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APPLICATIONS OF THE CALCULUS OF VARIATIONS 

l. Introduction 

By applying the methods of the calculus of variations, we will 

demonstrate how to calculate the elgenvalues of certain ordinary 

differential equations. For example, consider the simple problem 

y tt  -  F;y 	0 

with boundary conditions: y(-l) = y(i-  1) = 0 , The task is to 

determine the smallest number , for which this problem has a non-trivial 

solution. We will change this problem into one involving integrals since 

it is so much more pleasant to deal with integrals than with derivatives 

in most numerical problems. 

2, The Euler Equation 

Suppose we are given an arbitrary curve c, with continuous 

derivatives, joining two given fixed points (x0 , y0 ) and (x1, y 1  ) in the 

plane 
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H 

and also a given function f(x, y, y') Then consider the integral 

( 1 

I 	 f(x, y, y)dx 

xo  

For example, the arc length of the curve from (x0 3r0 ) to (xl, yi) is given 

by such an integral, 	 . 

(c) = 	

= 	

, 	
(c) (x) 

We then consider. the value of this integral. I over another curve c 

passing thru our given points. . 	. 	. 	.. 	. 	. 	.. . 
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i 	 \ f(x,.y, yt)  dx , 	 y 	y 	(x) 

xo  

We may consider many such curves c, ct,  c", 	and in each case we get 

a number I c , I c , I"
c

, Goo . Then our problem is to determine the curve 

y(x) for which I is a minimum. In our particular example of 

f(x, y, y t) 	 iyt2 this amounts to finding the curve c joining 

(x0 , y0 ) and (x1, y1) having the smallest arclength. Of course in this 

example the answer is known to be a straight line and in fact we shall 

derive this after treating the general case. 

To solve our general problem, suppose the solution is already icnown; 

We will then derive a differential equation that 	must satisfy. Let 

(x) be an arbitrary function such that 

(x0) = 	- 0 

Then for any number 

(x) fE7(x) . 	y(x) 

is a curve which also passes thru (x 0 , y0 ) and (x1 , y1 ), Furthermore, if 

(x) is a decently behaving function, y(x) will be a curve which lies 

near the solution 	(x) if we make 	small and which coincides with 

?(x) when 	- 0 . For each of these curves corresponding to a 

particular , we get a particular integral (number) 
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f(x, y, 	

=

f(x,+,jl  + £')dx 

Then the numbers I(€) must have, by assumption, a miniinumat 6 	0, 

i.e0 

1 	 X1 

0 	dI()I 	 d 	f(x,+,+')dX 
d& ]0 
	

d& 

But 

Xi 

f, 	 f(x, 	Y'+€)dx 

(putting y=c , 

xi  

S (.i 	s + 	 olfl dx 

o• 
'\ a 	& 	c9°c 

Xi 

= 

Thus on putting 	0 and noting that 
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• and 

E:O 

our condition is 

o dI(E) 

+ 

Now integration by parts shows that 

xl  xl  xl  

S 	dx 	a Y) 

xl  

dx) 

since 'r(x) - 0 	Hence 

1r .1 

••° ••• 	\. f (iIxax 
d6 

6-a ° 

Since 	'r(x) is arbitrary it is easy to show that the integrand must 

vanish, and hence we get the Euler equation, 
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0 , 

dx t  

as the coiition our solution must satisfy. (Drop bars from now on.) 

in our previous example 

- 	 f(x,y, y') 	[i+y12]2 

Hence 

OY 

y t  
• 	 [i *2] 

and theEuler equation becomes 	 • 

dx [[1' 	

] 	

0 

2   

Thus • - 	
yl 	 constant, 

• 	 C1yt2J 

Thus 	• 

1' 	constant 

and we •get a straight line as promised. The constants are chosen so that 

the solution actually passes thru (x 0 , y0 ) and (x1, y1). 
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3. Isoperimetric Problem 

Suppose now we require that 

f(x, y, y')dx 	be a minimum 

and  

K(y) 	 g(x, y, y 2)dx 	I 

xo  

simultaneously, where g is some given function. Then it can be shown 

that the solution y y(x) which satisfies the above conditions is such 

that if we put 	 - 

F 	- 	g , 	 a parameter 

and solve 

8F-dj 	O 

we get a solution •.y - y(x, ,1 ). Putting this y  into 

K = y(x, 	), yt(x) 	)) dx 

YO  

we detexnine 

For example we may require y(a) 	y(b) 	0 and 

b 

J(y) 	3 [p(x) 'y ' 
2
t 
 q(x)y2] dx 
	minimum 

a. 

and 
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b 

C  
K(y) 	3 (x)y 

2
dx 	1 

a 

We then put 

•2 	 t' 
F 	py ~ qy 

2 	
410y 

2 
 

Now a most important fact is that it can be shown that if y y(x) is the 

minimizing solution, then 

J(y) 	A 
and we can reverse our procedure as follows0 Supposewe. are given a 

differential equation 

(pyl) 	qy - 	 0 	 y(a) 	y(b) 	0 

where ) is an unknown constant. Now in general the above equation has 

a solution only for particular values of , 	 and it is these values of 

A , especially the smallest  one, wFuich are needed We then use the 

Rayleigh Ritz method0 

4 Rayleigh Ritz Method f or Smallest 

Consider the following problem 	 . 	 . 

0 , 	 y(-l) = y(l) = 0 

where A is unknown0. Now this.is  the Euler equation for the problem 
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S 2 dx 	minum 

and 

K(y) 	S y2  dx 	1 

or equivalently, the Euler equation for 

+1 

H 
	2] dx 
	minimum. 

We try as our first approximation a function y(x) which satisfies the 

boundary conditions; say 

2 
ya(lx). 

Then 

2 	2 	22 
a(l=x) 

y 	_-2ax, 

Theref ore 	+1 	 S  

H(a) 	S (y' 2 	y2)dx 	 [4 a2  x2 
	fa2(1 x2)2fl dx 

a2 S[42{1 2x2+x43]dx 

I 

5 
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-10- 

To minimize H(a), put 

0 - dH(a) 	2 a 	x2 	- 2 x2  x4fl dx 

Hence 

	

- ,1'21 	0 
3 	 3 5 

Thus 

4/3 	=5 	25. 
s/is 	2 

As our second approximation, put 

y 	(1 - x2) [ai  a2 
2 ] 

again noting thaty(-i) 	y(+ 1) 	0. Then puting this into 

H(a1  a2) 	 - )yx 

-1 

we then demand 

0 Hai(1-2_1 )fa2(i -2 ) ,  
5 	5 	35 

a1 (12)fa( 	-2A) 
a2 	 7 	 7 	21 

In order that these equations have a non-triyial solution for a 1  and 

a2  , we must have 
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(i1) <i 2 A) 
. 5 5 35 

o - (?) 

(i) (u.2) 
7. . 	7 21 

i.e., 	 22+ 63 .O, 

i.e., 2.46744 and 

A 25,53256 

but we must choose the smallest 	, hence, 

) = 	2.46744 , (True answer is 2,467401,o,e) 

The procedure for higher approximations is evident, 

5, The Adjoint Form 

We now indicate a method of putting second order equtions into a 

more pleasant form. Consider the general linear second order homogeneous 

equation . . 

p0(x)y"+ p1(x)y+ .p2(x)y 	0 

Then the adjoint fonn is (if it exists) . 

(pyf Vp2y 	0 

where 	
.1 	S(Pl/po ) dx 
.pce 	. 

PO  

0 

14 



UCRL-2274 

12 

• First example: 

ytt+y = o• 

(y')+ )ty 	0 	is the adjoint foin. 

Second example: Consider the (Bessels) equation 

xy+ (2 x2  l)y = 0 	 y(0) y(i) 0 

Then (xdx 

p 	ce 	- cx 

= cx = .c 
• x. 

The adjoint form is 
22 

(cxy+c (, x 	l)y - 0 ) 

	

p(x.). -x 

Or 	 where q(x) 
x 

2 
(xy?) 	ly+ 	xy 	0 

Try y 	a x(l x), Then 	 • 

J(Y) 	S ( 2+ 	)dx 	

2 3 

x [l_ 2 xr  a2
+ 1 a2x2 (l 	dx 

K(y) - 	 dx 	a x(lx) dx 

H(a) 	J(y) 	K(y) 
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• 0 = 8H = 2a 	I x [1 - 2 xJ+ 1 x2(1- X)2 )2 (i x) 2 / dx 

a 	s I
Therefore, 	1 	 2 	2 	2 dx  

S 1x{12xJ1 x(l-x) 
= 0 

 
X. 	

1/4 	15 

3 	2 	• 	• 	
• 	1/60 

x (1-x) dx 
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