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TIME QUANTIZATION IN A FEEDBACK SYSTEM 

* ~ John F. Waddell and Harold D. Morris 

University of California Radiation Laboratory 
Department of Physics, Berkeley, California 

July 1957 

ABSTRACT 

This report discusses effects observed in a feedback system, other­

wise linear, in which time is quantized (these systems are often termed 

11 sampled -data" systems). The time -quantizer (' 1 sampler 11
), the most im­

portant element in the system, is treated in detail as applying to any sort 

of sampling that can be approximated by a purely amplitude -sampling 

process. 

Following a general physical description of amplitude -sampling, the 

output spectrum of an amplitude -sampler of arbitrary pulse shape is derived 

and discussed. On the basis of th~ spectral analysis, a linear transfer 

function is developed which is applicable, with certain important limitations, 

to signals of all frequencies. The behavior of this transfer function is 

discussed, and several cases are distinguished. 

The problem of stability in a feedback loop is treated, with particular 

attention to the important type of oscillations that are here dubbed "sampling 

oscillations". A general criterion for stability is developed, which includes 

all possible oscillations. Mathematical and physical interpretation of the 

stability criterion is provided, and a procedure is devised for the solution 

of practical problems. 

Experimental evidence is offered in support of the theoretical results, 

with good agreement. The theory is also checked by calculation of the 

behavior of a special case whose sampling oscillations are amenable to 

transient analysis; complete ca:greement between these calculations and the 

prediction of the theory is found to exist. 

""Now at the University of California Radiation Laboratory, Department 

of Physics, Livermore, California. 

** Now at Donner Scientific Company, Concord, California. 
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TIME QUANTIZATION IN A FEEDBACK SYSTEM 

John F. Waddell and Harold D. Morris 

University of California Radiation Laboratory 
Department of Physics, Berkeley, Calffornia 

July 1957 

INTRODUCTION 

This work treats s orne physical concepts useful in dealing with feed­

back systems having a quantized time-baseo Such a situation arises when 

in an otherwise continuous -control feedback loop, some nonlinear element 

is inserted which imposes upon the system a quantization of time, or as it is 

usually called for convenience, a 'sampling' process. Whatever the means 

by which the time-quantizing element, or 'sampler' operates, the result is 

the same: time is divfded into equal intervals, at the beginning of each of 

which the loop is closed, being opened orx::e;again before more than a small 

fraction of a time quantum has passedo The output of the sampler is a train 

of pulses, one for each quantum of time, which carry the information derived 

from the momentary loop closureo In the usual form of sampler, the envelope 

of the output pulse -train approximates. the input signaL The analytical methods 

and concepts used here apply to any pulse shape, and with adaptation, to any 

t1ype of samplingo 

An example of a time -quantized feedback system is given in Fig. 1.1; 

in this scheme it is the error signal which is sampledo There is a number 

of possible variations of such a system which merely represent different 

arrangements of elements in the feedback loop. To these apply the same 

concepts and methods, even as to systems containing only passive elements. 

There are a number of possible ways in which the sampling process 

may take place. One example is the small-signal behavior of an ignitron 

rectifier in which output voltage control is achieved by controlling the 

phase at which the individual tubes begin to conduct. 
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PUT 
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elements 

Fig. 1.1. A typical time -quantized feedback system. 

1.1 Summary of the perinent literature to date. The earliest references 

in the field are those of MacColl, and Hurewicz. 
2 

Each of these authors 

uses an approach based upon the 1 Z -transformation' method, which has 

enjoyed almost universal popularity among writers in this field. The Z­

transformation is a disguised Laplace transformation; the basis of the 

method is the use of sequences representing the values of input, output, 

and signals at other points in the feedback loop, at each instant of sampling. 

The Z -transformation method thus involves calculation with knowledge 

of the pertinent signals only at the sampling instants, and with no knowledge 

of these signals between sampling instants; the method involves much in the 

way of mathematical abstraction, with an accompanying loss of a sense of 

physical reality, making physical interpretation of the theory a difficult 

business indeed. Its rewards are considerable notational simplification in 

an intrinsically 'messy' subject. 

MacColl, Fundamental Theory of Servomechanisms, Van Nostrand, 1954, 

(Ch. 10). 
2
Hurewicz, m James, Nichols, and Phillips (editors}, Theo,,ry of 

I 

Servomechanisms, M.I. T. Radiation Laboratory Series, Vo1.25,McGraw,1947. 
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Another point of view is that of Linvill, who takes a physical view of 
3 

the problem in a very clear paper, which treats the particular case of 

'impulse 1 -sampling in detail. Linvill regards the use of any sampling pulse 

shape other than the impulse, or delta-function as being amenable to treat­

ment as impulse -sampling plus linear filtering. This is approximately true 

in most common cases, but is not an applicable point of view when the sampler 

pulse is shaped by nonlinear or by active networks, or when the sampling is 

done by means other than purely amplitude -sampling. The ignitron rectifier 

case cited above provides an example. Linvill develops expressions for the 

sampler input and output spectra and time-functions, and uses these, and 

the fact that the spectrum of the impulse -sampler output is periodic in the 

sampling frequency to derive an expression for the output time -function 

of a feedback loop containing a sampler. An extension of Nyquist's stability 

criterion is implicit in his output equations, and he treats its application in 

the re mai nde r of the paper. 

The spectral (Laplace Transform) point of view was applied to feed­

back systems containing a digital computer by Salzer, 
4 

a student of Linvill. 

A very clear review of the field as of 1951 was contributed by 

Ragazzini and Zadeh 
5 

who are exponents of the Z -transform method, and 

who undertake most successfully the task of relating the Z -transform method 

to the Laplace transform approach of Linvill. Their work is expository in 

nature, and is probably the most significant single contribution to date. 
6 A paper by Lago and Truxal concerns itself with the design of sampling 

systems, using the Z -transform method to treat the stability problem, and 

using open-loop impulse -response calculations to derive the response be­

tween sampling instants. This approach only applies, however, to impulse­

sampling. 
3
Linvill, W. K., 11Sampled-data Control Systems Studies through Comparison 

of Sampling with Amplitude Modulation11
, Trans. A.I.E.E. 70, 1779 (1951). 

4
Salzer, J.M., Ph.,D. Thesis, M.I. T. (1951). 

5
Ragazzini, J. R., and Zadeh, L.A., "The analysis of Sampled-data 

Systems 11
, Trans. A.l.E.E. 71, 225 (1952). 

6
Lago, G. V.,, and Truxal, J. G., 11 The Design of Sampled-data Feedback 

Systems", Trans. A.I.E.E. 73, 247 (1954). 
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In a paper based upon his Ph. D. thesis, Lago 
7 

reveals a discrepancy 

between the results of the Laplace and Z -transform methods and proceeds to 

resolve the question. In another contribution, Lago8 outlines a method by 

which sampled-data systems can be synthesized, using the Z-transform 

method. 

1.2 Statement of purpose. This work was undertaken to develop a theory of 

stability based upon the spectral approach, and to provide physical inter­

pretation of the phenomena involved. In general we share the opinion of 

Linvill that the viewpoint which stresses frequency analysis lends itself 

most readily to physical interpretation. This work is intended to be of 

exposito:oy nature, to shed as much light as possible upon an intrinsically 

difficult subject, and to treat it in such a way as to expose the physical 

relationships which are hidden by the mathematical abstractions which 

characterize the other methods. 

Along with the spectral point of view, we also carry out the analysis 

1n terms of an arbitrary or generalized pulse shape, subject only to the 

requirement that its Fourier integral converge. Thus considerable generality 

is gained, in that applicability of the theory he rein developed is not limited 

to cases where pulse shaping is performed by linear networks. The 

sampling process need not be a pure amplitude sampling process at all, but 

may be accomplished by any means which yields a sampled output proportional 

to the amplitude of the input signal at the sampling instants. The sampling 

method may be so complicated as to defy any reasonable analytical explanation; 

nonetheless, the theory developed here may be applied as long as the networks 

containing the sampling process are susceptible to transfer -function 

measurement and to determination of output spectrum. 

7
Lago, G. V., "Additions to Sampled-data Theory", Proc. National 

Electronics Conference ~ 758 (1954). 
8 . 
Lago, G. V. "A Synthesis Procedure for Sampled -data Systems", Proc. 

National Electronics Conference ll, 351 (1955). 
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2. MECHANISM OF THE SAMPLING PROCESS 

The sampling process consists in the generation of a train of pulses 
' 

which represents the amplitude of the input signal at the beg~nning of each 

quantum of time. The "clamped" sampling process (square -pulse sampling) is 

described pictorially in Fig. 2.1. 

Fig. 2.1. Illustrating clamped sampling for an input signal of 
arbitrary waveform. 

The discussion to fpllow will concern itself principally with the trans­

mission of a sinusoidal input signal of arbitrary frequency having unit 

amplitude, as is usual in discussions of linear processes. The most that 

can be said of the sampling process is that it is a 'linear' modulation 

process, i.e., the process is one of modulation in which the nonlinearity 

exists between the sampling frequency signal and the input signal components, 

but not between the input components themselves. Thus to an input signal 

component having some frequency v there corresponds an output component 

of the same frequency whose amplitude is prol?ortional to that of the 

corresponding input component. 

2.1 A physical description. For an input signal whose frequency is very 

small compared with the sampling frequency, time quantization has negligible 

effect, and the ordinary linear analysis is reasonably satisfactory. As the 

frequency of the input signal increases, so as to no longer be much smaller 

than the sampling frequency, the effects of sampling become noticeable, and 

the degree of approximation to which the linear analysis applies becomes less. 
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As the input frequency approaches the sampling frequency, sampling effects 

become predominant, and the ordinary feedback theory fails in several 

important respects. How this comes about is perhaps best explained 

from a purely physical point of view. For convenience, the discussion of 

this section will be particularized to the case of ''clamped" sampling. 

To being with, let us consider the case of an input signal whose 

frequency is exactly the sampling frequency, L e. , let the input signal be 

sampled at its own frequency; then the output can contain only a constant. 

amplitude (zero frequency) term, The amplitude of the output then depends 

only upon the phase at which sampling occurs, and accordingly can take on 

any value of amplitude which might be instantaneously assumed by the input 

signal during ape riod. Now suppose that the input signal frequency is some­

what below sampling frequency (which we will call v ). Sampling will take 
0 

place at intervals of somewhat less than a period of the input signal. The 

output will accordingly be a train of square pulses of length nearly equal to 

a period. This situation is shown in Fig. 2.2. The reader should take 

particular note of the fact that by far the largest spectral component of the 

output has a frequency much lower than that of the input. Actually, as will 

be shown later, the low frequency is the difference between input and sampling 

frequencies. There will also be a small component of frequency equal to that 

of the input signal, and smaller components whose frequencies are greater 

than the sampling frequency. 

One might now ask what the situation would be were the frequency of 

the input signal to have the lower value (i. J#. , lie close to zero). Figure 2.3 • 

shows the outputs due. to input signals of unit amplitude and frequencies of 

v /8 and 7 v /8 to be identical (at least insofar as the accuracy of geometrical 
0 0 

construction permits such a conclusion). Also shown in Fig. 2.3 are the 

output spectral components having these two frequencies, accurately plotted 

from results to be shown in subsequent paragraphs. These are the largest 

components, and their sum is plotted in Fig. 2.4 simply as a matter of interest. 

0 
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FiB. 2.Z Clamped sampler input and output for input frequency of 7/8 sampling 
frequency. Note the generation of 0. low frequency (difference 
frequ,s:1cy) cornponent nearly as large in amplitude as the input signal 
itself. 

Fig. 2.3 Clamped sampler output for input signals (solid lines) of l/8 and 
7/8 sampling frequency, and spectrum of output (i.e., output 
components) in the region below sampling frequency. 

0 

• 

Fig. 2.4 Clamped sampler outp1Mi for input frequency of l /8 or 7/8 sampling 
frequency. Components ~f the output having those frequencies are 
shown, together with their sum. 

0 MUB-153"- · 

-
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It is possible now to form a picture of what the output spectrum looks 

like in the range of frequencies less than v . Given an input signal of unit 
0 

amplitude and variable frequency, for input frequency close to zero the out-

put will contain a component of the same frequency whose amplitude will be 

close to unity. A difference frequency component will exist having an 

amplitude close to zero. As frequency of input (v} approaches zero as a 

limit, output component amplitudes approach, as limits, unity for frequency 

v, zero for frequency v - v. As v increases, amplitude of the component 
0 

of input frequency decreases, and amplitude of the difference frequency com-

ponent increases. 

At this point it is well to inquire into the happenings at half-sampling 

frequency, where the input and difference frequencies are equal. As for the 

case between input and sampling frequencies, magnitude of the output de­

pends upon phase of the input signal at sampling instants, a situation 

illustrated graphically in Fig. 2.5, If the input frequency were slightly 

different from v 012' the scna:re wave train would grow slowly to maximum 

value, then shrink to vero, then grow with opposite pha,se, pass maximum 

value, and shrink again, etc. This is suggestive of an interference 

phenomenon, a concept which will be touched upon at length in subsequent 

paragraphs. One may see the plausibility of the interference argument, 

when one considers that were the input and difference frequency components 

of equal "magnitude at half-sampling frequency, interference between these 

(since the phase of each should depend upon sampling phase) could account 

for reinforcement or cancellation of the v /2 component of the output 
0 

according to whether sampling phase was favorable or unfavorable. As will 

be seen subsequently, at v 
0
/2, the two components in question are indeed 

of equal magnitude, a fact which has important bearing upon the transfer 

properties of the sampling device. 
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Fig. 2.5. Illustration of the effect of sampling phase upon 
clamped sampler output when input frequency is half the 
sampling frequency. 

Next consider the cases in which v = nv /2 for n > 2. For the even 
0 

case ( v = m v ) it is obvious that the result is identical with the case m = 1, 
0 

where the output has zero frequency with amplitude dependent upon phase 

at which sampling occurs. The only difference now is that sampling occurs 

every m periods of the signal. A similar relation holds for the half .. 

multiples, v = (2m-1) v /2 = (m - 1/2) v . Here a train of square waves 
0 0 

occurs, period being 2/ v , sampling occuring every (m - 1/ 2) periods of 
0 

the signal. As will be brought out later in treatment, the sum -and-difference 

frequency pattern repeats in every band of width v 
0 

sec -
1

; i.e. , with 

every multiple of sampling frequency, including zero, there is associated 

a pair of spectrum lines of frequencies mv + v and (m + 1)v - v. Physical 
0 0 

behavior of the output is similar in the higher orders to that noted for the 
th 

zero order, with the same interference behavior at (m - l/2)v and the . 0 

zero-beat phenomena at mv . These effects have been observed experi-o • 
mentally on a physical sampler up to approximately the 50th order, at 

which time imperfections in the sampler caused difficulty in the observations . 

. Z .. 2 Transfer properties. In discussing the transfer properties of a sampl'er, 

interest lies almost exclusively in the region between zero and sampling 

frequency. By the term 'transfer properties' we mean the relationships 

existing between the input signal (a sinusoid of frequency v) and that 

component of the output spectrum having the same frequency v. 
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This relationship may conveniently be expressed 1n terms of a 'transfer 

function' which is the complex ratio of output to input (considering only the 

output component having input frequency). 

The term 'transfer function' is used by most writers in feedback 

theory to describe something quite different from what is dealt with here. 9 

In ordinary feedback theory, the transfer function of a network is the ratio 

of the transform of the output time -function to that of the input for any 

arbitrary input function. The transform may be any operational transform: 

Laplace, Fourier, or Heaviside. For a linear passive network, the 

definition of 'transfer function' to be used in this work agrees with the 

customary definition with the Fourier Transform used. This function is 

called by some writers the 'frequency transfer function'. In this sense, 

the transfer function is a 'spectral modifying function' wherein the spectrum 

of the input is modified only by changes in amplitude and phase of the 

spectral components, these changes being a function of frequency of the 

component operated upon (thence the term 'operator' applied by some 

authors). Indeed, the above is an embodiment of the principle of 

SUJ?erposition, in that the output spectrum contains no components having 
·;.~ 

a frequency not pre sent in the input. • 

In the time -quantized case, however, the principle of svpe rposition 

holds in another sense, namely that the output spectrum due to an input 

spectrum made up of a series, or superposition of spectra, is the super­

position of the output spectr~a due to each of the individual inputs. This 

will be demonstrated in a later section. The sampler is a device having 

two inputs and one output; nonlinearity occurs between the signals enter­

ing the two inputs. There is, however, no nonlinearity between two signals 

simultaneously applied to the 1 signal input', or 1THE
1 
input. 

It is readily seen, therefore, that no unique transfer function exists 

in the transform sense. This is merely another way of stating that in 

general, the output waveform is different frotn the input waveform, and 

no function can be written Clown which expresses the ratio of the output 

spectrum to that of the input, excepting in a purely symbolic way. 

9 
Cf. Greenwood, Holdam, and MacRae, "Electronic Instrumentsn, M. I. T. 

Rad. Lab. Series, VoL 21, p. 230 et.seq; or James, Nichols, and Phillips, 

reference 2, p. 58 et. seq. 
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The transfer function one thus obtains is dependent upon the input waveform, 

hence is not unique to the sampler alone. 

In preceding paragraphs the general nature of the amplitude of the 

transfer function has been established as a monotone decreasing function 

having unit amplitude at zero frequency and zero amplitude at v . A clue 
0 

to the nature of the phase function may be found in Fig. 2 .1. Dis regarding 

the distortion introduced in the rapidly changing parts of the signal waveform 

by sampling at insufficiently large frequency, it seems reasonable tp conclude 

that a constant delay of approximately half a sampling period occurs. Again, 

reference to Fig. 2.3 indicates the correctness of such a conclusion at the 

lower frequencies, although little can be said regarding frequencies in the 

region near v o Thus in the lower range there is reason to conclude that 
0 

the sampler is, or is nearly, a constant-delay (linear phase) device. Proof 

of this conclusion must depend upon mathematical analysis of the output 

spectrum, when it will appear that indeed the phase of any sampler is 

linear (in a 1 sawtooth' fashion) for the entire frequency range, zero to 

infinity. 

It is, of course, the transfer function of a sampler which is all-im­

portant in constldering such a device as part of a feedback loop, hence this 

paper is devoted-principally to a discussion of these transfer properties. 

Based upon physical reasoning a picture has been drawn of this function, 

on which only one blot appears, aside from waveform distortion, namely 

that at half -sampling frequency there is a discontinuity in behavior. This 

is of course due to the fact that v /2 is the only frequency for which 
0 

v - v = v. 
0 

Further discussion is best postponed until a quantitative account 

of the output spectrum and its salient features has been rendered, except to 

rema·rk that at v
0
/2 one might expect the sampler to be a poor risk in a 

feedback loop. 

2. 3 The output spectrum. In a discussion of the output spectrum resulting 

from a monochromatic input one tacitly implies belief in the applicability of 

the Principle of Superposition. To do this for a nonlinear device calls up 

a need for justification, which may be argued for on the basis of physical 

reasoning, and in support of whfch experimental evidence is offered. The 

sampler can be thought of as a 'linear modulator', i.e., a device in which 

one input (sampling frequency) is modulated by another input (which we term 
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'THE' fnput). The question is whether or not any cross-modulation effects 

may exist between spectral components of 'THE' input. 

As an examination of the equations describing the output spectrum for 

a signal of generalized waveform will show, no cross -modulation is theoretically 

possible. This conclusion is borne out experimentally. Quantitative 

discussion will be presented later in this section (see Eq. z..8 and Fig. 2.9, 

below). 

As mentioned previously, the interest in this paper lies primarily with 

the sampler of 'clamped' type; however, in deriving expressions for the 

output spectrum there is only complication to be gained from restricting 

generality of the pulse shape. Accordingly, the more general case will be 

discussed. 

An excellent discussion of the factors affecting spectral composition of 

the sampler output is given by Bennett,
10

who deals with the 'flat' spectrum 

resulting from 'instantaneous' sampling (sampling pulses are modulated 

delta -functions). For pulses of finite length the spectrum is modified by an 

'aperture effect' which is a function of pulse shape and length. The treat­

ment is very elegant, and lends itself well to discussion in verbal terms with­

out loss of mathematical or physical essence. The most concise expression 
11 

for the output spectrum is, however, the result of Kleene, whose paper is 

a mathematical analysis yielding the output of a sampler having generalized 

pulse shape, as surning a generalized input waveform. Those results will be 

used, and enlarged upon, in this work. 

Another method of deriving expressions for the output spectrum consists 

merely in assuming that the input signal is monochromatic, and that the ratio 

of signal frequency to sampling frequency .is a rational nurnbe r. Computable 

forms have been derived from which the transfer function was calculated on 

a discrete set. Justification for such a procedure sterns from the density 

property of rational numbers, hence for the result not to represent the transfer 

function of the sampler for incommensurable frequencies would mean that 

the function was totally discontinuous. Needless to say, an assumption of 

pulse waveform is necessary, hence there is considerable lack of generality 

in this sort of analysis. Moreover although the form of the results lends 

itself to numerical calculation, it is not very revealing to inspection regarding 
functional form of the spectral distribution. 

l 0Bennett, W. R., "Spectra of Quantized Signals", Bell System Technical 
Journal 27, 446 (1948). 

11Kleene, S.C., 11 Analysis of Lengthening of Modulated Repetitive Pulses'', 
Proc. IRE 35, 1049 (1947). 

' 
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Let there be given, then, a sampler whose pulse shape g(t) is arbitrary, 

save that its Fourier integral converges. An example of such a waveform is 

provided in Fig. 2.6a, which depicts the unmodulated output of a sampler 

(output for no signal input) as a function of time, t. The sequence of instants 

.. marking the beginning of each sampling period we call {tk}• i.e. , 

)~} = {k/ v 
0
}, the sequence of sampling instants. · 

\. :Assume that the input signal f(t) possesses an enumerable set of 

spectrum lines, implying that the input can be expressed as the sum of a 

finite, or enumerably infinite, set of periodic functions. Thus, we can 

express f(t) as a sum of Fourier series, 

f( t) 
2rrim v t 

s 

h l/ . th . d f h th . d' f f( ) w ere v 1s e peno o t e s per1o 1c component o t . 
6 

( 2. l) 

Now by definition of the sampling process, an example of which is 

provided in Fig. 2.6b, the output of the sampler is 

F(t) = f ( { ~} ) g (t - { ~}) (2.2) 

consisting of the pulse train g(t - {~} ) modulated by the sequence of input 

values at the sampling instants, f( {tk} ) . 
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LJ...J 
~--_.~~~~~~~~~~~~~~~~~~~~~--~~~~~~~6>~ 

0 

0 

Fig. 2.6. Input and output of a sampler having some (arbitrary) 
pulse shape g(t) 

(a) Unmodulated pulse train. 

(b) Modulated pulse train F(t) (shown cross-hatched), 
with modulating input function f(t) (solid-line curve). 

When (2.1)is written for the sequence {tk}, and substituted into (2.2) 

with suitable transformations, ll the result is 

F( t) =~~ '\ c W(nv LL L ms 0 

s = 1 m=- oo ::n=- oo 

- 11 ' 
Kleene, op. cit. 

+ mv )e ' s 

2rri(nv +mv )t 
0 s ( 2' 3) 

f-
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where m and n are integers, and 

1/ v 
0 

= vo 1 g(t) 

0 

W( v) e -21ri vt dt ' ( 2.4) 

Here the nature of the output spectrum becomes apparent: that there are 

spectrum lines for all positive and negative (integral) values of m and n, 

at nv + mv The complete spectrum of the input signal is transposed in 
0 s 

frequency to cluster abo':lt each integral multiple ('harmonic') of the sampling 

frequency. The entire spectrum is modified by that of the single sampling 

pulse -i.e., each spectral component is modified by the Fourier transform 

of the sampling pulse, evaluated at the frequency of the line in question. 

Illustration of the above is given in Figs. 2. 7 and 2.8. 

In the case where the input has only one spectrum line 1n the positive 

frequency region (and one in the negative region) the relations take the form 

or 

Thus 

F(t) = r_ 
n=-:oo 

f(t) = a cos (2Trvt) (2. 5) 

f( t) 

a 

2 

2 ii'ivt 
e + 

2 2 

- 2rri vt 
e ( 2.6)' 

[ 2Tri(nv -v)t 2Tri(nv +v)tJ 
LW ( n v 

0 
- v) e o + W ( n v 

0 
+ v) e 0 

(2.7) 

One sees now that each integral multiple of 

from nv by± v. 
0 

v has 'sidebands' differing 
0 

It is of interest to see what happens to the spectrum as input frequency 

is varied from zero upward to many times the sampling frequency. As the 

input frequency term v starts from zero, the difference frequency term 

v -v starts down from v , and a set of sum-frequency terms nv + v and 
0 0 0 

of difference-frequency terms (n + l)v -v approach each other in every 
0 

interval of width v . Each term is of course modified by W( v). 
0 

As the input-frequency term comes to the value v /2, all of the sum 
0 

and difference terms in each interval of width v coalesce. When v be­
o 

comes larger than v /2, the spectrum lines,·change roles (as though they 
0 ' 

had 'pas sed' each other at the moment of coC:..lescence), behavior of the 
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Fig. 2. 7. Pulse train of Fig. 2.6a and magnitude of the 
spectral density (Fourier transform) of a single pulse 
(positive -frequency portion). 
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2.8. 
(a) 
(b) 

(c) 

MU -13955 

Structure of sampler output spectrum. 
Amplitude spectrum of some arbitrary input signal. 
Input signal spectrum transposed to multiples 

of the sampling frequency. (This is not the 
output spectrum.) 

Input signal transposed and modified by spectrum of 
sampling pulse. Only amplitude is shown, of 
course. (This is the output spectrum) . 
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spectrum being symmetrical about v /2. 
0 

When v is any integral multiple 

of v the spectrum is identical to that for v = 0. Indeed, inspection of 
0 

Eq. (2. 7) shows that the same spectrum results for a unit amplitude input 

applied, having the frequency of any one of the spectrum lines. To illustrate -------
the effects mentioned above, reference is made to Figs. 2.2 to 2.5. 

One further effect is left to be explored, namely the possibility of 

cross -modulation. In equation (2.3) we let the index s take on the values 

1, 2, and m the values± 1 which correspond to an input signal consisting 

of two equal sinusoids of frequencies v 1 and v
2

, thus: 

00 

F( t) =CL 
n=-oo (2.8) 

since we have C -ls = Cls = Cs = c 1 = c
2 

=C. The result being a linear 

combination of terms in each of the frequencies v 1 and v
2 

separately, 

and having no terms of frequency v
1 

± v
2 

or of any other combination of 

v 1 and v
2

, we are led to the obvious conclusion that cross -modulation does 

not occur. Hence the term 'linear modulation', used previously. It is 

thus seen that the principle of superposition has been correctly applied to the 

sampling process. 

The experimental verification of the above result, mentioned previously 

1n this section, is presented herewith. The laboratory model clamped 

sampler was used, this model being described in Section 4.1. An input 

signal whose amplitude was independent of frequency was used. The 

corresponding output signal was normalized at zero frequency. 

In the experiment, the input was composed of two components, having 

a fixed difference in frequency. The input frequencies were ranged through 

several values between zero and v 
0

, one case 1 straddling' half -sampling 

frequency (v /2). The difference frequency was chosen as 0.04 v , a 
0 0 

feasible but small value well within the pass -band of the spectrum analyzer. 

Exploration was made of the region 0 < v < v , which is equivalent to 
0 

exploring the entire frequency axis, as pointed out in the discussion of 

the output spectrum. Results are shown in Fig. 2.9, it being noteworthy 

•· 

J 
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that the magnitude of difference frequency component is never greater than 

40 decibels below the input signal amplitude. IDther components, i.e., 

the sum-frequency, and other linear combinations of v 1 and v2 , are smaller 

than the difference component. The presence of small cross -modulation 

products we therefore attribute to nonlinearity in the vacuum -tube netwo·rks 

associated with the model sampler. 

0 

-10 

-20 

-30 

0 Ql Q3 0.6 0.7 Q8 Q9 19 

Fig. 2.9. Result of an attempt to detect cross-modulation. 
The quantity shown is the amplitude of the difference 
("beat") frequency generated in the sampler and associated 
apparatus, resulting from an input signal consisting of two 
sinusoidal voltages each having unit amplitude, with 
frequency separation of v /25. 

0 
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2,4. The transfer function. It is now that we turn to examine the behavior of 

a particular line of the output spectrum, that having the input frequency, as the 

input frequency is varied aver the entire domain of real values. The input 

signal will be thought of as a real function with a positive real frequency, v, 

expressible by Eq. (2.5). Since we are using complex Fourier series 

representation there are two spectrum lines, at ± v (i.e. , m = ± 1), as 

expressed in Eq. (2o6). The line._having frequency v is represented in Eq. 

(2. 7) by the term in + v for n = 0, namely W(v) exp (2 rrivt). The coefficient 

of this term, W(v), is the transfer function of the sampler everywhere 

except on the discrete set of frequencies v = (2n - 1) v /2, a case to be 
0 

discussed in detail subsequently. W{v) is defined by Eq. (2,4) which is assumed 

to be convergent, hence W(v) is an analytic function of v. 

In the discussion to follow, it will be useful to have as an illustrative 

example a specific type of sampler. The clamped sampler provides, in the 

opinion of the authors, the most easily discussed form, both from a physical 

and mathematical standpoint. The discussion of the transfer function will, 

however, be kept in the mast general pas sible terms, applicable to any pulse 

shape encountered in physical realityo Later in this section a further 

application of the principles will be made to the delta-function, or impulse­

type sampler, which has some interesting properties. 

In the case of the clamped sampler, the pulse is one of s_imple square 

shape, of duration equal to the repetition pe riodo Thus, Eq. ( 2A) integrates 

to 
v sin rr~ -1 1T--

v v 
W(v) 0 0 = e v 

(2.9) 
1T-

v 
0 

or, v 

lw(v)j 
sin rr-

= Vo 

v 
(2o 10) 

1T-

v 
0 

arg W(v) 
v = -1T- + arg (2.11) 
v v 

0 

v 
0 
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Equation (2. 11) embodies the linear phase property discussed previously; 

the function arg (sin u/u) being -k'IT, where k is the number of zeros of 

sin u/u which lie between 0 and u. The phase properties are an outgrowth 

of the pulse shape alone. 

Figure 2.10 ·shows the locus of this transfer function in the complex 

plane for arg W .:::. 8'11', i.e., for the first four orders of the spectrum. 

The function W( v) as described in equation (2.9) is everywhere single­

valued and continuous in the domain of real frequencies. It has a zero at 

each point of the set v = nv (n any integer > 0), implying that there is 
0 

no output at sampling frequency or any integral multiple thereof greater 

than zero. Its curvature is continuous at the zeros as examination of (2.11) 

will show. 

2.4. 1. Behavior near odd multiples of half the sampling frequency. As has 

been previously mentioned, occurrence of the input frequency at any odd 

integral multiple of half -sampling frequency gives rise to discontinuous 

behavior' of the transfer function. Physically, this result may be most 

easily ascribed to an inte rfe renee between the sum and diffe renee frequencies 

in each spectral order, since these lines coalesce in all orders when the 

input frequency becomes (2n - 1) v /2. 
0 

That this interference actually 

occurs is shown in the analysis to follow. 

The method is one of perturbation of the input frequency from any 

member of the set (2n - 1) v /2; recalling the property of the spectrum 
0 

that identical spectra are obtained in response to unit inputs having the 

frequency of any line of the spectrum, we use the value v /2 for input 
0 

frequency. Thus write Eq. ( 2. 7), and change the index of summation from 

the multiple of sampling frequency to the spectral order, i.e., the kth 
st th 

interval lies between the (k - l) and the k zeros. Then we have 

00 

{ [ . 2wi [ (k-l)v 0 +v]' Zw{kv 0 -~t} L a 
F(t) = T W (k-1)v

0 
+ vJ e +W[kv

0
-v]e . 

k=-oo (2.12) 

Let 
v 

bV 0 
- 5 v <<< 1 (2.13) v = 

2 v 
0 
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0.2 04 0.6 0.8 1.0 Re(W) 

0.4 
e -0.8 
t-1 

MU -13956. 

Fig. 2.1 0. Partial transfer function of a perfect amplitude 
sampler of the clamped type. Numbers shown are the 
frequency normalized to sampling frequency. Only the 
first four orders of the function are shown. 

i! 
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Substituting (2.13) into (2.12), and simplifying the expressions for the frequencies, 

we have 

00 

F(t) = L a 

{ 
r. J 21r i [ (k- 112) v o-o v Jt 

WL(k-1/2)v0 -ov e 
2 

k=-oo 

+ W (k-1/2)v + ov e . 
0 

(2.14) [ J 
2 1ri [ (k-1/2)v 0 + ov] t} 

W(v), being analytic, may qe replaced by its Taylor expansion in the 

neighborhood of (k-1/2)v , k being any integer, In view of the restriction 

ov/v < < < 1, one may r:place, in Eq. (2.14), W [(k-1/2)v
0
'+ ov] by the 

leading term w[(k-1/2)v
0
], and (2.14) becomes 

00 

F(t) = L.;.. 
k= -oo-

{ 

21Ti [(k-1/2)v
0

-ov]t 21Ti[(k-1/2)v
0

tovJt} 
W[(k-1/2)vJ e te 

(2.15) 

Now we consider the behavior of each term separately--i.e., inquire 

into the goings and comings of each spectral order independently of the others. 

In so doing, phase is referred to the lower frequency line (that having the 

diffe renee -frequency), with the result 

a 

2 

In each order the output consists of the sum of two components which interfere, 

in the limit, when their frequencies are k v /2, to produce an output mag-
. 0 

nitude which is in accordance with the phase of sampling. If we allow the 

perturbation to remain, one sees the behavior very clearly. For every order, 

the rate of precession in phase of the upper component with respect to the 

lower has the same value, namely 2(21T6v). The time required for a pre­

cession through one period of the output is the same for all orders, 

irrespective of their frequency, noting that their frequencies are (perturbed} 

integral multiples of the signal frequency. Thus the output waveform grows 

from nothing to its maximum value, then shrinks again to nothing, the cycle 
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being repeated as long as the perturbation remains. Throughout all this 

process the waveform remains unchanged, since the interference is in each 

order of the same degree as in all the others, i.e., all the orders might be 

said to interfere in unison, or to the same degree, simultaneously" If at any 

time in the cycle here described the perturbation is removed, the output re­

mains frozen at the condition then obtaining. Thus the exponent 2(21T6 vt) is 

seen to be just twice the phase of sampling, the transfer function thus having 

period 1T with respect to the variable <j>. Equation (2.16) may therefore be 

written, in the limit, 

(2.1 7) 
2 

where <j> is the phase at which sampling occurs. 

Equation (2.17) is the kth term of the series in Eq. (2.15) m the limit 

6 v = 0; the output time -futiction is the ref ore 

F(t) = a 
[ 

. 2 1ri (k:...1/2)v t 
W (k-l/2)v

0
]e 

0 (2.18) 
2 

This is the output in response to a monochromatic input having for frequency 

any odd integral multiple of half the sampling frequency. If the function W(v) 

is represented by a contour on the complex plane (e.g. , Fig. 2 .10), each of 

the interference terms in the output (Eqs. 2.16, 2.17, 2.18) adds a circle 

centered on W Ek-l/2)v
0
J and passing through the origin. 

2.4.2. Behavior at multiples of sampling frequency. The behavior described 

above also occurs at any integral multiple of sampling frequency. To show 

this one takes Eq. (2.7), and without rearranging, lets v = ov, ov/v <<< 1 
0 

as before, realizing that, as previously, in the limit ·W(nv ± ov) approaches 
0 

W(nv ) as ov is allowed to vanish. Thus the factors W(nv )exp(21Tinv t) are 
0 0 0 

removed. Again, as before, phase is referred in each term to the lower 

frequency spectrum line. Thus we have the set of equations 

2 [ 
41Ti6 vtJ W(nv

0
) 1 + e (2.19) 

a 
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All the remarks made with reference to the v I 2 case apply here. This 
0 

case, however, is trivial in the clamped sampler, since W(nv ) =· 0 for all 
0 

n. For samplers having pulse shapes other than square, W(n v ) does not in 
0 

general vanish, and one thus finds interference at all integral multiples of 

half the sampling frequency. 

2.4, 3. Particularization to the clamped sampler. A case in point is the clamped 

sampler, the pulse shape being square, and of length 11 v , whence 
0 

2 
(2.20) 

( 2k -1) 7T 

and so 

F( t) = -i 
a 2 

00 

I 
k=-oo 

27Ti(k-ll2) v t 
e . o (2.21) 

2 2k-l 7T 

This case is illustrated in Fig. 2.1 1. The first order shows the largest 

and most important effect in the clamped case, and hence is given special 

attention in Fig. 2.12. Using the clamped sampler as an illustration of the 

general case, and taking the perturbation once more, we have the input­

frequency component arbitrarily close to v 12, and the difference frequency 
0 

component symmetrically disposed beyond v I 2. The latter case precesses 
0 

in phase about the 'fundamental', or input-frequency component, at a rate 

equal, in precession periods per second, to the separation (25v) between the 

two spectrum lines. If at any time we remove the perturbation, we have a 

possible combination of circumstances in the limit at v I 2. Thus, solely due 
0 

to chance, the output phase at v I 2 could lie anywhere on the circular locus 
0 

shown. The accidental nature of this interference phenomenon of course 

makes the transfer function discontinuous at (2n-l)v 12, with the transfer 
0 

function consisting of W(v ) plus the set of circles discussed above. 
0 

2.4.4. Particularization to the impulse case. The case where the sampling 

pulses are unit impulses is of interest, as it has been used in the work of 

both Linvill and Bennett. While the results of Sections 2,3,1 and 2.3.2 are 

perfectly general, and indicate the result, some explicit remarks may be 

in order here. 
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MU-13957 

Fig. 2.11. Complete transfer function for the clamped 
sampler in the first four orders, with the interference 
structure occurring at n v /2 shown. 

0 

are sum -frequency components of kth order. 
' 

are difference -frequency components. 

are the resultants. 
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-Oil 

-1.0 

MU-l3958 

Fig. 2.1 2. Region below the first zero of the sampler transfer 
function of Fig. 2.11, showing mechanism of interference 
between spectral components of sampler output at 
half-sampling frequency. 
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Let now the pulse shape be 

g(t) = o(t) 

o(t) being the Dirac &-function, 

5 (t) = lim S(t, a) 
a-+0 

l 
S(t, a) = -vz; 

l __ e 

a 

S(t, a) is a Gaussian of width a and amplitude l/a , so that 

Leo S(t, a) d t = I for all a, 

-00 

(2.22) 

(2.23) 

( 2 .24) 

Substituting the above into Eq. (2.4) and performing the integration, 

W(v) '=lim W(v,a) 
a-+0 

-21T2a2v2 
W( v, a) = e 

Combined, Eqs. (2.16) and (2.19) are 

(2.25) 

(2.26) 

F n (t) exp [zni (rn :
0 

-5v) t J = W(m v: ) G + e 
4
"'

5
"'] 

v 
For W(m ~)we substitute the expression of (2.26), with v = v /2, and 

2 0 
pass to the hmit a = 0: 

[ 
. vo J 21Ti(2ov)t 

F n ( t) e xp - 21T 1 ( m Z -5 v) t = l + e ( 2 . 2 7) 

All orders have their interference circles superposed in a single one 

centered on the point l + Oi . 

To consider the sampling-function to occur on an impulse basis in any 

physfcal system is of course a mathematical idealization. One can profitably 

make this idealization if the actual pulse shape can be attributed to linear 

passive networks, since the function of these can be readily described in 

·terms of a transfer function. If, however, the pulse shaping is due to the 
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action of nonlinear, and/ or active networks, things are not so simple, and 

usually the approach of the present work, namely, describing the transfer 

properties of a physical sampler in terms of its pulse shape, has the advantage 

of simplicity and realism. In any event, the o -function idealization does not 

in any respect whatever free one from the interference phenomenon.- It is an 

essential result of the quantization of time, and of nothing else. 

One might also note that the impulse -sampler is only a, moderate ideali­

zation of a physical one using short pulses, and illustrates one significant 

feature of the latter: the shorter the sampling pulse, the smaller the output 

amplitude, for a given input. In fact, the output-to-input amplitude ratio is 

proportional to the pulse -width, a , for the Gaussian shape, which comes 

fairly close to being representative of very short electronically-generated 

pulses. 

2.5. Sampler output corresponding to an arbitrary periodic input of period 

near 2/v . To facilitate discussion in the next chapter, of the stability 
0 

questlon, this section will treat the matter of the output resulting from an 

arbitrary periodic input whose period is close to twice the sampling period. 

To start with, the input and output are given by Eqs. (•2..1) and (2.3), 

respectively, with only one value of S: 

f( t) 

and 

F(t) 

which can be written 

F( t) 

00 

L imwt 
= c e m 

m=-oo 
00 00 

L L i(nw +mw) t 
C W(nw + mw) 

0 = e 
m o 

m=-oo n=-oo 

00 

=I c W(nw ) e 
0 0 

inw t 
0 

n=-oo 
00 00 

\ 
+L LFm W(nw0 +mw) e 

i(nw +mw) t 
0 

m=l n=-oo 

+ c W(nw - mw) 
-m o 

e
i(nw

0 
- mw)t]. 

(2.28) 
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For convenience, we call the double -sum term by the name H(t). Now we 

applyEq. (2.13~: 

H(t) = ~ 
~1· 

~{ . wo 

L c W(nw + m --m o 
2 

n=-m 

w 
i(nw +m ~ -mow)t 

0 
-mow) e · 2 

w 
w i(nw -m ~ +mow)t} 

W( o c ) e o 2 +c nw -m - +muw 
-m o 

2 

(2.29) 

In (2.29) we wish to shift the order of summation so as to pair off terms whose 

frequency arguments are separated only by ow, making the explicit pro­

vision that the analysis will apply only to pulse shapes such that 

W(w ±ow) = W(w), ow < < w (2.30) 

i.e., that the function W(w) is analytic (it can be shown that a convergent 

Fourier transform is an analytic function). In order to carry this off we 

imagine the second n-sum (that involving c ) in Eq. (2.29) to have an index 
-m 

k instead of n; then what we wish to impose is the condition 

or 

nw + m 
0 

w 
0 

2 

n + m = k 

= kw 
0 

w 
0 

-m-
2 

(2.31) 

Equation (2.31), solved for n, is substituted into the first n-sum of Eq. 

(2.29), and the whole business is now summed on the index k, resulting in 

(X) (X) 

H(t) "I I {em W E2k-m) 
m=1 k=-oo 

+ c -m W [2k-m) 

w 
0 

2 

w 
0 

2 

J i ~2k-m) wo -moJ t 
-mowj e L 2 j 

(2.32) 
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In light of Eq. (2.30), for sufficiently small ow/w, 

00 00 [ \ L f w~j • i ek-m) 
H(t) = b k:=-oo em W (2k-m) 

c 
:-m 

c 
m 

w 
0 

2 
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(2.33) 

The quantity 2owt is the precession rate of the sampling instant. If the per­

turbation is removed the process is stopped ( 'frozen') at some particular 

value of sampling phase, reckoned on the scale 211' = 2/v (phase referred to 
0 

the fundamental frequency component of the spectrum). Thus we call 

tow = <j>(t) (2.34) 

the sampling phase, whose zero is reckoned from the maximum value of the 

exponential, i.e. , from the time of reinforcement (were c and c 
m -m 

to 

be real). 

Referring to the expression for f(t), one sees that in order that f(t) 

be real, 

thus, 

so 

* c = c (complex conjugate) m -m 

ie 

-lme c = m 
-ie 

~ e c = -m m 

c ·~2ie 
-m m 

c 
m 

= e 

m 

m 

and the last (bracketed) factor in Eq. (2"33) becomes 
2i(m<j>-e ) 

1 + e m 

(2. 35) 

(2.36a) 

(2.36b) 

Particular interest lies in the case where input frequency is precisely 

v
0

/2; e'q. (2.33) is, with the perturbation removed (and with slight re~ 

arrangement), 

H(t) " i~ em G te 2i(m~- 9mJ2~oo W Gk - : J 
i (k _:::) w 0 t 

w e 2 
0 

(2.37) 



The entire output is 

F(t) c W(kw ) e 
0 0 

-37 -
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+ H(t) (2.38) 

As noted above, e is the phase of c , 
m m 

and <1> is the phase of sampling. 

With regard to this latter item, some remarks may be pertinent, as there is 

considerable potential for ambiguity at this poinL 

In the case m = 1 (the so-called 'fundamental' component of the input 

spectrum) the argument of the interference term is 2i(B
1 

- <j>), giving 

maximum value to the term at <j> = e1 . Likewise, for each order, the term 

reaches its maximum value when m<j> = e . Now <!> is the phase of the 
m 

'fundamental', or first-order term at which sampling occurs, give or take 

some constant depending upon input waveform; the zero of <j>, is determined 

by the fact that maximum first-order output obtains if sampling occurs at 

·'<!> = el, the phase of any component being, of course, referred back to the 

interval between successive occurrences of any particular value of the input 

time -function (i.e., the interval over which the Fourier coefficients are 

integrated). 

In Elq. (2.38), the first series represents the output corresponding to 

the average value, or zero-order term, of the input, and consists of a track 

of identical pulses; superposed upon this is the dynamic output signal, H(t), 

of Eq. (2.37). 

The function H(t) (Eq. 2.37) 1s to be compared with the function F(t) 

of Eq. (2.18). In (2.37), each term of the sum on m consists of, firstly, 

the Fourier coefficient of the input component of mth order; secondly, the 

~th order interference factor l + exp (2iljl ), where ljJ = m<j>- e , 
m m m 

is the phase at which the mth order component is sampled. Thirdly, there 

is the output pulse -train, embodied in the k-sum (note that the index m 

enters here, too, so that Eq" (2~37) is not the product of two series, but is 

a double Fourier series. The (partial) argument (m/ 2} w
0 

is the frequency 

of the m th order spectrum line of the input, and output. The complete 

argument (k-m/2)w is the set of frequencies of the set of spectrum lines 
0 

resulting from the mth order input component. 

It is profitable to write H(t) in another way; since the argument of the 

k-series in Eq. (2.37) may be written (2k-m) w /2, and since the factor 
0 

·II 
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(2k-m) is a dummy variable, if may be used as the index of summation. It 

is dependent upon m only in the matter of odd-ness or even-ness, i.e., if 

m is odd, (2k -m) is odd; if m is even, ( 2k-m) is even. Thus it is possible 

to break up H(t) into two double sums, one involving only even values both of 

indices m and k, the other involving only odd values of both indices. At 

this juncture it becomes apparent that each sum, odd and even, 1s the product 

of two series, which can be rearranged to render the output 

F( t) 

00 

+~ 2i G2m-1)cp- e2m-J> 
c2m-1 ( 1 +e L 

2ik 
w 

0 

2 
t 

wb } 

r 
w0 ~ i(2k-1) -· t 

W 2k-1)- e 2 
2 

(2.39) 

It is instructive to compare Eqs. (2.39) and (2.18). In the case of a 

monochromatic input of period 2/v , a symmetrical output is generated. 
0 

However, when the input is not symmetrical, albeit of period 2/v , the 
0 

output cannot be symmetrical unless (and only unless) the sampling instants 

happen to fall at equal positive and negative values of the input. Such an 

event would be fortuitous indeed. In general, a nonsymmetrical periodic 

input generates an output in which the even-order spectrum lines are 

quite as important as those of odd order. 

As an informative application consider the input to be 

f( t) 

m=-oo 

a 
Here c 

0 
= a, c _

1 
= c 

1 
= 

2 
In Eq. (2.8), let for all m. 

imwt 
c e =a(1+cos 

m 

w 
0 

t). 
2 

c =Oforallmfi -1,0, or+1; 8 =0 
m m 

v 
0 

2 
There results. an 

equation for F(t) which is the sum of sampler outputs corresponding to 

(1) the de component of the input (above), (2) its sinusoidal part. Using 
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the results of Section 2.4.1 we have the latter output expressed precisely in 

Eq. (2.18}. Substituting the above values for the em and the Om in Eq. (2.39}, 

we arrive at precisely the same result. 
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3. THE PROBLEM OF STABILITY IN A FEEDBACK LOOP 

In an ordinary (continuous control) feedback system, the criterion of 

Nyquist applies to the frequency transfer-function of the entire loop, i.e., to 

the transfer-function which operates upon signals passing around the loop. 

One must hold certain reservations when he uses the term 'transfer 

function' in connection with a sampler, as the sampler is an essentially1 

nonlinear device. What we have called the 1 transfer function' of a sampler 

certainly cannot be combined with those of a sequence of linear elements 

in the usual manner and directly subjected to Nyquist's criterion; this 

'transfer function' for the whole loop, so derived, however, can be used to 

generate a function having properties similar to those of the true transfer­

function for a series of cascaded linear networks. This function is 

\characteristic of the particular time-quantized feedback loop under con­

consider-ation, and to it the stability criterion of Nyquist can be directly 

applied as for a completely linear system. 

This extended Nyquist criterion is developed by Linvill
3 

and by 

Ragazzini and Zadeh. 
5 

These authors do not, however, explicity recongnize 

the 1 sampling oscillations 1 which occur with a period of v /2. Linvill 
0 

seems in fact to attribute such oscillations to nonlinearitie s in the output 

member of the system ('saturation effects'); the trouble, rather, arises 

in the sampler itself, and solely from the sampling process. Lago and 
6 . 

Truxal recognize sampling -oscillations, and insist that the extended 

Nyquist criterion applies. 

The authors have felt certain doubts as to whether the extended cri­

terion as so far put forth fully accounts for all of the troubles at half­

sampling frequency. Therefore, in the section to follow there is a somewhat 

lengthy, but general, demonstration of the fact that it does. In a later 

section there is a derivation of the extended criterion from the point of 

vi_ew adopted with reference to sampling oscillations, and the criterion is 

stated in a manner readily interpretable from a physical (geometrical) 

Linvill, op. cit. 
5 ---
Ragazzini and Zadeh, op. cit. 

6 ---
Lago and Truxal, op. cit. 
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standpoint, lending itself to a geometrical method for estimation of critical 

gain in practical applications. These interpretations are subsequently 

developed. 

3.1 Conditions for the occurrence of oscillations having a period of 2/ v 
0 

• 

One might be inclined to think that Nyquist's criterion might be ex= 

tended to the time -quantized situation by mere inclusion of the interference 

circles as parts of the transfer function; certainly they are, but it is not 

enough to state that self-sustaining oscillations will occur if a circle en­

closes the critical point. In some cases a system with sampling will oscillate 

at values of gain materially lower than that required to cause enclosure of 

the critical point; in others, enclosure occurs without ill effects. Such 

oscillations would occur only at half the sampling frequency, for an 

oscillation at any odd multiple of v
0
/2 will be reduced to frequency v

0
/2 

by the sampling process, itself, and any signal whatever having for a frequ­

ency any integral multiple of sampling frequency itself will be reduced by the 

sampling process to a train of identical (sampling) pulses. 

The term 11 oscillation 1 at 1 half-sampling frequency'v connotes a 

looseness of usage which will for present purposes be convenient. It means 

just this: that the output waveform (of the sampler) consists of a train of 

like pulses which are alternately positive and negative in polarity, i.e., for 

a clam-ped sampler, the output is a 'square-wave'. Thus the terminology is 

correct in this sense: that the output waveform is that associated with a 

monochromatic input of frequency v /2, and of course, the input is a 
0 

periodic function having period 2/v • with waveform which depends upon 
0 

the sampler pulse shape and upon the transfer properties of the remainder 

of the Loop. 

Existence of oscillations in general at a gain level other than that 

required to cause enclosure of the critical point by an interference circle is 

due to the waveform effect, or to put it another way, to the cumulative 

interferences in all of the various orders. Thus, the gain required to pro­

duce these oscillations is dependent upon the transfer function W(v), and 

upon the loop transfer properties, since these literally determine how many 

orders are important.contributors to the oscillation. 
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The time has now come for the derivation of a quantitative condi~ion for 

the stability of a feedback loop with refe renee to oscillations of period 2/ v . 
0 

Consider a feedback loop from the point of view of Fig. 3.1. 

Sampler ""' -
f(t) } 

f( w) 

A 
{

F. ( t) 
]3 

F(w) 

KG(w) --

Fig. 3.1. Feedback loop containing a sampler and elements 
whose transfer properties can be described by the 
function KG (u.r). K is the returnpath gain; G("w) is 
its frequency characteristic;. 

At A, the sampler input is f(t), having a spectrum f(w), a line spectrum, 

whose line of lowest frequency is at v /2. At B, the sampler output is 
0 

F(t), spectrum F(w), also a line spectrum. It will be assumed that the 

loop is in a barely oscillating condition, hence the signals at A and B 

are related by the oscillation condition 

f(w) = - KG(w) F(w) (3.1) 

where f and F are corresponding sampler input and output, in the 

notation of section 2.2. Now (3.1) represents the operation of -KG(w) on 

each spectrum line (Fourier coefficien,t) of F( t), and implies that f( t) is the 

recombination of the resulting spectrum in a time function expressed by a 

Fourier series; thus, if 
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00 w 

L im 0 t 
F(t) = ).. e 2 

m 
( 3 .2) 

m=-oo 

00 w 

L im 0 t 
f( t) = c e 2 

m 
( 3 0 3) 

m=-oo 

hence 
w 

- KG(m 
0 ) )._ c = m 

2 
m 

( 3.4) 

The ). can be determined from Eq. (2.39), which describes the sampler 
m 

output corresponding to an arbitrarily shaped periodic input having twice the 

sampling period. There are certain observations, however, which can be 

made regarding the possible nature of the oscillations, and which can save 

much labor in the calculations. To start with, a zero-frequency component 

will not circulate around the loop, since feedback is by definition 1inve rse 1 

to frequencies near zero. Furthermore, were the waveform unsymmetrical, 

it would possess components having frequencies which were even-integer 

multiples of half the sampling frequency, and vice versa. It has been shown, 

however, that insofar as the results of the sampling process are concerned, 

any input having sampling frequency or any integral multiple the·reof "is 

tantamount to a "dc 11 input, which due to the action of the feedback process, 
I 

would be suppressed. , Thus only a symmetrical oscillation can exist in the 

steady state, and therefore can contain only components whose frequencies 

are odd-integer multiples of v /2 . 
0 

Thus, the most general form of the sampler output F(t) under the 

oscillation condition is given by the sum of the odd-order terms in Eq. (2.39), 

wherein the notation with respect to the summation indices k and m will 

be interchanged for the sake of convenience. The resulting expression is 

w 

F( t) 0 2k-1G+• 
zi r(2k-l)<j>- e J1 1 w*·(zm-l)~t 

L1 2k-~ W l (2m - 1) ~ 2 
- 2 

( 3. 5) 
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Thus by comparing Eqs. (3.2) and (3.5) we have the expressions for the 'X. : 
m 

"-2m = c2m = 0 (3.6a) 

~. = \ 
. 2m-l L 

2i Q2k-1)<j>-82k l [ w
20
J 

c 
2

k _
1 

( 1 + e - ) w (2m -1) ( 3.6b) 

k=1 

Then, from Eq. ( 3.4), 

(3.7) 

Now Eq. (3.5) gives F(t) in. terms of input waveform parameters and 

sampling phase. One can also write it in terms of sampler pulse shape and 

an arbitrary amplitude coefficient, then apply Eq. (3.4) to get a relation be­

tween the c and c ; this is because the output waveform corresponding 
m -m 

to an arbitrary, symmetrical, input of period 2/v0 is the same as that 

corresponding to some sinusoidal input whose amplitude depends somehow 
. w 

upon sampling phase and waveform. Thus, we use Eq. (2. ?),with W=-; which 

when simplified becomes 

F(t) =a 2:_
00 

W [!2m-!) :
0 J 

w 
i(2m-1) + t 

( 3.8) e 

the coefficient a now being a function of <j> and the e
2

m _
1 

. 

Now a value of a may be found to make Eq. (3.8) identical with 

Eq. (3.5) for any wayeform of the type under discussion. From (3.8), 

compared with (3.2), 

A = a W [<2m -1) w
2
° J 2m-1 

(3.9) 

and hence from ( 3.4), 

w w 
c 2m_ 1 = -a KG Q2m-1) ~ 1 W [<2m-1)---;:-J ( 3. 1 0) 

Equating either (3.9) to (~.6b) or (3.10) to (3.7) gives 
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(3.11) 

2i[(2m-1)<j>-B2 1
] 

Now we multiply Eq. (3.10) by (1 + e m- ) and sum on m; 

the member on the left, by Eq. (3.1l)p is precisely a, yielding 

1 

K 
= I 

m=1 

Now the 

( 1 + e 
2i r(2m-l)<j>-8 J E W;-1 [ w~ 

L 2
m-l ) G (2m-1) ~I w r2m~l)~. 

. 2 ~ 2 

(3.12) 

e are the phases of the Fourier coefficients of the 
2m-1 

sampler input. Thus, using Eq. (3.10) once more, 

-2i82m-1 
e 

= 

= 
c 

-(2m-l) 

(3.13) 

In order for G(w) to be the transfer function of a physically realizable 
12 * >:< network, G(-w) = G (w); moreover, from Eq. (2.4), W(-w) = W (w), where 

* the asterisk ( ) denotes the complex conjugate. It appears then, that 

w w 
e2m-l = arg G ( [2m-l] -f-) + arg W ( [2m-1] : ). (3.14) 

Equation (3.12) is the condition for oscillation; it is necessary, 

however, to separate it into real and imaginary parts, for which purpose 

Eq. 13 .. 13} can be helpful, when substituted in Eq. ( 3 .12): 

12 
Bode, H. W., Network Analysis and Feedback Amplifier Design, Sec. 

7.3, pp. 106 ff., Van Nostrand (1945). 
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K 
= 

w 
0 

2 

-46-

2i(2m-l)<j> G( + e ~ 

UCRL-2208 Rev. 

(3.15) 

Now each of the functions G and W is a complex function of the single real 

variable, w" Thus, letting X, Y, U, and V be real, even functions of w, 

G(±w) = X(w) ±iY(w) 

W(±w) = U(w) ± iV(w) 

whence the real part of Eq. ( 3.15) is 

fl {Lxmum - Ym V m] [1 t cos 2(2m-l)$J 

(3.16a) 

(3.16b) 

+sin 2(2m-1)<j>rx v + L m m y u J}=- _1 m m K 

and the imaginary part is 

<X) 

) [x m V m + Y mUm J [ 1 - cos 2( 2m., 1) <j> J 
m=1 

+sin2(2m-1)q,[x u L m m 

( 3 .l 7) 

- y v 1 = 0 m mJ 

(3.18) 

in which the subscript m indicates evaluation of the function at w = (2m -1) 
w 

0 
• -- . Equation ( 3.18) is satisfied by <j> = mr, n being zero or a positive 

i~teger. If one looks momentarily at the oscillation process as a repetitive 

transient phenomenon, it is readily apparent that the phase of sampling, in the 

oscillation waveform, is an invariant of the system, as is the waveform at the 

sampler inpuL The sampling phase is fixed; it cannot differ. For suppose 

that somehow sampling were to occur at a 'different' phase; then the transient 

response to the sampling pulse would occur as before (i.e. , the sampler output 
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pulse would be modified in the same way as before), the only possibly excepted 

aspect being amplitude of the waveform. Sampling would occur after the 

usual interval (1/v ) , and the same identical transient (modified sampling 
0 

pulse shape) would have occurred in the interir:q. Therefore sampling phase 

was not 'different' after all. We are perfectly at liberty to reckon the zero 

of phase from this point of the waveform; indeed, Eq. (3.18) dictates this 

turn of events. Phase of sampling is therefore taken as zero. In light of 

the foregoing, Eq. ( 3.17) reduces immediately to 

00 

I 2(X U - Y V ) m m m m 
1 

K 
(3.19) 

This is the criterion for stability which applies to oscillation at half the 

sampling. frequency, and which extends the criterion of Nyquist to the time­

quantized feedback system. 

The criterion of Eq. ( 3.19) has a simple and direct physical interpre ~ 

ation. The (normalized) loop transfer function, one recalls, is G( w)W(w); 

referring to Eqs. (3.16a) and(3.16b) it is readily seen that Eq. (3.19) is 

precisely 

1 

K 
(3.20) 

Thus, the cumulative algebraic sum of the real-axis intercepts of the inter­

ference circles must not reach the point (1/K} - Oi, or sampling-oscillations 

will occur. The geometrical situation is shown in Fig. 3.2. It is to be noted 

that in the case chosen for Fig. 3.2, the sampling-oscillations could not 

occur, since the loop gain must be a positive quantity, and since the sum of 

Eq. (3.20) is itself positive. Hence the oscillation-condition can never be 

reached. This answers the question as to whether oscillation must occur 

if some interference -circle loops about the critical point. The answer is a 

resounding 'no', since the waveform at sampler input is made up of the sum 

of contributions from all.the orders; even though were one of these by itself 

large enough to encircle the critical point, its effects will be modified by the 

cumulative sum of the contributions from all of the other orders. It is the 

resultant effect alone which can cause oscillations. 
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Fig. 3.2, Geometrical interpretation of the stability criterion. 
of Eq, (3.20) for a hypothetical feedback loop, having 
a frequency characteristic G (w) W(w), Note (from d) that 
this hypothetical systerr:: could not possibly undergo sampling 
oscillations. 
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3.2. Application to the clamped, and impulse cases. In the case of clamped 

sampling the application of Eq. (3.19) is made by recourse to Eq. (2.20), 

which in (3.16b) gives 

u =0 m 

v 2 1 
= -m 

2m-1 TT 

So Eq. (3.19) becomes (using the more customary notation in place of the 

subscripts) 

4 

TT 

1 

2m-1 

1 (3.21) 
K 

Y being defined in Eq. ( 3 .16a) as the imaginary part of the (normalized) loop 

frequency characteristic, K being the 'loop gain' (normalizing constant). 

The impulse -sampler is quite different; here 

;;v(v) = 
hence 

u = 1 
m 

v m = 0 

and Eq. ( 3. 19) is 

00 

[ 2X( ~m-IJ 
m=1 

1 

w 
_o_) 

2 

1 

K 

standing in interesting contrast to the clamped case. 

i 

(3.22) 

3. 3 General case of feedback oscillations. The oscillation condition for the 

general case proves easier to derive thanthatfor oscillations of period 

2/v
0

• Once again, we refer to Fig. 3.1, and to Eq. (3.1), wherein w is 

no longer considered to be necessarily related to w-/2. The loop 
0 

is considered to be Closed at A, where in the oscillating condition the 
input equals the output, with reversed sign (the feedback, by definition, is 
1 inve rse 1 for low frequencies). Thus regeneration occurs, as postulated. 
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Since the oscillation (in order to be an oscillation) is periodic, Eqs. 

(2.1) and (2.3) hold with all the c = 0 excepting the set c = c . Thus, 
ms 1 m 

these equations are written, assuming an oscillation having T period 2ir/w 

f( t) 

F(t) 

imwt 
c e 

m 
m=-oo 

00 00 

=L L c W(nw + mw) e 
m o 

m=-oo n=-oo 

(3.23) 

i(nw + mw)t 
0 

* Since F(t) and f(t) are both real, c = c and W(-w) = W (w). 
-m m 

Now there ar~e precisely as many lines in the spectrum of f(t) as 

there are in that of F(t). And to every line of F applies the condition of 

Eq. (3.1) to make up the corresponding line in f; thus, 

00 

f( t) \ c GW(nw L m o 
+ mw) e 

i(nw + mw)t 
0 ( 3.2 5) 

m=-oo n=-oo 

where we will mean by the notation 

GW(nw
0 

+ mw) .:: G(nw
0 

+ mw) W (riw
0 

+ mw). (3.26) 

Following Linvill, we trace the line of frequency ox: in the sampling process 

(transition from f(t) to F(t) ), 

iwt 
c e 

0 
becomes 

Likewise, every component of f(t) 

contribute a line of frequency w in 

Since these all arose from the m = 
coefficient c . 

o' thus 

C W(w)e iwt 1 h p us o t e r te rm s . 
0 

( 3. 2 7) 

having a frequency in the set (nw + w) 
0 

F as it passes through the sampler. 

0 term (frequency <tY· they have the 

i(nw + w)t 

will 

-K c G W( nw + w) e 0 

0 0 
becomes 

iwt 
-K c GW(nw + w) W(w) e plus other terms. (3.28) 

0 0 
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The total amplitude of the term of frequency w will be the sum of all of the 

contributions, to wit 

iwt 
- K c W(w) e 

0 

00 

L 
n=-oo 

GW(nw + w) 
0 

( 3.29) 

This is the term of frequency w in F(t); equating this to the term value in 

(3.27) yields the oscillation condition for the (arbitrary) frequency w: 

1 + K 

n=-oo 

GW(nw + w) = 0 
0 

(3.30) 

The left-hand member of (3.30) 1s the denominator of Linvill's Eq. (15),3 

and is the stability-determining factor in all of Ragazzini and Zadeh's single­

sampler syste~s listed in their Table II. 5 

Equation ( 3. 30) is the general oscillation-condition; to the function, 

GW(nw + w) 
0 

(3.31) 

the criterion of Nyquist is applied in the customary manner. As will be 

presently seen, Eq. (3.30) includes Eq. (3.20) as a special case. Out of 

that demonstration will, moreover, come some interesting results re­

garding properties of expression (3.31). 

Now 

The sum in expression (3.31) is 

S('w) = GW(w) + 2: GW(nw + w) + GW( -nw + w) 
0 0 

n=1 

(-nw + w) = - (nw -w), and in light of Eqs. (3.16),GW(-nw
0 

+ w) = 
0 0 

=GW* (- f.w
0

-wJ), so 

0 00 

S(w) "GW(w) + ~! [5;w(nw
0 

+w) +ITW*(nw
0

-w8 

(3.32) 
Linvill, op. cot. 

5 ---
Ragazzini and Zadeh, op. cit. 
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which is a complex function of the real variable, w. Let, now w =w /2; then, 
0 

in ( 3. 32) the argument of the first term is w I 2, that of the first term in the 
. 0 

bracket is (2n + 1) w 12, and in the second bracketed term, (2n-l) w· 12. Con~ 
0 ' . 0 

side ring the bracket as two separate sums, now, the leading term. of the second 

has argument w 12, with second term (n=2) having the argument 3 w 12, as 
0 . . 0 

has the leading term of the first sum. Since n is a dummy variable, the 

argument of the general term in the first sum may be made (2n-l) w 12 and the 
0 

sum.mation range changed from n = 2 to oo; thus, all the terms in Eq. (3.32) 

combine to give 

w 
S( ~) = 

2 

which is nothing more than 

S=I 
n=l 

w 

2Re GW( [2n-l] 
w 
.0 

2 

Thus, . S( ~) is identical with the sum -function of Eq. ( 3. 20). 
2 

(3.33) 

w 
0 

First of the interesting results alluded to above is that S( ) is 

always real; thus, if the imaginary part of S(w) does not vanish ~t a 

frequency smaller than v 12, sampling -oscillations are the only possible 
0 

oscillations of the system. This is because oscillation is not possible at 

frequencies greater than vj2, due to the translation property of the sampler 

output spectrum. The sampler output corresponding to an input having a 

period less than 2lv will have a spectrum line in the interval between zero 
0 

and v 12 due to the first difference (i.e., 
0 

v>vl2). 
0 

But this corresponds to an input 

the line v -v < v I 2 if 
0 1 0 

of period greater than 
( v -v) 

this signal will pass around the loop with its perio'a unchanged (the 2lv · o' 
loop is linear, aside from the sampler), and hence the oscillation could not 

have a period less than 21 v . Thus, the sampling system can have no 
0 

oscillation whose _'fundamental' frequency (reciprocal period) is greater than 

half the sampling frequency: This simplifies the task of evaluating S(w) con­

siderably, for one only need investigate the region 0 < w < w 12, although 
0 

this means evaluating the terms of S for all spectrum lines at frequencies 

for which G and W can be measured or computed. 
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4. EXPERIMENTAL VERIFICATION OF THE THEORY 

4.1 Apparatus and methodology. The experiments were performed using a 

model sampler which was essentially a switch, which, when momentarily 

closed connected the input signal source to a storage capacitor, allowing 

the latter to charge by an increment of either sign, so as to take on the input 

signal voltage. The duration of the sampling 1 instant' was approximate! y 

4 microseconds. 

'Droop' is an expression which describes the behavior of the sampler 

output as a function of frequency, due to the finite time -constant of the 

storage capacitor charging circuit. The effect is easily explained with 

refe renee to Fig. ( 4.1). G is the input signal source, whose internal im­

pedance is represented by Rg. S is the switch, whose internal impedance 

is· represented by R . C is the storage capacitor which effects the 
s 

clamping action; ZL is made as large as is practicable (e. g., the input 

impedance of a cathode follower). One seeks to make R + R small g s 
enough , and leave S closed long enough, to allow V to come as close as 

c 
possible to V ; but one must compromise, lest there be an excessively g 
low upper limit on usable frequency range, hence some value of 'sampling 

efficiency' less than unity must be tolerated. 

R g 

G 

VWM 

I 

A s R 
s 

c 

T 
v .'zL~ 

g I 
i 

Fig. 4.1. The essential features of an amplitude sampler 
of the clamped type using a capacitive clamp. 
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The droop is symmetrical about n v /2, since it affects alike all 
0 

spectral components of the output. In particular, interest here lies almost 

entirely in the region 0 .S:. v .S:. v , hence one states that droop is symmetrical 
0 

about v /2. Detailed discussion of droop, and derivation of the corrections 
0 

applied to the data are carried out in Appendix I. 

A schematic circuit diagram of the model sampler used in the experi­

ments is shoV\itl'in Fig. 4.2. The sampler model consisted of a bilateral gate, 

through which the signal from the input ampl:iflier was impressed upon the 

stora,ge capacitor during the gate -time. Gating pulse waveform is sketched 

in Fig. 4.2; the gating time was approximately 4 microseconds. Waveform of 

the output is also shown in Fig. 4.2 0 Gating pulses were obtained from a 

multi vibrator -pulse amplifier chain, not shown in the figure. Amplitude 

of the gating pulses was approximately 110 volts; that of the output spikes 

was about 20 volts on the output cathode -follower grid. Rise -time of the 

output spike was about 1/2 microsecond. 

4. 2. Measurement of the transfer function. For this experiment the model 

sampler derived its input signal from a Hewlett-Packard model 650A signal 

generator operated at an output level of 0.10 volts rms. Sampler output 

was monitored on a Tektronix de oscilloscope with amplitude measurements 

made with a Hewlett-Packard Model 300A spectrum analyzer. 

In adjusting the data it was assumed that by far the largest error was 

due to 'droop' and that, at least in functional dependence upon frequency, 

any and all other -effects contributed little to the errors. The droop correc­

tion factor p was determined by a least-squares reduction of the data be­

tween v/v = OAS and 0.55, where the 11 droop effect" was largest (see 
0 

Appendix I). The data in this interval was thus adjusted by linear trans-

formation to best fit the theoretical curve·near v /2, and for this purpose . . 0 

fully half the data was taken in this interval. 

In Fig. 4.3 is shown the data, as adjusted, compared with the function 

\w (v/v
0

) I· Deviations range from +0.0126 to -0.0106; a total range of 

0.0232. The average deviation is 0.00195 suggesting that the means of 

adjusting the data was reasonably objective. It is felt that the means was 

better than a least-squares adjustment over the entire domain of v/v , as 
0 

the interval used in the adjustment calculation had about ten times the density 

of data as the remainder of the interval 0 .S:. v(v
0 
~ 1. Average deviation 
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in the adjustment interval was 10-
4

, or 0.01 %, which is the order of 

calculation errors in the numerical work. In the deviation interval± 0.01 

(lo/o}, 82% of the data falls; all of it lies between± 0.015. Inspection of the 

distribution plot suggests the latter figure as adequately expressing the 

maximum range of probable deviation (range of near certainty). 

4.3. Spectral analysis experiment. Early in the course of this work several 

spectral analysis experiments were performed. These were done before the 

theory as it now stands was available, and were directed toward acquisition 

of knowledge regarding the nature of the sampling process. It was through 

these experiments that the sum-and-difference pattern of spectrum line 

frequencies was established experimentally, and moreover, that the effect 

called 'droop' was discovered. 

There remained but one prediction of theory to be verified; namely 

the proposition that the same spectrum resulted from an input signal of unit 

amplitude having the frequency of any spectrum line. To prove this, data was 

taken with the same setup as was used for the measurement of the transfer 

function. The frequency v/v = 0.10. was chosen in order that 'droop' 
0 

correction would be unnecessary. Sampling frequency was 2400 cycles 

sec -l, making the lowest frequency (and largest amplitude) line occur at 
-1 240 cycles sec 

The spectrum analyzer was adjusted so as to read 100 millivolts on 

the lowest line, with sampler input signal amplitude of 0.15 volts rms. The 

spectrum analyzer was then tuned to the frequency of the line to be observed, 

and peaked. The spectrum line frequency was considered as a parameter, 

with input frequency the independent variable. Thus the signal generator 

was tuned successively in increasing frequency to the frequency of each line 

in the spectrum, and the amplitude of the line being observed read from the 

spectrum analyzer. At the start of each run (i.e., whenever the spectrum 

analyzer was tuned to a new line frequency) the signal generator and spectrum 

analyzer were tuned to the frequency of the lowest line, and the analyzer 

re -normalized. 

Data was tabulated in a square matrix array with input frequencies 

increasing to the right in columns, and spectrum line frequencies downward 

in rows. A similar matrix was tabulated for the deviations of the data from 

the normalized theoretical values. The deviations showed certain outs tanding 

properties: firstly, the nondiagonal terms were small and of a consistent 
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magnitude. The data runs formed groups whose average deviations were 

all smaller than 0.003, and which averaged 0.0014. Sizes of the groups 

ranged from 0.001 to 0.004, the average being 0.0023. The deviations are 

plotted in Fig. 4.4. Theoretical amplitude of the smallest line observed 

(v/v = 4.9) was 0.020 for comparison. 
0 

Secondly among the noticeable properties of the terms in the deviation 

matrix was the periodicity of the group average deviation of nondiagonal 

terms. The average deviation for the lower frequency line in each order was, 

with only one exception, more positive than for the higher frequency line. 

The source of this effect was not tracked down, since the effect was very 

small and it was felt that emphasis should belong elsewhere. 

The third property of the deviation matrix concerned the diagonal 

terms. These terms ran an order of magnitude larger than the nondiagonal 

terms, and showed the same periodicity (but of opposite sign) as mentioned 

above in connection with the nondiagonal data groups. Moreover, terms of 

each of the two signs, when plotted on adiagram similar to Fig. 4.4 fell 

very close to a smooth curve. This effect was not me rely puzzling, but 

serious; the ref ore an effort was made toward accounting for it. 

It was noted that the diagonal terms are those for which the input 

frequency is equal to the frequency of the spectrum line under observation. 

What happens if stray coupling exists which allows some of the input signal 

to couple directly to the output, doubtless with some phase-shift? If then 

the output spectral component of interest and the parasitic signal combine and 

interfere, one would expect very tangible deviations from theoretical values 

for these terms, and one would expect a strong frequency dependence. 

Referring to Fig. 4.2, one sees a likely target for suspicion, namely 
• the bilateral gate. There is approximately 2-1/2 tJ.tJ.f in tube capacitance, 

and some small amoun·t of stray capacitance (order of 1 tJ.tJ.f) at this strategic 

point. It was decided to install some additional capacitance there and see 

what changes would occur. First 20 f:liJf was used, with profound effect. The 

deviations ran 100 times those for the nondiagonal terms, and again fell 

near smooth curves. Then the shunting capacitance was changed to 3 tJ.tJ.f, 

yielding deviations approximately twice those obtained with no shunting 

capacitance (see Fig. 4. 5). At this time the cause of the anomalous 

behavior in the diagonal terms was felt to be apparent, and the subject 

dropped. 
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In light of the above, it is felt that the experiment was successful. 

4.4. The closed-loop stability experiment. In order to verify the criterion 

for stability an experiment was designed which would meet two needs: ( 1) to 

involve sufficient! y simple networks in the loop as to make possible a 

calculation of the oscillation condition by transient analysis, thus providing 

an independent calculation with which to compare results both of theory 

and of experiment, (2) to reduce the effect of intangible, or unaccountable 

variables to a minimum. Thus, there are derived three sets of gain values: 

(1) the results of application of Eq. (3.19), (2) the results of the transient 

analysis calculation, and (3) the results of experiment. 

In the subsections to follow will be discussed the experiment, the 

methods of data reduction, the transient analysis calculations, the application 

of the stability criterion for sampling-oscillations, and a comparison of the 

results of the three independent determinations of the gain necessary to 

produce oscillations. 

4.4.1. Description of the experiment. The simplest type of network suitable 

for attaining the objectives ennumerated above is one which involves a 

single energy-storage element. For convenience the capacitive phase -lag 

configuration was chosen. A schematic diagram of the apparatus is shown 

in Fig. 4.6. At the top of the figure are shown the sampler and the delay 

network, which was so designed that with convenient values of C, and of 

v , three cases of RC could be measured: phase shift at v /2 to be 
0 0 

approximately (1) 'TT/6, (2) 'TT/3, and (3) Sn/12 (75°). The values of phase-

shift used therefore corresponded roughly to normalized output amplitudes 

of (1) 1/2, (2) 1/3, and (3) 1/6. These values encompass a six-to-one 

range in bandwidth, and the results obtained illustrate the simplicity gained 

in the stability criterion with decreasing bandwidth, or saying it another 

way, they illustrate the complication introduced into the stability criterion 

when the bandwidth is made near to or greater than half the sampling 

frequency. 

The return-path amplifiers are shown in the lower part of Fig. 4.6; 

they were so de signed as to have a much larger bandwidth than that of the 

delay network at the lowest value of C used. A switch was provided in 

order that the loop might be opened or closed conveniently, with 

appropriate circuits arranged so as to maintain the necessary voltages at a11 



+B 

CLOS[ED :::N 

I 200K 

I 

I 
I 

I 

HIGH 

-62-

SAMPLER 

(FIG 4.2 l 

~-12BK7 

L __ (GANGED x_o!] __ 

R=40K 

c 

IM 

HIGH 

LOW 

H-P 300A 
SPECTRUM 
ANALYZER 

INPUT; 
200Kfl 

MU -13964 

UCRL -2208 Rev. 

Fig. 4o6 0 Sampler - RC feedback apparatus, schematic 
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is to have it shunted across the cathode-follower output at 
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shunting Cis 1.25 x 10 'ohms. 
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points regardless of whether the loop was closed or open, since it is of ob­

vious importance that the gain of the system be precisely the same in either 

condition. 

Figure 4. 7 shows the apparatus in the closed-loop condition. It is to 

be noted that the Hewlett-Packard spectrum analyzer (model 300A), used 

in the gain measurements, was kept connected across the cathode -follower 

output in the closed-loop condition. The gain measurements were made in 

the open -loop condition, as shown in Fig. 4.8. 

Using each of the three values of the capacitor C there were made 

several gain measurements. Firstly the loop was closed, and voltages 

were adjusted to the proper values; loop gain was raised very slowly until 

oscillations were imminent. The loop was then opened, voltages again read, 

and the gain measured. Pre~ceding each loop closure the instrumental ad­

justments were checked carefully. 

The measurements of gain were made at v /10, because of the 
0 

spectrum analyzer bandwidth limitation. Measurements were made also 

at v /2, for checking purposes. It was assumed that in correction to 
0 

zero frequency of the v /10 values the transfer function of the idealized 
0 

delay network could be used without significant error. The sampling 

frequency was only 2400 cycles per second, hence the assumption that the 

transfer function of the apparatus below 240 cycles was ideal did not in­

volve tangible risk~ 

The transfer function of the apparatus 1n the frequency range of zero 

to v 
0 

was measured experimentally. This was done in order that the 

actual apparatus could be replaced in the calculations by an 'ideal' model, 

but one in which the parasitic effects ('strays') were accounted for, through 

the use of experimentally measured parameters in the 'equivalent' network. 

Measurements of the values of R and C used were made on a General 

Radio model 650A impedance bridge, the accuracy of which is stated by the 

manufacturer to be± lo/o at the values in question. 

4.4.2. Data reductions. An inspection of Figs. 4.6, 4. 7, and 4. 8 will quickly 

assure the reader that although to a first order the loop frequency characteristic 

is that of a simple RC delay network, there can be expected a very tangible 

second-order correction, particularly in the wider-band conditions. This 

section will be devoted to a discussion of the more important parasitic effects, 
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and:: the means of obtaining a second-order correction to the transfer 

function of the loop. 

The most obvious effect is that of the output impedance, which was 

made purposely as large as feasible, with minimum capacitance. Since 

the accountable shunting capacitance can be placed in the order of 10 
-12 

farad, it will not be explicitly considered. The equivalent network is thus 

shown in Fig. 4. 9. The transfer function may be written down immediately, 

and simplifies to 

v(w) = 1 

( 1 + r) + iCRw 

where r = R/R', and 

which is to be compared with the case wherein R' is infinite ( r = 0) 

-iwt 
e 

1 
v(w) = --~--

1 + iCRw 

R 

c 
R' -Wt v (cJ.)) e 

Fig. 4.9. RC delay network with output shunting 
resistance R 1

• 

( 4.1) 

(4.2) 
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It is desirable to normalize the transfer functions to their zero­

frequency values (making each the product of a gain constant and a frequency 

characteristic, or normalized transfer function). This is done for Eq. ( 4.1) 

by multiplying by ( 1 + r); thus, 

v (w) = --
1
-­o 

(4.3) 
1+i<T 1 

<T' = CR 
w = T 1 w (4.4) 

1 + r 

whereas in the limiting case r = 0, 

1 
v (w) = v(w) = ---­o 

( 4. 5) 
1 + i 1

0" 

<T = CRw = T w . (4.6) 

Therefore, it appears, the normalized .transfer function of the shunted­

output network is the same as that of the un-shunted one, provided one 

uses a 'corrected', or 'effective' resistance value R/(1 + r). 

There is, however, another effect to reckon with, namely the cumulative 

effect of all of the unaccountable parameters in the system, which become 

particularly troublesome when the wider bandwidths (smaller values of C) 

are used. As will be subsequently seen, even use of the 'corrected' 

resistance in the network calculation can lead to a demonstrably incorrect 

iresul.t. There is one way in which a correction may be introduced, and that 

is, to measure the transfer function experimentally and fit to that measure­

menta set of parameters of a suitable model. As things worked out, the 

authors were unable to do more than measure the amplitude of the transfer 

function for each value of C at nine values of frequency between zero and 

sampling frequency. These values, when plotted, gave curves essentially 

like the amplitude of Eq. (4.3) or (4.5), lying somewhat below the calculated 

'model' curves. The experimental points were distributed about the ave rage­

curve in what seemed to be a fairly random manner, It was assumed that the 

equivalent network could be taken to be that of Fig. 4.8.without serious error, 

and that the time -constants f (or f') should be calculated by taking the 
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arithmetical average of the values of 'f = u /w obtained from the various 

amplitude measurements for each case. The values so obtained differed by 

very tangible amounts from the time -constants of the idealized networks, 

the differences being greater the smaller 7 (greater bandwidth). This is 

as expected, and as noted above. The sizes of the discrepancies, however, 

are n·ot comforting, and the assumption that the physical network differs 

from the 'equivalent' one by only a 1small 1 degree really generates only 

what could be called a 1first-order 1 correction. One interesting aspect 

of the problem is that the differences in the time -constants can be explained 

by increasing each of the values of C by approximately 4 1/2 x 10-
10 

farad, 

which seems to indicate that at frequencies less than the sampling frequency 

the 1 stray' effects appear as approximate! y 450 fJ.W of shunting capacitance 

.across the output of the 'equivalent' network. Certainly at higher frequencies, 

however, stray induct~nces come into the picture, and phase -shifts 

certainly exceed rr/ 2 o Amplitudes, also, will be finite, but small, and 

the slowly-converging series which embodies the stability condition (Section 

4.4.4) will not converge slowly enough to match the physical situation. These 

points will be illustrated in the comparison of results in Section 4.4.5. 

4.4.3 Critical gain prediction by transient analysis. In view of the expe ri­

mental limitations it is fortunate indeed that a network could be chosen 

whose properties make the feedback oscillations susceptible to simple 

analysis completely independent of the theory of Chapter 3. Irdeed, 

agreement between two such independent calculations makes a resort to 

experiment unnecessary for the purpose solely of confirming a theory; the 

experimental results in this instance do serve a highly useful purpose, that 

of illustrating the importance of stray effects in the time-quantized feed­

back system, an importance quite out of proportion to that accorded strays 

in ordinary feedback practice. 

The transient method is just that; one knows what the sampler output 

waveform is, and were he able to more readily solve a transient problem 

than to measure a transfer function the need for a frequency-domain 

stability criterion would not exist. It is seldom, however, that one can 

make time -domain measurements and calculations with the ease and 

certainty of those in the frequency domain. _ 
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Refer now to Fig. 4.10. Two waveforms are shown in superposition 

therein: they are the sampler output (square -wave. for the clamped case is 

being cons ide red), and the sampler input, which is nothing more than the 

square -wave modified by the low -pass network and amplified. Consider now 

the time-sequence of events. At any given sampling instant, the network 

output has some value, say, -y (which, amplified, provides the sampler 
0 

input); sampling occurs, and the sampler output is clamped at its positive 

value, which we shall call unity. This is the input applied to the network of 

Fig. 4. 9, whose output momentarily has the value -y . The network output 
0 

(sampler input except for amplification) takes an exponential form, the 

asymptote being the network input (sampler output) value, unity. After the 

elapse of a sampling period, the sampler again samples and clamps, this 

time at some other value of voltage .. The network output then beings to 

approach the new value on an exponential curve. 

It is, of course, understood that the loop is oscillating at half the 

sampling frequency. Therefore, both waveforms are symmetric. and 

hence if the initial value of sampler input was -y , the alternate value is 
0 

+y . 
0 

Thus, in any sampling period 2nT < t < (2n + 1)T, y(t) = y 1(t), the 

output voltage of the network. In the next period. we call the network output 

y 2 (t); i.e., (Zn + 1)T < t < 2(n + 1)T, y(t) = y
2

(t). The sampler output is 

said to oscillate between +1 and -1. 

Then (see Fig. 4.10) 

y 1 ( t) 

or, 

and likewise 

(l+y)e 
0 

t 

t 
'T 

t 
·rr 

e 

y 2 ( t) = ( l + y 
0

) e 
7 

-1 

Now 

and 

+ 1 

(4. 7) 

(4.8) 

( 4. 9) 

( 4.1 0) 

Equations (4.7) and (4.9), combined, give the same result as Eqs. (4.8) 

and (4.10), 
which is (.. _ :;) 

y 1 + e = 
0 

T 

1 - e 
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Fig. 4.10. Oscillations .at half the sampling frequency in a 
feedback loop whose frequency properties are determined 
by a simple RC low-pass filter section. 
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Since the gain required to amplify the function y(t) to unit amplitude (in or­

der that the sampled values are indeed unity) is just 1/y ; thus, 
0 

G(T,'T) = 

T 

1 + e 
7 

T 
'T 

1 - e 

(4.11) 

4.4.4, Application of the stability criterion. The application of the theory 

of Chapter 3 is very simply made. Using the notation of that chapter. and 

Eqs. (4.3) and (4.4) or (4.5 and 4.6), 

so 

Thus 

G (w) = 
1 

1 t i 'TW 

1 
X(w) = --- 2 

1 t ( 'TW) 

y (w) = -'T w 
2 

1 t ( 'TW) 

Hence Eq. (3.21) becomes 

1 4 
= 

K 'IT 

a very slowly-converging series indeed. 

'TW 
0 

-(2m-1)-y 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

By direct application of a method due to Gumowski
13 

the series of Eq. 

(4.16) can be accurately summed with the expenditure of a very modest 

effort, whereas, were the summation to be made term by term, calculations 

show that several hundred terms would be necessary. The results shown in 

13
G k' I umows 1, • , "Summation of Slowly Converging Series", J.A. P. 24, 

1068 (1953), letter. 
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the subsequent section as calculated from Eq. (4.16) were obtained in this way. 

4.4.5. Tabulation and comparison of results. In Fig. 4.11 are represented 

the three- experimental cases, each being characterized by a particular value 

of C. All three transfer functions are superposed, through the use of the 

dimensionless frequency variable, CJ. The effect of strays is immediately 

apparent, and one would find it difficult to avoid entertaining doubts about 

the realism of the idealized transfer function at values of CJ several times 

the sampling value; the problem is,particularly acute when one considers the 

cumulative importance of the higher orders, as is indicated by the slowness 

of convergence of the series of Eq. ( 4.16). 

In Table 4.1 the comparison is made numerically. Comparisons are 

made firstly of time -constant values, from which a low-frequency 1equilvalent' 

shunting capacitance was calculated, which seems remarkably consistent 

through the three cases, even though the time-constants cover an order of 

magnitude in range. Also tabulated are the values of CJ (v 
0
/2) (whose dif­

ferences are, naturally, the same as those for the time-constant), ,and phase 

shift at v /2; it is these latter two which are shown explicitly in Fig. 4.11. 
0 

In Table 4.2 are exhibited for comparison the variously derived values 

for the loop gain required to produce the oscillations. As the primary stand­

ard of comparison we take the values calculated from transient analysis. 

With these the theory, as personified in Eq. (4.16), agrees perfectly. Since 

the networks used in the two calculations were the same (ideal networks), and 

since the transient-analysis approach must produce the corrett value, one is 

justified in stating that the theory has met its test. 

The experimental results are listed in the third and fourth columns of 

Table 4.2, the former being the gain values, the latter a comparison with the 

calculated values. It is instructive to compare these numbers in light of the 

approximate bandwidths, listed in column 5. Note that in case 3, where the 

bandwidth is approximately v 
0
/8, the strays are quite unimportant, whereas 

wheq the bandwidth is little more than doubled, the importance of the strays 

(through the higher orders of the spectrum) has increased more than five­

fold. Some light into the specific nature of the effect the strays had upon 

the experimental results is shed by Fig. 4.12, which shows the transfer func­

tion of the entire feedback loop for case 1 (neglecting strays, excepting that 

the measured time-constants are used). The further effects of strays can be 
.< 
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MU -l3968 

Fig. 4.11. Transfer function of RC delay network, 
frequency shown in terms of the dimensionless variable 
(] = '7l.ll • Shown here are the three cases for which 
critical closed-loop gain measurements were made at half 
the sampling frequency. 

Note: Calculated values account for nothing more than 

the RC network plus its load resistance; measured 
values include entire apparatus. For technique and 
remarks re. limitations of the method, see text, 
Sec. 4.4.2. 
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Table 4.1. Parameters of Network 'Equivalent' of Feedback Loop 
in Stability Experiment 

Case c, farads 'T, seconds 
Shunt capacity 

Difference 'equivalent' 
(measured) calculated measured o/o of difference 

1 l. 740x10 - 9 6 -5 . 744x10 8.428x1 0 -5 
+25 

-10 
4.4x10 fd . 

2 5.432x10 -9 2.105x10 
-4 2.266x10 - 4 

+ 7.6 4.1x1o- 10 

3 L45x10 -8 6 -4 5. 20x10 5. 794:X10 
-4 

+ 3.1 4. 5x10 
-10 

& (v /2) 
0 

cp( v /2) 
0 

Case calc. meas. diff.% calc. meas. diff. 
(degrees) (degrees) (degrees) 

1 0.5085 . 0.6355 +25 26.95 32.4 +5.4 

2 1.5874 1. 709 + 7.6 57.75 59.7 +1.9 

3 4.237 4.369 + 3.1 76.72 77.1 +0.4 
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Table 4"2" Comparison of Variously-Derived Values of Gain 
Required to Produce Sampling -Oscillations 

Gain required to produce oscillations 
Transient Theory Experimental 
(Eqo 4o 11) (Eqo 4o 16) (

meas" _ 1) 
calc" 

1.058 1.058 1.24 

1A38 1A38 L56 

+ 1 Ao/o 

Bandwidth 
(approximate) 

3 
( v 0/2) 

2 

3 
( v /2) 

5 
0 

1 
( v /2) 

4 
0 

expected to arise primarily in the influence of lead inductances, which will 

bring about additional phase -shifts in the higher orde rso In Fig" 4o 12 the 

interference circles for the first three orders (1st, 3rd, and 5th) are shown, 

and the partial sums of their intercepts" As well are shown the limits" Note 

that the measured value of critical gain is less than the calculated value; 

note further that the difference is roughly equal to the sum of all the orders 

above the fifth" Note also that the fifth order could have considerable ad­

ditional phase -shift without affecting the results materially, i.e., the 

results are insensitive to a relatively small added phase -shift in the fifth 

order, but that any phase shift will be greatly magnified in the higher orders, 

and the contribution of any given order might well be zero, or positive. Indeed 

one might conclude, from the gain figures listed, and from the above, that the 

net effect of all of the higher orders is close to zero. indicating that about as 

many of the contributions were positive as were negative, or that the high­

order parts of the transfer function were 'wrapped' around the origin by the 

effect of strays, instead of all lying on the same (negative) side. 
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LIMIT 
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Fig. 4.1 2. Transfer function of feedback loop, case 1 
(ideal network, measured value of 'T) showing partial 
sums to order 5/2, and limits. 
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5. CONCLUSIONS 

In the discussion concerning the properties of the output spectrum of a 

sampler, it was shown that a sampler can be regarded as having a transfer 

function, subject to certain definite limitations. This is due to the fact that 

the input spectrum appears in the output, with its components modified in 

amplitude and phase. The sampling process is an essentially nonlinear one, 

in that new spectrum lines are generated, but it was shown that no interaction 

effects occur between input components (i.e., that there is no intermodulation, 

or 'mixing'). 

The transfer function is continuous, excepting at multiples of half the 

sampling frequency. The existence of such a transfer function makes possible 

the use of Nyquist's criterion for stability, so extended as to account for the 

complexity of the waveform of feedback oscillations, when they exist. The 

peculiar behavior of the transfer function at multiples of v /2 is due to 
0 

interference between the spectral components of those frequencies. 

Since previous publications in this field have included no more than an 

occasional bare mention of sampling -oscillations, the subject was treated in 

complete detail here; the extension of Nyquist's stability criterion implied 

by Linvill was shown to include the case of sampling -oscillations. 

The extension of Nyquist's criterion is embodied in the application of 

the criterion in the customary manner, not to the loop transfer-function, 

but to a sum-function (see Eq. 3. 30) which embodies the contributions to the 

sampler input waveform of all the spectral orders in the sampler output, as 

modified by the loop transfer-function. It was seen that the sum-function 

evaluated at half -sampling frequency is always real, with the implication 

that if this sum -function does not become real (and negative) at any frequency 

below half-sampling, the only oscillations which the system can have are the 

sampling-oscillations. No oscillations can ever occur with a period shorter 

than twice the sampling period, because of the transposition of spectra in 

the sampling process. Thus, in stability calculations, no base frequencies 

above half-sampling need be used. However, terms for the sum-function 

must be calculated (or scaled graphically) from the transfer-function of the 

loop (including sampler) for spectral orders as high as can be calculated 

(or scaled) con side ring the number of significant figures in the calculation. 

Indeed, the sum-function may be a very slowly converging series, in which 

case any graphical estimate of critical gain is a rough one, and must include 

some sensible accounting of high -frequency' stray' effects. 
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When the loop is subject to sampling-oscillations, the critical gain 

can be roughly estimated by simple graphical means. The procedure is as 

follows (see Fig 0 4.12): ( 1) plot the transfer function of the entire loop, 

including sampler, (2) place the compass point on the point of the transfer 
w 

function corresponding to the frequency m 
0 

(m an odd integer), (3) set 

the compass so as to pass a circle through th~ origin, (4) strike an arc across 

the real axis, so as to indicate the intercept of the m th order circle on the 

real axis, ( 5) repeat for every order for which amplitude of the transfer 

function is sufficient to allow the construction, (6) add these algebraically 

(easily done with a scale), and (7) mark off the sum on the real axiso That 

is the critical point for sampling-oscillations. If it is on the positive real 

axis, or if it lies on the negative real axis inside the continuous por'tion 

of the transfer function, sampling -oscillations cannot occur, and the con­

ventional Nyquist criterion provides the limitation. Note that the estimate 

is only that, since the cumulative effect of the neglected orders may be 

quite noticeable. 
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APPENDIX I 

Waveform Factor of a Capacitively Clamped Sampler ('Droop'') 

As has been stated pr~viously, the sampler with a capacitive clamp is 

essentially a capacitor charged through a switch or gate. The input signal 

is assumed to be slowly varying when referred to the gating interval as a 

unit of time. The gating interval, or time interval during which the switch is 

closed, is a constant, and is in most cases exceedingly small in comparison 

with the sampling period 1/v . During the gating interval, the capacitor 
0 

(C 1 of Fig. 3.1) charges to some fraction, 11, of the difference between the 

input voltage during the gating interval, and the voltage to which the capacitor 

had previously been charged. If the period of a sampled signal, having a given 

amplitude, were many sampling periods long, the increments in sampled 

voltage would be small, and the failure of the output to follow the input 

(i.e., the voltage error generated in the charging process) would be a 

certain (small) fraction of the ampli,tude of the sampled signaL If, however, 

the sampled signal has a frequency of near v 
0
/2, the voltage excursions 

between sampling instants will be near the maximum possible value, and the 

voltage error gene rated will be a much larger fraction of the amplitude of 

the sampled signal. Thus, droop must be a.function of frequency. Further­

more, cons ide ring the symmetry of the output spectrum (as a function of· 

input frequency) about v /2, this voltage error must be symmetrical about 
0 

v /2. 
0 

One is here faced with a choice of making a complete analytical 

approach or of attacking the task in a piecewise manner. Since this effect 

accounts at most for a correction of a few percent, and the objective is to 

achieve a reasonable first-order correction, the latter method was chosen; 

the first would present a mathematical problem formidable indeed, and the 

result for the present purpose is hardly worth a fraction of the effort. 

The problem will be solved in three parts; firstly a point at v /2 can 
0 

be calculated to good approximation, secondly, one at v /4. 
0 

Lastly, an 

expression can be derived for frequencies much less than v /4. 
0 

sufficient data for the de sired correction curve: 

0 :>:. v <-v /2. 
0 

Symmetry fills out the interval to 

in the interval 

v . 
0 

This gives 
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Consider a monotone increasing function, with argument t, and let 

fhe domain of 

,Jc} . Let the 

t be subdivided into equal intervals by a sequence of points 

values of the function, which we call f(t), be, on the set 

{t~ 
(I -1) 

which form a monotone increasing sequence. Let a seq~ence {F J cor­

respond to fk through the sampling process, subject to the limitations 

outlined in the first paragraph of this appendix. Figure l-1 illustrates 

the case. For any interval we have 

or 

(I::.2) 

Let f = 0, which may in any case be realized by a linear transformation. 
0 

Then, 

Substituting in (I-2) we have for k = 2 

F 2 = T) G 1 - TJ) f 1 + f 2 J 
iterated substitution into (I-2) gives the result 

n (. . 2 k-1 l 
F k = T) L fk + 1- TJ) fk - 1 + ( 1 - TJ) fk ~ 2 + . . . ( 1 - TJ) f 1J 

Thus, after k steps the normalized amplitude is 

· f L 

[ 
k-1 2 ~'K-2 k-1 f,J. = T) 1 + { 1 - TJ) -- + ( 1 - TJ) -- + 0 0 • ( 1 - TJ) _..... 
fk fk fk 

Since fk is monotone increasing, fk-p/ fk .s;: 1 for 0 ~ p ~ k. 

1 - T) < < 1 , then, 
F k d. fk-1 

F =-- T) ~ + (1-TJ)--] 
fk fk 

(1~3) 

(I -4) 

Suppose that 

(I -5) 
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The bigger the last jump, the smaller the correction term, hence the 

smaller the output (larger droop). For k =·1 (1 step) Fk/fk = 11, and for 

an indefinitely refined subdivision, F k/fk approaches unity. In any event, 

the last jump has the most influence on the outcome, and the more gentle the 

slope near the end point, the closer Fk/fk is to unity. Phys'ically, this is 

because the capacitor has more chances to charge to the desired final value. 

For sinusoidal input, f(t) is a sinusoidal segment, the portion 

lying in the interval (O,rr/2). One changes the frequency by changing k, the 

normalized' output being 

Case where v/v = l/2: 
0 

,..) r; . k-1 1T , 
F:: "1 t_1 + ( 1-"1) s1n (--) J 

. k 2 
(I -6) 

Referring to Fig. I-2, we denote by x the equilibrium amplitude of the 

square wave; by inspection 

2x = '11(1 + x) 

so 

X= 
, 

(I- 7) 
2 - , 

write (I- 7) as 

X= 
, 

1 + p 

letting p=1-TJ. 

Then x = TJ [1 - p + p 2 
.. J to the first order, for p < < l, 

X=TJ(1-p) 

or 
N 2 I x= (1-p); to the first order, noting that x=F(l 2) 

or 

F ( l/2) = 1 = 2 p (I -8) 

.. 

'• 
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MU-13949 

Fig. I-1. Sampling process, showing the origin of ''droop" 
or waveform factor, using the value 'T1 = 3/4 to 
emphasize the result. 
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+1~------~~~-----------------.-----------­

+X~----~~-+--~~--------------~ 

-x~--------~--------------~~~--~--------
-1~------~~--------------~~~~~-----

Fig. I-2. Sampling process for v/v = l/2; x is the 
equilibrium value of the square -wf§.ve. 

MU -13950 
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Referriit to Fig. I-3, we denote by x the maximum excursion of the 

waveform, i.e., 1-x is the measure of failure to attain the sampled value 

when that value is unity (maximum), and by y we denote the minimum ex­

cursion, or the failure of the waveform to return to the axis when the sampling 

'instant' occurs at a zero of the input. 

Again by inspection we write 

x = TJ(Y t 1) 

y = TJ( l - x) 

by mutual substitution these yield 

TJ( 1 + TJ) 
X-- 2 

1 + , 
TJ( 1 - TJ) 

y = 2 
1 + , 

again letting l-TJ = p we have 

2 2 
ltT} =lt(l-p) 

~ 2(1-p) 

Then 

or to the first order, 

X = 1 - p/2 

likewise, 

y = p/2 again to the first order. 

(I -9) 

(I-10) 

(I -11) 

(I -12) 

Now resolve the output waveform into the sum of two like waveforms, 

one of amplitude x, the other of amplitude y, these being mutually phased at 

a quarter period (Fig. I -4). Each of these can be analyzed as the sum of two 

square -waves phased at half a per:lod. When the fundamental-frequency components 

of these waveforms are combined, with due regard for phase and compared 

with the case x = 1, y = 0 (no droop) there is the result, to the first order, 

F( l/4) = 1 - .£ 
2 

(I-13) 
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+Y~-------+--------~------~~------~--- t 
-Y~--------4---~----~.-------~r-------~~---

MU -13951 

Fig. I-3. Sampling process for v/v = 1/4, with heavy 
line showing the equilibrium outpu~. 
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Fig. I-4. Resolution of waveform of Fig. I-3 into component 
similar waveforms. 
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From the above results, points were calculated for arguments of 1/40, 

l/12, 1/8, 1/4, and 1/2. 

These points are plotted in Fig. I-5. Together with the point at zero 

the sequence excepting the points at 1/12 and 1/8 falls upon a smooth curve. 

The two latter points were deemed to have been poorly approximated by the 

formula, Eq. (I -6). 

It is of course necessary to somehow determine the value of p for a 

given physical sampler. This was done by means of the least-squares ad­

justment of the data in the neighborhood of v /2, which resulted in acceptance 
0 

of the value p = 0.021 for the sampler used in the experimenL Droop at 

v/ v = 1/2 (maximum) is 4. 2o/o. The data was adjusted by use of the curve of 
0 

Fig. I-5, with the results as discussed in the text. 

) 
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.98 {

AT.%":=t•THE ERROR 

IN THE FORMULA IS 

ABOUT 0.3 % 

.97 

.96 

· 95 L---------~o~.l--------~o~.2~-------,o~.3~-------.o~.4~-------co~.5 
0.9 0.8 llfvo 0.1 06 

5• MU-13953 

Fig. I-5. Waveform factor of a clamped sampler having a 
sampling "efficiency" of 0.958 ("droop'' of 4.2o/o). 
(!)points calculated from valid approximations 
0points calculated from failing approximations, not 

trusted. 


