walls they are absorbed, 

then reemitted with an isotropic angular distribution. 
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• 	 - 4.- 

o.bsor bcv 

Fig, 6.3 
• 	Suppose that we are interested in the flux incidentupon the area 

defthed by 'a ring of width dx. 

Let total flux 	f(x) ; thenumber of particles arriving directly 

from source = 5(x) Asa particle reemitted at x has an isotropic 

angular distribution, it may be treated as a "random walk" problem. The 

flux incident upon the area under coñsideràtion, therefore, is 
• 	

P(x - x)S(x0 ) 	 - 

• where P(x0. - x) is a probability function obtained from other considerations, 

notably the geometry of the experiment. The total flux is 

f(x) 	S(x) 
+Sx 

- x) S(x0 )dx0  

which may be treated by the method of successive approximation 
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