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APPLICATIONS OF THE CALCULUS OF VARIATIONS

1. Introduction .
By applying the methods of the calculus of variations, we will
demonstrate how to calculate the eigenvalues of certain ordinary

differential equations. For example, consider the simple problem

yﬂ +_ ) ¥

with boundary conditions: y(-1) v(+1) = O . The task is to

determine the smallest number ,? for which this problem has a non-trivial
solution. We will change this problem into one involving integrals since
it is so much more pleasant to deal with integrals.than with derivatives

in most numerical problems.

2, The Euler Equation

‘Suppose we are given an,arbitréry curve ¢, with continuous
derivatives, joining two given fixed points (x4 ¥5) and (xq, yl) in the

plane



UCRL~2274
"Zf, '
A
%1ﬁ"
g g L
— % <
.7 Wy -

. and also a given function f(x, v, ¥'). Then consider the integral

x;

g f(‘xs_ Ys. y‘)dx
X . |

- %o,

L
|

For exémble,:ﬁhé.arcflength of the curve from (x5 y,) to (x], y7) is given “
by such an intégral, | , | _ | o

'I(c) .= S = SS K:l +f(y‘)2.. ax 5 - yAz y(G)_(X) .
We fhen consider. the value of this'integrgl  I over another curve ¢’
bassing thru'ouf'given points . |

L
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We may consider many such curves c, c', ¢", ..., and in each case we get

I , oso . Then our problem is to determine the-curve

a number Ib’ I

c?? Ten’

v = y(x)‘ for which I is a minimum. In our particular example of

f(x, ¥y, v') = o l-{--y‘2 this amounts to finding the curve ¢ Joining

(%05 yo) and (xy, yl)' having the smallest arc length. Of courseé in this

example the answer is known to be a straight line and in fact we shall
derive this after treating the general case.
To solve our general problem, suppose the solution is already knownj

T = y(x) .

We will then derive a differential equation that ¥y must satisfy; Let

Yz(x) be an arbitrary function such that
,?(xo) = rz(xl) = 0.
Then for any number &
T(x) +ENE = yx)

is a curve which also passes thru (x4, ¥,) and (%1, ¥7). Furthefmore, if
Y?(x) is a decentlylbehaving function, y(x) wiil be a curve which lies
near the solution C F(x) if we make & small and which coincides with
7(x) when & - O . For each of thése curves corresponding to a

particular & we get a particular integral (number)
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Y
&) = S f(x, y, y')dx = S £, THEN , T + EN'ax.

o %o

Then the numbers I(&) must have, by assumption, a minimum at & = O,

0z & ] = g f(""*‘f’f“l’?'*”')dx]
R ¥ | |

=0 %, o e

But

1 ‘ , : o Xy : : _
4 £, THEN, THEN DX = g_a'_ux, T4EN, THER ax
§ crrenrenie = (g uepe

- (porins THEN <o, THER = @)
S{ - \8* 8¢ +o?°s_ o * 9@-9&) |
I "xl . : : :
- } »vd+§_)i ] _3_£ '> dx_; .
L X, < '30{ Y]+3'B ‘) ,

Thus on putting & = O and noting that
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ar - 9r e gr] = @r
o Iy Jp| Iy
£=0 " ' E=
our condition is | |
0 = dI(E) = Af 4 2 W) ax
a€ | é)iq 3:7"]
£,=0 *o
Now _integra‘r_,iqn by parts shows”that _
X v Xq Xy
armoczar | - (e (a)=
PIEE A - IO -
0,

o} } ] ‘ (¢)

X | | |
-\ pa (2r )
gnd}( (33’;1) .‘ .

0 . Hence

since Yl(xo) = Yz(ﬁcl)

0 = AI(E)] o= S ﬂ}: - _i(_@i) )’z(x) dx
dE J |97 =\97/ |
- E=0 T M7 7

Since Wz(x) is arbitrary it is easy to show that the integrand must -

vanish, and hence we get the Euler equation,
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'as the condition our solution must satisfy. (Drop bars from now on.)
In our previous example
o . 1
f(x, ¥, ¥') = [l-i-y' ] :

Hence . . R : s .

If = 7 l'? o
Jy [1 +y‘2]% -‘ 4

and'the'Euler'eqpatioﬁ becomes

! = 0.

fzj¥ 2

-4 ¥
dx_/' [_1+

-Thus .
- constant.

y! .
’ [152]% |
wThus f L .
o | y'l = constéﬁt
. and we'get-é stréigﬁt line as promised°  The constants are chosen so that

' the solutioh‘adtually passéévthru'(xo, yo) and (xq, yl),

(¥
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3. Isoperimetric Problem

Suppose now we require that

§ | Xl.

J(y) = g f(x, y, y')ax  be a minimum
Xo
and
. X1 S
K(y) = g glx, y, y)ax = 1.
X '
o

‘simultaneously, where g is some"'g_iven function., Then it can bé‘ shown

that the solution y = y(x) which satisfies the above conditions is such

“that if we put

F = £ - )g 5 A a para_meter

‘v_ai__i . O..
Oy dx%? C

we get a solution y = y(x, 2 ). Putting this y into

and solve

K = S g{x, Y(x9 ) )9 yi(xs ) )) dx
Yo . '
we determine ) o
For example we may require .y'(_a) = y(b)_ = O ‘and
. b | |
' .2 2 : ,
’,J(.Y) = [p(X)y' + a(x)y [dx .= minimum

a

- and
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b o
2
K(y) = - e(X)Y ax - 1
" a
We then put

. 2 -
F = py' + v - )fyz .

Now a most important fact is that it can be shown that if y = y(x) is the

minimizing solution, then
Iy = Q0
and we can reverse our procedure as follows. Suppose we .are given a
-differential equation
(py') -ay - APy = O - y(a) = y(b) = O

where ,)' is an unknhown constént° Now in’éeneral the above equation has
a solution only for particularAvalueé ofﬁ)% and it is these values of

,a , especially the smallest one, which are needed, We then use the

Rayleigh Ritz method.

L. Rayleigh Ritz Method for Smallest A

Consider the following problém

.y‘"“")y = 0, ‘ Y("l) = Y(+l): O‘.

" where ,}' is unknown. Now this is the Euler equation for the problem

&
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I(y) = S y' dx = minimum
: Y
and
+1 |
5 - .
K(y) = S y dx = 1

C=1

or equivalently, the Euler

+1

=1

. We tfy as our _firsﬁ approx

' boundary conditions; say .

y =
Then
2
¥
yi
Therefore ' +1

Ha) = S(y'?
b : -1 -

equation for

2 L
)y J dx = minimum.

imation a function y(x) which sati-s'f’ies the
2 .
a(l = x ). .

2 2.2
'a(l==x)2-

/“"zaXo
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To minimize H(a), pﬁt
7 +1 | |
S R L e ey IS
da - : : - q
: -1 ‘ .
Hence - o
5’ - | lﬁ,.%"'; - Oo
3 ){ 3 5?

Thus

A = LB =5 = 25.
8/15 2

As our second approximation, put»r

y = (1 - xz) [al-f.az xz ]‘ ‘

- 7 \, . o N . . . . o e g s
. again noting that y(-1) = y(+1) = O . Then puting this into

. + | -
H(a; ap) = § (y"% - ) y?)c?x _
: d

we then demand

ul-2d)rell-22)

0 = QJH =
3'31
Jas - 7 7 21

In order that these equations have a nonétrivialvsolution for a; and-

an , we must have
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(1-22) (1-22)
0 = AA) .'

(1-22) (m-21)
: . -7 ’ 7 »2].

2

e, | 2
.i..e., | )
A

but we must choose the smallest ) , hence

2814 63 = 0,

i

246744 and
25.53256

] = 2467 . (True answer is 2.46740L....)

The procedure for higher approx'imations is evident.

5. The Adjoint Form

We now indicate a method of putting second order 'equa"tions into a
more pleasant form. Consider the general linear second order homogeneous
.equation

. : 1 :
Po(X)y" + P (x)y + vpz(x)y = 0
Then the adjoint form is (if it exists)

(py")'+ Vpy = O

where

S(Pl/po) dx -
p =z ce

o~

b
p0
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First example g

M+ Ay

)+ Ady = o0 is the adjoint form.

Second. example: Consider the (Bessel's) equation

ﬁ‘

Xy + xyt + (A% %2 -1y = O o ¥(0) = y(1) = 0
‘Then : Sl dx
: 2
x
p = ce = X
V = cx = ¢
. 2 .
X
The adjoint form is ,
. 2 2
(exyt) +,2(2. x -y = 0 p(x) = x
or | where . q(x) = 1
R _ 2
) ~1y+ A w = O o) = x
Try v = a x(1 - x). Then
1 . ' 1
: ' 2 2 22 2
I(y) = S(py'2'+ qyz)dx = {x[l-Zx] a +1lax(1l-3% }dx
. . =
o — : - T
B! 1 -
. 2 , 2 2
K(y) = o\ ey dx - = . a X3(l - ’X) dx
. 2 . ,
H(a) = J(y) - A K(y) '-
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| | ) _
0 - §H - 2a g{x[l-zx_]-l-; 21 - x)° - )2x3(l-x)2’2dx .
Bva A - x
Therefore, 1 . o ‘
S {x[l—ﬁz‘x-]gi-}-l., xg(l—x_)zg dx o
Y= _x‘ . | - U4 o o15

1/60
2
X -0 -
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