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ABSTRACT 

Diffusion equations for a cascade shower which include {1) an energy 

cutoff (below which the electrons and photons are no longer observed) and {2) 

energy parameters for each particle have not previously been studied. In this 

paper it is found that an inclusion of both permits collision loss to be represented 

as a discrete process by modifying the differential radiation cross section. It 

is assumed that (in addition to the continuous spectrum of radiation losses) energy 

is lost through collision in amounts equal to the cutoff energy. The foresl:10rtening 

of the shower penetration by multiple scattering is accomplished by increasing the 

radiation and collision loss eros s sections by the ratio of the integrated to the 

projected electron path length. The correction ratio can be made a function of 

energy, as can the cross sections. Full screening approximations are unnecessary. 

After integrating over the energy variables and resorting to the matrix notation 

of Messel and Potts, one writes and solves the equations as a double recurrence 

relation. The distribution functions themselves are obtained, rather than their 

moments. They are expressed in terms of products and sums of matrices and 

one-dimensional integrations. The mathematical approximations necessary to 

bring a solution appear in the energy integrations and become better when· the 

energy cutoff is small compared to the energy of the shower primary. With better 

approximation, however, more addition and multiplication of matrices are re­

quired in order to achieve a numerical solution. 
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INTRODUCTION 

The cascade phenomenon that occurs when high-energy electrons 

and photons penetrate matter is difficult to investigate because of the complex 

branching probabilities and the interdependence in energy among the particles. 

In the first place, the cross sections for materialization and radiation loss 

become inhomogeneous functions* of energy when the screening of the nucleus 

by the outer electrons is not complete. The behavior of the cross sections 

complicates the usual continuity equations. In the second place, the conserva­

tion of energy leaves the particles genetically dependent after each branching. 

For that reason more parameters enter the equations. Beyond the two chief 

difficulties it is impractical to incorporate in the symbolism the three -dimen­

sional behavior that develops at lower energies. It is hard to describe mathe­

matically the multiple energy degradations that occur with increasing impor­

tance along an electron's path, the Compton collisions of the photon, and the 

final removal of the particles from the shower al~ogether, Writers do not 

even consider processes such as trident production by electrons and positron 

annihilation. 

* A cross section is a homogeneous function of the primary energy, if its 
product with the primary energy is a function of a single variable only, 
the variable being the ratio of one of the secondary energies to the primary 
energy. This definition holds only when the total energy of the primary is 
shared between the two secondaries. 
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Some idealization of the physical phenomenon is imperative in order 

to bring a solution. The common idealization.is to imagine showers initiated by 

primaries of infinitely high energy. In this case, often approached in cosmic 

ray studies, one .-dimensional development is predominant; the number of elec-

.trans and photons with unspecified energies changes only as a functionof ab­

sorber thickness and primary energy. The initiating particle is little deflected 

by' the coulomb fields of the nuclei, multiple scattering is slight, and its mo­

mentum is transferred through its secondaries largely into the forward direction. 

The same is true of each member in the shower over the greater part of the 

shower 1 s development, because energy is uniformly split, approximately, at 

the branch points. Hence, asymptotic cross sections, correct for the high­

energy particles that establish the shower characteristics, can be used through­

out. Two processes only are assumed: bremsstrahlung and pair production. 

An energy cutoff, below which particles are no longer counted, usual! y serves 

to diminish the cascade population after the maximum in particle number has 

been reached. When chosen wisely (to be abo~t half the. energy' at which col­

lision losses equal radiation losses) it also approximates the effect of collision 

loss. 

Any further refinement of the above idealization, such as inclusion 

of exact collision loss or multiple scattering, seems to change the basic struc­

ture of the diffusion equations, so far as they have been investigated up to the 

present. Consequently, few mathematical techniques are available for moderate­

energy showers. It is partly ~or this reason that a different approach to the 

cascade problem is attempted here. An equation that includes an energy cutoff 

and also energy parameters for each particle has not previously been studied. 

J~nossy included an energy cutoff in his equations without requiring energy 

parameters, while others have included energy parameters withouta cutoff. 

In this paper it is found that an inclusion of both permits collision loss to be 

represented as a discrete process by modifying the differential radiation cross 

section. It is assumed that (in addition to continuous spectrum of radiation 

losses) energy is lost through collision in amounts equal to the cutoff energy. 

The ·foreshortening of the shower penetration by multiple scattering is ac­

complished by increasing the radiation and collision loss cross sections by the 
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ratio of the integrated to the projected electron path length. The correction 

ratio can be made a function of energy just as the cross sections are. Similiar 

modifications to account for Compton effect and angular emission at branching 

are also feasible, though they are not tried here. There is a further advantage: 

The distribution functions themselves can be solved for, approximately, rather 

than their moments. This will be made clear after reviewing briefly the work 

of other authors. 

Nothing will be said about the valuable work on the first moment 

of the electron distribution beyond a remark: The complexity of the results 

made it look hopeless1 even to write down the equations for the distribution it­

self. Bhabha, Heitler, 2 Furry, 3 and Arley, 4 who were among the first to 

investigate the one -dimensional number distribution of electrons beyond its 

first moment, constructed simplified models. With models some qualitative 

idea could be gotten about the shape of the distribution, but without a quantum_ 

mechanical calculation for the second moment even the half-width was in doubt. 

Collision loss and removal of the particles from the shower were not adequately 

represented in the models, if at all; hence, the structure of the distribution as 

a function of thickness was virtually unknown. Arley4 did simulate the effects. 

of collision loss by assuming that each particle had a probability proportional 

to the thickness of 91 dying" in a differential increment of path. Later Messel, 
5 

following up the calcuiations of Janossy and Messel, 6 did insert a reliable 

second moment into a Polya distribution for the number of electrons. There 

was reason to believe4 that the Polya distribution, lying between the Poisson 

and the Furry, distributions, was somewhere near the truth. 

Scott and Uhlenbeck 7 in 1942 published the first in a series of more 

or less independent papers in which they, and later Bhabha, 8 Bhabha and 

Ramakrishnan, 9 and RamakrishnanlO • ll all contributed to the development of 

a powerful technique for finding the number distribution of electrons and 

photons. The essential entity is a function of the energy parameters (variously 

called product density, correlation function, and moment density) which is 

related to the moments through summation and energy integration and which is 

expressible in terms of more elementary functions. Practically, the technique 
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has yielded good expressions for the second moments. 7 ' 9 Theoretically, it 

has yielded the distr-ibution, 12 though the answer is ~ot explicit and is- far from 

a. workable form. A cutoff calculation, excluding the possibility of :particles 

below a given energy, has been used by most of these writers to account for 

collision loss. 
" -- 13 14 15 .- . . 

Simultaneously with the above studies, Janossy ' ' _ Investigated 

the moment-generating function for the distribution in number of electrons and 

photons above a 'given energy. His unique contributions are his incorporation 

of an energy cutoff in the distribution function and his use of the multiplicative 

property of the stochastic process in the equations for the distribution. (The 

electron-photon phenomenon is multiplicative in the sense that each particle 

generates an independent subpopulation.) Ideally, his equations, too, will yield 

the desired distribution after tedious iteration and. use of numerical methods, 
• • - ••• - 0 • 6 

but only the first step - the first two moments and the correlation coeff1c1ent 

between electrons and photons - has been achieved. 

Still a fourth technique, exploited fully for the first time by Messel 

and Potts16 • 17 , has characteristics in common with the two preceding methods: 

It uses a moment density function but includes a cutoff in the energy integration, 

so that the moments of J"anossy' s distribution are obtained.* It is a natural 

outgrowth of studies on nucleon cascade~l8,l9 though the essential logic, barring 

the energy cutoff an,d the solution, appears in Scott's20 indep~ndent and sugge~tive 

article. The equations for the density function are linear._ After carrying out 

a single Laplace and n + m fold Mellin transform and resorting to matrix ndta­

tion, one can write down a solution in the transform space. Of course, a 

numerical answer for the moments can be recovered after one performs an 

n + m + 1 fold inverse integral transformation numerically. When collision loss 

is included as a constant energy degradation, an approximation must be used by 

way of an expansion. 

None of the above methods is adequate when multiple scattering or 

Compton effect is important. The lack of mathematical techniques for moderate­

energy showers is made more obvious by R. R. WilsQn 1 s21 introduction of a 

* Messel 1 s original proofl8 of the relation between moment densities and 
moments used an incorrect equation similar to Janossy's original G-equa-. 
tion. 14 No errors seem to have resulted._ -
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Monte Carlo method for that region. He includes Compton scattering as well 

as bremsstrahlung and materialization, for particles are observed to zero 

velocity in his game. Collision loss appears as a constant energy degradation 

and multiple scattering enters as an independent correction.· The valuable re­

sults obtained shed light on the mathematical problem by emphasizing the need 

for collision loss and multiple scattering. 
: 

Aside from R. R. Wilson, the model builders, together with the 
. )' 

three groups represented by Uhlenbeck. Janossy, and Messel, have been the 

prominent investigators into the sixteen-year -old problem.* They have with 

rare exceptions approached the distribution of the number of electrons or the 

number of electrons and photons through its moments. One exception in Scott 

and one in Messel occurs when a formula is given for the probability of n par­

ticl~s of specified energies. In each case the formulas are derived with as­

yrnptotic cross sections and without collision los.s or cutoff. They will not be 

physically meaningful, as each author remarks, until an infinite number of 

particle energies is integrated out below some energy E. In view of this dif­

ficulty and the above mentioned complexities in the moments, it is generally 

felt that an explicit expressionfor physically meaningful probabilities would 

be prohibitive. On the contrary; it is one purpose of this paper to show that 

a set of equations can be written down whose solution is the probability distri­

bution in energy and number of electrons and photons above a cutoff E. 

The basic equations presented here are first simplified by inte­

grating over energy increments equal to the cutoff energy. Slight approxima­

tions are used in the process. After resorting to the matrix • notation of Messel 

and Potts, one writes the equations as a double recurrence relation. The first 

of the recurrence variables represents the total number of observable particles 

in the shower and the second their total energy. The recurrence relation is 

then solved in analogy to a shower's development: low number and high energy 

first, with high number and low energy depending on previous calculations. In­

stead of a Laplace transform on the penetration variable, as used by Messel and 

* The extensive researches into the first moment can be examined independently 
of the fluctuation problem. 
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Potts, an exponential matrix method is used. In other words, the solution is 

essentially in series form. These and many other cascade shower equations 

are derivable from the Kolmogoroff-Chapman equations. The present equa­

tions and Messel's are both "forward" diffusion equations in Kolmogoroff 1 s 22 

terminology, while Janossy1 s come from a "backwards" equation. On the other 

hand, the present equations and Janossy's are both satisfied by distributions 

that include cutoffs. In effect, the advantages of J~mossy 1 s method can be 

gained without dependence on the multiplicatiye property which brings· non-lin­

earity. 

It should be pointed out that the present paper is in keeping with the 

trend in recent years to be unbaffled by the complicated form of a complete 

solution. The important thing is to see that a solution is well suited for elec­

tronic machines, for they provide us with numerical techniques that were 

unheard of by the original investigators into the cascade problem. In the pre­

sent case, the basic operations in obtaining a numerical solution are multiplica­

tion and addition of matrices and one -dimensional integration. There are no 

multiple integrals to compute (except for an especially accurate computation of 

a few coefficients), since the integrations over the energy variables are already 

carried out in increment steps in this paper. It will be clear that the solution 

developed here for moderate -,energy showers (primary energies well above the 

critical energy) will take on a simpler form in the asymptotic case of infinite­

energy primaries. The numerical solution for the ultra-high-energy case will 

be practical, however, only if the cutoff energy is increased above the critical 

energy. 

THE EQUATIONS* 

For the purpose of this paper, the following assumptions are made: 

(1) the cascade shower is one dimensional in the sense 

defined in the introduction and shower penetration 

is measured in radiation lengths; 

>:< The notation used by Mes sel and Pottsl6 • 17 will be adhered to as closely 
as possible. 



-10-

(2) only particles of energy greater than or equal to 

E (0 ~ E < 1) are under observation, the primary 

having unit energy; 

(3) three processes are operative: energy loss by 

electron collisions, radiation loss by electrons, 

and pair production by photons·, 

(4) the differential cross sections for radiation loss 

and pair production are given by 

w(l) (u - TJ, TJ) d T} = d TJ/ TJ[g(l) (u, n/ u)J and 

w(2) (u- TJ, TJ) dT} = dTlf'u[g( 2) (u, rv'uE, 

where u represents the primary energy and TJ, 

in the first case, represents the photon energy 

and, in the second case, the electron energy; the 

g's, as functions of TJ/u, are slowly varying over 

most of the range and g(2) is symmetric about the 

point TJ/u = 1/2, as it is, for instance, when com­

puted under the Born approximation~ 

( 5) an electron of ene_:rgy TJ can lose energy (in addition 

to radiation losses) only in amounts e .P.nd the cross 

section per radiation length for this loss is e(TJ)/e, 

where e(TJ) is the true collision loss,per radiation 

length for an electron of energy T}: 

(6) the effect of multiple scattering by an electron of 

energy TJ is to increase the cross sections for 

radiation and collision loss by the factor s(TJ), where 

bs -1( TJ) is the average distance that an electron of 

energy TJ would penetrate in:to the scattering medium 

after entering normally to the surface and traveling 

b radiation lengths (the primary electron is identified 

with its secondary if radiation occurs); b is some 

constant which for simplicity can be chosen as 1~ 

(7) e » J.Lc 2/E0 , where E 0 is the energy of the shower 

primary and J.LC2 is the rest energy of the electron 

(the mathematical approximations used to solve the 

equations are better if it is also true that ~ << 1) ~ 
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It is convenient to say that the system under observation is the set 

of particles whose energies are greater than or equal to E. The state of the 

system Sa at a fixed thickness a is a random variable whose value in a particu-

lar shower is a point ~. m ~ (n, m; Tl.I.• ..•.• '11n; '11n+l' ... , ~ + rd' n = 1, 2, ... , 

n+m 
m = 1, 2, ... , e ~ T1.I. -!S . • • ~ '11n -!S 1, E ~ '11n + 1 ~ . . . -!S '11n + m -!S 1, ~l "\ ~ 1, 

representing n:electrons of energies 'l1:t, ••. , '11n and m photons of energies 

T] + 1, ... , 11 , so long as there is at least one electron and one photon; 
n n + m 

otherwise its value is one of the points x.n, 0 = (n, 0; 'l'l:t• ... , 11n; 0), X.o, m = 

( 0 , m; 0 ; TJi , . . . , T]~), or x.0 , 0 = ( 0 , 0 ; 0 , 0), n ~ 1 , m ~ 1 , E ~ 'l1:t ~ . • . ~ T]n ~ 1 , 

n m 
E ~ t\ ~ ... ~ ~ ~ 1, ~ . "li ~ 1, "Z 11! -!S 1, with obvious interpretation. 

1=1 . i=l 1 

For mathematical clarity let n be the set of all points of the n,m 

above form with fixed n, m, Q - ~ ~ n S a cr-field of sets in n. The 
- m=O n=O n, m' 

state of the system 

S = {Sa, 0 ~a < co} 

is a random function which takes its value in the space n. It corresponds to 

a Markoff (or stochastically definite) process in the sense that the probability 

distribution of St, given(sy; y . .:5 -r), -r < t, and that of St, given S
7

, are th:e 

same. In other words, the future state of the system is independent of the 

history prior to 'r, so long as S 7 is known. This point has been under question 

by Bartlett and Kendall, 23 but is seems that the whole difficulty lies in whether 

the system is defined as all particles or just those above an energy E. In the 

former case, A.n, m would be an incomplete description of a Markovian system, 

and would in general lead to a non-Markovian process. Owing to the conserva .. -

tion of energy, however, the set of particles that are left out of the description, 

those below the limit of observation E, have no influence on the future state of 

the system of particles above E. It should also be noticed here and in Appendix 

III that the Markoff property has nothing to do with the multiplicative property 

necessary to derive J~nossy1 s equations. 
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Letting 'A be any point inn and A any setACn, F (-r; 'A: t:A) is 

defined as the conditional probability of St being contained in A, given that 

at a fixed depth "f < t,ST coincided with the point 'A of 0. It is clear that F 

will be a nonnegative, completely additive function of sets on ')3 and will 

satisfy the continuity and measurability conditions stated by Feller 24 for a 

Markoff process. Moreover, it can be seen that F satisfies all the conditions 

of a purely discontinuous Markoff process. Along with the normalizing and 

boundary conditions, F satisfies the Kolmogoroff-Chapman equation: 

F (y; A: x;A) = f F (y; A: z: cD!J.) F (z; 1-1: x;A) 
n 

(1) 

In Appendix III the following equations for the symmetric densities 

tJ~m (11J., ... , 11n_; 'Y1n+l' ... , 'Y1n+m; x) are derived rigorously from (1) and 

the symmetric densities are defined in terms of F(-r; A: t;A). Here it is 

sufficienttodescribef~~}m('lll'···· 11n; 'Y1n+ 1, ... , 'lln+m;x}, n=O, 1, 2, ... , 

m = 0, 1, 2, ... , E ~ "k ~ 1, intuitively as the probability density for finding 

n electrons of energies ~· ... , 'Y1n_ and m photons of energies 11n_ +l' ... , 'Y1n_ +m 

at thickness x under the condition that they were initiated by an electron (in the 

case j = 1) or a photon (in the case j = 2} of unit energy. Since they are sym­

metric in the electron energies and in the photon energies, though the electrons 

or photons are indistinguishable among themselves, it is clear that a normaliza­

tion factor,· (n! m!} -1, is necessary when integrating. The divergence in the 

·second term on the left-hand side of (2e} and the third term on the right-hand 

side will be found in Appendix I to cancel. The positive number c that appears, 

for instance, in the sixth term on the right hand side of (2e} prevents divergence 

of the integraL It is chosen from the interval 0 < c < E. 

f(j} (0; 0; 0} = 0) 
0,0 

(2a} 

f(j} (~····• 'lln_; 'Y1n+l' ... , 'Y1n+m; 0} = &(n +j-2}6(m+l-j}&(l-~}, n+m>O~ 
n,m 

n+m 
f~~}rri (~, ... , 'Y1n_; 'Y1n+l, ... , ~+m; x} =0 If\~l 11i>l) or(~< E, k=l, 2, ". 0' n+m}, 

x>O, n+m>O. 
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E 

(u; 0; x) r .·. dv s(u)_ w(1) ~,(u::..:y, v) 

~aJ{'c, u-e J 
E 

(0; u; x)J dv w( 2) (u- v, v) 

U-E 

+f du f (j) (u; 0; x) s(u) e(u). 
1, 0 E 

E 

~ 

(a~ +I dv s(~) w(
1

) (~- v, v) + s(~) e~11]))£1(!~ (~; 0; x) 

0 
~fE 

= J du £1(; J (u; 0; x) s(u) w(
1

) (~, u- '\) 

~ 
~ + E 

. + J du £~\ (0; u; x) 2 w(
2

) (u- ~· ~) 

~ 

2e E 

+ J du fi~)o (~, u; 0; x) r dv s(u) w<1
> (u- v, v) 

E M ax[c, u-e J 
2e E 

+ S du £1
1![ ('1]_; u; x) S dv w(Z) (u- v, v) 

E U-E 

2E 

duf(j) (n., u; 0; x) s(u) e(u). 
2,0 ~ E 

E 

(2b) 

(2c) 



-14-
"\ 

(a~ + J dv w{Z) {"\ - v, 

0 

v)\ f (j) {0; n.; x) 
') 0,1 '1 

"\ + E 

= r du £1(!~ (u; 0; x) s(u) w(l) (u - 'It· '1[1 

"\ 
2E E 

+ J ·du £1(!1 (u; 'It; x) J dv s(u) w(l) (u - v, v) 

e Max[ c, u - E ] 

2E 

+ J du f {j) 
0,2 

E 

2E 

E 

E 

r 
{0; "\• u; x) J 

U- E 

dv w(Z) {u- v, v) 

(2d) 



. f (j) 
n,m ('rl]_, • · ·' 'llu; 'llu +1' · · ·' 'llu + m; x) 

- ~ ~ f(j) (n! '~"~' '~"~' + ' . I ,· ,,· . ) s('~"~' +nl )J1)(,:. n'. ) 
-C 4-.Jnklcm n,m-1 '1' • · ·' ''n-1' ''n ~+m'~+1' · ·:' "p.+m-1' x ''n n+m n' ntm 

1 . 1 

E (2e) 

'\,• u; '\, +1' ... , '\, + m' >4 f dv s(u) w<1
) (~- v, v) 

Max[c, u- eJ E 

E 

du fl~) m + 1 (')_, .. ., '\,' '\, + 1, ... , '\, +m' u; x) J dv w(Z) (u- v, ~) 
U- E 

e(TJ' +e) 
+ f (j) ( I I I E ) ( 1 ) n 
~n n, m 't1i' · · · ' ~ - 1' 11n + ; 'llu + 1' .. · ' 'llu + m; x 5 'I"Jn + E --E~,_ 

1 
2E 

l 
' i + ! 

.J 
E 

d f (J') . . e(u) > 
u n +1, m ('rl]_, .•• ' '11n_• u, 'llu +1' ... ' 'llu +m' x) s(u) -E-, n + m 1. 
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In (2e), the sums C~ and C~ signify summations over all possible 

choices of 1')1 and 1')1 

1
, 1') 1 respectively from the n. , k = 1, ... , n and the 

n n- n 'K • 

sum over c
1
m signifies summation over all possible choices of 1') 1 from the 

n+m 
T)n + l, .~ = 1, ... , m. 

The differential operator in (2e) acting on the density function 

represents the change within dx in the probability density that is associated with 

the state A = (n, m; n., ... , Tl ; Tl 
1

, ... , TJ ). This change is equal 
n, m '1 n n + n + m 

to the flux of probability into the state minus the flux away from the state, of 

which the first is represented by the sum of the right-hand terms and the second 

by the sum of the three remaining left-hand terms. Each of the first seven 

terms on the right corresponds to a bremsstrahlung or materialization process 

which during the increment of path dx brings the system into the state A • n,m 
The last two terms correspond to collision losses which do the same thing. In 

the first two terms on the right, both secondaries remain in the observable energy 

range. In the third and fifth terms only the secondary electron remains observable, 

while in the fourth only the photon does. Both secondaries fall below the observ­

able energy limit e in the sixth and seventh terms. 

The first two terms on the right of (2e) appear in Messel 1 s 16 equa­

tions for the corresponding densities when e = 0 and s{TJ) = L They remain 

when e = 0 in (2e), which is as it should be. The next three terms are similar, 

except for the limits, to the corresponding terms in Messel's moment density 
n+m 

equations. When 1 - ~1 'Y1J. < e, n + m > 0, s(TJ) = e(TJ)/e = 1, and the cross 

sections ·are specialized to full-screening approximations, the densities in (2) 

become identical to Messel 1 s moment densitiesl7 and the equations, except for 

the collision loss terms, are the same, accordingly. In that case, the sixth, 

seventh, and ninth terms drop out and the remaining integrands go to zero be­

fore the upper limits of the integrations are reached. The remaining left- and 

right-hand collision loss terms combine here to give a difference instead of a 

differential coefficient. 
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THE SOL UTI ON 

The first step toward the solution of (2) is to convert the equations 

from integro-differential-difference form to differential-difference form. This 

is done by applying one of the operators, 

a +e 
,_n+m 

dllJ.:··~ 
a 

n+m 

~+m ak=([-E
1j - 0e, v=O, 1, 2, ... ,[2.] -(n+m), 

k~ . E , 

to both sides, where [1/ e] is the greater integer in 1/ e. The solution of the 

converted equations then be:c:omes the integral function, 

a
1 

+ e a · +e 
- n+m 

F (a1, .. 0 , a ; a: 
1
, ... , 

n, rn, v n n+ 
a · x· e) = \ du ... Jdu- f(j) In 
n+m' ' J 1 · n-fin n,m '"1' 

.. 0 , u ; u 1, . " . , u~_jyyo,; :x) , 
n n+ U:T.LU 

a
1 

a 
n+m 

n + m>O, which conveniently gives the number distribution, p,~!m (x), of elec­

trons and photons at thickness x through a finite summation: 

P~!o (x) = f~,)O (0; 0; x) 

( 3) 

P
(j) (x) - 1 [1/e] -(n+m) (j) 
n, m - -n.,...! m--!-:!: :!: Fn,rn, v (al' o •• an; an+l' .. ., an+m; x; e), n + m >o, 

v=O 

where the second summation is extended over all ways of selecting the ak = ~E, 
n+m 

f.Lk = 1, 2, ... , so that :!: ak = (Ll/ e] - v)e 0 The converted equations which 
k = 1 

follow are exactly equivalent to (2), if the coefficients Gk' !iLl' Bk, 1' and Rk 

are understood to be weakly dependent on the unknown probability densities. 

Otherwise, they are close approximations to (2), becoming more exact as e 

becomes small compared to L Practically, the weak dependence of the 
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coefficients on the densities will be ignored, so that they can be computed from 

the known cross sections and the multiple scattering factoro Appendix I should 

be consulted for their explicit form with and without approxirri.ationo The neces­

sary transformations and integrations by parts which -yield the following are also 

evident there 0 

f(j) (0; 0; 0) = 0, 
0,0 

If 1/ E is an integer 0 

Otherwise. 
(4a) 

_F(j) (a
1

, 000, a ;a 
1

, 000, a ;0; E)=o(n+j-2)o(m+l~j)o(v-J), n+m>O, 
n,m,v .n n+ n+m 

F(j) . (a , 
n,m, v -1 

000, a ; a .
1

, 
.n n+ 

0 .... , a ; x; E)= 0 
n+m 

If (v<O) or (ak < E, k=1,2, 000, n+m), 

x>O,n+m>Oo 

(4b) 

+F~\.[1/E] _1 (0; a1; x; E) R 2 (E;EL 

+ F(j) (O· a + E · x· E) B
1
E 

2 
(a

1
; a

1
; E) 

· 0,1,v-1 ' -1·- ' ' , 
(4c) 

+ Fl(j)o 1 (a.+ E; 0; x; E) B1E 1 (al; a.; E) 
, , V- 1 , 1 

(") 
+ F i, 0 , v _1 ( a1, E ; 0; x; E) R 1 ( a1; E) 
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(4d) 
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.. 0. ' a ; a' ; e~ 
n+m n+m ~ 

· F(j) (a 
n,m~v 1' 0 •• ' 

a ·a 
n' n+1' .. ·-., a · x,· e) 

n+m' 

= ~ ~ F 1a 1 a 1 a' +a' ·a' 
en (;m n,m-1, v ~ 1' ... ' n-1' n n+m' n+1' O<>O? a ·a' a' ; e) 

ntm' n' n+m 
1 1 

+ l: F{j) (a' 
en n-2, m+1, v 1' 

2 

-~F(~) 
1 

(a'
1

, ... ,a',;a 1 ,.~.,a ,a1 ;x;e)B
12

(a
1

, ... ,a ;a';e) 
en n-.1., m+ ' v n-.1. n+ ntm n ' n+m n 

1 
(4e) 

+ ~ F (j~ 1a', 1 1 + E ·a · ) BE 'a,_ a · a' · ) ,w , ~ 1 ... , a 1, a , 1, ... , a , x; e 1 1 ~ , ... , + , , e 
en· n,m,v-.~. n- n n+ n+m ' n m n 

1 

+ l: F(j) (a 
em n+1, m-1, v -1 1' 

1 

000, 

E 
a , a 1 + e ; a 1 

1 
, ... , a 1 

1 
; x; e ) B

2 1 
1a

1 
, . ., , a ; a 1 e ) 

n n+m n+ n+m- , ~ n+m n+m 

+~ F{j) (a' ... , an•_1;an+1, ... , an+m' an'+e; x;e)B1E 2 (a1, ... , a ·a'· e) en n-1, m+1, V-1 1' , n+m' n' 
1 

+ F(j) (a 
n+1,m,:v-1 1' 

+ F(j) 
1 1

(a
1

, ... , a ;a 
1

, ... ,a , e;x;e) R
2 

(a
1

, ... ,a ;e), n+m>1. 
n,m+, V- n n+ n+m n+m 
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Using the notation of Messe1 and Potts, 
16

•
17 

(4) can be written as a 

matrix equation: 

J =)I If 1/ e is an integer 

(o Otherwise. 

!FN,v (a1, ... ,aN; 0; E) =[1 o(N -1) o(v- J), N >o, 

[fN,v (a1, ... , aN; x;e) = 0 If(v<O)or(ak<e, k=1,2, ... , N), x>o, N:>O. 

(a! +[1 ( a1; a1; e V ~' v ( a1; x; e) 

=IB: (a1; a1; e) rf1,v -1 <a1 + e; x; e) 

N 
+ ~ ~ (al, ... , 

k=1 

N>l. 

(5a) 

(5b) 

(5c) 

(5d) 
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Most of the matrices of ~quations {5), as defined in the following 

paragraphs, admit duplicate rows when some of the ak are equal. A modified 

set of definitions that deleted all but one of a set of duplicate rows and intro­

duced appropriate weighting factors, could be used to advantage during actual 

calculation but at present would encumber the notation. 

[1 is the unit matrix of order 2. 

!f0 (x; •) = [ £~~ 0 (0; 0; x) f~~)O (0; 0; x)] . [f N, v ;s a 2N x 2 matdx the columns 

of which correspond to F(l) and F( 2). The rows are ordered by writing a
1

, ... , 

aN as a binary number with digits 1 and 2 standing for an electron and photon 

appears in the row above F~~)2 , v (a1; a 2 , 

[f}~·.>v, r = 1, 2, are submatrices of [fN, v 

a
3

; x; e), because a1a 2a 3 = 121 < a1ae- 3 =122. 

N-1 
each of which have 2 rows: 

(fN, v = 
[f<l) 

N,v 

The l]N(a1, ... , aN;~; e) and[B~ (a1, ... , aN; ak; e) are defined as the 

2N X 2N - order matrices, 
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in which the subscripts of the general element, y A A A. are 
· . a.l a.2 ... a.N' ~"'II-'2 ... ll'N 

written as binary numbers: The a.k and f3k can take on the values 1 or 2. 

e 
B 2 , 2 ( a 1 , ... , aN; ak; e ) = 0 . 

@N-l (a1, ... , aN; aN-l' aN; e) is a 2N x 2N-l matrix in which the 

non ~ero elements Gr (~, .···• aN; aN-l' aN; e), r = 1, 2, are ordered ac­

cording to the following rules: 

(1) If in the binary number a1 ... aN' aN-l = 1 and 

aN = 1, then all the elements of the row cor­

responding to this number are zero except for 

the term G 2 (a1, ... , aN; aN-l' aN; e), which is 

placed in the first even-numbered column in 

which this term has not already appeared. 

(2) If aN _1 = 1 and aN = 2, then all the elements of 

the row are zero except for the term G1 (a
1

, ... , 

aN; aN-l' aN; e), which is placed in the first 

odd-numbered column in which this term has 

not already appeared. 

(3) If aN ~l = 2 and aN = 1, then all the elements of 

the row are zero except for the term G1 (a
1

, ... , 

aN; aN' aN _1; e), which is placed in the first 

odd-numbered column in which this term has not 

already appeared. 

(4) If aN _1 = 2 and aN = 2, all the elements of the row 

are zero. 

The matrix (o/o x) [F,N is obtained from [fN by replacing all the 
,v ,v 

elements of the latter by their differential coefficients with respect to x. 

Similarly, in what follows, the integral of a matrix will be constructed by 
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replacing all the elements of that matrix by their integrals. The ~xponential 

of a matrix#\N of order zN is defined as 

exp[#\N1 =[N +AN +(1/Z~~ +~/30~~~ + ... , 

where [N is, the unit matrix o_f order ZN. For examples of the matrix notation 

used here, see Appendix II. 

Equation (5) can now be converted from differential-difference 

form to difference form by treating its x-dependence as in a simple differential 

equation. The formal step is justified by putting th~~ succeeding solution back 

into (5). 

X 

lf
0 

(x; E) =f R 
r 

(r) 

( E ;- E) (fl, (1/ E] -1 ( al; ; ; E)" (6a) 

0 

X 

= (6b) 
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(6c) 

X 

. [ N = exp -x!: 
k=l 

+ ~ ·R (a a· E) [(r) (E a a· t:,. E··)J·, N'>l_. 
L.! r 1' ... ' N' N+l,v-1 ' 1' ... , N'"' 
r=l 

The apparent complexity of the recurrence in the two variables N 

and vis illusory. By starting with [f l, 0 and solving for the other matrices in 

the order prescribed by Table 1, one eventually arrives at [fN in terms of 
' v 

previous calculations whatever N and v, N > 0, v > 0. [f 0 will be found in 

terms of ~~ [l/ E] _ 1. It is unnecessary to write down the general term, 1J N, v, 

explicitly, because actual calculations will proceed p.ccording to Table 1. Each 

matrix will be physically meaningful, as a part of the energy-number distribu­

tion, and, together with others, will yield the number distribution through (3) . . 
It sho1,1ld be noticed that the series form of the solution is not a consequence of 

the inclusion of collision loss·, as it is in Messel 1 s solution. A Laplace trans-

form could easily be used on the penetration variable to avoid the series, but 

inverted matrices would result. 
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N + v 0 1 2 3 (1/ E] - 1 

1 1 

2 2 3 

3 4 5 6 

[1/ E] 

Table I 

As illustration of the use of Table 1 to solve {6), the first three 

matrices are given explicitlyin the case when 1/e is not an integer: 

X 
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X 

o exp [-x IJ31 (a1: "1.' •1 j d€ exp&[]3! (a1: a1: •)} 

0 ---

·[ IB:("l_: a1: <)[1 exp[-dB
1
(a1 +<; .. 1 +E: •)} 

g 

. I d~ exp{~LIBz <"'i· az; ak; •)} 
0 
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DISCUSSION 

The cutoff energy E plays a dominant role throughout this paper. 

Its presence permits the inclusion of collision loss as a natural modification 

of the radiation process, for an electron that emits a photon behaves identically 

(except for angular deflection) to one that collides with another electron, pro­

vided that the energy carried of by the photon or 6 -ray is just under the observa­

ble limit E. Its presence also permits the inclusion of generalized cross sec­

tions and a multiple-scattering factor which are energy-dependent. This is 

. true because the solution can be developed over energy increments equal to E; 

within each increment the energy-dependent functions do not vary appreciably. 

The number E is everywhere treated as though it were large compared to 

._.,c2jE0 and yet small compared to 1. It is also treated as though it excludes 

from observation the effects of Compton scattering. It is well interpreted as 

the critical energy. 

Interpreting E as the critical energy, one sees, first, that Compton 

scattering that decreases rapidly above E has a cross section there one-fHth25 

as great in air as the cross section for pair production. The ratio is about one­

third in lead. Second, the criterion e << 1 will be satisfied if the shower primary 

has energy 7 x 10 7 ev or greater in lead and 109 ev or greater in air. At those 

minimum limits for primary energy, E = 1/10. This means that in an actual 

calculation Table 1 contains about 55 steps. (The order of the matrices is not 

an indication of the amount of numerical work required to obtain as answer, 

because the matrices of higher order will have duplicate rows.) 

The multiple-scattering factor, as defined, will actually be slightly 

increased by angular emission during radiation. However, as pointed out by 

Rossi and Greisen, 25 the average angle of emission per radiatio~ length for 

primary electrons and primary photons is roughly one-fortieth the root mean 

square angle of scattering of electrons in one radiation length. It is clear that 

angular emission has a negligible effect on the accuracy of the present solution, 

and to the extent that it is important, it is already included in the multiple­

scattering factor. The biggest objection to the scattering factor is that it does 

not have a "memory", in the sense that the cumulative effect of scattering is 

not present beyond a radiation length. The dependence of the factor on energy, 

however, serves to make it important at the end of the shower, which is as it 

should be. 
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It is important to notice that at the beginning of the shower, the 

total energy in the observable particles can be decreased by two modes, either 

by collision or by a branching process in which orie of the secondaries takes a 

small portion of the primary energy, specifically, less than E·. ·The second 

mode of energy decrease will be strongly dependent on the shape of the function 

g(l) (u, v) near v = 1 and the function g( 2 ) (u, v) near v = 1 and v = 0. Unfortu­

nately, these functions have been computed2 ~ for high primary energies under 

the Born approximation, which._is not valid near the end points cited above. 

More recent calculations, 27 while not limited by the Born approximation, are 

still not valid when, for instance, the electron radiates most of its energy. 

Experiments28, 29 that have been performed on the radiation and pair-produc­

tion spectrums shed no light on this point. The resolution in determining the 

secondary energies is too broad to resolve a rapid change in curvature. The 

experiments are not inconsistent with relative! y uniform spectrums and non- • 

?Oero cutoffs. In view of our knowledge of nonrelativistic radiation spectrums, 

it would seem wisest to modify the Bethe-Heitler c:alculat~ons so that g(l) (u, v) 

and g{
2

) (u, v) are weak functions of v when the Born approximation is no longer 

valid. The Bethe-Heitler values should be further normalized in accordance 

with attenuation experiments 30-35 and more accurate theory. 36 

As mentioned previous! y, the method of solution developed here is 

easily adaptable to ultra-high-energy showers in which collision loss and 

multiple scattering can be neglected. The present form of the solution is well 

adapted for the same energy range that was investigated with Monte Carlo 

techniques21 and is derived ·from the same basic elements, ~xcept for' Compton 

effect, that were used here. The increment steps in the penetration variable, 

which are taken with slight approximation by Wilson, may be contrasted with 

the increment energy integrations and approximations used here. 

Before attempting a large scale c~mputing project to obtain meaning­

ful curves, the author has completed some trial calculations for the case in 

which ~ = 1/4. Though the criterion for accuracy stated in the text is not 

satisfied in this case, most of the qualitative features of the solution should be 

·present. It was found, in fact, that the exponential matrices converged ex­

tremely rapidly for small penetration. These exponentials could quickly be 

raised to successive powers in order to obtain solutions for increasing penetra­

tion. The numerical work was carried out on a desk calculator. It is hoped 

that comprehensive results can be presented soon. 
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APPENDrx·r 

The coefficients of equations (4) are most conveniently expressed 

in terms of the following functions and operators: 

... ' 

If a1 ~ ~ ~ ~· + E , ••• , aN ~ uN ~aN + E 

N 
and I: u. ~ i. 

i=l 
1 

0 Otherwise. 

1 ••• J 

N 
and I: u.~l. 

i=l 
1 

0 Otherwise . 

g(u1, ... , uN) and h(uk) are any continuous functions. 

-
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Bk, I., B~, I., Gr' and R; will be given below in an approximate form 

which is obtained from the exact form of the coefficients of equations (4) by the 

following substitutions: 

( 1) The exact coefficient of F(j)l +l (a1'; n-,m.,v ... , a~-l.; antl, • 0 0' 
a.·.·' 
ntm' 

a~; x; E) which has the form 

C [1E.(u a· · u a )··f(j) (u' 
G 1' 1' ·· · ' n+m' 1 1 1' n+m n- ,m+ 

... , 

is replaced by 

... .,, u.... ' n+m a ) b (u' >} n+m n 

to obtain B1 2 
(a

1
, ... , a ; a'; E). Similar substitu-

. , n+m n . 
tions are made in the other coefficients. 

I ' 

(2) f(j) (u' 1 

n, m 1' · · ·' un-1' 

u' 
l n ; u +l, ... ·, u · + · ; x), which 

- v n n m 

appears in one of the exact coefficients of 

( ") 
F J (a

1
, ... , a ; a 

1
, ... , a ; x; E) is replac.ed by· 

n, m, v n n+ n+m 
U l 

( ') n f;, m {u1, ... , un; un+l' ... , un+m; x) for 0~ v ~1 - ----
u1 + E 

n 

to obtain B
1 1 

(a
1

, ... , a ; a'; E). 
·' . n+m n 

Substitutions (1) and (2) are good iff~') m' f~~l, m+l' .etc. are not 

strong .functions of their energy arguments or if E <<1. (2) is also good if 

a'>> E. 
n 
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Though it will appear that all the coefficients are given in terms of 

multiple integrals, it is true for about half of them only, for. whenever 

N 
~ ak + Ne + (r -1) ~ s._l, then 
k=l 

Even in the cases where true multiple integrals are involved, it is possible to 

get a good answer by writing approximately: 

(, [IrE (t;_, a1; ... , uN, aN) h (uk)} ~ h ('\:), 

uk =t [ Ire (u1, a1; ... ; uN, aN) uk} , r = 1, 2. 

. Integrations by parts are necessary to compute B1, 2 , B 2 , 1, 

B;, 2 and B~, 1 and some. obvious transformations are necessary for G1 and 

G 2 . It should be noticed that the divergence of the radiation spectrum cancels 

out in B1 1 . . > 

1 

=[[I' ("[• "1.; ... ; uN' aN) J dv g(Z) ('\c• v)} 

0 

] } ' 
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E 
B1,1 (a1' ... ,aN; ak; E) 

~ [ 0' (u1, a1; ... ; uk, ak +<; ... ; uN, aN) s(uk) e~"k)} · 

.· . ~ . . . 

Bf.'z ("t, ... , "N; ak; ') ~ E {r' ~, a1; ... ; \o• "k + p<; .•. ; "N• "rJ Zs~[ ~ g<Zl (uk' ~) 

00 (-1)J. VJ.t1 c/ .( 2 ) V ]v=aktpE} 
+ ~=1 (J. tl)! -- --J. g ('\, -) ' . 

x uk d v uk . v = uk - pe 

(
1 J. , J J. (1) J v = ak + pe} co ( 1)1 J. og v q. d . ( v ) . . . + :E - v -- - :E -.- --.g u ,- . , t 1 2 .... .t: K U : · 

t =1 q =1 t ": q d v k v = uk - p E 

p = 0, 1. 
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a +e a 
Min[ N , 1- N -1] 

u u 

=[f2• ~· "J; ... ; "N -2' aN -2; u, aN -1 +aN) 2 S(q ~ . dv g(2) (u, v)}. J a a +e 
. M [ N 1 :N -1 ] ax-, ----. u u 

E 

u f ~v g(l) (u, v) + e~u)J} 
Max[c, 1- ~] 

u 

E 

u 

·>f. 1-­
u 

dv g(2) (u, v)} . 
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APPENDIX II 

Some examples of the matrices appearing in (5) and (6) are given 

here, 

[f~~\ (e, CJ• ~; x; e) = 

(1) 
F 2 , 0 , v ( a 1, a 2 ; 0 ; x; e ) 

F(l) (a
1

; a
2

; x; e) 
1,1,1 v 

Fl(l)l (a2; al; x; E ) 
. ' ' v 

F 0' 3' v ( 0 ; E' a.t· ~; X; E ) 

F ~ ~ L v ( a 1; a 2 ; x; e ) 

F~~L v (a2 ; a 1; x;e) 

F 0 , 3 , v (0; E, a 1, a 2 ; x; e) 
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~1 (c;_, ~j c;_; E ) 0 ~2(c;_. ~; <).i E) 0 

0 ~,1 (c;_, ~ j <)_i E) 0 ~~ 2 (<)_, ~j <Ji E) 

IB 
2 

( a1, a
2 

; a
1 

; E ) = 

B2, 1 (<)_, .~; <)_i E) 0 B2 2 (<)_. ~;\;E) 0 
' 

0 B2,1 (c;_ ~; <)_i E) 0 B2 2 (<)_, ~;\;E) 
. ' 

~,1 (c;_, ~j ~j E) ~ 2 (<)_, ~j ~; E) 0 0 

0 0 

0 0 

0 0 

0 l 
0 

0 

0 0 



-37-

APPENDIX. III., 
\ ; :. r • • : i.: ', • ,l • ~ .! 

In this section the symmetric densities are defined in terms of 

F(T; X.: t;A) and it is shown how equations (2) as well as Janossy1s equations 

can be derived from the Kolmogorqff-Chapman equations.· 

LetAn m be any set in 0 of the formAn m = UE ." ... 
' , 11]_e 1 

The E. are open sets on the 
1 

real 

line. L. et 0* be any set containing 0. The function f(T; X.' 1 ,: t; X. ), 
n ,m n,.m 

X.' 1 1 eO*, X. _ eO* is defined by the following: n ,m n.,m · 

(l)f(T;X-1
1 1:t;X. )=0 

. n,m . n,m 

E 
n+m 

If X.' 1 , fO or X. /n, n' +m'> 0, n+m > 0. n ,.m n,m 

F(T; X.' I H: t;An' 'm· ), X.' i i en, n 1 +m'>o, n+m>o. n ,m , n ,m · · ·· · · 

(5) f('T; A.' I . ,: t; x.o' 0) ,:, F(T; X.' i ,: t; x.o· 0), X.' i I en, n'+m' ~. . n ,m , n ,m , n ,m 

For greater simplicity Messel 1 s notation will be followed: 

( 7) 

000, T)n+rd t) = f(O; 1, 0;1;0: t;n,m;fl]., .. ., 1lJ ·~+1 ... , ~+m), 
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The symmetrized densities defined on 0* are, for fixed n, m, symmetric in 

the first n variable and in the last m and coincide with £{j) on 0: n,m 

f(j) ( Tl. , 
n, m '1l 

OOOJ Tl. • ~ ~ ,· ~ = ·f(j) ( ~ ' 'i ' . +1' ... ' ., n +m n,m 1 
···• ~ ; ~+1' ... , ~+m; t), 

n 

j = 1, 2; n + m> 1. 

...... , 

j = 1, 2; n + m>o. 

(8a) 

(8b) 

n+m 
f~,)m (rq_, ... , "\t ~+1' ... , ~+~t) = 0, If(~ rq_ >1) or(~ <e, k=l,2, ... , n+m), 

i=l 

j = 1, 2; n + m >o. (8c) 

A definition similar to (8a) holds for the symmetry in the last m variables. 

(7) and (8) do not extend the definitions of the densities to all the boundaries of 

0 Hence, for fixed 'A' 1 " t, and 7, the values of the f(j) and fn(j)m at n,m n ,m n,m , 
any point on the boundary of 0 , n + m >1 is taken as the limit from within n,m 
0 at that point. In particular, this defines the symmetric densities on the n,m 

n+m 
hyperplanes 1:: "1f = 1. 

i=l 
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For the sets AAn m• 
' 

u . (n . 
<u < .f-A . ' m; ul' 

~+m n+m 11n+m ~+m . 
.... ,u;u+l' ... ,u+ ), n n n m, 

~A c_ n, n,m 

n ~0, m 90, and for small (t- 'T), A111' ... , A~+m' it is possible to write down 

F ('T; X.' 1 · 1 : t; AA ) immediately up to terms of the type o(Afh) and n, m n, m LC 

o(t - 'T)o(~ 11). o{A11) represents higher order terms in one or more of the energy 

variables, while the other symbols have well known meanings. By inserting 

F('T; X.' 1 1 : t; AA ) into (1) and using definition (7), Janossy1s equations n ,m . n,m 
can:, b~ obtained. To do this, set X. = (1, 0; 1, 0) or X. = (0, 1; 0, 1) in (1) and take 

limits in (z-y) and the energy increments A 11·. (It is necessary also to set 
1 . ' 

s(11) = 1, e(11) = 0, and to specialize the cross sections to full-screening ap-. 

proximations, if the simplest form of the equations is desired.) Make use of 

..• the fact that ~he process is temporal! y homogeneous by substituting x - y for 

x and 0 for y, integrate out the energy variables and apply the multiplicative 

property. For instance, set 

F ( o; 2, o; n. , 112 ; o: x- y; n ) = 
'1 n,m 

=!: F(O;l, 0; ~ ;O:x-y,O 1 1 ) F (0;1, 0; 11z• O:x-y, 0 11 11 ) • 
n r +n r v =n n , m n , m 

m 1-!nl 11 =m 

Finally, use the definition of the moment generating function. 

The basic equations of this paper are obtained by inserting 

F('T; X.' 1 1 : t; AA ) into (1) and using definitions (7) and (8). It is neces-
n ,m n,m 

sary to set y = 0, X.= (1, 0;1, 0) or X.= (0, 1;0, 1) in (1) and then take limits in 

(x-z) and the energy increments. 
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