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ABSTRACT 

This report discusses effects observed in a feedback system, other­

wise linear, in which time is quantized. (These systems are often termed 

"sampled-data" systems). The time quantizer ("sampler"), the most im­

portant element in the system, is treated in detail as applying to any sort of 

sampling that can be approximated by a purely amplitude-sampling process, 

Following a general physical description of amplitude-sampling, the 

output spectrum of an amplitude sampler of arbitrary pulse shape is derived 

and discussed. On the basis of the spectral analysis, a linear transfer 

function is developed which is applicable, with certain important limitations, 

to signals of all frequencies. The behavior of this transfer function is 

discus sed, and several cases are distinguished. 

The problem of stability in a feedback loop is treated, with particular 

attention to the important type of oscillations that are here dubbed "sampling 

oscillations." A general criterion for stability is developed, which includes 

all possible oscillations. Mathematical and physical interpretation of the 

stability criterion is provided, and a procedure is devised for the solution 

of practical problems. 

Experimental evidence is offered in support of the theoretical results, 

with good agreement. The theory is also checked by calculation of the behavior 

of a special case whose sampling oscillations are amenable to transient 

analysis. Complete agreement between these calculations and the prediction 

of the theory is found. 
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A SPECTRAL APPROACH TO SAMPLED,..DATATHEORY 

John F. Waddell* and Harold D. Morris t 

Radiation Laboratory 
University of California 

Berkeley, California 

June 13, 1958 

1. INTRODUCTION 

When in an otherwise continuous-control feedback loop, some 

nonlinear element is inserted which imposes upon the system a quantization 

of time (a "sampling" process), the result is termed a "time-quantized, 11 or 

'
1sampled-data'' system. No matter how the time-quantizing element, or 

''sampler, 11 operates, the result is the same: time is divided into equal 

intervals. At the beginning of each interval the loop is closed for a small 

fraction of a time quantum. The output of the sampler is a train of pulses, 

one for each quantum of time, each carrying the information derived from 

a momentary loop closure. In the usual form of sampler, the envelope of 

the output pulse train approximates the input signal. The analytical methods 

and concepts used here apply to any pulse shape, and with adaptation, to 

any type of sampling. 

An example of a time-quantized feedback system is given in Fig. 1, 

where it is the error signal that is sampled. Other possible variations of 

such a system involve rearrangement of elements in the loop; to these apply 

the same concepts and methods, even as to systems containing only passive 

elements. 

The earliest references in this field are those of MacColl
1 

and 

Hurewicz, 2 each of whom uses an approach based upon the "Z-transformation, 11 

* Now at St. Mary's College, California. 

t Now at Donner Scientific Company, Concord, California. 
1
MacColl, L.A. Fundamental Theory of Servomechanisms, (Van Nostrand, 

Princeton, N.J. 1944), Ch. 10. 
2
Hurewicz, W. in Theory of Servomechanisms, James, Nichols, and Phillips, 

Eds. (McGraw, New York, N.Y., 1947). 



-4- UCRL-2208(2nd Rev.) 

Comparator 

Controlled 
element 

I 
~ 
I I 

INPU:.... ®-- 1_----11 I 
1!!1""" • _ _!-_E_r_r_o_r--' . ._., Sampler 

ampl. . 
·------· I 

Ja . 
Sampling-frequency 

input 

Return-path 
elements --

Fig. 1. A typical time..;quantized feedback system. 
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a disguised Laplace transformation. The basis of the method is the use of 

sequences representing th~ values of input. output, and signals at other points 

in the feedback loop, at each instant of sampling. This involves calculations 

with knowledge of the pertinent signals only at the sampling instants. 

Linvill takes a physical vie.w of the problem, treating the particular 

case of "impulse" sampling in detail. 3 He regards the use of any sampling­

pulse shape other than the impulse, or delta function, as being amenable to 

treatment as impulse sampling plus linear filtering. This is approximately 

true in most common cases, but is not an applicable point of view when the 

sampler pulse is shaped by nonlinear or by active networks, or when the 

sampling is done by means other than purely amplitude sampling. He develops 

expressions for the sampler input and output spectra and time functions, and 

uses these and the fact that the spectrum of the impulse-sampler output is 

periodic in the sampling frequency to derive an expression for the output 

time function of a feedback loop containing a sampler. An extension of 

Nyquist's stability criterion is implicit in his output equations, and he treats 

its application in the remainder of the paper. The spectral (Laplace-transform) 

point of view was applied to feedback systems containing a digital computer by 
4 

Salzer. 

A very clear review of the field as of 1951 was contributed by Ragazzini 

3w. K. Linvill, Sampled-data Control Systems Studies through Comparison of 
Sampling with Amplitude Modulation, Trans. Am. Inst. Elec. Eng'rs. 70, 1779 
(1951). -

4
J.M. Salzer, Sc.D. Thesis, Mass. Inst. Tech. (1951). "A Treatment of 

Digital Control Systems and Numerical Processes in the Frequency Domain~' 
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5 
and Zadeh, exponents of the Z-transform method, who most successfully 

relate their method'to the Laplace-transform approach of Linvill. 

Lago and Truxal treat the design of sampling system~, using the 

Z-transform method to treat the stability problem and using open-loop 

impulse-response calculations to derive the response between sampling 

instants. 
6 

However, this approach applies only to impulse sampling. 

In another paper, Lago reveals a discrepancy between the results of 

the Laplace and Z-transform methods and proceeds to resolve the question. 
7 

In yet another contribution, Lago outlines a method by which sampled-data 

systems can be synthesized, using the Z-transform method. 
8 

This work was undertaken to develop a theory of stability based upon 

the spectral approach, and to provide physical interpretation of the phenomena 

involved. In general we share the opinion of Linvill that the viewpoint which 

stresses frequency analysis lends itself most readily to physical interpretation. 

Consistent with the spectral point of view, we carry out the analysis in terms 

of a generalized pulse shape, subject only to the requirement that its Fourier 

integral converge. Generality is gained; the theory herein developed is not 

limited to cases where pulse shaping is performed by linear networks. The 

sampling process need not be a pure amplitude-sampling process at all, but 

may be accomplished by any means that yields a sampled output proportional 

to the amplitude of the input signal at the sampling instants. The theory 

developed here may be applied as long as the networks containing the sampling 

process are susceptible to transfer-function measurement and to determination 

of output spectrum. 

J. R. Ragazzini, and L.A. Zadeh, The :Analysis of Sampled-Data Systems, 

Trans. Am. Inst. Elec. Eng'rs. l!_, 225 {1952). 
6 

G. V. Lago and J. G. Truxal The Design of Sampled-Data Feedback Systems, 

Trans. Am. Inst. Elec.:.Eng'rs. 73,' .'247 (1.954). : ,, 
7 
G. V. Lago Additions to Sampled-Data Theory, Proc. Nat'l. Electronics 

Con£. 10, 758 {1954). 
8 -

G. V. Lago A Synthesis Procedure for Sampled-Data System, Proc. Nat'l. 

Electronics Con£. 11, 351 {1955). 



,;:...., • 

-6- UCRL-2208(2nd Rev.) 

2. MECHANISM OF THE SAMPLING PROCESS 

The sampling process is illustrated in Fig. 2. 

The discussion to follow will concern itself principally with the 

transmission of a monochromatic input signal of arbitrary frequency having 

unit amplitude, as is usual in discussions of linear processes. The sampling 

process is a "linear" modulation process in which nonlinearity results in 

interaction between the sampling-frequency signal and the input= signal 

components, but not between the input components themselves. Thus to an 

input-signal component having some frequency v , there corresponds an 

output component of the same frequency whose amplitude is proportional to 

that of the corresponding input component. 

For an input signal whose frequency is very small compared with the 

sampling frequency, time quantization has negligible effect, and ordinary 

linear analysis is reasonably satisfactory. As the input frequency increases, 

so as to no longer be much smaller than the sampling frequency, effects of 

sampling become noticeable, and the degree of approximation to which the 

linear analysis applies becomes less. As the input frequency approaches 

sampling frequency, sampling effects become predominant, and ordinary feedback 

theory fails in several important respects. How this comes about is perhaps 

best explained from a purely physical point of view. For convenience, the 

discussion will be particularized to the case of "clamped" sampling. 

Consider the case of an input signal whose frequency is exactly the 

sampling frequency (let the input signal be sampled at its own frequency); 

the output can then contain only a constant-amplitude (zero-frequency) term. 

The amplitude of the output then depends only upon the phase at which sampling 

occurs, and accordingly can take on any value of amplitude that might be 

repetitively reached by the input signal during successive sampling instants. 

Now suppose that the input-signal frequency is somewhat below sampling 

frequency (which we will call v ). Sampling will take place at intervals of 
-0 

somewhat less than a period of the input signal. The output will accordingly 

be a train of square pulses of length nearly equal to a period. This situation 

is shown in Fig. 3a. Note that the largest spectral component of the output 

has a frequency much lower than that of the input. Actually (as will be shown 

later), the low frequency is the difference between input and sampling 

frequencies .. There is also a small component whose frequency is that of the 

input signal, and there are many smaller components whose frequencies are 

greater than the sampling frequency. 
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Fig. 2. Illustrating sampling for an input signal of 
arbitrary waveform. 
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One might now ask what the situation would be were the frequency of 

the input signal to have the lower value (i.e. ll lie close to zero). Figure 3b 

shows outputs due to input signals of unit amplitude and frequencies of 

v /8 and 7 v /8 to be identical in appearance. Also shown in Fig. 3b are 
0 0 

the output spectral components of these frequencies, plotted from results 

shown subsequently; their sum is plotted in Fig. 3c as a matter of interest. 

One can now form a picture of the output spectrum for frequencies 

less than v • Given an input signal of unit amplitude and variable frequencyll 
0 

for input frequency near zero the output will contain a component of input 

frequency whose amplitude is close to unity. A difference-frequency component 

having small amplitude exists. As v increases, amplitude of the component 

of input frequency decreases, and amplitude of the difference-frequency 
~ -

component increases. 

At this point it is well to inquire into the happenings at half-sampling 

frequency, where the input and difference frequencies a1'e equal. As for the 

case of equal input and sampling frequencies, magnitude of the output depends 

upon phase of the input. signal at sampling instants, a situation illustrated 

graphically in Fig. 4. If input f~equency were perturbed from v /2a the 
0 

square-wave train would grow to maximum valuell shrink to zero, then grow 

with opposite phase, pass maximum value, shrink again, etc. This is 

suggestive of interference between the input- and difference-frequency 

components (of equal magnitude at half-sampling frequencyll their relative 

phases depending upon sampling phase). 

Next consider the case in which v = nv /2 for n > 2. In the even case 
0 

(v = m v ), the result is obviously identical with the case m = l, where the 
0 

output has zero frequency with the amplitude dependent upon the phase at 

which sampling occurs. The only difference now is that sampling occurs 

every m periods of the signal. A similar relation holds for the half­

multiples, (2m-l) v /2 = (m - l/2) v • Here a train of square waves 
0 0 

occurs, the period being 2/v , sampling occurring every (m - 1/2) periods 
0 

of the signal. As will be shown later, the sum- and difference-frequency 

pattern repeats in every band of width v 
0 

sec -l; with every multiple of 

sampling frequency including zero,there is associated a pair of spectrum 

lines of frequencies m v + v and (m + 1) v - v • Physical behavior of 
. 0 0 0 . 

the output is similar in the higher orders to that noted for the zeroth order, 
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Fig. 3a. Clamped sampler input and output for input frequency of 7/8 sampling 
frequency. Note the genc1·at.i.on of. u. low frequency (difference 
freque~1cy) cornponent nearly as large in amplitude as the input signal 
itself. 

Fig. 3b. Claq1ped sampler output for input signals (solid lines) of 1/8 and 
7/8 sampling frequency, and spectrum of output (i.e., output 
components) in the region below sampling frequency. 

\ 

Fig. 3 c · Clamped sampler output for input frequency of 1/8 or 7/8 sampling 
frequency. Components of the output having those frequencies are 
shown, together with their sum. 

· MUB-153 
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Fig. 4. Illustration of the effect of sampling phase upon 
clamped sampler output when input frequency is half the 
sampling frequency. 
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with the same inte.rference behavior at (m - 1/2) v 
0 

and the zero~ beat 

phenomena at m v 
0

• These effects were. observed experimentally on a physical 

sampler up to approximately the fiftieth order, at which time imperfections 

in the sampler caused difficulty in the observations. 

In discussing the transfer properties of a sampler, our interest lies 

almost exclusively in the region between zero and the sampling frequency. 

By ':'transfer properties" we mean the relationship existing between the 

input signal, a sinusoid of frequency v, and that component of the output 

spectrum having the same frequency, v. This relationship may conveniently 

be expressed in terms of a "transfer function," which is the complex ratio 

bf output to input (considering only the output component having input frequency}. 

The term "transfer functionn is used by most writers in feedback theory 

to describe something quite different from what is dealt with here. 9 

Ordinarily, the transfer function of a network is the ratio of some operational 

transform of the output time function to that of the input for an arbitrary 

input function. For a linear passive network, the definition of "transfer 

function" used in this work agrees with the customary definition with the 

Fourier transform used, and is called by some writers the "frequency-transfer 

function''. In this sense, a transfer function is a "spectral-modifying func~ 

tion" wherein the spectrum of the input is modified only by changes in 

amplitude and phase of the spectral components, these changes being a 

function of frequency of the component operated upon. This is an embodi-

ment of the principle of superposition, and the output spectrum contains no 

component having any frequency not present in the input. 

In the time-quantized case, however, the principle of superposition 

holds in another sense, namely that the output spectrum corresponding to an 

input spectrum made up of a series, or superposition of spectra, is the. 

superposition of the output spectra due to each of the individual inputs. 

The sampler is a device having two inputs and one output, interaction 

occurringbetween the signals entering the two inputs. There is, however, no 

interaction between two signals simultaneously applied to the "signal input.", 

or'~he''i.nput. Therefore, no unique transfer function exists·in the transform 

sense. In general, no function can be written down that expresses the ratio 

9cf. Greenwood, Holdam, anc;l MacRae, Electronic Instruments, (McGraw-

Hill, New York, N.Y., 1948) p. 230 et. seq; or Theory of Servomechanisms, 

James, Nichols, and Phillips, Eds., (McGraw-Hill, New York, N.Y •• 1947). 
p. 58~~~ 
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of the output spectrum to that of the input, excepting in a purely symbolic 

way. The symbolic "transfer function" one would thus obtain is dependent 

upon the input waveform and is not a function of the sampler alone. 

The general nature of the amplitude of the previously defined sampler 

transfer function has been established as a monotone decreasing function having 

unit amplitude at zero frequency and zero amplitude at v • A clue to the 
0 

nature of the phase function may be found in Fig. 2. It seems reasonable to 

conclude that a constant delay of approximately half a sampling period occurs. 

Again, reference to Fig. 3b suggests the correctness of such a conclusion 

at the lower frequencies, although little can be said regarding frequencies in 

the region near v 
0

• Thus, in the lower range there is reason to conclude 

that the sampler is, or is nearly, a constant-delay (linear=phase) device. 

Proof of this conclusion results from mathematical analysis of the output 

spectrum. 

The transfer function of a sampler is all~important in considering 

such a device as part of a feedback loop; this paper is devoted principally to 

a discussion of transfer properties. Based upon physical reasoning, a 

picture has been drawn of this function on which only one blot appears aside 

from waveform distortion, namely, that at half-sampling frequency there is 

a discontinuity in behavior. This is of course due to the fact that v /2 is 
0 

the only frequency for which v - v = v; therefore at v /2 one might expect 
0 . 0 

the sampler to be a poor risk in a feedback loop. 
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3. THE OUTPUT SPECTRUM 

An excellent discussion of factors affecting spectra composition of a 

sampler output is given by Bennett, who deals with the "flat" spectrum resulting 

from "instantaneous" sampling (sampling pulses are modulated "delta-functions").
10 

For pulses of finite length, the spectrum is modified by an "aperture effect" 

which is a function of pu~se shape and length. The most concise expression 
11 for the output spectrum results from the work of Kleene, whose paper is a 

mathematical analysis yielding the output of a sampler having generalized 

pulse shape, assuming a generalized input waveform. His results will be used, 

and enlarged upon, in this work. 

Let ther~ be given, then, a sampler whose pulse shape g(t) is arbitrary, 

save that its Fourier integral converges. An example of such a waveform is 

provided in Fig. 5a, which depicts the unmodulated output of some sampler as 

a function of time. The sequence of instants marking the beginning of each 

sampling period we call { tk} , i.e., { tJ = {k/v o} . 

Assume that the input signal f(t) possesses an enumerable set of 

spectrum lines, implying that the input can be expressed as the sum of a 

finite or enumerably infinite set of periodic functions. Thus, we can express 

f(t) as a sum of Fourier series, 

00 00 

f(t) = \~ 
brm~ 

c ms e 
21Tim v t 

s 

where 1/v is the period of the sth periodic component of f(t). s 

(3 .1) 

Now by definition of the sampling process, an example of which is 

provided in Fig. 5b, the output of the sampler is 

(3.2) 

consisting of the pulse train g(t - { tk} ) modulated by the sequence of input 

values at the sampling instants, f( {t~ ) • 

10 
W. R. Bennett, Spectra of Quantized Signals, Bell System Tech. J. 27, 

446 (1948). 
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Fig. 5. Input and output of a sampler having some (arbitrary). 
pulse shape g(t). (a) Unmodulated pulse train. 
(b) Modulated pulse train F(t) (cross-hatched), with 
modulating input function f(t) (solid=line curve). 
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When Eq. (3 .1) is written for the sequence ~k}, and substituted into Eq. 

(3.2), with suitable transformations, 
11 

the result is 

F(t) 

00 

=~ ) 
L_ 
s=1 

00 

'\ 
I 

{_ 
m=-oo m=-oo 

21T i(nv +mv )t 
0 s c W(nv -f,rnv )e ms o s · 

where m and n are integers, and 

1/v 
W( V) = v o r o g(t) e -lvivt dt 

f 

(3.3) 

(3 .4) 

The nature of the output spectrum is apparent: there are spectrum 

lines for all values of m and n at nv + mv The complete spectrum of 
0 s 

the input signal is transposed in frequency to cluster about each integral 

multiple ("harmonic") of the sampling frequency. The entire spectrum is 

modified by that of the single sampling puse-i. e., each spectral component is 

modified by the. Fourier transform of the sampling pt\lse, evaluated at the 

frequency of the line in question. Illustration of the above is given in Figs. 6 

and 7. 

In the case where the input is a simple sinusoid, the relations take 

the form 

or 

Thus we have 

00 

F(t) \ = 
I .____ 
n=-·oo 

f(t) = a cos (2 1T vt) (3.5) 

f(t) 

a 

2 

a a 

2 2 

-21T.iVt • e 
(3.6) 

r(n v 0 - v)e lv i(nVo - v)t + W(nv 0 + v)e 2 vi(n Vo + v)~ 0 

(3.7) 

Each integral multiple of v
0 

has "sidebandsrr differing from nv
0 

by ±v. 

It is of interest to consider the spectrum as input frequency varies 

from zero to many times the sampling frequency. As the input frequency term 

v starts up from zero, 1the difference-frequency term v 
0

- v starts down from 

v 
0

, and a set of sum-frequency terms nv 
0 

+ v and of difference-frequency 

11s. C. Kleene, Analysis of Lengthening of Modulated Repetitive Pulses, 

Proc. IRE~~ 1049 (1947). 
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1.0 

Ml.J-13954 

Fig. 6. Pulse train of Fig. 5a. and magnitude of the spectral 
density (Fourier transform) of a single pulse (positive­
frequency portion). 
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Ill 
(c)--~~~~~~~~~~~~~~~~~u 

MU-13955 

Fig. 7. Structure of sampler output spectrum, showing 
(a) amplitude spectrum of some arbitrary input signal; 
(b) input- signal spectrum transposed to multiples of the 
sampling frequency (This is not the output spectrum.); and 
(c) input signal transposed and modified by spectrum of 
sampling pulse. Only amplitude is shown, of course (This 
is the output spectrum). · 
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terms (n + 1) v - v approach eaeh other in every interval of width v • Each 
0 0 

term is of course modified by W(v). 

As the input-frequency term comes to the value v /2, all of the sum 
0 

and difference terms in each interval of width v
0 

coalesce. When v becomes 

·,. larger than v /2, the spectrum lines change roles (as though they had "passed" 
0 

each other at the moment of coalescence); behavior of the spectrum is 

symmetrical about v /2. When v is any integral multiple of v , the spectrum 
0 0 

is identical to that for v = 0. Indeed, inspection of Eq. (3.7) shows that the 

same spectrum results for a unit amplitude input applied, having the frequency 

of any spectrum line. Figure 3 illustrates the effects mentioned above. 

One further effect is left to be explored, the possibility of cross­

modulation. In Eq. (3.3) we let the index s take on the values 1 and 2, and 

m the values ± 1, corresponding to an input signal consisting of two equal 

sinusoids 1 with frequencies v 1 and v 2• Thus we obtain 

2 1ri (n v 
0 

+ v 1 )t 
v 1 )e 

since we have G-ls = c 1s = Gs = c 1 = c 2 =G. The result is a linear 

combination of terms in frequencies v 1 and v2 separately; no terms of 

frequency v 1 ± v 
2 

or of any other combination of v 1 and v 2 occur, and we are 

led to the obvious conclusion that there can be no cross modulation. Hence we 

have the term "linear modulatiol},' 1 used previously. Therefore the principle of 

superposition can be correctly applied to the sampling process. Experimental 

verification of the above result was obtained. 
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4. THE TRANSFER FUNCTION 

Here is examined the behavior of the particular line of the output 

spectrum having input frequency, as the input frequency is varied over the 

entire domain of real values. The input signal will be throught of as a real 

function with a positive real frequency, v, expressible by Eq. (3.5). Because 

we are using complex Fourier series representation, there are two spectrum 

lines, at± v (i.e., m = ± 1), as expressed in Eq. (3.6). The line of frequency 

vis represented in Eq. (3.7) by the term in +v for n = 0, namely W(v) 

exp (?,tri vt) .. ~; The coefficient of this term, W(v), is the transfer function of 

the sampler everywhere except on the discrete set of frequencies v = (2n - 1 )v j Z. 

(a ca;,se ·to be discussed int detail subsequently);i W(v) is defined by Eq. 

(3.4) (which is assumed to be convergent); hence W(v) is an analytic function of 

"· 
In the discussion to follow, it will be useful to have as an illustrative 

example a specific type of sampler. The clamped sampler provides a suitable 

example. The discussion of the transfer function will, however, be kept in 

general terms, applicable to any physical pulse shape. Application of the 

principles will subsequently be made to the delta-function, or impulse-type 

sampler, which has some interesting properties. 

In the case of the clamped sampler, the pulse is one of simple 

square shape and of duration equal to the repetition period. Thus. Eq. (3..4) 

integrates to 
v v -itr-- sin 'If---

v v 
W(v) = e 

0 0 (4 .1) 
v 

'IT-

v 
( 0 

or 

sin tr 
v 

I W( v >I 
v 

0 
= 

v 
(4.2} 

1T --

v 
0 

and 
v sintr--

v 
arg W(v) v + arg 

0 
= 1T- (4.3) 

v v 
0 1T --

v 
0 
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Equation (4,3) embodies the linear-phase property discussed previously, 

the function arg (sin u/u) being -krr, wh'ere k is the number of zeros of 

sin u/u which lie between 0 and u. The phase properties are an outgrowth of 

the pulse shape alone. 

Figure 8 shows the locus of this transfer function in the complex plane 

for arg W < 81T , i.e., for the first four orders of the spectrum. 

The function W(v) as described in Eq. (4.1) is everywhere single~valued 

and continuous in the domain of real frequencies. It has a zero at each point 

of the set v = nv 
0 

(n is any integer> 0), imp)ying that there is no output at 

sampling frequency or any integral multiple thereof greater than zero. Its 

curvature is continuous at the zeros, as examination of Eq. (4.3) will show. 

As previously mentioned, occurrence of the input frequency at any 

odd integral multiple of half- sampling frequency gives rise to discontinuous 

behavior of the transfer function. Physically, this resulLmay be ascribed to 

an interference between the sum and difference freq-qencies in each spectral 

order, as is shown in the analysis to follow. 

The method is one of perturbation of the input frequenliy fro:m any 

member of the set (2n - 1) v /2; recalling the property of the spectrum that 
0 

identical spectra are obtained in response to, unit inputs having the frequency 

of any line of the spectrl.ll'P we \].Se the value v 0 /2 for input frequency. Thus 

we write Eq. (3. 7 ), and we change the index of summation from the multiple 

of sampling frequency to the spectral order; i.e., the interval of any order 

k lies between the zeros of the (k - 1) and the k orders. Then let 

with 

v = 

6v 

v 
0 

v 
0 

- 6v 

< < 1 • 

(4.4) 

If we substitute Eq. (4.4) into the modified Eq. (3. 7), and simplify the 

expressions for the frequencies, then W(v), being analytic, may be replaced 

by its Taylor expansion in the neighborhood of (k- 1/2) v , k being any integer. 
0 ... , 

In view of the restriction of Eq. (4.4), we may replace v\'Qk - 1/2) v 
0 
+ o'] 

by the leading term. The result is 
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0:4 0.6 0.8 Re(W) 

0.4 
e -0.8 .... 

MU-13956. 

Fig. 8. Partial transfer function of a perfect amplitude sampler 
of the clamped type. Numbers shown are the frequency 
normalized to sampling frequency. Only the first four 
orders of the function are shown. 
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F(t) = 

00 

L 1<=-oo 

a 
W [(k-1/2) v j { e 

2 ~i [fk-l/2)·v 
0

- ovJ t 21T. i ok-1/2) v 0 +oJ t} 
+e . 

(4.5) 
2 

Now we consider the behavior of each term (spectral order) independently 

of the othe.rs, phase being referred to the lower-frequency (difference-frequency) 

line, with the result 

(4.6) 

In each order the output consists of the sum of two components which interfere 

in the limit, when their frequencies are k v /2, to produce an output magnitude 
. ' 0 

. that is in accordanc~ with the phase of sampling. If we allow the perturbation 

to remain, we see the behavior very clearly. For every order, the rate of 

precession in phase of the upper: component with respect to the lower has the 

same value, namely 2(21T ov). The time required for a precession through 

one period of the output is the same for all ordere, irrespective of their 

frequency. (Note that their frequencies are perturbed integral multiples of the 

signal frequency.) Thus the output waveform grows from nothing to its maxi­

mum value and then shrinks again to nothing, ,the cycle being repeated as long 

as the perturbation remains .. T~roughout all this process the waveform remains 

unchanged, because the interference is in each order of the same degree_ as in 

all the others. All the orders interfere to the same degree, simultaneously. If 

at any time in the cycle .that is·decribed here the perturbation is removed, the 

output remains frozen at the condition then existing •.. The exponent 2(21Tovt) is 

seen to be just twice the phase of sampling, the transfer function thus having 

period 1T ::With respect to the variable <j>. Equation (4.6) may therefore be 

written in the limit 

where <j> is the phase at which sampling occurs. 

Equation (4.7) is the kth term of the series in Eq. (4.5), in the limit 

ov = 0.' The output is therefore 

(4. 7) 
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2rri (k- 1 / 2) v t 
0 

(4.8) 

This is the response to a monochromatic input having for its frequency any 

odd integral multiple of half the sampling frequency. If the function W(v) is 

represented by a contour on the complex plane (e. g., Fig. 8), each of the 

interference terms in the output (Eqs. 4.6, 4. 7, and 4.8) adds a circle centered 

on w(lk-l/2)v o] and pas sing through the origin. 

The~behavior described above also occurs at any integral multiple of 

sampling frequency. To show this, we take Eq. (3.7), and without re­

arranging, we let v = ov for ov/v < < 1 as before, realizing that, as pre­o 
viously, in the limit, W(nv ± ov) approaches W(nv ) as ov is allowed to vanish. 

0 0 

Thus the factors W(nv ) exp (2rrinv t) . : are removed. Again, as before, 
0 0 

phase is referred in each term to the lower-frequency spectrum line. Thus 

we have the set of equations 

(4.9) 

All the remarks made with reference to the v 
0
/2 case apply here. In the 

clamped sampler, W(nv 
0

) = 0 for all values of n > 0. For samplers having 

pulse shapes other than square, W(nv ) does not in general vanish, and one 
0 

thus finds interference at all integral multiples of half the sampling frequency. 

A case in point is the clamped sampler, the pulse shape being square 

and of length 1/v , whence we write 
0 

W ~k-l/2)v0J =- 1 

Thus we obtain 

F(t) = - i 
a .2 

2 lT 

2 

(2k-l) lT 

00 

(4.10) 

2rri(k-l/2) v t 
0 L e------- . (4.11) 

2k-l 
k=-oo 

This case is illustrated in Fig. 9. The first order shows the largest and 

most important effect, and hence is given special attention· in Fig. 10. If 

we use the clamped sampler as an illustration of the general case and take 
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MU-13957 

Fig. 9. Complete transfer function for the clamped sampler 
in the first four orders, showing the interference 
structure occurring at n v /2. Here Fk are sum-frequenc~ 
components of kth order, ook are difference-frequency 
components,. and Rk are the resultants. 



-2 3- UCRL-2208 (2nd Rev.) 

-04 

MU-13958 

Fig. 10. Region below the first zero of the sampler transfer 
function of Fig. 9, showing mechanism of interference 
between spectral components of sampler output at half­
sampling frequency. 
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the perturbation once more, the input-frequency component lies arbitrarily 

close to v 
0
/2, and the difference-frequency component is symmetrically 

disposed beyond v 
0
/2. The latter case precesses in phase about the 

'!fundamental," or input-frequency component at a rate equal, in precession 

periods ·per second, to the separation (2ov) between the two spectrum lines. 

If at any time we remove the perturbation, we have a possible combination of 

circumstances in the limit at v /2. Thus, solely because of chance, the output 
0 

phase at v /2 could lie anywhere on the circular locus shown. The accidental 
0 

nature of this interference phenomenon makes the transfer function discontinuous 

at (2n-1) v /2, with the transfer function consisting of W(v') plus the set of 
0 

circles discussed a:b6ve. 

The case where the sampling pulses are unit impulses is of interest, 

as it has been used in the work of both Linvill and Bennett. Let the pulse 

shape now be 

g(t) = o(t), (4.12) 

where o(t) is the Dirac o function .. Thus we write 

where 

o (t) = lim S(t, a) , 
a-Oc 

S(t~ a) = 

(4.13) 

(4.14) 

The function S(t, a) is a Gaussian of width a and amplitude 1/ a, hence of 

unit area whatever the value of a. 

Substituting the above into Eq. (3.4) and performing the integration, 

we have 

and 

W(v) = lim W(v, a) 
a_,o. 

(4 .15) 

2 2 2 
-2rr a v 

W(v, a) = e 

Combined, Eqs. (4.6) and (4.9) are 

v 
Fn(t) exp [-2rri (m-;- -ov)t] = 

(4.16) 

W(~) [ 1 + e 4rriovt] 
2 
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For W(mv /2) we substitute the expression of Eq. (4.16), with v = v /2, and 0 . 0 

pass to the limit a = 0. Thus we abtain 

·l 2rti(2ov:)t 
- 6 v )t 1 = 1 + e . ( 4. 1 7) 

i _, 

. All orders have their interference circles superposed in a single one centered 

on the point 1 + Oi. 

To consider that the sampling function will occur on an impulse basis in 

any physical system is of course a mathematical idealization. We can profitably 

make this idealization if the actual pulse shape can be attributed to linear passive 

networks, becaus.e the function of these can be readily described in terms of a 

transfer function. If, however, the pulse shaping is due to the action of non­

linear or active networks, things are not so simple, and therefore describing 

the transfer properties of a physical sampler in terms of its pulse shape 

has the advantage of simplicity and realism. In any event, the o-
function idealization does not in any respect free us . from the interference 

phenomenon. It is an essential result of the quantization of time, and of 

nothing else. 

We might also note that the impulse sampler is a reasonable idealization 

o£ a physical sampler using short pulses, and illustrates. one significant feature 

of the latter: the shorter the sampling pulse, the smaller the output amplitude 

for a given input. In fact, the output-to-input amplitude ratio is proportional 

to the pulse width, a, for the Gaussian shape, which comes fairly close to 

being representative of very short electronically-generated pulses. 
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5. ARBITRARY INPUT, PERIOD NEAR 2/v 
0 

To facilitate the discussion in the next section, we will here consider 

the output resulting from an arbitrary periodic input whose period is close to 

twice the sampling period. To start with, the input and output are given by 

Eqs. (3.1) and (3.3), respectively, with S restricted to unity. Then Eq. (3.3) 

becomes 
00 

F(t) 0 L 
n=-oo 

inw t 
c W(nw ) e 

0 

0 0 

00 00 

~ 

\ 
+L 

m=l 

e 
i(nw +mw)t 

0 

i(nw - mw) tj 
+c W(nw - mw) e 

0 
• -m o 

For convenience, we call the double-sum term by the name H(t). Applying 

Eq. (4.4), we obtain 

00 

H(t) OL 
00 

----­\ 

) 

L 

w 
r 
Jc W(nw 
\ m o 

w i(nw +m ~ -mew)t 
+ m -

0
- -.~mew) e 

0 
2 

2 
\. 

(5.1) 

m=l n=-oo 

w
0 

i(nw -m 
+c W(nw -m -- +mew) e 

0 

-m o 2 
2 

+mOw) t} . 

We next shift the order of summation so as to pair off terms whose frequency 

arguments are separated only ew, making the explicit provision that the analysis 

will apply only to pulse shapes such that the function W(w) is analytic (see Eq. 

3.4). Imagine the second n sum (that involving c ) in Eq. (5.2) to have an 
-m 

index k instead of n. Then impose the condition 

+m 
wo 

= kw 
wo 

nw -m 
0 

2 0 2 
or 

n + m =k 
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This is substituted into the first n sum of Eq. (5.2); the expression is now 

summed on the index k, re suiting in 

00 

\ \ 
H(t) = I L 

m=l k =-oo 

r r 
~em W j (2k-m) 
I. -

r 

2 

~l il(2k-m) :
0 

-·maw] t 
-·mowj e L 

+c WI (2k-m) 
-m 1 

+·mowl t l 
' ( 

) 
L 

For sufficiently small values of ow/w, we have 

.-a.. 
H(t) = \ r 

I 

m=t 

00 ·­' 

/_ 
k=-oo 

c w 
m 

e 

___ e . c -m 2imo"wt] . 

c 
m 

(5.3) 

The quantity 2owt is the precession rate of the sampling instant. If the per-
t 

turbation is removed, the process is stopped at some particular value of1 the 

sampling phase, reckoned on the scale 21r = 2/" (the phase is referred to the 
0 

fundamental frequency component of the spectrum). We call 

tow = <j>(t) (5.4) 

the sampling phase, whose zero is reckoned from the maximum value of the 

interference factor in Eq. (5.3), (i.e., from the time of reinforcement). 

Referring to the expression for f(t), we see that in order for f(t) to 

be real, we have 

Accordingly we find 

* c = c 
m -m 

=~ m 

(complex conjugate) and thus 

e 
±iB 

m 

c -2iB 
-m m 

c 
m 

= e 
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and the last (bracketed) factor in Eq. (5.3) is 

v /2. 
0 

2i(m<j>- e ) 
1 + e m 

Particular interest lies in the case where input frequency is precisely 

Equation (5.3) is, with the perturbation .removed (and with slight 

rearrangement), 
i(k- m ) w t 

H(t) 

00 

= L. 
m=l 

~ m l 2 o 
W Ll<; - -;- ) w0J e 

(5.5) 

The entire output is 

00 

\ 
F(t) = L ikw t 

c W(kw ) e 0 + H(t) . 
0 0 

(5.6) 

k=-oo 

As noted above, e is the phase of c , and <j> is the phase of sampling. 
m m 

With regard to the latter, some remarks may be pertinent, as considerable 

potential for ambiguity exists. 

In the case where m = 1 (the so-called "fundamental" component of 

the input spectrum), the argument of the interference term is 2i(8
1

-<j>), giving 

maximum value to the term at <j> = e
1

. Likewise, for each order, the term 

reaches its maximum value when m<j> = e . Now <j> is the phase of the 
m 

"fundamental, 11 or first-order term at which sampling occurs, give or take 

some constant that depends upon input waveform. The zero of <j> is determined 

by the fact that maximum first-order output obtains if sampling occurs at 

<P = el, the phase of any component being referred back to the interval between 

successive occu'rrences of any particular value of the input time function. 

In Eq. (5.6 ), the first series represents the output corresponding to 

the average value~ or zero-order term, of the input, and consists of a track of 

identical pulses. Superposed upon this is the dynamic output signal, H(t), of 

Eq. (5.5}. 

The function H(t) (Eq. 5.5} is to be compared with the function F(t} of 

Eq. (4.8}. In Eq. (5.5), each term of the sum on m consists of, firstly , the 

Fourier coefficient of the input component of mth order~ and secondly, the roth­

order interference factor 1 + exp (2itj!m}, where l!Jm = m<j> - em is the phase 
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at which the mth-order component is sampled. Thirdly, there is the output 

pulse train embodied in the k . sum. The (partial) argument {m/2) w is the 
0 

frequency of the mth-order spectrum line of the input and output. The 

complete argument (k-m/2)w is the set of frequencies of the set of spectrum 
0 

lines resulting from the mth-order input component. 

It is profitable to write H(t) in another way. Because the argument of 

the k ·series in Eq. ( 5. 5) ~ may be written (2k-m)w /2, and since the factor 
0 

(2k-m) is a dummy variable, it may be used as the index of summation. This 

factor is dependent upon m only in the matter of oddness or evenness ; i.e .• 

if m is odd, (2k-m) is odd; if m is even, (2k-m) is even. Thus it is possible 

to break up H(t) into two double sums, one involving only even values both of 

indices m and k, the other involving only odd values of both indices. At this 

juncture it becomes apparent that each sum, odd and even, is the product of 

two series, which can be rearranged to render the output 

co co 

F(t) 

w 

e m ) W( 2k ~) e - 2-
2i(2mcj>- e2 ) ~ w 2ik 

0 
t 

2 

co 

\ 
+L 

m=l 

[ 
2i 8 2m- 1 )<I>- 8 2m_ 1]1 

c2m-l 1 + e J 

w 

w ~2k-9 ~l L' 2 J 
i(2k-l) + tl 

e ~· 

(5.7) 

It is instructive to compare Eqs. (5.7) and (4.8). In the case of a 

monochromatic input of period 2/v , a symmetrical output is generated. 
0 

However, when the input is not symmetrical, albeit of period 2/v, the 
0 

output cannot be symmetrical unless (and only unless) the sampling instants 

happen to fall at equal positive and negative values of the input. Such an 

event would be fortuitous indeed. In general, a nonsymmetrical periodic input 

generates an output in which the even-order spectrum lines are quite as im­

portant as those of odd order. 

As an informative application we consider the input to be 
co 

f{t) 
\ 
L 

imwt wo 
c e =a (1 +cos-t) 

m 2 
m=-co 

Here we have defined c =a, c 1 = c
1
. = a/2, c = 0 for all values of m I =1, o. 

0 - w 
or + 1 arrl c2em = 0. In Eq. (3.8). let v 

1 
=t 0, v2= .~ . There results an equation 

for F(t) which is the sum of sampler oJtputs corresponding to ( a ) the de 
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component of the input (above), and (b) its sinusoidal part. We have the 

latter output expressed precisely in Eq. (4.8). If we substitute the above values 

for the c and the () in Eq. (5. 7), the same result is found. 
m m 
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6. STABILITY IN A FEEDBACK LOOP 

In an ordinary (continuous-control) feedback system, the criterion of 

Nyquist applies to the frequency transfer function of the entire loop, i.e., to 

the transfer function that operates upon signals passing around the loop. 

One must hold certain reservations when he use:>the term "transfer 

function" in connection with a sampler, as the sampler is essentially a nonlinear 

device. What we have called the "transfer function'' of a sampler certainly 

cannot be combined with those of a sequence of linear elements in the usual 

manner and directly subjected to Nyquist's criterion. This "transfer function" 

for the whole loop, so derived, however, can be used to generate a function 

having properties similar to those of the true transfer function for a series of 

cascaded linear networks. -This function is characteristic of the particular 

time-quantized feedback loop under consideration, and to it the stability criterion 

of Nyquist can be directly applied as for a completely linear system. 

This extended Nyquist criterion is developed by Linvil1 3 and by 

Ragazzini and Zadeh. 5 These authors do not, however, explicitly recognize 

the "sampling oscillations" which occur with a period of 2/v . In fact, Linvill 
0 

seems to attribute such oscillations to nonlinearities in the output member of 

the system ("saturation effects"). The trouble, rather, arises in the sampler 

itself, and solely from the sampling process. Lago and Truxal recognize 

sampling oscillations, and they insist that the extended Nyquist criterion applies. 
6 

The authors have felt certain doubts as to whether the extended criterion 

as so far put forth fully accounts for all of the troubles at half-sampling frequency. 

Therefore, in the section to follow there is a somewhat lengthy, but general, 

demonstration of the fact that it does. In a later section there is a derivation 

of the extended criterion from the point of view adopted with reference to sampling 

oscillations, and the criterion is stated in a manner readily interpretable frotx+ 

a physical (geometrical) standpoint, lending itself to a geometrical method for 

estimation of critical gain in practical applications. These interpretations are 

subsequently developed. 

Oscillations of a Period 2/v'o. 

One might think that Nyquist's criterion could be extended to the time­

quantized situation by mere inclusion of the interference circles as parts of 

the transfer function, which certainly they are. But it is not enough to state 

that self-sustaining oscillations will occur if a circle encloses the critical point. 
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In some cases a system with sampling will oscillate at values of gain 

materially lower than that required to cause enclosure of the critical point. 

In other cases, enclosure can occur without ill effects. Such oscillations would 

occur only at half the sampling frequency, because an oscillation at any odd. 

multiple of v /2 will be reduced to frequency v /2 by the sampling process, 
0 0 

and any signal whose frequency is an integral multiple of sampling frequency 

will be reduced by the sampling process to a train of identical (sampling} pulses. 

The term ''oscillation 1 at' half- sampling frequency" suggests a looseness 

of usage which will here be convenient. It means simply that the output waveform 

is that associated with a monochromatic input of frequency v 0 /2, and of course, 

the input is a periodic function having period 2/ v , with a waveform which de-
o 

pends upon the sampler pulse shape and upon the transfer properties of the 

remainder of the loop. 

In general, existence of oscillations at a gain level other than that 

required to cause enclosure of the critical point by an interference circle is 

due to the waveform effect, or to put it another way, to the cumulative effects 

of interference in all of the various orders. Thus, the gain required to produce 

these oscillations is dependent upon the transfer function W(v) and upon the loop 

transfer properties, because these literally determine how many orders are 

important contributors to the oscillation. 

Consider a feedback loop from the point of view of Fig. 11. At A, 

the sampler input is f(t}, having a line spectrum f( w}, whose line of lowest 

frequency is at v /2. At B, the sampler output is F(t}, with spectrum F(w}, 
0 

also a line spectrum. It will be assumed that the loop is in a barely oscillating 

condition, therefore the signals at A and B are related by the oscillation 

condition 

f(w} = - KG(w} F(w), (6 .1} 

where f and F are corresponding sampler input and output, in the notation 

of Section 3. Equation (6.1} represents the operation of -KG(w} on each spectrum 

line (Fourier coefficient} of F(t}, and implies that f(t} is the recombination of 

the resulting spectrum in a time function expressed by a Fourier series. 

Thus, if we have 
00 

F(t} ~ e m 

im 
w 

0 

2 
t 

(6.2} 
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E> Sampler t> 

B [ F(t) 
A 

F(w) 

<l. KG(w) 

Fig. ll. Feedback loop containing a sampler and elements 
whose transfer properties can be described by the 
function KG(w). K is the return-path gain; G(w) is 
its frequency characteristic. 



and 

f(t) = 

00 

~ 
\ 

L 
m=-oo 

then we obtain 

c e 
m 

im 

c =- KG(m 
m 

2 
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(6.3) 

(6 .4) 

The Am can be determined from Eq. (5. 7), which describes the sampler output 

corresponding to an arbitrarily shaped periodic input having twice the sampling 

period. Certain observations, however, can be made regarding the possible 

nature of the oscillations and can save much labor in the calculations. To start 

with, a zero-frequency component will not circulate around the loop, because 

":beedback is by definition "inverse" to frequencies near zero. Furthermore, 

were the waveform unsymmetrical, it would possess components having 

frequencies that were even multiples of half the sampling frequency, and vice 

versa. Insofar as the results of the sampling process are concerned, however, 

any input having sampling frequency or any integral multiple thereof is tantamount 

to a "de" input, which owing to the action of the feedback process, is suppressed. 

Thus only a symmetrical oscillation can exist in the steady state and therefore 

can contain only components whose frequencies are odd multiples of v /2. 
0 

Thus, tpe'rr1ost general form of the sampler output F(t) under the oscillation 

condition is given by the sum of the odd-order terms in Eq. (5. 7), wherein 

the notation with respect to the summation indices k and m will be interchanged 

for the sake of convenience. The resulting expression is w 
00 00 

zi[(zk-1)<1>- e2k-~\ ~ w l i(2m-l) ~ 
\ ~ czk-1 {

1 
+ 

2 
F(t) 

\ e · W (2m-l)~ e = L J 2 
-I. 

(6.5) m=-oo 

Thus by comparing Eqs. (6.2) and (6.5), we have the expressions for the A : 
m 

A = c = 0 21n .Zm 
· (6.6a) 

and 

A = 2m-l 

00 

I 
k=l 

f 2i [~zk-1) 4>- e2k-J} [ wo J. 
c 2k-l ll + e W (2m-l) -

' 2 
(6.6b) 

t 
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Then, from Eq. (6.4), we 'have 

~ f zit(zn-1)<\>- e2 r [ w l I, w n 
c 2m_ 1 =-KL c 2n-l ll+e .L n-JJW~2m-l)~J GL(2m-l):-_l 

n=l (6.7) 
~ c 

Now Eq. (6.5) gives F(t) in terms of input waveform param~eters and samplihg' ' 

phase. We can also write F(t) in terms of sampler pulse shape and an 

arbitrary amplitude coefficient, and then apply Eq. (6.4) to get a relation be-

tween the c and c , because the output waveform corresponding to an 
m -m 

arbitrary, symmetrical, input of period 2/v is the same as· that corresponding 
0 

to some sinusoidal input whose amplitude depends somehow upon sampling phase 
w 

and waveform. Thus, we use Eq. (3. 7) with w = -
0
- , which when simplified 

becomes 
2 

w 
00 

i(2m-l) 0 
~ 

W ~2m-l) 
. wo -:1 t 

F(t) = a L__ --I e 2 (6.8) 
2 -

m=-oo 

The coefficient, a, now is a function of <\> and the e 2m-l . 

Now a value of a may be found that will ~.make Eq. (6.8) identical with 

Eq. (6.5) for any waveform of the type under discussion. Comparing Eq. (6.8) 

with Eq. (6.2) we obtain 

[
. wo-, 

Azm-l '=·a W _(2m-l) --j 2 - , 

and from (6.4), 

c 2m-l =-a KG [<zm-1) wo l 
2 -.: 

r wo l. W L(2m-l) 
2 .... 

Equating either Eq. (6.9) to Eq. (6.6b), or Eq. (6.10) to Eq. (6.7) gives 

(6.9) 

(6.10) 

= \ {~1 +. . 2~· [<:Zk- ;):<\>~~ezk- ~} 
a ~ c2k-l e ! . 

'(6.11) 

k=l 

Now multiply Eq. (6.10) by 1 + exp {zi [<zm-l)~-9zm-J}, and sum on m. 

The member on the left is precisely a, yielding 
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00 I 

1 \ 
11 

z;Uzm-l).p-82 -il} F :0~ _w~zm-1) :0 J. = / + e ·· m G (2m-l) 
K ~ l 

(6.12) 

The quantities e2m-l are the phases of the Fourier coefficients of 

the sampler input. Using Eq. (6.10) once more, we have 

- 2i82m-l 
e = 

c 
- (2m-l) 

c2m-l 

= G [-(zm-1) ~ J w[-~m-1)~] 
G ~m-1) w; J W [~m-1) : 0

.] 

(6.13) 

In order for G(w) to be the transfer function of a physically realizable network, 
12 

* * G(-w) must equal G (w). Moreover, from Eq. {3.4). W(-w) equals W (w) (the 

asterisk denotes the complex conjugate). Then, we obtain 

(6.14) 

Equation (6.12) is the condition for oscillation; to separate it into real 

and imaginary parts. Eq. (6.13) can be helpful: 

1 

K 
= 2:

1 
{ G [(Zm-1) w; j w[(Zm-1) ~ l 

2 -

+ eZi(Zm-~)<\> Gt(Zm-1) : 0 l {(Zm-1) w;j} 

12
H. W. Bode, Network Analysis and Feedback Amplifier Design, (Van 

Nostrandp New York, N.Y. 1945), Sec. 7.3, pp. 106 ff. 

(6.15) 



-37- UCRL-2208(2nd Rev.) 

Here G and W are each complex functions of the real variable w. Letting 

X, Y, U, and V be real, even functions of w, we write 

G(±w) = X(w) ±'iY(w) (6.16a) 

and 
W(±w) = U(w) ±iV(w) . (6.16b) 

Therefore the real part of Eq. (6.15) is 

1 m m 
( __ Y V l (1 + cos 2(2m-l)<j>l m mj : 

..) ..J 
\ 

\{

1 [x u-
m=l 

+sin2(2m-l)<j>[X V +Y U lj 
m m m m~· 

.,jl 
) 

and the imaginary part is 

~- I[ l 1.· lx V + Y U ~~ 1- cos 2(2m-l)<j> , m m m m 
~~1 _I 

1 

K 

(6.17) 

+sin2(2m-l)<j>I.--X U -Y V 1=0, 
m m m ml 

-- .J (6 .18) 

where the subscript m indicates evaluation of the function at w = (2m-l )w /2. 
0 

Equation (6.18) is satisfied by the condition <j> =nor, n being zero or 

a positive integer. If one looks momentarily at the oscillation process as a 

repetitive transient phenomenon, it is readily apparent that the phase of 

sampling, in the oscillation waveform, is an invariant of the system, as is the 

waveform at the sampler input; it cannot differ. For suppose that somehow 

sampling were to occur at a "different'' phase. Then the transient response to 

the sampling pulse would occur as before (i.e., the sampler output pulse would 

be modified in the same way as before), the only possibly excepted aspect 

being the amplitude of the waveform. Sampling would occur after the usual 

interval (1/v ) and the same transient (modified sampling-pulse shape) would 
0 

have occured in the interim. Therefore sampling phase was not "different" 
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after all. We are at liberty to reckon the zero of phase from this point of 

the waveform. Indeed, Eq. (6.18) dictates this, and the phase of sampling is 

consequently taken as zero, Eq. (6 .17) reduces immediately to 

00 

~ 
\. 

L-
m=l 

2(X U - Y V ) m m m m 
1 

K 
(6.19) 

This is the criterion for stability that applies to oscillation at half the sampling 

frequency and that extends the criterion of Nyquist to the time-quantized feed­

back system, 

The criterion of Eq. (6.19) has a simple and direct physical interpretation. 

The (normalized) loop transfer function is G( w) W(w). If we refer to Eqs. (6.16a) 

and (6.16b), Eq. (6.19) is precisely 

00 

~ 2Re f G(w ) W(w )} = -l m m 
~ 

1 

K 
(6.20) 

Thus, the cumulative algebraic sum of the real-axis intercepts of the inter­

ference circles must not reach the point ( 1/K) - Oi, or sampling oscillations 

will occur. The geometrical situation is shown in Fig. 12. It is to be noted 

that in the case chosen for Fig. 12, the sampling oscillations could not occur, 

because the loop gain must be a positive quantity, and because the sum of 

Eq. (6.20) is itself positive. Hence the oscillation condition can never be 

reached in this example. Therefore the question as to whether oscillation 

must occur if some interference circle should loop about the critical point 

is answered negatively because the waveform at sampler input is made up of 

the sum of contributions from all the orders. If one of these by itself were 

large enough to encircle the critical point, its effects would be modified by the 

cumulative sum of the contributions from all of the other orders. It is the 

resultant effect alone that can cause oscillations. 

In the case of clamped sampling the application of Eq. (6. 19) is made by 

recourse to Eq. (4.10L which in Eq. (6.16b) gives 

u 
m - 0 

and 
2 1 v - - 2m-l m 1T 
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0( GRAPHICAL DERIVATION OF FIRST·ORDER CONTRIBUTION TO THE SUM 
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2 

bl THIRD-ORDER CONTRIBUTION 

-x--,--+X 
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\21'/;{o<yolwc!jl} 

C) INDIVIDUAL CONTRIBUTIONS OF VARIOUS ORDERS 
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5 
lh-1------< 3 rd PARTIAL SUM 
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1----------o 13th 
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MU-13959 

Fig. 12. Geometrical interpretation of the stability criterion 
of Eq. (6.20) for a hypothetical feedback loop having a 
frequency characteristic G(w) W(w). Note (from d) that 
this hypothetical system could not possibly undergo sampling 
oscillations. 
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Consequently Eq. (6.19) becomes (by the use of the more customary notation in 

place of the subscripts) 

00 

4 \ :. 1 
,. w ! l 0 ' (6.21) Y l (2m-1) = .;·---/ 

1T 
,. 2m-l 2 K m=1 

with Y being defined in Eq. (6.16a) as the imaginary part o£ the (normalized) 

loop frequency characteristic, and K being the ''loop gain" (normalizing 

constant). 

The impulse sampler is quite different. Here we have 

Hence it follows that 

and 

Equation (6.19) becomes 

W(v) = 1 

u = l 
m 

v 
m 

0 . 

2X G 2m- 1) w 
0 ~ = -

L 2~ 

This is.in interesting contrast to the clamped case. 

General Case of Feedback Oscillations 

l 

K 
(6.22} 

The oscillation condition for the general case proves easier to derive 

than that for oscillations of period 2/v · . Once again, we refer to Fig. fl and 
0 

to Eq. (6.1), where w is no longer considered to be necessarily related to 

w /2. The loop is considered to be closed at A, where in the oscillating 
.0 

condition the input equals the output, with reversed $ign (feedback "inverse" 

for low frequencies). Because the oscillation (in order to be an oscillation) 

is periodic, Eqs. (3.1) and (3.3) hold with all the quantities c ·ms = 0 ex-

cepting the set c 1 = c . 
m m 

Thus if we assume an oscillation having a period 

2rr/w, these equations are written, 

00 

f(t)=) ,___ 
m=-oo 

imwt c e 
m 

( 6. 23) 
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and F(t) = 

00 

\""" 

'> ! ___ _ 

00 

I 
i(nw + mw)t 

c W(nw -+ mw) e 0 

m o 
(6.24) 

m=-oo n=-oo 

Because F(t) and f(t) are both real, 

* 
c equals c , and W(-w) equals 
-m m 

W (w). 

Now there are precisely as many lines in the spectrum of f(t) as 

there are in that of F(t). And to every line of F applies the condition of 

Eq. (6.1) to make up the corresponding line in f. Thus, we have 

f(t) - -K 

00 

\ 
L 
m=-oo 

where GW(w) ;;: G(w) W(w) . 

00 

!_ c GW(nw + mw) m o 
n=-oo 

e 
i(nw + mw)t 

0 
• (6.25) 

Following Linvill, we trace the line of frequency w. In the sampling process 

f(t) becomes F(t), so 

( ) iwt c W w e plus other terms. 
0 

iwt c
0 

e becomes 

(6.26) 

Likewise, every component of f(t) having a frequency in the set (n w + w) 
0 

contributes a line of frequency w in F as it passes through the sampler. 

Because these all arise from the m = 0 term (frequency w), they have the 

coefficient c . Thus 
0 

-K c GW(nw + w) e 
0 0 

becomes 

i(nw + w)t 
0 

iwt 
-K c GW(nw + w) W(w) e 

0 0 

(6.27) 

plus other terms. The total amplitude of the term af frequency w will be the 

sum of all of the contributions. Therefore we have 

00 

-K c
0 

W(w) eiwt I GW(nw
0 

+ w) (6.28) 

n=-oo 

This is the term of frequency w in F(t). Equating this to the term value in 

expression (6.26) ·yields the oscillation condition for the (arbitrary) frequency 

w: 
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1 + K 

00 

\ 
L 
n=-oo 

GW(nw + w) = 0. 
0 

(6.29) 

The left-hand member of Eq. (6.29) is the denominator of Linvill 1 s Eq. (15) 3 

and is the stability-determining factor in all of Ragazzini and Zadeh 1 s single­

sampler systems listed in their Table II. 5 

Equation (6.29) is the general oscillation condition. To the function 

00 

K~ 
n=-oo 

GW(nw + w) 
0 

(6.30) 

the criterion of Nyquist is applied in the customary manner. As will be 

presently seen, Eq. (6.29) includes Eq. (6.20) as a special case. Out of 
. ·-) 

that demonstration will, moreover, come some interesting results regarding 

properties of Expression (6.30) . 

The sum in Expression (6.30) is 

00 

S(w) = GW(w) + GW(nw + w) + GW(-nw + w) . 
0 0 

Since (-nw
0 

+ w)= -(n4.J
0 

-w) an~ considering Eq. ,(6.16), we have 

* *[ l -*[ J GW(-nw
0 

+ w) = G W -fw
0 

-w)j = GW -(nw
0 

-w) . 

The result is 

S(w) = GW(w) + --* GW(nw + w) + GW (nw [< 
·' 

0 0 
(6.31) 

which is a complex function of the real variable, w. Let w = w
0
/2. Then in 

Eq. (6.31) the argument of the first term is w /2, that of the first term in the 
Q 

bracket is (2n+ 1) w /2, and that of the second bracketed term is (Zn-1 )w /2. 
0 0 

If we consider the bracket as two separate sums, then the leading term of the 

second sum has the argument w /2, and the second term (n=2) has the argument 
0 

3 w /2, which is the same as that of the leading term of the first sum. Be-o 
cause n is a dummy variable, the argument of the general term in the first 

sum may be made (2n-l) U)0 /2 and the summation range changed from n = 2 

to oo, Thus, all the terms in Eq. (6.31) combine to give 
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00 

w ~ 

{Gw [<zn-1) w: j S( ~) 
\ -* = ' + GW I 

2. L._.. 
n=l 

which is nothing more than 

s = 

00 

or--
\ 
L_ 
n=l 

2 Re GW ~Zn-1) w: J 
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[ wo T ( 2.n- 1) -
2
- J, 

(6.32.) 

Thus S( is identical with the sum function of Eq. (6.2.0). 
2 

The first interesting result alluded to above is that S(w
0

/2.) is always 

real. Thus, if the imaginary part of S(w) does not vanish at a frequency 

smaller than v 
0
/2, sampling oscillations are the only possible oscillations 

of the system. This is because oscillation is not possible at frequencies 

greater than v j2. , owing to the translation property of the sampler output 
0 

spectrum, The sampler output corresponding to an input having a period less 

than 2./v will have a spectrum line in the interval between frequency zero and 
0 

v /2 because of the first difference. But this corresponds to an input of period 
0 

1/(v -v), greater than 2./v • This sl.gnal will pass around the loop with its 
0 0 

period unchanged (the loop is linear except for the sampler).:· Hence the 

oscillation can not have a period less than 2./v 
0

• Thus, the sampling system can 

have no oscillation whose 11 fundamental 11 frequency (reciprocal period) is 

greater than half the sampling frequency. This considerably simplifies. the 

task of evaluating S(w), for we need to investigate only the region o < w< w
0
/2, 

although this means evaluating the terms of S for'" ali spectrum lines at 

frequencies for which G and W can be measured or computed. 

/ 
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7. EXPERIMENTAL VERIFICATION OF THE THEORY 

The experiments were performed using a model sampler that consisted 

of a bilateral gate through which the signal from the input amplifier was 

impressed upon the storage capacitor during the gate time, approximately 4 

1-Ls ec out of a sampling period of 417 f.LSec. Gating pulses were obtained from 

a multi vibrator-pulse amplifier chain. Figure 13 is a diagram of the sampler. 

For measurement of the transfer function the model sampler derived 

its input signal from a Hewlett-Packard model-650A signal generator operated 

at an output level of 0.10 rms. Sampler output was monitored on a Tektronix 

de oscilloscope and amplitude measurements were made with a Hewlett­

Packard model-300A spectrum analyzer. 

In adjusting the data it was determined that by far the largest error 

was due to finite sampler impedance and that, at least in functional dependence 

· upon frequency, any and all other effects contributed little to the er:oors. The 

impedance-correction function was determined by a least-squares reduction 

of supplementary data near half- sampling frequency where the effect was 

largest. In Fig. 14 are shown the data, as adjusted, compared with the 

function I W( v/v 
0 
I of Eq. (4.2). It is evident that the model sampler has 

a transfer characteristic closely approximating the ideal. . 

Early in the course of this work several spectral analysis experiments 

were performed. These were done before the theory as it now stands was 

available and were directed toward acquisition of knowledge regarding the 

nature of the sampling process. It was through these experiments that the 

sum-and-difference pattern of spectrum line frequencies was established 

experimentally. 

There remained<but one prediction of theory to be verified, namely 

the proposition that the same spectrum resulted from an input signal of unit 

amplitude having the frequency of any spectrum line. To prove this, data 

were taken with the same setup as was used for the measurement of the 

transfer function. The frequency v /v = 0.10 was chosen. Sampling fre-
o 

quency was 2400 cps, making the lowest frequency (largest amplitude) line 

occur at 240 cps. 

The spectrum analyzer was adjusted on the lowest line, with sampler 

input signal amplitude of 0.15 rms. The spectrum analyzer was then tuned 

to the frequency of the line to be observed, and peaked. The spectrum line 
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Fig. 13. Circuit diagram of model sampler used in experiments 
described in text. 
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Fig. 14. Magnitude of transfer function of clamped sampler 
(Eq. 4.2), with experimental points measured from 
model sampler. 
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frequency was considered as a parameter, with input frequency the independent 

variable. The signal generator was tuned successively in increasing frequency 

to the frequency of each line in the spectrum, and the amplitude of the line 

being observed was read from the spectrum analyzer. At the start of each run 

(i.e., whenever the spectrum analyzer was tuned to a new line frequency) 

the signal generator and spectrum analyzer were renormalized on the 

lowest-frequency line. 

This experiment resulted in verification of the prediction of Section 3. 

In't~relectrode capacitance in the tubes of the bilateral gate contributed small 

deviations from predl.cted behavior in certain of the spectrum lines. Further 

experimental procedures sufficed to define this effect quantitatively. 

Closed-l.Dop Stability Experiment 

In order to ve:dfy the criterion for stability, an experiment was 

designed which would meet two needs: (a) to involve sufficiently simple net­

wo~ks in the loop as to make possible a calculation of the oscillation condition 

by transient analysis, thus providing an independent calculation with which to 

compare results both of theory and of experiment; (b) to reduce the effect of 

unaccountable variables to a minimum. Thus, there are derived three sets 

of gain values: (a) the results of application of Eq. (6.19), (b) the results 

of the transient-analysis calculation, and (c) the results of experiment. The 

simplest type of network suitable for attaining these objectives is one that 

involves a single energy-storage element. For convenience the capacitive 

phase-lag configuration was chosen. A schematic diagram of the apparatus 

is shown in Fig. 15. At the top of the figure are shown the sampler and the 

delay network, which was so designed that:with convenient values of C and 

v , three cases of RC could be measured; the phase shift at v /2 was to be 
0 0 

approximately (a) rr/6, (b) rr/3, or (c) 5rr/12 (75°). The values of phase 

shift used therefore corresponded roughly to normalized output amplitudes 

of (a) 1/2, (b) 1/3, and (c) 1/6 •. These values encompass a six-to-one range 

in bandwidth, and the results obtained illustrate the simplicity gained in the 

stability criterion with decreasing bandwidth. (Saying it another way, they 

illustrate the complication introduced into the stability criterion when the 

bandwidth is made near to or greater than half the sampling frequency.) 

The return-path amplifier was so designed as to have a much larger band­

width than that of the delay network at the lowest value of C used. A switch 
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Fig. 15. Sampler - RC feedback apparatus, schematic diagram. 
Input of spectrum analyzer connected to "sig. in" when loop 
is closed, and to "sig. out" when loop is open. Effect is 
to have it shunted acres s the cathode-follower output at all 
times, as shown in dia~ram. Total (load) resistance 
shunting C is 1.25 x 10 ohms. 
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was provided in order that the loop might be opened or closed conveniently, 

with appropriate circuits arranged so as to maintain the necessary voltages 

at all points regardless of whether the loop was closed or open. Note that 

the Hewlett-Packard model 300A spectrum analyzer used in the gain measure­

ments was kept connected across the cathode-follower output in the closed­

loop condition. The gain measurements were made in the open-loop condition. 

·.With each of the three values of the capacitor C, several gain measure-

ments were made. Firstly, the loop was closed and voltages were adjusted to 

the proper values; loop gain was raised very slowly until oscillations were 

imminent. The loop was then opened, voltages were again read, and the gain 

was measured. Preceding each loop closure, the instrumental adjustments 

were checked carefully. The measurements of gain were made at v /10, 
0 

because of spectrum-analyzer bandwidth limitation. Measurements were 

made also at v /2, for checking purposes. It was assumed that in correction 
0 

to zero frequency of the v /10 values the transfer function of the idealized 
0 . 

delay network could be used without significant error. 

The transfer function of the apparatus in the frequency range of zero 

to v was measured experimentally. This was done in order that the actual 
0 

apparatus could be replaced in the calculations by an ':'ideal ':l·-n1odel, one in 

which the parasitic effects were accounted for through the use of experi­

mentally measured parameters. 

Measurements of the ;values of R and C were made .on a General 

Radio model-650A impedance bridge, the accuracy of which is stated by the 

manufacturer to be ± 1% at the values in question. 

An inspection•:af Fi;g:. l:S will' assure the reader that although to a first 

order the loop frequency characteristic is that of a simple RC delay network, 

a tangible second-order correction can be expected, particularly in the wider­

band conditions. The most obvious effect is that of the output impedance, 

which was made purposely as large as feasible with minimum capacitance. 

Because the ·accountable shunting capacitance can be placed in thE~ order of 

l0-
12 

farad, it will not be explicitly considered. The equivalent network is 

shown in Fig. 16. The transfer function may be written down immediately, 

and simplifies to 

v( w) -
l 

{7 .1} 
(1 + r) + iCRw 
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Fig. 16., RC delay network with output shunting 
resistance . R 1
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where r = R/R' 

fr = 0), where 

This can be compared with the case where .R' is infinite 

v(w)=;,, __ l __ 

1 + iCRw 
p .2)-

It is desirable to normalize the transfer functions to their zero-frequency 

values, making each the product of a gain constant and a frequency characteristic 

«normalized transfer function). This is done for Eq. (7 .1) by multiplying by 

0 + r). Thus, we have 

1 
v ( w ):t,t----···' ·. 

0 
1 + i u' 

(7 .3) 

in which 
'\ 

<T' = CR 
----.... w = 7'

1 w ' {7 .4) 
1,· + r 

whereas in the limiting case r = 0, 

v 
0

{w) = v(w) = 1 
(7.5) 

1 + i 0' 

where 

u = CRw = T w. (7 .6) 

Therefore, it appears, the normalized transfer function of the shunted­

output networkis the same as that of the unshunted one, provided one uses 

a "corrected" resistance value R/(l+r). 

Another effect to consider is the cumulative effect of all of the 

unaccountable parameters in the system, which become particularly trouble­

some when the wider bandwidths are used. As is subsequently shown, even 

the use of the "corrected" resistance in the network calculation can lead to 

a demonstrably incorrect result. One way in which a correction may be 

introduced is to measure the transfer function experimentally and fit a set of 

parameters to a suitable model. In this case, the authors were unable to do 

more than to measure the amplitude of the transfer function for each value of 

C at nine values of frequency between zero and the sampling frequency. These 

values, when plotted, gave curves essentially similar to the amplitude of 

Eq. (7 .3) or Eq. (7 .5), lying somewhat below the calculated "model" curves. 

The experimental points were distributed about the average curve in what 

seemed to be a fairly random manner. It was assumed that the equivalent 
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network could be taken to be that of Fig. 16 without serious error, and.that 

the time constants .?'(or '7'') should be calculated by taking the arithmetical 

average of the values of 'T = a/w obtained from the various amplitude measure­

ments for each case. The values so obtained .differed by very tangible amounts 

from the time constants of the idealized networks; the smaller 'T (greater 

bandwidth) the greater the difference. This is as expected, the sizes of the 

discrepancies, however, are not comforting, and the assumption that the 

physical network differs from the "equivalent" one by only a "small" degree 

really generates only a first-order correction. One interesting aspect of the 

problem is that the differences in the time constants can be explained by 

increasing each of the values of C by approximately 4.5 X 10-lO farad, 

which seems to indicate that at frequencies less than the sampling frequency 

the "stray" effects appear as approximately 450 J.LJ.Lf of shunting capacitance 

across the output of the "equivalent" network .. Certainly at higher frequencies, 

however, stray inductances come into the picture, and phase shifts certainly 

exceed rr/ 2. Amplitudes also will be finite but small, and the slowly con­

verging series that embodies the stability condition will not converge slowly 

enough to match the physical situation. 

Critical Gaim,.Prediction by Transient Analysis 

In view of the experimental limitations it is fortunate indeed that a 

network could be chosen whose properties make ~he feedback oscillations 

susceptible to simple analysis, completely indep~ndent of the theory of 

Section 6. Indeed, agreement between two such independent calculations 

makes a resort to experiment unnecessary for the sole purpose of confirming 

a theory. The experimental results in this instance do serve a highly useful 

purpose, that of illustrating the importance of stray effects in the time­

quantized feedback system. This importance is quite out of proportion·:to 

that accorded strays in ordinary feedback practice. 

The transient method is just that. One knows what the sampler­

output waveform is, and, were one able to more readily solve a transient 

problem than to measure. a transfer function, the need for a frequency­

domain stability criterion would not exist. It is seldom, however, that 

one can make time-domain measurements and calculations with the ease and 

certainty of those in the frequency domain. 
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Figure 17 shows two waveforms in superposition. They are the 

sampler output (square wave) and the sampler input (nothing more than the 

square .wave modified by the low-pass network and amplified). Consider 

now the time sequence of events. At some sampling instant, the network 

output has some value, -y . Sampling occurs, and the sampler output is 
0 

clamped at its positive. value, which we call unity. This is the input applied 

to the network, whose output momentarily has the value -y . The network 
0 

output takes an exponential form, the asymptote being the network input 

(sampler output) value, u:r:lity. After the elapse of a sampling period, the 

sampler 

voltage. 

again samples and clamps, this time at some other value of 

The network output then begins to approach the new value ex-

ponentially. 

It is, of course, understood that the JooFl is oscillating at half the . 

sampling frequency, and therefore, both waveforms are symmetrical. Hence 

if the initial value of sampler input was -y , the alternate value is +y . Thus 
0 0 

in any sampling period we have 

2nT < t< (2n + 1) T, y(t) = y 1(t) 

the output voltage of the network .. In the next period, we have 

(2n + 1) T < t<.>2(n + l)T, y(t) = y 2(t). 

The sampler output oscillates between +1 and -1. Then (see Fig. 17) we write 
- t 

and likewise 

Now we can equate 

and 

yl (t) = 1- (1 +Yo) e T 

t 

Combining J;!::qs .:·(7. 7~~d(.7 .;9,},or Eqs. (7. 8) and (7 .1 0), we obtain 

- e 

(7.7) 

(7 .8) 

(7 .9) 

(7 .1 0) 

The gain required to amplify the function y(t) to unit amplitude is just 

1/y . Thus, we write 
0 
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Fig. 17. Oscillations at half the sampling frequency in a feed­
back loop whose frequency properties are determined by a 
simple RC low-pass filter section. 
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G(T, T)= 

T 

1 + e 'T 
T 

1 t e 'T 

Application of the Stability Criterion 

(7 .11) 

Application of the theory of Section 6 is very simply inade. Using the 

notation of that section and Eqs. (7 .3) and (7 .4), or Eqs. (7 .5) and (7 .6), we 

have 

. . 1 
G(w) = ------. .. ·. 

X(w) = 

and 

Y(w) = 

From this, we obtain 

Hence Eq. (6.21) becomes 

1 
= 

K 

1 + iTw 

1 
2 

1 + ( 'T w) 

- 'T w 

2 
1 + ( T w) 

'Two 
-(2m-l).--

2 
2 

'TW J 
1 + [<2m-l) ~ 

4 (2 \ ~ 1 
'-\) (2r 1T \'TWO) L 

m=l Tw
0 

a very slowly converging series indeed. 

(7 .12) 

(7 .13} 

(7; 14) 

(7 .15) 

+ (2m-1)
2 

(7 .16) 

By direct application of a method due to Gumowski 
13 

the series of 

Eq. (7 .16) can be accurately summed with the expenditure of a very modest 

effort, whereas, were the summation to be made term by term, calculations 

13
1. Gumowski, Summation of Slowly Convergi~g Series, Letter in J. 

Appl. Phys. 24, 1068 (1953). 



-56- UCRL~-2208(2nd Rev.) 

show that several hundred terms would be necessary .. The results shown in 

the subsequent subsection as calculated from Eq. (7 .16) were obtained in this 

way. 

Tabulation and Comparison of Results 

In Fig. 18 are represented.the three experimental cases, each being 

characterized by a particular value of C. All three transfer functions are 

superposed, through the use of the dimensionless frequency variable, 6', 

The effect of strays is immediately apparent, and one would find it difficult 

to avoid doubting the realism of the idealized transfer function at values of 

0' several times the sampling value. The problem is particularly acute 

when one considers the cumulative importance of the higher orders, as is 

indicated by the slowness of convergence of the series of Eq. (7.16). 

In Table I comparison is made between time-constant values, from 

which a low frequency 11 equivalent" shunting capacitance was calculated• 

The value of this capacitance seems remarkably consistent through the three 

cases, though the time constants cover an order of magnitude in range. In 

Table II are exhibited for comparison the variously derived values of loop 

gain required to produce oscillations. As a standard of comparison we took 

the values calculated from transient analysis. The theory, as exemplified 

in Eq. (7 .16), agrees with these perfectly. Because the networks used in 

the two calculations were the same (ideal networks),. and because the transient-

analysis approach must produce the correct value, one is justified in stating 

that the theory has met its test. 
I 

The experimental results are listed in the fourth and fifth columhs of 

Table II, the former column being the gain values and the latter colum:q',~b,~.-

ing a comparison with the calculated values. It is instructive to compare these 

numbers with reference to the approximate bandwidths listed in column 6. 

Note that in case 3, where the bandwidth is approximately v /8, the strays 
0 

are quite unimportant, whereas when the bandwidth is little more than doubled, 

the importance of the strays (through the higher orders of the spectrum) has 

increased more than five-fold. Some light into the specific nature of the effect 

that the strays had upon the experimental results is shed by Fig. 19, which 

shows the transfer function of the entire feedback loop for Case 1 (neglecting 

strays, excepting that the measured time constants are used). The further 



Case 

1 

2 

3 

Case· 

1 

2 

3 

\ 
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Table I. Parameters of network "equivalent" of feedback 
loop in stability experiment 

c T. T Shunt capacity 
measur~d calculated measured . Difference "equivalent 11 

(farad (sec) (sec) (%) of difference 
(farad) 

1. 740X10- 9 6.744Xl0-S 8.428X10-S +25 4.4X10- 10 

5 .432X10- 9 2.105X10- 4 2.266X1 o- 4 
+ 7.6 4.1X10"'" 10 

1.45 x1 o- 8 s.62ox1 o- 4 5.794X10-4 
+ 3.1 4.5XlO-lO 

Table II. Comparison of variously derived values of gain 
required to produce sampling oscillations 

, Gain required to produce oscillations 

transient theory experimental meas. 
----1 

(Eq. 7.11) (Eq. 7.16) calc. 

1.058 1.058 1.24 +17 .2% 

1.438 1.438 1.56 + 8.5% 

3.028 3.028 3.07 + 1.4% 

Bandwidth 
(approximate) 

(se~-l} 

3 

2 

3 

5 

1 

4 

(v /2} 
0 

(v /2} 
'O 

(v /2) 
0 
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MU-13968 

Fig. 18. Transfer function ol RC delay network, with frequenc} 
shown in terms of the dimensionless variable 0'=-7W. Shown 
here are the t}:lree cases for which critical closed-loop gain 
measurements were made at half the sampling frequency. 

Note: Calculated values include only the RC network plus 
its load resistance; measured values include entire 
apparatus. For technique and remarks re. limitations of 
the method, see text. 
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MU-13969 

Fig. 19. Transfer function of feedback loop, case 1 (ideal network, 
measured value of 'T ) showing partial sums to order 5/2, and 
limits. 
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effects of strays can be expected to arise primarily in the influence of lead 

inductances, which will bring about additional phase shifts in the higher orders. 

In Fig. 19 the interference circles for the first three orders {1, 3 9 and 5) are 

shown along with the partial sums of their intercepts ... Also shown are the limits. 

Note that the measured value of critical gain is less than the calculated value 

Note f~rther that the difference is roughly equal to the sum of all the o-rders 

above the fifth 9 and also that the fifth order could have considerable additional 

phase shift without affecting the results materially. (The results are insensitive 

to a relatively small added phase shift in the fifth order, but any phase shift 

will be greatly magnified in the higher orders, and the contribution of any 
i 

given order might well be zero, or positi~e.) Indeed one might conclude from 

the gain figures listed, and from the above, that the net effect of all of the 

higher orders is close to zero, indicating 'that about as many of the contributions 

were positive as were negative, or that th,e high-order parts of the transfer 

function were "wrapped'' around the origiri by the effect of strays, instead of 

all lying on the same (negative) side. 
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8 .. CONCLUSIONS 

. In the discussion concerning the properties of the output spectrum of 

"' a sampler, it was shown that a sampler can be regarded as having a transfer 

function, subject to certain definite limitations. This is due to the fact that 

· the input spectrum app.ears in the output, with its components modified in 

amplitude and phase .. The sampling process is an essentially nonlinear one 

in that new spectrum lines are generated, but it was shown that no interaction 

effects occur between input components. 

The transfer function is continuous excepting at multiples of half the 

. sampling frequency. The existence of such a transfer function makes possible 

the use of Nyquist's criterion for stability, so extended as to account for the 

complexity of the -waveform of feedback oscillations, when they exist. The 

peculiar behavior of the tranSfer function at multiples of v /2 is due to 
0 

interference between the spectral components of those frequencies. 

Because previous publications in this field have included no more than 

an occasional mention of sampling oscillations, the subject was treated in 

detail here •. The extension of Nyquist's stability criterion implied by Linvilf 

was shown to include the case of sampling oscillations. 

This extension of Nyquist's criterion .is embodied in the application of 

the criterion in the customary manner, not to the loop-transfer function, but 

to a sum function (see Eq. 6.29), which embodies the contributions to the 

sampler input waveform of all the spectral orders in the sampler output, 

as modified by the loop transfer function. It was seen that the sum function 

evaluated at half-sampling frequency is always real, with the implication 

that if this sum function does not become real. (and negative) at any frequency 

below half sampling, the only oscillations that the system can undergo are 

the. sampling oscillations .. No oscillations can ever occur with a period 

shorter than twice the sampling period, because of the transposition of spectra 
' 

in the sampling process. Thus, in stability calculations, no base frequencies 

above half sampling need be used. However, terms for th,e sum function must 

be calculated (or scaled graphically) from the transfer function of the loop 

{including sampler) for spectral orders as high as c.an be calculated (or 

scaled) considering the number of significant figures in the "calculation. 

Indeed, the sum function may be a very slowly converging series, in which 

case any graphical estirra te of critical gain is a rough one and-must include 

some sensible accounting of high-frequency "stray" effects. 
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When the loop is subject to sampling oscillations, the critical gain 

can be roughly estimated by simple graphical means. The procedure is as 

follows (Fig. 19 ): (a) plot the transfer function of the entire loop, including 

sampler; {b) place the compass point on the point of the transfer function 

corresponding to the frequency m w /2 (m an odd integer); (c) set the compass 
0 

so as to pass a circle through the origin; (d) strike an arc across the real 

a.Xis; (e). repeat for every order for which amplitude of the transfer function 

is sufficient to allow the constructipn; (f) add these algebraically (easily 

done with a scale); (g) mark off the sum on the real axis .. That is the critical 

point for .sampling oscillations. If it is on the positive real axis, or if it lies 

on the negative real axis inside the continuous portion of the transfer function, 

sampling oscillatio~s cannot occur, and the conventional Nyquist criterion 
0 

provides the limitation. Note that the estimate is only that, because the 

cumulative effect of the neglected orders may be quite noticeable. 
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