UCRL_ <261
UNCLASSIFIED

UNIVERSITY OF
CALIFORNIA

Ragiion

4 N
TWO-WEEK LOAN COPY
This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545
. y

BERKELEY, CALIFORNIA



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



UceC-22 ¢/

LECTURES ON MUSON THECRY
Joserh V¥, Levore

Radiation Laboratory, University of California
Berkeley, California

January 1953

Talk 1

I hove to present, in a few talks before this group, a treatment of
problems in meson phfsics which will provide a basis for discussions among
us rather than an exhaustive theoretical treatment. 'It is koped that they
will provide an avenue for stimulation Qf experimental and theoretical work
along liﬁes likely to be the most fruiiful.

)

The pace of these seminars will, I hope, be set by you. I shall be
grateful to know your opinions concerning this as well as those about the subject
content of these lectures. At oresent I propose an exceesdingly short
introduction to meson theory with oractically no development of its general
aspects and then subsequent discussion of problems of immediate interest such
ass

(a) photo meson production

(b} meson production in nucleon collisions

(¢) meson scattering by nucleons

td) nucleaé forces.

To keep this progran witﬁin practical 1iﬁits I shall confine the treat-
ment to charged and neutral pseudoscalar (spin O p,s) mesons. HMorcover the
nucleons will be treated, in so far as possible, as fixed socurces of meson
fleld; that is rscoll effects subsecusnt to meson emission will be neglected.

At the end of these talks I probose to devote a single lecture to the

main differences beiween the ideas and resulits of our theory and those of thes
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most genéral theory in so far as the exiéting very incomplete treatment of
problems in this case will allow. The problem of central importance in this
discussion will be the existence of nnéleon pair creation, a question which
will be settled By the Bevatron. These talks can then conclude with a short
discussion of very high energy Bevatron experiments.
The first important fact of nuclear physics is the'shqrt range of
- nuclear forces. Yukawavrealized that such a short range force field could be

described by a modification of Poisson's equation in electrostatics. dJust as

g o= -0 o

has a solution for (3 = e 3 (r = v,) of

g = e e or
LY , r ~- rol ro V(r)

(1)

2 2 '
The sauation (¥ - /A ) = = P has a solution for e =zs §(r - rl)

o= /blr”rl]
g = ge g o
LT T'e =y T, 7 glr)
« (2)
A The "potential® of a pafticle of charge "g" giving rise to a "field", g,

satisfying Equation (2) has the simple vroperty of being short ranged

range = 1 = )} (3)
7 |

In exsct analogy with elsctrostatics one can propose thai the

potential energy cf a mucleon in a field ¢ is
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vV = y(r) Q(r) dr . (%)
Thus, the potential energy between two nucleons at Ty T, is

- p|ryor)|
v - _ & & e 12 (5)
L7 | r; - rzl
has the required property of cutting off sharply when
ry =r, ) 1 - 6
! 1 2’) L. o= )o (6)

2

So far a theory of a short range field has been sketched but no
reference has been made to any particle associated with this field. That
there must be a particle so associated follows from the general philosophy of
quantum mechanics as emhodied in Bbhr's Complementarity Principle. This
states the complete reciprocity between the field and particle aspecté of .
physicdl situations. We must now decide on a physical interpretation of our
theory so as to bring it into harmony with this orinciple but first we rmust
replace Equation (2) by a time dépendent one which reduces to it for the

case of static fields
2 2 o
(o °/U-)¢ :“e (7)

This combination is chosen since as we all know it is the proper
relativistic generalization of the Laplacian. In a region'of space remote
from sources Equation (7) has the solutioen

g = a ei(kor - wb) . (8)

Writing



p =k ; E = fw’ (9)
we see that

(10)

can be interpreted as the "wave function" of a particle with momentum p and

energy E. The form of the wave Equation (7) implies that

or that

2 2 2.2 2 2
E =z e +p ¢ . (11)

This can be internreted as the usual relation between energy and momentum of

a particle if ws write

‘ E2:m2ek+p

i}

¥
=

e
B ek

4= me . (12)
~ 4

Going back to the fundamental question of the short range of nuclear forces we see
A= A (13)

is just the Comptoﬁ wave length of the particle of mass m . For

ﬁ ~ Yo x Zl.()w]'3 cm. m comes out to be just about the mass of the 77 meson.
To sum up so far: A theory of a short range field has been built up

and it has been sbown that when interpreted in hamony with the Complementarity

Principle ib 1r associated wilh particles of mass m. Nevertheless nothing
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about the mathematics of the theory forces us to intervret it as we have. It
can be concluded, therefore, that it is incomplete and must be quified S0
that these conclusions will follow as mathematlical consequences of our basic
assumptibns with no neéd to draw on physical principles more general than the
theory itself,

The simplest way to approach this problem is to consider a general

2 2
solution of ([] = /U«)¢ = 0. We may expand this in terms of plane waves

" i(ker)
g = 1 Z A (L) e + c.c. (14)
7V
Suppose we try to interpret § as a x&ave functiorn acecording to the usual
theory we would internret
%

Ay A OC prob, that the system is found by a measurement

in the state k

no. of systems in k .
total number of systems

84

(15)

To bring out the narticle features of the theory we modify this by assﬁming
that Ak is proportional to an operator 3, and that

*

88

number of systems in k.

0, 1, 2; 3 only (16)
*
This can be done by assuming that 8y » 8, are overators, not numbers so that

it

%
s & 18 an operator with the elgenvalues 0, 1, 2, 3, ... . Let us set
ks %k -
a P (W) = T Py - 1) a7)
o P - 1) = fn F(m)




where 3[(‘ (Nk) is interpreted as a state with Nk particles in the state k.,
Then

. a; A = Nk | (18)

{ak,a; - 1] (19)

This is not a general enough vrescription to allow us to c_alculeite ek L
since we must manipulate cuantities with different values of k. We may

generalize (19) to

'[ak’a;] = dwr (192)

We now expect that the energy of our field will be (in what follows

- units will be chosen in which H = ¢ = Al)
R~
E = /, BNy +. const.
Z sz +/A2 a{:ak 4+ const.

Let us consider the quantity

. 1(k°r) + 8 e@i(kor) - (20)

F 2

3 (8 4 (V¢)?{— }@ﬁz) = H | (21)

and



Consider a typical term of (21)

) 1(k-r) —ilker) ¥ 2
g = _1 Z__ % 8 + o e
Voo 2 Eg ‘
— 1!
= 1 ) sa,e
v kk'
1(k=k ) °x
8 3y ’
+ A(k-k')or
8k ak e
' + @i(k-{» kq)ar
ak ak' e .

Integrating over all space

2
éS?’.dBr = Zak &y Tt akatk‘*” a’:ak+a; aly

Z(aia-k-f—ak a‘;) .

Similarly we can verify that

S Y

81

L]

3 S F+ (G H + Ul )T
=S G ot s

2

) Gt be . (22)

Thus the expression ’H, represenss the energy density for a system of particles,

1]
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doseph V. Lepore

Radiation Laboratory, University of California
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| Talk 2

- Last time Ioffered an intuitive discussion of the need for and the
method of quantization of fields. There were various points over which I
skipped in order to brihg out the essential physical ideas. Now I would like
to m#ke these statements precise by discussing the problem of the scalar field.

We saw that the qpantify representing the energy/unit volume of a
scalar field @ is

3

° 2 2 '
%= d(Ft e+ L5 . (23)
The total energy or Hamiltonian of the system is '

H = gdBr%

Let us introduce

o

/e | (28)

The momentum density cohjugate to the variable - §. This is analogous to the
p, q relationship.
Note that whereas @ represents the amplitude of the field at a point

r only the quantity

p(r) = Sﬂ’(r) d3r. | ' (25)
v

‘ volume,
has significance. For small/ ¥, about a point ¥ this integral may be

approximated by




p(r) = Zm)Av, . . (26)

Now note that the Hamiltonian
2 2 2
H ;JdBr X/ (vd ) + M 1?52)

may also be written as

s Sd% AT TS (21)
gdsr (V 0H° = Sdar [V@ V9 - ¢V2 ?5]_
and
e VBT - g’ 4§ 405 = o
Surface
at =0

We shall find (27) a convenient form with which to work.
For mathematical simplicliiy we can divide the volume containing field

into small blocks of volume A Vk about the point rp . Then

Bz > AV 3 [ﬁz (nye) + ¢(rk)</f -9 ¢c:~k)] L (28)
Hamilton's equations
B =2 H & T4 08 (29)
9 % S ¥
may be applied to yield
5(rk) = 4H = %(rk) ; (30)

<9'ﬁ%rk)¢lvk

this Jjust agrees with the expression we took for ?Uﬂ - The equation for zf is
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more interesting

i}
i

”D’(fk)A Vk - - é__}iﬁ

;J(rk) :

= (/u'z = Vk2)¢Avk .

1)

Cancelling out the unwanted A V) one gebs

7in) =- (/E - Py (31)

= b‘(rk)
Hence, )
2 2 .
(h -T)+8 =0 or
2

[03- 8, -~ = T-F =0 . o

J 2 ;

This verifies that H is the correct Hamiltonian and that our interpretation

yields correct equations of motion. We now proceed to Yquantize the field"

by assuming
'[Qj(?k)» P(l‘q)] = i Skq (33)
or '
[%(rk). ﬂ(rq)] = 4 _@S_gcg , (31
AV,

We can compactly représent this relationship by letting A v q -—~> 0 gince

S o [ gy, I (r')] ZA Vi [9’(’1:)’ Wl(rq)]

1S AV
'Zﬁ gkq

k

i

§8

89
[EN



by recognizing that

ﬁ_}g = g (ry = r ) the familiar Dirac delta function.
q
AV,

S Br-s")dr 2 2

hence, the correct relationship between 7} , § is compactly written

[?j(r), W’}(r')j' = 1 5(_1' -r') . (35)

In order to approach the resulis of last time we again make a Fourier

decomposition of the field
' i k°r AW

+ 5

i k (36)

. - i k°Z‘ ) e

W/(r)g 1 p, e
1T2k,

Using Egs. {35) and (36) one finds

g(r)

[¢(r), 7 ") ] - 18 (r-1" (37)
‘ % i ke(p-r') { kr - kr'
) | = %Ze = %-, Z (QE; Pk) e
kk

Only those terms in which the right hand side is a function of r = r' can

survive so we have

We can now proceed directly to the results of last time by writing

oo tooeg? ot , |
%Z%% %W (39)
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Here pﬁ' = Pk and 9 = q;k .

If we now introduce new variables
+
.
2 Ek )
i’
2

2 By

(10)

s

the Hamiltonlan

azza[w b Tod g
2E 2
H <

SMEF X /T
+( = ,/“qk)<“°k F{ 2

becomes i} Z’ B, [a{( a T 2y aﬁ'] . (1)

This is just the expression we found by elementary arguments last time.

Using Bq. (40) the field operator

#(r) = 2 (qk -|s~ q;f ;ikor)

k>0

J

can also be exoressed in terms of a éi » 8o one finds

#(r) = _;%,zgjé;k i ler - a;' o & koi}
WL Tz,

2 E

(42)

X



~13~

since .
+ - 1 ker iker
mipk e +ipke v:O

if we sum,

This brings us back to the point where we were last time and comvletes
the brief discussion of the essential features in the development of a consistent

quantum theory.

So far we have talked only'about non-electrical properties of mesons.
How can we describe charge? We have seen that the simple real scalar field is
completely described by its momentum eigenstates. There is no degree of freedom
associated with electrical charge which must be conserved. In order to describe

charge we must introduce two different kinds of mesons. Suppose
a, —annih op. for mesons

bk‘-—y annih op. for 's

then we would expect
; +
> Elef b wimy
+ + '
S 2 (ak a-k had bk. bk) ®

H

H

Q

i

We must consider two fields to describe charged mesons.

Let's now talk classically--suppose I want to write down a charge
density-=its volume 'in’c.egra.l must be a constant in time. Besides this the
quantity Q a charge density ought to change sign‘d’:'l'en t is changed to
- t.

We could try

¢77:¢§5: dgz

dt
but this quantity is not conserved by the Hamlltonian and so could not represent

charge.
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The answer to our predicament is this. There is no aquantity which
can be built out of our framework. It is too narrow. To get a cuantiiy which
represents charge we must allow ¢ to be comnlex. This can be done by

introducing two real fields @, §, and forming

¢

@+ ) L
T
& - - ¢2)_%_ : (13)
o - {e
We may then consider '

0= 1@ -9, 7). (1)

an expression which may be regarded as a charge density since its volume

integral is a constant of motion.

ie ge @ r

e g(al ”’+¢1'7§‘ A ARENA

Q

o
i

2

a8

. 2
ie S 7 T, + g p -8, - mw, - ¢2(,uf -8y = o

)

We can also see this trivially since we may regard §§ as a vector in two

dimensions. ﬁ i “ | eAQ("e) = [yl("-‘) ) ¢z (“)J
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Then since H depends only on ¢l 5 77/ 1.2 the quantity behaves like
3 bJ

the third component e = 1 e(g x')")3 of an "angular momentum'., Since

77‘ is invariant under rotatioms about this axis it is a constant of motion?
In term of {4, ¢* we verify that
ot +
Q= 1ie e - 49

How can we interpret #, ﬁ* ? If we write

_ ik-.r =% Ko
g = 1  ° * b: e (5)

v
Then < :
ooz (e a B B)E | )
and
fg bt [¢: H]
g -q _,1,52 i ker + ik g
_/;‘ {é a = bk e ) k o
7}2 Ey
One finds ‘

S¢§5+53!‘ = _%,,, (ak{ - b; bk) ‘5‘ other terms.

Subtracting Sﬁ%é one finds
te > (af o - ¥ B
i ez (M'g - N;) .

Q

i1

8
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Thus the fislds £ , ﬁﬁr represent @ » mesons, We can make the
following interpretation.

# —> creates mescns

annih @ mesons

+, .
# —> creates B mesons
annih. mesons
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LECTURES ON MFSON THEORY
Joseph V, Lenore

Radiation Laboratory, University of California
Berkeley, Californie

January 1953

Talk 3

Last time I gave you a theoretically complete formulation of the
problem of the neutral scalar field,

This forr.uulat.ion‘was based on the observation that the classical
equation of motion of this field |

0 2. /&2)55 =0
may ‘be derived from the Hamiltopian of the system.
H s S%ér = 3 3[582+ @4 ¢2] S . G
_ WeAproceeded to guantize this field acpo;'ding to the usual formula

(q, ?(’.) s i SM" q > flr,)
' B —7 (rJAV, .

The relationship between #, //" necessary to accomplish the

gquantization was

[ﬁ(r”,f t), '#(r, t)] = 1 S(ror') .

With quantization the Hamiltonian ecuations were to read
i Br,v) 2 [dr, v, 8]
17, 8 2 M e, u]

0o

a8
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In order to diagonalize our Hamiltonian in plane waves, we introduced

a fourier decomposition

4 ker
#(r) = . que qkﬁq:k
v
) = 1 ~iker | .
v R ' P " Pk

In terms of the variables q_ the Hamiltonian become
+ 2 +
o= zpk”k"' B % %

(qkn P‘.:) = 1 8“»2

In order to complete the diagonalization of H we inbroduced new

. variables

80

ot

g

r+‘ i
a = 1 lq I8, -1%
.ﬁ_é"‘k {-E-;J

satisfy the following commutation relations

3 [i(q‘:;n p:ﬂ) = i(Pka qkn)]

Qe

]

; +
The ay, ay

[ 4 |

[ﬁ"éo» ak]

“and in terms of them

048

i

H 2 %Zﬁ((i&kﬁ‘&kaf‘k) .
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To diagonalize H 1t was only necessar: to observe that the & s are the

variables about which we talked before. The substitution

s V) = o Yo -1
of pu) = Pyt Y+ 1)

satisfies the commutation relations and diagonalizes H since

%

KL

Ny

04

S By gt B
> By + 1)

Let's look at the quantization process from the point of view of the

a0

old gquantum theory
W2
Wz | s 7]
| 1 (kor - Eict “1(kor - Ft)
¢:._L=ZAB r k)+A:e r = By
2 3 | alker = Bb) 1(k or = £ t)
589’ dr oz \ A by e e - (=t B) (-4 B)

03

=

. ¥
- i(k°r = Bt) = i(ker - Egt)

+.§% A:: A:. e @ (= X‘-‘k Ekn)

i(ker = B t) = 1(k'°r = 'Vt)
+ 3 S A:l Ak e i ¥ ® Ek (B Eko’*i' €oCo)

~24 E t < 21 Byt
2 k 2 * % k 2
= A M E T :>: b Ay o (=Eg) %%Z, Ay Ao (=Ey)



b Sn et Saag gt
bR mage SR
Hence |
H = :E:z Ei A A: = '.;E;Ei(A: A Ay A: ) .
Applying the old quantum conditions

H oz 2 Hy

e = BB 5 M
one gets

2 % o

oy

2 By
one can accomplish the quantization, Hence if

-ﬁ
T, and Az =

we get the results we have developed before and
ei(k"l‘ = Ekt)

s gtlEr-BE)

_%ﬂ, N

g(.rst):_},___,zak
Vi wiEE T




=21=

The matrix element of f 1s

i(ker - Ekt)

(v, & #(r) ' M) = & (absorption)

12 By

=i(k'r - Ekt)
(Nk+1)¢(r), N) = _e — (emission) .

12' By

Last time I remarked that there was no variable in the theory to

describe the existence of charged meson since the Hamiltonian was completelj
diagonalized in plane \;ra.ve states, Thus in order to meet this possibility
it is necessary to broasden our framework by introducing another field, We

can expect that if we write

2‘*
Wz Z F‘k{% = ZzEkAkAk

(quantum mechanies) (classical mechanics)

for mesons of type one and a similar expression for mesons of type two then

Zeg oty
iz 25 (4 AT B B)
If the type A's —> (P mesons and Bis — mesons we have
¥ % '
Qs 2 e - BeB) |
Let us look at this problem from another point of view, We want to
describe charge. Thus an expression is needed which behaves like a charge

density. If & —2 =t 1t ought to change sign. If we consider two real

fields #, ¢2 we can write
hl o M

‘ ¢1 éz or ﬁl ¢2

but you can easily verify that although each reverses sign as ¢ —p =%
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only the combination

@ 7 -8, T)
is a constant of the motion. We are led to write
Q = i G(¢l = ¢2 y) °

This can be re-written

..e . 1e[(¢1“¢2 VR=ATy o h-ih) (K-f'iﬁé)]
12 2 12 2~

to [87247 |

- 4f we define @, 7/ suitably. Introducing

88

" 4(kor ~ Eyt) = i({ker - E t)
¢2__L'ZARB i} k "f'BZG K

1

1(kor - Byt)
e

Z Ak = i(ker = Ekt)

'Y

* R -
Apk - . Ak ; Bﬂk = Bk o

One finds
. . 3
S(’d% = iaZAkAk(+iEk)
% ¥ .
sBkBk(iEk)
| in - 24 Et

- complex conjugate.

3 - & ¥
Q = erg=iez(AkAk=kBk)21Ek o
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H oz HyfHy = S[‘FﬁLﬁfs}& ﬁ'?)fdjd
==21Ekt % 2. A EL
AL A S XL # by B(-Ep)o
+2ARA;: Ek+BkBkE'
2 =2i E t " 21 Bt
BB 4 Z%%E@e o
Thus,
Q - Z(AkAk B, B)(+2e0)
H =

Z (e by + B BT .

Quantizing one has

80

- By

%
Ay B =

*
so one finds the same result for Bk B K © and

S i - (e

Now let us look back at what we have done.

We introduced charged
mesons by introducing two real fielde, ?51,, 1]

g = 2 (i ﬁg) emission of {5 mesons
{z ebs. of @ mesons.

A

g = 1 (¢1 -1 952) emission of (® mesons

.rz"" abs, of (=) mesons,



T

The charge
f b "ie(glﬂg = ¢2WJ;L)

may be looked upon as the 3-component of angular momentum if ?51, [52 are

regarded as components of a vector § in "isotopic spin space" since

529 Ly = (¢x77"’)3,

4

,
H depends only on ¢12, ¢2 and is therefore invarisznt under rotations about

the three axis, This implies L3 is conserved,

3

b ¥

We can now observe that to describe charged and neutral mesons

simlianecusly we can introduce three fields, ¢1, ¢?, 5253, and associate.

8= (931‘%‘ i ié‘,z),,_,l;== emission (&) mesons
2 .
g = (55}_ ~if) 1, emission ® mesons
: 2
¢3 = 753 . - emlssion neutralmesons

If ﬂl, Sﬂz, .¢3 are regarded as the components of a vector in "isotoplc spin
space we obtain a compact and symmetrical treatment of the two kinds of mesons,
Snce H is, as before, only a function of ¢k2 it is now invariant under an
arbitrary rotatlen in isotoplic spin space. We can introduce

Té\ = = i e(g xﬁz) , the isotopic angular momentum,

and can specify ?2 and €3 independently. e 3 is 38 usual the electric
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charge deﬁsity and .?2 is the square of the total isotopic angular momentum.

The problem of non-interacting particles has been thoroughly discussed
and we have seen how to conveniently describe charged and neutral mesons.
Nucleons must now be introduced into the picture. This can be done by regarding
neutron and proton as two states of the same particle. The charge density of
such a particle is |

€ = e §lr- r1). 1 if a proton
0 if a neutron.

has two eigenvalues. It may be revresented by a matrix ?i. 3 vhich,
_ must *
barring degeneracy, /therefore be two by two

Ca Oz .

%
It must be hermitian so ?»12 = 6210 Ifs eigenvalues given by

det. (@ - AI) - 0 or
eu")‘ elz
giz szjé

A possible choice' is

a
| - AQ =) =
° ) A= 0,1

1

0 must be O, 1.

83
o
g
<

* Hence



. ~26=

1 0
0 0
1 0 1 0
= 3 + 3%
0 1 0 -l
= 0+ 7))
If the eigenstates of e (or ’7/ 3) ara
| 1
Ko *
0
then
0 0 0 1
1 1l 0 0
7‘? B 7i= ;{;
also
1 0 1 4]
0 0 ] 1

Hence

Y8




1 0 ‘l 0 1 0

=g "¢ Uk = a+T)
0 0 0 1 0 =1
0 0 0 1 ¢ -1

(Ty-17)

8
X
Cx]
1
b
§

1l 0 1 0 i 0
0 1 0 1 0 i

= 7;: = 41 = (T1+i7;)
o 0 1 0 i 0

The state of the nucleon is completely described by Tl" 7‘;_, ?; where

7J1, 7;, ?’3 are 'just the Pauli ratrices,

Suppose now we consider interaction betweeh a charged meson field and
a nucleon. This interaction must._bbe of such analytical form that it conserves
charge;

Q

18

charge of nucleon 4 charge of field

o
'

i rprcia ( o7, - 8,7

If the interaction Hint. contaihs a term in ¢* (emission of a 4 charge) it
must also contain a term in 7”; (change a proton to a neutron') and vice versa.
‘Analy‘tically

7_; ﬁ* must be in combination

or
7‘ ] rust be in combinaticn.
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- If one has a linear coupling of the type found in electromagnetic

theory
Jea

then A
-;-’ )'H'i - RS
Hoae ~ TS rep

If £ 48 a real number then in order for H to be hermitdan { - f and

/2 (L EFT e

1

| ;gﬁint
'z%int

If one in additlon considers neuvbtral mescons one can coule them in two

X

£ ?Pi ﬁl %’7}; ¢2 b scalar funciion of :?: g .

wayst
cégint = g ¢3 %o neutrons
g ¢5 to protons
or
g ¢3 tc neutrons
=g ¢3 to protons .

The special choice

;iéint =T+ T+ 75

is called the symmebrical coupling and has interesting properties since it is
invariant under rotations in isotopic spin space and so conserves total
isotopic angular momentum as well as charge. It leads also to charge
independent nuclear forces. Thus the nuclecn can be described by its

isobopic spin vector '7’ in isctopic spin space. .



Uerni-2206 /
~2G-- . '

LECTURES ON MESON THECRY
Jozeph V, Lepeore

Radiation Laboratory, University of California
Berkeley, California

Jamuary 1953

Talk 4

A theoretical basis has now been ilaid for the treatment of probleas
irvolving meson-nucleon interactions. The two simplest such problems are the
problem of a single nucleon and %he problem of the scaﬁﬁe?ing of mesons by a
single nucleon; morsover, these problems are intimately related and are
especially interesting at this time since an understanding of them leads to a
simple interpretation of meny recent experimental results,

So far we have talked only about scalar mesons but as you Know there
are many reasons which lead one to the conclusion that the zf meson is
pseudoscalar and that nuclear forces are charge independent. Accordingly I
shall bass thesg discussions én ﬁhe symnetrical pseudoscalar meson theory,
since it leads to charge independent nuclear forces,

4 possible hamilionian for a single nucieon interacting with the meson
field will now be written siown in an approximation in which the nucleon is
supposed not to recoil. Im other words we shall think of it as sititing, fixed,

at the origin of the coordinate system. Moreover it will Ve assumed that it is

not. a point but that it has a finite extension described by a dansity furction

).
»(:U( )~3 , .
& rdar = 1 (1)

This is a necessary reqguirement in order to give meaning Lo scme of ocur
mathematical results, To a limited extent such a view would also result from

an cxrclt relativistie theory.
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It is convenient to introduce a parameter, a. which roughly descrives
the size of the rucleon,
1 = S ulr) 3 t(r)er &r'
j T e rﬂ
The hamiltonian describing the meson field alone iz, as in the scalar

theory,

2 ‘ pJ 2‘ g ‘3
BT DU

There are an infinite number of possible cholces for the terms
describing the interaction of pseudoscalar mesons with nuclear matter. The

simplest choices however are

(1) } \ 3
H = ¢ \TV 4, (r) U(r)ad -
Sy § Vi g v (4)

M

and
(2) 2 2 .3 |

fig = £ | e (D) UM (5)
2 ol :

?

In these formmlae, §~ , 3?‘ are the nucleon spin and isotepic spin

w

operators, /L@ s+ M are the meson and nucleon masses, respectively and §,
are dimensicnless coupling cqnstantso The particular combinations of these
latter quantities chosen will have some significance when we try to relate the
present simplified theory to the‘exact re}ativistic one.

The first type of coupling, one which increases in Qtrength lineartly
with meson momentum, is the so-called pseudovector {or gradient) coupling of
the pseudoscalar field., The second corresponds teo & scalar walr coupling of .

t leads to

fb

the pseudosealar field. It has many interesting pioveriies since
auclear forcse wilh range &i/%;&c, it dominates the sceltering of very low
eaergy megons by nucleens, and 1u leads Yo mauy body “orcees which may »s s o«

aorr deesgaarhes Lhe gatuiaoeion ovooent] PR W SR
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To spin and isotopic spin variables &=, 7’ satisfy the following

commutation relations in a quantum theory

[o & =246, 0 wax 120
T ] 2:1, e A, B, T = 1,2, 3)
T q,&x T i
(6)

€, L3k is an alternating symbol which takes the valuss 1, -1, according to
whether i, j, k are an even or odd permutation of 1, 2, 3. It is zero if any
two are the same, In a classical theory these commutation relations are

replaced by symbolic classical poisson brackets

[GF{’ % s~ b S
[Q ’ Z;]cpa i 26&(,6‘8? 7

I msntion these facts because it will be convenient in the course of
the discussion to distinguish those features of our problems which are purely
of classical origin from those which are present only in a quantum theory.

| The total hamiltonian, H , from which the equation of motion fof

g ,<, ‘7j may be derived is the sum

of
H - Ho4 B 48 | (8)

The equations of motion for 6’ R T are

i [G’;’H]; _i?; "[gﬂj 9)

in a quantizm theory and

&;:[NHJCB ! L:[

in a classical theory.

(10)
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The field equations may be obtained from the hamiltonian equations of

mot.ion

é (r) - H H 7 (!‘) - - :2 R o
of : - T —
& Ze((r)d 7 } ’ d %f (r) (11)

Thesa yield

(r) ) = B0 = (T
I S A T A
‘;-ﬁnd“i“@iﬂ(f')g

wse

R
_} "gﬁ" ¢ )%¥ (r)

(12)

<D jﬂﬁ ;amgaa%)ég __s_.uqr)af% ..
| (13)

- It is interesting to note that the last term, arising from the scalar
pair coupling, implies an increase in mass of the meson in the vicinity of

the source of amount

; 2 3 |
é5f£ = | & U ‘ (14)
M :
If equations (9) are now applied they yield the quantum eouation for

the motion of spin and isotopic spin

)

S:oig by (Faomy 4o
= Lt

4

3
A - os/wq’[’ ga,u») &, & U

These equations are of the form one meets in the study of spimning bodies

(13)

e A
d L - L x T
dt
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The torque in this case is that due to the field at the ﬁresence of the heavy
particle. We shall see that motion of the spin and isctonic spin is responeible
for the radiation and scattering of mesons just as the actual physical motion of
charge is responsible for radiation in electrodynamiecs.

We can now ask about the nature of the solutions QL{(r, t) to our
system of eguations° These eauations describe all phenomena associated with a
gingle nucleon. Different physical situations are differentiated and described
by varicus types of boundary corditionss for example, we may ask if there any
solutions corresponding to bound, i.e. non-radiating, states of the meson nucleon
system or what is the solution corresponding to the scatiering of mesons. The
former situmation is distinguished by the boundary condition that Q&i(r) vanish
at remote distances from the nucleon; the latter by finding that solution which
corresponds, asymptotically, to an incoming plane wave and an outgoing spherical -
one, ‘

The most fundamental problem is the first of these although they are
intimately connected, Let‘gsvtry to find a time independent solution to the

equations of motion,

2 2
(- Mg, (r) = =~ 2 a 3 VDT 4+ £ U g, (x)
/% M . A7 @‘ (16)

If the discussion is confined to low lying states of the system it is convenient

to set g B S N
G = % O+ 6 o T4 £ (&) o to
iEgt = 1 Egt
ST = 030 +05(Ey) e~ +O () e
‘ i Epb =+ 1 Bgt
T = Ta @OF Ge T+ e

(17)
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These lead to the followinZ equations for ﬁ# (0), ¢££(E0)3

L1}

-2 v [5;00F (o (e T (5

fﬁh

2 2 2
‘_‘U =/-/" - gﬁ U(r)] ¢q(0)
‘?’G'ﬁ;(?'o) T () j
a,‘__;_z . U(r)Aﬁ (0)

8, v [&;co)g (Ep) + 0 (B Ty (o)]

2 2 é
[Qj "”f‘ + EO = ﬁU(r)} Aq (Eo) = ‘”/%
-£ 3, un | )
A "*

(18)
Tq be sure terms 1nvolving higher frequencies should have been includéd but
our aim here is to discuss only the low lying states of the gystem. We shall
see that for the pseudoscalar theory the first excited state cén be ekpected
to be unbound, i.e. at least of f?equency EO %ﬁ@g.
The important point which we learn from Eq. (18) is that in zero'th

approximation

g = - £ i “‘r>Aﬁ.ee(°) . | (19)
/.é [jvz_/uzagzgwrﬂ

If the source function U(r) is replaced by its spectrum

u(r) 5' we =T & ‘ )
r) = 1 U(k)e d k (20
(2m3;2 ’
) |
one finds (setting /Ax:(r) ~ g U(r)/2M)
LAY g tier 3
= £ =71 ¥4 Uk) e d k . (21)

¢@§ (0)

/Le (21)"}3/2 | {kz ‘%/ﬁ:z ‘?%‘i(r)}
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This integral may be evaluated approximately by replacing U(k) by its value

for a point source

= 1 » (22)

a0 (aA3/2

"U(k)

Al distances large compared to a , the source size,

b © - __;_ZAQ(@ 3,

This is the Yukawa potential in the gradient coupling theory. The high

em’ﬁ&r o (23)
Ir |

b

singularity of the potential is a consequence of this type c¢f coupling. A

rough aolution valid in the interior of the source is

= _
(0) i -6”/0{(1‘) r
ORIV eﬁ -
4 id “i
/ LT r

The pair coupling thus causes a dimunition of the field in the interior rsgion.

. (24)

Mesons probing this region Behave as if they are very heavy and they are

repelled from it,

The solution for Q# (Eo) is more interesting. For r a one finds
2 2

by = 2 [b ®) 8, e . (25)
° /ﬁ*' i : L7 r

This soiution corresponds to an excited state of the meson nucleon system of

larger range than the conventional Yukawa potentfal. It should be emphasized
however that Ei has been assumed smaller thén //U?c We shall socn leaprn that
this is not to be expecied for pseudoscalar mesons., This state, although

unstable, does however, as we shall see, play a dominant role in the interpretation
of high energy gleson nucleon scattering since when excited by an external meson

1
beam it leads to an unusually large cross section because of the large spatial
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volume it occupiesa
An expression for Eo in terms of the coupling constant, f, and the
sovrce size, a, can be found by substituting the exvressions for the fi.elci

g » (r) in}o the equations for the spin motion and demanding that they De

consisteht with these forms. 1In carrying out this task one meets a formidable

analytical difficulty; the ecuations for the spin moticn are non-linear and arsz

not understood from a mathematical point &f view. In order to deal with them

at all it is necessary Lo make a linear approximation, that is, only terms

linear in &3 (B)) , 75 (E)) will be retained.
The gzneral solution for ¢q (r) is

1B, -1 Eq t

() = B O+ agB) e C4 L BYe  F g ().

g ) = g
(26)

ﬁﬁf(r) is a solution of the homogeneous equation
UZ 2 2
- - b o r) = 0 2
I: /u /ul(') ¢°(() = ’(7)
which for r » a 1is just a sum of plane waves

¢H(-) [ ik'r+ 41, mikor]
r) = 1 E . e a e .

k

(28)

Upon combining equations 15, 18, 19, and making the above mentioned

approximations one finds

§=(0) = ©

e 2 o
8,07 (E,) < - 21 fé % 56 W@jjm) 3(r) YOGy ()T, (918, (r)
! J

2 2 .2
pe-gt,
G5 (E) 3y UM T, (a0 T, (08, vi=) | 3

' i e e e

o S

2 >
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Since the integrands are spherically symmetric only terms with
k= % give any contribution. We may also introduce wector nobation at this
peint since there is no danger of confusing vectors in snace with those in

isotopic spin space.

E e = -2t 770 a0) x o(8,) | (E,) - x(o)]
2 | (30)

.whare

2
I(8,) = [ak 0tr) &r
2 2 2
M- - E

(31§

10) = [ak"(r)]z O
=

The analogous equation for 7;{ (Eo) yields

2 ,
E, 70" (E) = :33_%_5_ f) @ x T @) [I(Eo) - I(o)]
a (32)

s6 thaft. the motions of spin and isotopic spin are identical.

If one now takes the vector product of G~ (0) and equation 30

2, S0 x OE,) = z21 2 TP 0) [16,) - 10)] 5(0) [c xcs“(aog]
3 pL '
and employs the relation
2
G~ (0) x [mm x G"(Eo)-] = - (0 TTE) (33)

(since S7(0)°G(B,) = OC) one finds
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i - .
g7 x [G" () + iG"I(EO)} =28 72(0) () [_I(EO) -1(0)]
i 3/&’ B,
X [1 U"E(Eo) ~ Q“I(EO)J |

or
R 1
S(0) x 07 (B,) z +C o (8,)
- . R (34)
S7(0) x o=(E) = -C O (E)
| R 1 ©
where <, O™ are the real and imaginary parts of o (E,)  and
C = g___:;z 72(0) 0'2(0) [I(Eo)-l(o)] . - (35)

R I
These show that <<<0), QY‘(EO), (Y’(Eo) form a system of vectors at
right angles to each other., Also from (33) and (34),

R : T
SO x [S0) x T @) z ¢ x )
2 . ®m 2
-fo) sie) = -6 o)

or »
, Y 7

C = S (0) . (36)

This is the relation which determines the energy, Eo’ of a possible

excited state of the meson-nucleon system. Thé integrals I(0), I(Eo) may

be evaluated by introducing the Fourier %ransform of the source function U(r).

g ikr 3 :
S U(r) = 1 Uk) e = dk
)2 |




' 1(kk )eor ' 3 3% 3
ONENS BN (DRSS ex') &k &k dx
27) K 4 p° (37)
ont?
2 2 4
- 1) iz k22d3k = 47 \fuw | x a .

K" e | : sz'/u?

. It is now convenient to split the integral into those parts which would be

infinite for a point source, 1/a =@ , and those which would be finite.

Write

s

k SRR W
2 2 /u. k

*’/‘

a similar reduction for I(Eo) involves

2
i 2. +E2+(/&~E

Crp g S,

L
~

so that the difference I(E o) - I(0) is just
<0

2 L
1(E,) - 1(0) = & [u(k)/ dk (/“‘ -5) /“‘

5 k%ffv 'k#’/»f

It may be readily verified that the first term depends on the séurce

(38)

size defined by equation (2) which when exvressed in terms of U(k) is

S!U(k) 52 ;ik - 1 . (39)

(h}y)z a

The remaining integrals in {38), finite for a point source may be

3/2
approximated by writing U(k) = }/(2173 /2 , the value of U{k) appropriate

Lo such a source. Then provided E_ Sy e

4
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P

1l f; dk
@’ ¢ 1:2-/—/u2 B Y

83

1 0‘2 ) . n}m;u. °
2 52;2? - ES

Upon combining all these results

2 2 23/2 3
I(E,) - 100) = _1 | B -f—f/k, mE)T - M . (40)
For B, £< this simplifies to
/sz
I(B,) - 1(0) = o M| 1 - 3 |. (41)

N4 3;& 2

If (L1) is combined with (35) and (36), one finds

(&’.) - 1 . (42)
M _tf)'rz(m (0) [_2____ - 1;’
X/ 3 apm

Using (42) we can now conclude that no stable isobars are possible in

the pseudoscalar theory with gradient coupling. Estimates of the coupling constant

2
£/  always yield a value
2
o0& ¢ KT £ 0.3

and we may expect that
2 3
2. p)
the nucleon compton wave lengih; furthermore 7” (0), & (0) are of order of

magnitude unity so one firds

Eo,;u, > 1 (43)

contrary to the supposition EO' £ A4 which has baen uscd in deriving this
/ ‘

sesult . One can verify that thils same resuli nolds nrovided one employs the



wlil~

more accurate expression (40) to determine Ej.

It hes been remarked before that sithough no stable excitad state o
the meson nucleon system may be expected to exist it does however play an
important role in high energy meson orocesses. The relation (42) always <defi s
an energy of a meson mode wnich is easily excited by an external stimulus, ir:
example a beam of mesons, a heann of vhotons or a nucleon impact, The situation
ia analogous to a circuit containing resistance inductance and cagpacitance.

In the absence of resistance the rescnant frequency (stationary state) of tre
system is (& = (LC)B% ; even in the vresence of resistance the same formula
servee to aprroximately define the frequency of that mode of osciliation of 4h:
system most easily excited by a generator placed in the circuit. Because of
these features it is of impcriance to examine all propsrties of an isobaric
state of the nucleon meson system. Of particular interest ave the spin and
isotordec spin values associated with this state.

Before discussing the above features it 1is necessary to examine the
equation of motion of the isotopic spin, It may be treated in precisely the

same manner as the equation for the spin to yield

. _
c = {770) . (s
This result implies that
2
;p?(o) - g . (45,

The expression for the angular momentum of the meson-nucleon syster -

1 G. Wentzel, "Quanbtuw Theory of Fields", page 10,

. ' (46

v

E]
3 r i T
J - T . rir x € o
- S lEox Sy
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This formula shows that no angular momentum is present in . the field due %o its
_Mr
static component which varies as e / gince the canonical momentum

O °
zr‘ ) = €¥ (0) assoclated with it vanishes. On the other hand

iEt 4 -iEt |
77;030) = iEO[%( (B ))e =§,‘(E°)e ° j (&7)

One finds

3 oo oo
J = _%: w«iSdr r x[ﬂit{ (EO)AO( (Ey) -4, (EO)A';,((EO)} E,
3 ' iE¢t & =1 E t
-iSdr r X Vq:{ (O)[Ao( (Eo)e ° o;& (Eo)e ° E,
(48)
It is easy to verify that the time dependent terms are cancelled, in

. the expression for the total angular momentum, J , by the corresponding non-

secular terms in &™. Thus

= g0 -4 Sd3,- r x [vl& (EO)A;(EO) -VA:(EO) Ay (EO)] E, .
(49)
Upon using the expressions for Q4 (Eo)’ A+ (E,) one finds
J - m 44 ¢ {L@’(O)c‘ (o)] [T (E')T+(E )«%’TTE )L (E‘)]
s ?‘i[m'd’o(’(ocﬁoa{o
+7T ’ (0) [c:sz (E)@{(E) +G"’:(E)§2(E)] Fpm Eo
4 (50)
where :
- By * &r [1‘ x Vaj U ] Onu . ' (51)

(/.4,.2 _ VZ - EO.?.)Z

This integral may be evaluated to yield
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éj,,@m (V U)2 d31.~ or
3 ( /u? -7 -E2)°
2 2
€ifn 1 - 3 /u. - E, )ig ] . (52)
127 a 2 J
Gombining this with (50) one obtains
2 2 4 2 2 %7
= ¢ (0) 2i( £ 7;¢ §02 !:G"(E) S (E)}[___l___ -3(m -E ) JE
2 + (W 2 3/01, x a 23"’ /bi, [¢] _! (o]
(53)

with

]

SE) x () = - 21w(E) x Oy(E)

8

=-21<S"‘(E) G (0)

s2(0)

equation (53) becomes

E&.h-(f )7’(0) (3 - @“(o))[ 3 g/x - E é] S70)

7 s

This shows that the angular momentum associated with the field is in the direction

&5 (0). By using equation (42) this may be simplified to

S(0) + 57(0) : (54)
' 2 G (0)

At this point it is useful to note that the requirements of the equations

of motion for 6"‘1 » may be met by the following substitutions.

%

S0 =0 5 onE) =S &) = g

G0} = 0 ; a3(Ey) = ~ 107 ] cy‘;z(E) z 1@
- .

$3(0) - el (5‘3”(&0) = 0 ; 5'3( o = 0O

(55)



Where (31;3 1 (Cfijt iCS“é) , etc, are defined in terms of the Pauli
o 1’5“

matrices 573, 0% ijé introduced earlier,

This implies that the angular momentum associated with the isobaric

.

state of the nucleon, B, , is

J = _;;L‘ @'(0) . (56)
2

~

In other words the angular momentum associated with this state is 2/2
2]

Tt shculd be noted that J° canmot be computed using (56) since products of

iE & - 1 E %
terms i e ° , e o

which we have neglected contribute gsecular terms
2
te J .
We now may determine in precisely the same fashion the value of the

iwotnpic spin associated with this state,

I 3. | X
2_1% - “‘"f‘“" +Sd %ﬁgﬁ.ﬁ’ﬁ%. (57§

By using (47) and (17) one may verify that the tire dependent terms in {57)

cancel as they did in equation (48) leaving only

‘ (3 P + ..
(_,__wfgzgo; + lgd r é{ﬁx [A}Q(EO)A?»(EO) - }xﬁ(EO)A?{(EO,‘s E

if

s

N

2 i z 2
- B - ggz )@2(2) (3 - T 0 L (olé{ Lo~ 3 0p -5
2 417 3 /“ .41']'2(0)
Fof

o

o

1]

i
|
1

o3

a -

If we use eq:iation (42) this may be reduced to

-T = 3 7T (0 . (58)
S 2 9

This relabion shows that the isctopic spin associated =rith the isobaric state

&, has the value 3/2 .



The results of the foregoing section show that ﬁhere are no stable
isobaric states of a nucleon in the symmeirical pseudoscalar theory because of
the smallness of the coupling constant., The oroperties of such states have bdeen
discussed in detail however since one expects that although they are unstable
. they may be excited by an external meson heam and thus influence the scattering
of mesons. It has heen shown that the first excited state of the meson nucleon
system has spin and isotopic spin 3/2. One may therefore expect strong resonance
scattering of mesons when this state is excited, That this is indeed the case

4111 be shown in future talks.



