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INTEGRAL EQUATIONS AND TRANSFORMS 

L introduction 

An integral equation can often be solved by the use of transform 

methods. In particular, the application of the Laplace, Hankel and 

Mellin transforms to integral, equations will be discussed in this paper. 

Also an illustration of the Wiener-Hopf technique will be given. 

2, The Laplace Transform 

An integral equation 

	

h(x) f(x) 	g(x)+ 	k'(:, y) 'f(y)dy. 

where the kernel k is of the form k(x - y), k(x* y), k(xy), or k(y/x) 

can often be solved by Fourier integral methods. 

The basic theorem is: 	 , 

Theorem 1 If f is a function of bounded variation over (- 
, 00 	and 

Cho 

-x 

\ 	
e 	f(x)d 	= F(s) 

-00 
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converges absolutely for all complex s such that a. Re s 4 b , then 

c + Ti 

f(x-frO) + f(x - 0) 	urn 	1 	 eCS F(s)ds 
2 	 T-°2' 1  

c-Ti 

where a 	c 	b 	(Refer to G. Doetsch, Handbuch der Laplace- 

Transformation, ?.210.)  F is the (two-sided) Laplace Transform of f and 

we use the notation: 

Lf = F 	and 	f = L F 

We shall systematically reserve a small letter for the Original function and 

the corresponding capital letter for its transform, a 4 Re s < b is the 

strip of convergence of f in the complex planee This strip arises from 

a consideration of the functions 

(f(x) 	x)' 0 

	

f (x) = 	f(x)/2 	x 	0 

xZ0 

0 

f(x)/2 	x 	0, 

(f(x) 	xZ,0 

Wehave 	 () 
-sx. 	 . 

	

• • F+  (s) - 	
• j e 
	f(x)dx 

0 

0 

	

Soo

sx  
F(s) 	 e 	f(x)dx 
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• 	 -3- 

• 	 - sx 
If e 	f(x) is absolutely integrable over (O,) for Re $ > a , 

th'en F (s) is analytic for Re s>  a 	Similarly, if e 
X 
 f(x) Is 

absolutely integrable over (-°° , 0) then F_ (s) is analytic for Re s 4 b 

Then F(s) = F*(s)+ F_(s) is analytic in its strip, of convergence.. 

a.<Res .b . 

The unit step u 

(0 x<O 

u(x-h) = 	xh 

x>h 
-hs 

has the transform e /s and is analytic in Its strip of convergence 

Res>O. 
ax 	bx 

Consider f(x) 	ce u(x) + de u(-x) 

Hence 
(a-s)x 	 ( 	(b-s)x 

F(s) 	c  j e. 	dx+d \ e 	dx 
C1-00 

The first integral converges for Re s ,  a. The second integral. converges 

for Re s. b . Hence, the Laplace transform exists only if a . b and 

then 

F(s) 	c 	d 	aRes(b 
s-a 	s_.:'b). 

3 	Application of the Laplace Transform. 

The shift rule 
hs 

Lf(x+h) 	e 	Lf(x) 

is basic for the formal solution of integral equations by these methods. 

Thus, if one has 	 ' 	' 
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Hence, 

\ J(x - y) u(x- y) J0(y) u(y)dy = in x u(x) 

1• 

and 

S J0(x - y) 10 (y)dy 	sin x 	 x 

Example 2: 

Solve for f in the integral equation of the first kind: 

C 	 - 

h(x) 	 cos y f(x - y)dy 	 x L 

0 

Cho 

h(x) = 	cos y u(y) f(x - y)dy 

H(s) 	.s 	F(s) 
2 

s -f -i 

F(s) = 	
2 	

1 H(s) 	(s+ .  ) H(s) 

f() = h(x) + 	h(y)dy 
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Bra 

Example. kE 
x 
('-.y 

f(x) = g(x) -- 	e f(x - y)dy 	 x > 0 

0 

CbO 

I 	-y 
f(x)u(x) 	g(x) u(x) 4- 	e u(y) f(x - y) u(x - y)dy 

F(s) 	G(s) - 	1 	F(s) 
s4-1 

1 
Q(s) - 	s + 1 	- 1 

S 
1- 1 

si-i 

Hence the reciprocal kernel 

	

q(x) 	u(x) 

so 	 x 

	

f(x) 	g(x) 4- 	g(y)dy 

0 

Note that we have only used the one sided Laplace transform throughout, 

that is, our functions considered were all of the form 

f(x)u(x). 

For this case we can use an inversion formula due to Widder to obtain f(x) 

from F(s). F (s) 	F(s) isarialytic in its strip of convergence. 

Re s 	00 so 	dN F(s) is defined for a <Re S 

dsN 
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If L(f(x)u(x)) = F(s) , then under the conditions as statddin  

Theorem 1 

/N4-1 	N 

	

f(x+ 0) +  f(x - 01  = urn (s 	(- d ) F(s) ' 	. 	t > 0 
2 	 N 	s 	,) 

	

\.. 	 s-N 
t 

This form has an advantage in that F(s) is required to be known only for 

real values of, s , so analytic continuation from the real axis is not needed. 

Example 5: 

Consider 

f(x) 	g(x) 	S k(x •y)f(y)y 

F(s) - G(s)-f-, K(s)F(s) 

F(s) 	G(s) 
1-)K(S) 

Formally we have 

F(s) = G(s) 	1.K(s) 	for 	sufficiently small 

F(s) 	Fn(s) 

n=0 
p 

f(x)>n0 t fn(x) 
=  

where 
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-9- 

f0(x 	g(x) 

010 

f1(x) 
= 	5 g(x - y) k(y)dy 

f2 (X) 	 T-jr, 
(x -  y) k(y)dy 

ZZIO 

f+i(x) 	 f(c - y) k(y)dy 

which is theformal Liouville-Neuxnann series for the integral equation. 

Example 6: 

f(x) 	g(x) 	 k(y) f(x+ y)dy 

F(s) 	G(s) +- 	k(y) e 5  F(s)dy 

- G(s) 	 K(-s) F(s) 

F(s) 	G(s) 	: 

1-K(-s) 

f(x) 	L71 ( G(s) 

l - K(-s) 

Example 7: 

f(x) 	g(x) f 	k(xy) f(y)cbr 

ys 
F(s) = G(s) *çe K(s) f(y)dy 

G(s) + K(s) F(-s) . 

Hence, 
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The left side is analytic for Re s > a and the right side is 

analytic for Re s (b. Hence both sides are analytic in the wholeplane 

and hence is an integral function F(s). Paley and Wiener in Fourier Integrals 

in the Complex Doman prove in fact F(s) is a polynomial, and in our case 

F(s) 	p, 	a constant 

SO 
4(s) 	p(s .- 1) 

s2 +. 2c - 1 

If\ (1- 2c) x 	 -(1-2c) 
= 	p 	((1- 2c) + lJe 	 + ((1 - 2c) - 

2(1-2c) 	L" 	/ 

for 0 C4( 	 and 	x0 

F(s) = 	p 

1-s 

x .  
f_(s) 	-pe. 	for 	x0. 

4, The Mellin and Hankgi Transforms. 

We shall now introduce the Mellin transform by allowing 

x 	- £nt 	 g(t). 	f(- En t) 

in Theorem 1 and thus we obtain: 

Cp-i 
Cho 

G(P) 	t 	g(t)dt 
	

a<Re 
0 •  

and its inversion 	 . 	c*°oi 
-P. 
t G(P)dP g(t+ 0) +.gt -. 0) 	1 

2 	 27ri 
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F(2—P) 	G(P)  
K(} 

F(P) 	G(2 - 	G(2 p) K(P) 
K(2—P) 

f(x) 	 Jc) g(y) dy 

Hence, we have inverted our integral equation. The transform pair gives 

the basic definition of the Hankel Transform. 

Example 11: Use of the Hankel Transform. 

Solve 

df 	1 df. - k?f .  
2 	xcix 	 r 

where 	is the Dirac delta function. We have 

2 	2 
- P F(P) - k F(P) 	- 1 

F(P) 	_i 

p2+ k2  

f(x) - K0 (kr) 

where Ko is the modified Bessel function. Hence this transform is useful 

whenever one has need of solving Laplace's equation in cylindrical coordinates. 

Example 12: 

f(x) 	g(x) 	k(ux) f(u) du. 

F(P) 	G(P) + F(l - F) K(P) 
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-14- 
	 a 

F(l -  F) 	G(1 - F) f F(P) K(1 - 

Substitute for F(i - p) to obtain 

F(P) = G(P) + G(l - p) K(P) . 

1 - K(P) K(1 - P) 

5 Bibliography 

5.1  Titchrnarch, Theory of Fourier Integra1s 

5 	Van der Pol and Bremmer, To Sided LaPlace Transform. 

5.3  Doetsch, Laplace Transformation., 

Doetsch, Tafein Laplace Transformation. 

5.5 MacLachian et Humpert, Formulaire pour le CaIcul Symboligue. 


