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Glenn Culler 

THE SIJNMATION OF INFINITE SERIES 

1. Introduction 

Various tests of convergence are given for ordinary and double 

infinite series, and operations on convergent series are discussed0 Then, 

with a view to numerical applications, methods of expressiong sunnnations 

in closed form and transformations of slowly convergent series are given0 

2, Convergence 

2.1 flfinition: An infinite series is said to converge if and 

only if thesequence of its par 1 i.al sums converges,, (The i'th 

partial sum of the series  an  is S = > a.) In 

particular \ 
• 	 /• 	alim 	S. 

	

n=1 	• 

2.2 Convergence Tests, There are many convergence tests which are 

frequently more easily applied than this definition, but the three 

given below have reasonable scope and give, results with minimal 

effort. 

Suppose. that, fbi all, x greater' thà -isorè fixed x ' 

f(x) is continuousand has. cbntihubnon-zero:derivat1vè. 
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221 Ermakoffs Test:  

If 	him eX  f(eX) 	k , then 	> 	f(n) 	S  
f(x) 	 n=i 

- converges when k Z 1 and diverges whenever 
5X f(eX) > 1 

f(x) 

for all sufficiently large x0 

222 Limit Test: 

If 	urn -f(x) 	k, then ) 	f(n) converges 
XO xf(x) 	 n1 

when k 4 1 and diverges if -.'f(x) 	1 for all sufficiently 
xf() 

large x0 

Both of these tests are ndecisive when, respectively, 

et f(et) 41 	and 	ef(t) 41 for sufficiently large t 
• 	f(t) 	 tf'(t) 

and. kl. 

223 Leibniz°s Theorem for Alternating Series: 

ir.( u4 • is a non-increasing sequence and him U = 0 2 
 

then 	(i) u 	is a convergent series, 

2.24 Proofs for 1, 2, 3 can be constructed along the following 

lines: 	
e 	• 	e C0 

l Use the test conditionsto show 3exo f(t)dtk 	f(t)4t 
1-kj 

x 

Hence 	f(t)dt is bounded and Maclaurints  integral test 

can be ap$lied  to £inish the proof0 

2 	If .c(t) 	-f(tD , then 
; tf'(t) 	S 	 \ 	dt 

__() 
f(t) 	e• 

The conditions applied to this-integral give a comparison 

series of the form A . 	1 
1 17k 
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3. Every.even partial sum is'greater than every odd one and 

the limit property can, be. used, to orove that the. two. sequences 

and 	S 	converge to the same limit, 
2n 	 2ntli 

3, The Algebra of Conirergent Series 

'Any. terni by term operation on infinite series is permissible if the 

sum of the resulting series is related to the sum of the original series 

in a known way. Since every convergent subsequence ofa convergent sequence 

must óonverge to the same limit, any algebraic operation is permissible if 
(i 

'it 'carries the sequence of partial sums 	 a 	onto one of its 
nl 	j 

convergent subsequences 	' 	.• 
CPO 

Theorem 1: 	(Rearrangement of Parentheses). If 	. an  converges and 

• 	Ak = 	5' 'an, then 	Ak 	an  if : for each s(s =Aj 

	

n1 	 . k1 

there exists exàdtly one sj(Sj ) 	aj) such that S = s , where 

denotes 'an increasing sequence of intgers. 

- Theorem,2: Two convergent series may be added or 'subtracted term by term0. 
CbO 

Theorem 3: If > 	an 	S , then >' (koa) = k'S 

Definition A: If > 	IanI converges, then> 	an  is 
M=l

absolutely convergent0 
coo 

Definition B: If >' Ian 	diverges and ____ 	is àonvergent, 

then > 	an  'iscondit.iona1ly. convergent'. 
,ft1 =i 	. 	• 	' 	.' 	. 

Th:rem 4: If 	 is any rearrangement of the integers, then 

) 	an 	> 	a 	if and only, if is absolutely convergent0 
ni. 	nJ 	n . 	.i=l 	, 
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Theorem 5 if > 	a is conditionally eonvie:rgnt,, then for each number 

k, there exists 'some rearrangemerit 	of the integers,, such that 
two 

k 

Th;eorems 1, 2, and 3: follow from the introductory statement.,amd  

proofs for 4 and 5 are given in Knopps "Theoy. and Applications of infinite. 

Seriie&' chapter IV. 

Theorem 6: (Cauchy° Double Series Theorem). Let 

, 

ni 	 n1 	 il 
coo 

If for every i , 	exists and 	converges, then 	 ani 

converges absolutely for each integer .n and 

Si 	) 	> 	a 	0ni 
i1 	fool 	 i=l n1 

This theorem is the basis for the theory of transformations of 

infinite series .nd is therefore fundamental to the study of numerical 

methods. 

Proof: 10 Let k 	(n-i-i 	l)(n - I - 2) and consider 
- 	 2 	 . 	 k1 

• 	where b., 	a 0 Every a .. is a term of this series 
n]_ 	 fli 

• 	exactly once0  

• .2. > 	bk is absolutely convergent since 	 • S  

• > 
	bk I > Ia  1 t> k2 I +,.o>Ti ant t=1 	 nl ni 	r&. 	 r1 

whee j is the largest integer such that 	a 	 isa term  

of the series 	bk 
kl 
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and the boündedness of thepartial Hence Y 	bk  
8UIflS inplles that 	bk 	converges0 

3. For every n 	and • 	) 	b 	and since 
K.1

kJ 

converges absolutely, all rearrangements of this series must 

converge to the same limit0 But 	S 	and 	Zn  are 

just two such arrangements and hence 
00 00 

	

Si z 	Y 	____ aj 
i1 n=1 

• 4. Methods of_pessing Summations in Closed Form 

If 	Urn 	 A , the x being terms of a convergent 

sequence, then >- 	n'i Xn) converges to the limit 
x0  A. 

ni 
• 	Using this, series tan be constructed with known sums0 

Example. 1: Let 	 1 	, then x 	x 	1. 	. Hence, 
1 

n+i 	
fl' 	 n(n--l) 

1 	= 10 

n1 

Example 2: • Choose xn 	1 	then xn 1  xn 	2n + 1 • - 

(nti)
2 
	 n(n -t- 1) 

Thus, 	 2n+ 1 	7  L 
0 	 S 	 • 	

n2(n1)2 
n1 

Conversely, whenever the difference equation 4x 	a can be solved 

in closed form, the series 	an 	x 	 ln x 	In his 
ni 	• 	 fl—too 
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numerical calculus, Mime has listed a number of fundamental difference 

equations with their solutions and has given examples of this closed form 

technique (Cf .  0 Po 329331) 

	

Exam1é 3: Evaluate 	sinhn cosh (n5 S 
) 0 

2 	 2 

Now, 

f sin (n -f-  1)5 — sinh n sj 	sinh n cosh (n S. 

Thus, 	m 

	

) 	sinh n cosh (nS. S ) = 	sinh (rn+ i)s — sInh S 
2 	 2 

Of coux, if x — Xflq an  then 

	

a 	(x + x .- .- x ) — q urn x 	This is 
o 	1 	 q- 	

• 

evident from the partial sum 

	

— Xq)+•(X1  — x- ~ 1)+ 	(x_ — X2q_1) (Xq 
— X2q) 

+ 000 +(nX q) 

(x + x1  00 + Xq_1) 	
n+ 1 x

2 	 0 + x q) 

- 	 42 Abe1s Limit Theorem0 

	

If > 	a 	converges and f(x) 	____ a xn 
, then 

00 

- 

 an X 	converges for all x in -1<,x 	+1 , and hence-. 

• 	___ 

 

an 	 - lint f(x)0 
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Example 4: 	 7/14 
o 2n--1 

* 
Proor: 	Tan (x) = 	(-1) 	

2n 1 
x 	 and 

n0 	2n-I-1 

Urn 	tan 
1 
 (x) 	7/1/4 

n 
Example 5: 	 (i) 

3n.-1 n0 

• 

	

 Let 	F(x)• = x x 4 	7 	10 
x 

4. 	7 	10 

F converges uniformly for all Ix.f 	1 , hence term by term differentiatiai 

is allowed, if the derived :s:eries converges uniformly0 

F(x) 	I -'x3 + x6  x9 -- 000 	 1 - 1 + x --3  

Thus, 	 • 	x 	 • 
1' 	 2 

	

• 	F(x) 	• 	1 	dx 	1 Xg 	(x + 1) 	• 
V 	 • 

 

1+x3 	 (x2-x4-1) 	•• 	• 

• 	
+ 1 tan 1  2x  

if 69. 
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3 Applic ition of Cauchy - s Double Series Theorem. 

010 
	 21.  

Example 6: 	
n2f 	 2(2L)! 

where B2L  is the 2th Bernoulli number0 

Proof: When x is sma1l the expansion of ftx cot rx in Bernoulli 

nuniberis 

1tc cot 77'x 	1 -fr > 	(i) 2 B2L (77X),22 

The Bernoulli numbers are defined by the relation 

2 	
2 

('++-- 0)(B0 	B ~ B2 x ~ . ) 
2! 	3! 	 U 	2! 

A second expansion is given by 	 V  

° 7x cot 7f ,c 	'1 + 2 x 2 
	 1 	0 

n1 x2 .n2  

If this expansion is written as a power series, the coefficients of the t wo 

power series must agree. 	 - 	- 
The power series expansion of 	2 x2  is 

_ •n2 -x2 	- 	V  
2 '\. 	fx2'\ 	, hence 

, n 

- 	1/x cot ff'x 	• 1 +  	

( 

('xj) 
V 	 n1 ti 

usingthe double  series theorem 	- 
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7/x cot vdx 	1 + 

	
( 
x) 

2( x 	(1), 
\ 21 

n1 

and equating coefficients of x2f. $  one gets 

1-i 
_____ • 1 	(-1) 	B22 

5, Transformations of Slowly Convergent Series, 

Kummer's Transformation, 	 • 

Let 	S 	an  be a conveigent series and suppose a 

econd series, 	> 	c •, with a known sum, c , is such that 

urn 	 0•, then 

S 	 • 	• 

Example 7: 	 1 	• 	• 	• 

Choose 	 • 	 • 

• 	en 	1 	$ then c 1 and 	1 
• 	• 	 n(n+1) 	 • 
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Therefore, 

i+° ( 
	

2 

n1 	n(nl- 1)) n2  

1 

nl n(n+l) 

5,2 Narkoff 2 s Transformation, 

• 	 If Kummers transformation is repeated indefinitely, the 

original series is transformed into a series, each term of which is 

the sum of an auxiliary series > 	cn  

Theorem 7t 	If 	Zk is a convergent, series and Zk = > 	aik 

where 	alk converges and 	urn > 
	 ak= a , ten 

00 

Z 	a ik 

Coro11ary 	Euler 2  s Transformation. 

Every convergent series may be written in the form 	(i) ak 

and has a sun equal to 

	

	 The validity of this statement 
iO 2n+1 

follows from MarkofPs transformation theorem and is established in Knop, 

page 245.246, 	• 

- 	 ______ 	n 	 • 
Exampie 

n+l- 

\ 



f 
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1 12 
1+1 

	

(ar ) 	 i/ 	1/6 

- 1/6 	1 
1*2 

000 	 090 	000 	 000 

k 
1. 

1 + k 

Hence, 	 n 	_____ 
i-i) 	 1 

	

n--1 	k::o—  (l+2k+ l  k)  

Example 9: Repeated Kummer Transformation0 

2 
1 2 S , 	wki 

fti 	n-I-w 

Define Aj (n) 	 1 	, then 	Aj (n) 	1 	- w2  A 	(n) 

n (n -f-  w 	 n 2j 2 	2 	 2j + 2 
)  

Thus, 	 oo 	k-i 2(k_1)"  

n /

t. 
S - 
	

A0(n) 	5 	(> (-1) 	
2k n1 \k1  

By theorem 7, 
2(k-1)  

k 1 	

- 1 ). 

	

n1 	n 

Thus, 

	

k1 	21) 	(2k) 0 

where 	(x) is the Riemann Zeta function defined by 	Cx) 
n1 n• 
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