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ABSTRACT 
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An approximate quantum mechanical solution of the meson nucleon 

scattering problem for intermediate values of the coupling constant is presented, 

The particular case treated here is that of charged scalar mesons interacting 

with a static nucleon. In finding the cross section, attention is focused upon 

the matrix elements of the field and isotopic spin operators and on the equations 

of motion, no attempt being made to calculate explicitly the scattering state 

vectoro It is shown that in both the weak and strong coupling limits the 

procedure described here gives the scattering correctly. For intermediate 

coupling the cross section must be found numerically. Computations have been 

·carried out for several intermediate values of the coupling constant and the 

results are presented in the form of curves showing cross section vs, meson· 

energy. Since certain informationabout the one nucleon problem (ioe., one real 

nucleon and no real mesons) is needed for these calculations, a detailed 

numerical solution of that problem has been carried out using the Tomonaga 

approximation. The relevant results of this work are presented in several 

graphs. Although it is not a part of the scattering problem, the calculation 

of the isobar separation in the strong coupling limit can be carried out so 

easily by the methods of this paper that a brief account of it is also given, 

In the appendix, a variational method of calculating the scattering state 

vector for intermediate coupling is described. It is shown that this, however, 

fails to give the correct strong coupling limit, 
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MESON fiJUCLEON SCATTERING. I 

R. J. Riddell, Jr. and B. D. Fried 

1. Introduction 

One of the most fundamental problems of meson field theory is the 

task of giving a quantitatively satisfactory explanation of the increasingly 

abundant and detailed experimental data on the scattering of pions by nucleons. 

Since all qualitative·estimates of the meson-nucleon coupling indicate that 

it is neither very large nor very small~ it is imperative to develop a technique 

for calculating the scattering cross section which is valid for intermediate 

values of the coupling constant. Although it is clear that the problem must 

eventually be treated in a completely relativistic manner, using pseudoscalar 

meson theory, to date this has proved so formidable a task that a critical 

examination of the intermediate coupling region for the much simpler problem 

of an infinitely heavy nucleon seems worthwhile. Even with this restriction 

no exact solution for all values of the coupling has been found, and so we 

must look for suitable approximations. 

In this paper we shall study the question of meson scattering from 

a fixed nucleon for intermediate values of the coupling constant, g. In 

order to avoid the algebraic complications involved in treating both spin 

and isotopic spini we shall first discuss the simplest non-trivial case, the 

charged scalar field, although the same methods can be used in the more 

complicated cases--e.g. the pseudoscalar, charge symmetric field, which 

will be discussed in a subsequent paper, 

The non-relativistic one-body problem (i.e., one real, fixed nucleon 

and no real mesons) can be treated by Tomonagaus variational procedure1 which 

1 S. Tomonaga, Prog. of Theor. Phys. ~' 6 (1947). 
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uses as trial function a state vector in which only a few meson states are 

occupied (although no restriction is placed on occupation numbers). The 

crucial ·point in the justification of this method is its validity in both 

the weak and st-rong coupling limits. The ansatz that all mesons ar~ in the 

same spatial state is certainly correct if, as in the weak coupling case, 

the probability of having more than one meson is very smalL That this same 

approximation will also be successful for large values of the coupling constant·· 

is less ·obvious and a demonstration of the agreement between the strong coupling 

limit of the Tomonaga approximation and the conventional strong coupling (s.c.) 

theory2 is essential in any attempt to make plausible the validity of the 
1 

Tomonagaansatz for the intermediate coupling regiono In his original paper 

on the subject, Tomonaga showed that his method does indeed give the correct 

s.c. value for the isobar separation. 

Going on to the two-body problem of one real meson and one real nucleon, 

it seems natural to look for a consistent method of calculating the scattering 

cross section which shall satisfy the following three criteriag 

0 
1 For small values of g the cross~section is the same as that 

2 

obtained from ordinary perturbation theory. 

2° For large g the cross=section agrees with the result of the 

conventional strong coupling theo~2 • 

3
0 

For intermediate values of g a numerical calculation of the 

scattering cross=section is feasibleo 

Go Wentzel, Helvo Phys. Acta 13~ 269 (1940)~ W. Pauli and S.M. Dancoff, 

Phys. Revo 62, 85 (1942)~ A. Kaufman, Phys. Rev. (to be published). 
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The first requirement is satisfied by almost any reasonable procedure; · 

·and··it -i·s·--·quite easy to find some which also fulfil the third condition; since 

an approximate calculation--e.g., Tomonaga 1 s--may be used to supply such 

information about the one-body problem as is needed in the scattering·calculation. 

However, it is considerably more difficult to find a method which in addition 

gives the correct s .c. limit. It may well happen, of course, that a procedure 

which fulfils only two of the conditions will be clo.ser to the exact answer 

inthe ·intermediate coupling region than one which satisfies all three. In 

particular~ our insistence that condition 2° be satisfied may seem unjustified 

since from qualitati~e indications, such as the failure to detect stable 

isobars, it appears that the actual value of g cannot be large enough to make 

s.c. theory applicable. However, it is equally certain that g is not small 

enough to justify the use of perturbation theory and in the absence of evidence 

to the contrary it seems-reasonable to place more confidence in a method 

which is correct in both the weak and .strong coupling limits. -.- ' 

In this paper ~e shall describe a proc~dure (i.e., a set of 

approximatiohs) for solving the meson nucleon scattering problem which 

satisfies all three of these requirements. Subsequent papers will deal with 

the application of this same method to the scattering problem for pseudo-

scalar mesons and With its extension to the case o:f non-static nucleons. 

In section II we briefly discuss the Tomonaga solution of the one-body problem 

including some featlires which; to our knowledge, have not been described 

before. The solution of the scattering problem is described in section III, 

and graphs showing the variation of dc::r/d1'>- with energy and coupling constant 

are presented. Section IV shows how the same techniques may be used to find 

the s.c. isobar separation. A general discussion of the method and results 

is given in section Vo. 
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In appendix I a variational approach to the scattering problem is 

di-scussed. This method satisfies conditions 1° and 3° but gives only order 

of-magnitude agreement with the s.co result. Still another way of finding 

the -scattering has recently been proposed 
> 3 

by Maki, Sate and Tomonaga • They 

have shown·that it satisfies requirements 
0 0 > 

1 and 3 , and state that with a 

suitable modification the correct soc. scattering can also be obtained. 

3 
Z. Maki, M. Sate and S. Tomonaga, Prog. of Theor. Phys. 2, 614 (1953). 

We are indebted to Dr. T. Kinoshita for informing us of this work prior 

to its puqlication. 

... 

\o 



UCRL-2341 

-6-

2. The One Body Problem in the Tomonaga Approximation 

In terms of momentum space annihilation operators A(k), B(k) for 
- -

positive and negative mesons, respectively 3 and the usual Pauli isotopic spin 

matrices, 7± , the hamiltonian for the charged scalar field is 
4 

H = s ~ l A\!:) A(!o) + B * (!o) B(!o) - gR(!o) [ A(!o) f-. + B(!o) 4- + coco n , 
(1) 

where 

R(k) f(~)/~ 

U) : -1 k2 + )J-2 I 

' 

and r(~) is the Fourier transform of the nucleon source density 

satisfying 

= 1 . 

As usual, 

[A(~), A>~~(~')] = 
(2) 

and other commutators are zero. (We use units in which -i(, c and~ 

(meson mass) have the value one.) 

To solve the Schrodinger equation HF = EF for a state of total charge 

Q we introduce Tomonaga 1 s_ansatz 

4 
G. Wentzel, Quantum Theory of Fields, (Interscience Publishers, Inc., 

New York, 1949). 
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* n+Q * n 
(a ) . (b ) 

in~ (n + Q)!' 

~ · * n+Q-1 * n 
N + L__ en +-Q-l,n (a ) (b ) P , 

n. jnt (n+Q-1)!' 

(3) 

where 

(4) 

and b is defined similarly. The state vector N (or P) denotes the state: 

11bare neutron (or proton) plus meson vacuum". The cn,m and ¢± (which we 

take to be real functions) are to be determined by minimizing (F I H I F) 

subject to 

(F/F) : 1 and 

0 . 

(5) 

Since 

= (6) 

with 

T i:- * [ * 1 H = a · a w+-+ b b w_ - y_(gt a + g_. b ) + c. c. 

(7) 

and 

'•' 

... 

lo· 
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the variation with respect to the cn,m just leads to a simplified Schrodinger 

equation, 

HTF - cF 
v ' (8) 

which can be solved anlytically in the weak and strong coupling limits and 

numerically in the intermed~ate coupling region. (The Lagrange multiplier -zJ , 

of course, is just £ . ) 
In carrying out the variation with respect to ¢± it is convenient 

to use the easily verified relation 

(9) 

for the change in F produced by a small variation, 

We then have, from (5), 

Using the corrunutation relations (2) and noting that by (3) and (4) 

'(10) 

we obtain 

As in (6), H can now be replaced by HT so we find 

(11) 
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with 

N+ = (F I a* a \ F) J 

Mt : i ( ( F \a ~'=' F > + CoCo} 

Since multiplying (ll) by ¢+(~) and integrating gives 

finally 

¢+(~) = ~0 R(k) 
N_,. (w = w-++ gM+/N+) 

or 

¢+(~) = (gl>4/N_...)(R(~)/(W =A+ )J .9 

UCRL-2341 

~ :;;; 0 , we have 

(12) 

where )+ is given in terms of gM+fNt by the normalization requirement 

on ¢+, 
2 . 

R (k). 
= 1 0 (13) 

A similar equation holds for ¢_ o 

Numerical calculations for ¢± and F have been carried out using 

the IBM Card Programmed Computer at UCRL, Livermore, Californiao In Figo 1 

through Figo 4 we have presented some of the results of this worko Curves 

corresponding to the charge 2 isobar have been dotted for values of g 

below 8o66, where that state becomes unstableo Since it seems certain that 

the total hamiltonian H has no stable bound states of charge 2 or higher, for 

small g, we feel that the Tomonaga state vector F2 has little physical 

meaning in that regiono For the same reason, the entire ~3 curve is 

dotted since ~ - cS1 >? for all values of g which we usedo 
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Actually 9 the scattering calculations to be described in section III 

require very little information about the one-body problem. Besides the 

isobar energy separations 3 we need only the matrix elements (ol'/r 11) 
(1 I,.~. l2) and and ( 1 I 7J 11) (for ordinary scattering) and 

( 2 l/t.l.3) (for charge exchange' scattering). Since the variational 

calculation of·the Tomonaga state described above is to be carried out anew 

for each value of the total charge Q of (3)' m anc,i all quantities related 'fj: 
to them-- A±' a, b 3 HT, E,, Nt, etc.--depend on Q and really ought to carry 

a label Q which we have omitted in-this section for simplicity. Because of 

the charge symmetry of the hamiltonian it is sufficient to solve the one-body 

problem for Q·. 2f! 1 since ~ = E,_=Q ; 

NQt '"' Nl=Q,t- -' etc. 

Since we have used a static approximation for the nucleon, it is 

necessary to introduce a cut-off in all of the calculations. We have chosen 

the one which seems most convenient for calculations: 

s ~ rc~:J (27lf312 
' I!: I LM 

i k•x 
\<~) = 1 e = (21/)3/2 I!: I >M 0 

' 

(14) 

where M- is the nucleon mass. 
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3o Meson Scattering. 

Of the ·three -requirement;s discus'sed in section I~ the most difficult 

to satisfy ·seems to be that of agreement With soc o theory o Thus~ using a 

technique reminiscent of that theory~ we shall work directly with the matrix 

elements of the field and isotopic spin operators in solving the scattering 

problemo In contrast to the approach customary in perturbation theory, -we 

shall not attempt to calculate explicitly the relevant state vectorso The 

latter contain more information than we actually require whereas the matrix 

elements are closely related-to observable quantitieso For instance, suppose 

that \ Q > is the state vector of a physical nucleon (Q: : 1 for proton, 

Q = 0 for ·neutron) while . I Q .of- 1, !: +) repre~ents a state of total charge 

Q+ 1 in which a positive meson of momentum p is incident upon the charge 

Q nucleono ~t is to be emphasized that we mean these to be exact eigens.tates 

. of. the total hamiltoniang 

H I Q !: t > = EQ 1: + I Q 1: +-> 0) 

.(15) 

is asymptotically equal to the wave function 

of the scattered positive meson, ioeo~ 

(16) 

for r :::::: I ~ I ~00 , and It>./ 12 
1 gives the scattering cross sectiono If 

the coupling is strong enough so that stable isobars of higher charge, eogo, 

Q = 2 and Q = 3~ exist, then charge exchange scattering may also occur for 
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I 

w In a similar way we can then find the cross 

section for that process from .( Q + 21 B('~) I Q+lj E +) j which is 

asymptotically the wave function .of the outgoing negative meson, 

(17) 

where 

I 
p 

In the following we need consider only the case where the incident meson is 

positive since it follows from the charge symmetry of the hamiltonian that 

o-<tYtt-P) : q-<1!'-+N), etc. 

In order to find these matrix elements, we turn to the equations of 

motion. From the hamiltonian (1) we obtain the operator equations 

-i A 

0 

-i B : - WB+ gR'/'_ 

0 

-i ~ 
3 

= g s d~ R(A t B*) r
3 

= 2g 5 d~ R [(A*+ B) 4-

(18) 

(19) 

(20) 

(21) 

together with corresponding relations for the Hermitian conjugate operators, 

* * A , B , and ~ • In a matrix representation of these operators which 

uses as basis a complete set of energy eigenstates, these equations give rise 

to a set of coupled integral equations for the matrix elements. Of course, 

in addition to the matrix elements (16) and (17)) an infinite number of 

others are included in this set. 
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Since we cannot solve these coupled equations exactly$ we shall introduce 

the approximation of neglecting all but a few of the matrix elements involved. 

We shall.demonstrate that this procedure can be carried out in such a way that 

all of the requirements set forth in section I are satisfied. 

The basis of energy eigenstates will consist of the following states: 

nucleon isobar of charge Q; 

I Q + 1 ~ p +- ""'-" positive meson of momentum p incident on a 
(22) 

nucleon isobar of charge Q; 

negative meson of momentum p incident on a 

nucleon isobar of charge Q; 

together with states similar to these representing two 9 three~ incident 

mesons. For small values of. g, Q may assume only the values 0 and l. However, 

when g is large, isobars of higher charge are stable and in that case Q must 

~e allowed to take on all integral values from ~ to 1 - ~ where ~ is the 

largest charge for which 

(In the extreme s.c. limit ~-?00 since EQ- EQ-l is of order g-2.) 

The approximations which we shall make are the followingJ in which 

C represents aQY of the operators A, B; ~ tJ' etc.~ 
I. We neglect all matrix elements involving states with more than 

one incident meson. 

II. We set 

sjj' 8<~-I:')i..Q+ lie IQI± 1), 

(23) 
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where j ~ j u are + or - and the upper sign is to be used 

for j = - 1 the lower for j = + o 

III. We approximate one-body matrix elements by the values obtained 

from the Tomonaga solution of the one-body problem 

(24) 

where FQ is the lowest charge Q eigenstate of the Tomonaga 

hamiltonian~ 

(25) 

In addition, the isobar energies, 

E :::: 
Q 

(26) 

are approximated by the corresponding Tomonaga values ~Q o 

By actually computing the values of the matrix elements which have 

been neglected, it can be shown, a posteriori, that the approximations I 

and II are valid in both the weak and strong coupling limitso (That III 
. 1 

is correct in both limits follows from Tomonaga 1 s work .) In general, I 

and II correspond to the assumption that the physical nucleon is not 

affected ve~ much by the incident meson. The quantitative justification 

of all three assumptions for intermediate values of g can be accomplished 

by an iterative procedure to be described in a subsequent papero 

To solve the scattering problem9 we may begin with the equation 

for ( 0 I A 11 E t) . From (18) we find 
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(27) 

since 

Solving (27) with the boundary condition indicated by (16) we obtain 

oC!:, - E,) t g R(k) ~o 14- j1 £ +-) o 

. w- '1> = i~ 

(28) 

Thus, to compute the cross-section for ordinary ~'neutron scattering, 

d()/d.!L = 
. ' (29) 

we need to know (o \ '4-11 E + > o From (20), we have 

where I n) denotes any eigenstate of H and the summation is over all 

values of no Invoking assumption I, we can reduce this to the much simpler 

equation 

+ .2: d~' (a I Ats*ll p' j)<l ~· j b~ !1 !:~)} 
J:d: 

or~ using assumption II, 
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- "i> <o I ~ j1 ~ t) = g J d!; R { (o I A+ B* 11 )<1 / 'Y3 j1 ~ t) 

t(o IAtB*Il ~+)<O I~~ o)j 
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(30) 

In addition to the one-body matrix .. elements, which by assumption III are to 

be considered as knowns we have now introduced the new matrix elements 

< 1 1 r3 11 £ + > and ( 0 I B* /1 I: t) , so we continue writing equations 

of motion until we have a closed set (number of equations equal to the number 

of unknown matrix elements) 0 

Before carrying out this procedure in general, we shall consider the 

two limiting cases (small g and large g) in order to illustrate the method 

for simple cases and a::).so to demonstrate that conditions 1° and 2° are satisfied. 

(a) Weak Coupling 

In.this case, the Tomonaga solution of the one-body problem (which 

here coincides with ordinary perturbation theory) tells us that (o I AfB* /1) 
is of order g while (o I 01 0 > = 1 f t!J'(g2

) 0 Furthermore, we have 

from (19) 

(o 1 B* 11 !: +) 
(31) 

so that if in (30) we retain only the terms of lowest order in g we get 

or:, using (28) 
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(32) 

where again terms of higher oder in g have been dropped. Substituting (32) 
+- +-

into (29) ~ we find for 1Y f N __, i/-/- N the cross~section 

(33) 

in agreement with perturbation theory4 . In a similar way we can show that 

the cross-section for J,Y+~ P~~+7- P is also given by (33). 

(b) · Strong Coupling 

When g is very large~ the first term on the right side of (30) is · 

larger by two orders of g than the second term~ in contrast to the situation 

for weak coupling. To see this we note first that according to the Tomonaga 

solution of the one~body problem (which is here the same as conventional 

s. c. theory to leading order in g ~l) ~ 4 \ "'(
3 

\ 0 ) is of order g = 4, 

while (o \ A+ B* \ 1> is of order g (5• In addition~ we shall see 
6 

that (.1 1011.!: +) is of order g~3 while (o l A+ B* l1!: + > is 

of order g0 ~ so the first term within the curly brackets of (30) is of order 

=2 4 g while the second is of order g= • Then (30) becomes 

= ~ ) d!:R < 0 I A+ B* I 1 > ( 1 I 1'311 .E + > 
. (34) 

From (18) and (19) we find 

5 

6 

These statements can also be obtained directly from the equations of motion 

without recourse to the Tomonaga approximation--cr. section IV. 

The a posteriori justification of assumptions concerning the relative 
magnitude of various terms is characteristic of most s.c. calculations2 • 
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= (35) 

= g R/2w 

since the Tomonaga (or s.c.) solution of the one body problem gives7 

(36) 

Then from (34), 

(o 14/ 1 ~+) 
07) 

where 

(3S) 

Evidently, w,e now need an ~quation for ~1 ' 'Y3-\ 1 !: + ), . From 

(21) we obtain 

_"i> <1IY3 h £ +> .· _. 2 g sd~ R f<1~~~2>< 2' A*+ B 11 !:+> 
• 

+<11~ I 2 R +><lJA*-t- Bl ~- (? Jr_J o)<o I A+B*I1 g+) 

-Q ·IJ'~\oE+)<(-11A+B* Jo >} 
(39) 

where, as in the derivation of (30), we have made use of assumptions I and 

II. Although (39) contains several new m.atrix elements it is quite, easy to 

7 
This corresponds to the fact that for large g the physical nucleon involves 

a large number of bound mesons and it is equally likely for the bare 

nucleon to be either a proton or a neutron. 
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express them all in terms of <:._ 1 11'3 11 E. t) and thus obtain the desired 

closed seto Thus, from (19) we have 

which, with the boundary condition (17) 3 gives 

g R 

' (40) 

=2 In the SoCo limit where the isobar separation is of order g this reduces to 

::: 

In a similar fashion we find 

g R 

w- w = i~ p 

= g R 

g R 

where we have again neglected the isobar separationso 

(41) 

(42) 

(43) 

In calculating ~1 I~~ 2 £ +-) from (20) we follow a procedure 

slightly different from that which led to (30)o Instead of writing 

-L 
n 

(44) 
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we can equally well use 

(.1 \(ArB*) 0 J 2 ~ t > 
(45) 

since the isotepic spin operators' r ' certainly commute with the field 

operators A and Bo The form (45) has the advantage that upon applying 

assumptions I and II we obtain on the right hand side no new matrix elements. 

Thus, we find 

-~ (1 I ~ h: + > - g }!: R { (1 10 11 > ( 1 I A +s* I 2 ~ t-> 
+Q 11311 ~+) < o I At-a*l1) } 

which, in consequence of the remarks preceeding (34)( 8 reduces to 

or 

(46) 

if we use (35)o In an entirely similar fashion we find the remaining 

matrix elements 

' 
(47) 

8 
Because of the charge synnnetry of the hamiltonian, ~I?JJo)::: -41't 11) o 
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and 

. (48) 

Substituting (28), (35), (37), (41), (42), (43), (46), (47), and (48) into 

09) we find 

Using the Tomonaga (or s.c.) one-body matrix elements7, 

we find 

R 
2 . 2 

w -w - iE 
p 

(49) 

l. 
2 ' 

(50) 
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or, in the SoCo limit~ 

= R(p) W 
' 

(51) 

where 

I(x) . = 
2 € (k) (52) ' 

2 2 •L 
(J) - X - ~~::; 

For our choice (14) of - f , this becomes 

r<c.q) = 1 [ ~ + E log M - p +- 71 i p] 
2 112 .2 M+p 2 

(53) 

Although I( Gl.)p) · diverges for M ~, the denoril.inator of (51) remains 

finite since 

1 [ M - tan -l M ·] 

41'12 

Thus, with. 

I(u=) - 2 K1 J(~) = =:E 2 

wP 

we. find 

-s ~ 

(54) 

(55) 

(56) 
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For M finite, 

(57) 

and so 

[ 
3 . J=l g · K1 <r+ i p) . 

(58) 

Now we are in a position to calculate the desired scattering cross~ 

sectionso From (29) and (58) we find for the ordinary 1,1+ , neutron 

cross-section: 

= 
2 -1 

(4 (J) ) 
p 

Moreover, comparing (37) and (47) we see that 

(59) 

and so it follows from (41) that the cross-section for charge exchange 

J7't-, neutron scattering is also given by (59)o Both of these results are 

in agreement with s.c. theory, as are the other cross-sections (~on proton) 

which can easily be found in the same wayo 

We have now demonstrated that our approximations I, II and III lead 

to results for meson scattering which agree with both the perturbation and 

So c. theories,in the appropriate limits. The general nature of our procedure 

should by now be fairly clear, so we shall simply outline the derivation of 

the formulas for the cross~sections in the general case (g arbitrary)o 
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(c) General Case 

In contrast to our p·rocedure in (a) and (b), we must now retain in 

our equations all matrix elements which remain after assumptions I and II 

have been invoked. For instance~ both of the terms· on the right side of 

(30) must be retained for 9 as we have seen, one is important for small g, the 

other for large g, and we may expect them to be of comparable magnitude in 

the intermediate coupling region. In addition, assumption III now assumes 

its full importance, for while the necessary one-body matrix elements--

can be found analytically in the weak and strong coupling limits, for 

intermediate values of g they must be computed numerically from some solution 

(e.g., Tomonaga 1 s) of the one-body problem. 

Except for these two points, the development proceeds in a manner 

verysimilar to that in (b). Since a few more matrix elements are involved~ 

the algebra is somewhat more complicated, but the extra effort is not wasted, 

If we begin by looking for the matrix elements which describe the scattering 

of the ~ on neutron, then we find that the closed set automatically 

includes the matrix elements needed for the ordinary scattering of ~ on 

protori. 

It appears expeditious to solve for the A and B matrix elements, 

as in (28) and (40), thereby eliminating them from the equations. We are 

then left with algebraic equations for the 'Y matrix elements. To find 

the cross-sections we need four of these~ and 

< 2 f"Y= 11.!: +) 
scattering, ( 1 Itt I 2 _!: t) 

-;!
for the ~ ~ neutron ordinary and charge exchange 

( + <3 \ 1= 12 .!: t > for the 71' and 

proton scattering. By using equations like (30), these may be expressed 
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in terms o:f <1 I ,3,1 !: f > 0 (Actually, <...; I r= I 2 £ t > involves 

( 2 1 r3 f 2 !:. + > but this, also, can be expressed· in terms o:r <.1 1 y3 11 ~ -i): 

where 

We obtain (60) by using, for instance, an equation like (30) for 

(1 I~ I 2 E +> o) Substitu~ing these into (39) we obtain 

, [· I(O) -

D+ ( W) 
p 

-1 

where 

(60) 

(61) 
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(62) 

for g such that ~ > 1 

for g such that /l ~ 1 

Knowing (61) we can compute the ~t matrix elements and from these find 

the scattering cross-sections using equations like (29). 

In Figs. 5 through B the results of these calculations are presented 

in the form of curves showing d<r/d.O... (in units (110-c)
2

) vs. w for 

several values of g. A semi-log plot has been used so that all curves could . 
be drawn to the same scale. In Figs. 5 and 7~ the ordinary neutron and 

f)"+-, proton cross-sections are given for g_:: 1, 2, 3, and 5.25. The cross

sections for higher g values are given in Figs. 6 qnd 8. According to the 

Tomonaga solution of the one body problem, the charge 2 isobar is stable for 

g > 8.66 (cf. Fig. 2). Thus, the 
;f-
~ ~ neutron charge exchange cross-

sections are also shown for g = 10.5 and g = 15. (Since the charge 3 isobar 

.,.,..,..., 
is not stable for the range of coupling constants which we used, the ~, 

proton charge exchange scattering is not considered.) For g; 5.25, 7.46, 

10.5, and 15 the one body matrix elements needed in the scattering calculation 

have been found from a-numerical solution of the Tomonaga problem as described 

in section 2. These were also used to draw the curves of Fig. 1, the matrix 

elements for other choices of g then being obtained from Fig. 1. As explained 

in section 5, all of these cross-section curves should be taken seriously only 

below the meson production threshold, W <.. 2. 
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4. The S.C. Isobar Separation 

It is of interest to note that once the matrix elements for the 

scattering cross=section have been found the isobar separation can be 

determined by similar techniques. Here we shall carr,v this through for the 

s.c. limit where an analytic solution is possible. From (20) we obtain 

-( Q I r3 I Q > t ~ S d£ < Q - 1 I A. + B* I Q I: j > ( Q E j I r3 I Q> } , 
(63) 

or, using the other order for (A +- B*) I'§ 

• <.Q- 11 A+ B* 1 Q>+ L5d£~- 11 r3 1 Q-l, I: j ~-l, I: j 1 A+B*I '".>· 
j~±. 

(64) 

If the scattering problem has been solved, then the only unknowns are the 

isobar separation and the one~body matrix elements. Now7 

<Q-lltiQ> :::; 1 9 

2 

so using (18) and (19) 

< Q' - 1' ·A I Q > = (Q- lfB*f Q )* :::; .L], + (,9'(g=l) 

2W 
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However 11 the s.c. limit for · (Q I ?"3 j Q) is of mu_ch higher order in 

(1/g) and cannot be obtained from such simple considerations o We calculate 

it along with the isobar separation in the following way: 

(i) Set Q = 1 in (63)o Since El :: Eo, the left side is zero and 

we can solve for < 1 11311> ~ 
(ii) Equate the right hand sides of (63) and (64) and solve for 

< Q I 73 I Q > ·· -. ( o. - 1 1'3 I Q - 1 > · 
(iii) From (i) and (ii) compute ( Q I r3 J Q > 0 

(iv) From (63) and (iii) compute EQ - EQ-l o 

In carrying this out one must be careful to use for the scattering 

matrix elements the result obtained before letting M ~eo 11 since in (63) 

and (64) p ranges from 0 to M. For instance, we must use (57) for 

(1 17'3 11 E.+) and not theM ...;ac form (58). The limit M ~.c must 

be taken only after the integrations in (63) and (64) have been performed, 

The result of step (i) is 

(65) 

where J(uo) is defined by (55). The integral (65) has been evaluated 
p 

2 by Ao Kaufman o Using his result we have 

(66) 
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From (ii) and (iii) we then find 

so that 

and 

2 which is in agreement with conventional s.c. theory • 

UCRL-2341 

(67) 

(63) 
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5. Discussion of Method and Results 

In the preceding sections we have seen that our approximate method 

of solving the matrix equations of motion is correct in both the weak and 

strong coupling limits. To establish its validity in the intermediate region, 

the approximations of section 3 could be investigated by an iterative procedure 

in which one=body matrix elements and those of the form 

or ~Q~ EJ j cj Q0
9 E0 j~ are calculated from the equations of motion, 

using for < Q I C I Q 0 j EJ) , etc, the values found previously. Sine e the 

latter are only known numerically in the intermediate region, this calculation 

is fairly complicated and will be discussed in a subsequent paper. 

In some respects our procedure resembles the Tamm-Dancoff approximation, 

since states with more than one incident meson are neglected. However, the 

total number of mesons allowed is considerably larger than in most Tamm-Dancoff 

calculations for no limitation is placed on the number of mesons bound to the 

nucleon. Any such restriction would, in factj preclude agreement with s.c. 
2 

theory where the average number of bound mesons is approXimately g K2/2 . 

As can be seen from Figs, 5 through 8, the shape of the cross-section 

vs. energy curves for intermediate values of g is quite different from the 

d(J/d.O.. oQ 1/u:i which characterizes the two limiting cases, The ordinate 

in these curves is actually the or I o( I 2 
of ( 16) or ( 17) . 

These give the scattering cross=section when the energy is below the threshold 

for meson production~ but when ~;> 2 the meson production must be taken 

into account. Although this will be left for a subsequent paperj we have 

here carried the calculations beyond W = 2 to facilitate a discussion 

T!+: of the variation with g. For g = 2 the R proton curve has a small peak 

which moves to the right as g increases. When g = 7o46 this peak is centered 
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at W ;: 4.25 and has become very sharp and extremely large. For higher g 

values the peak decreases in height and moves back towards ~ = 1. The 

11-t: , neutron ordinary scattering curves behave in a similar fashion, while 

the charge exchange cross-sectio_n in the region of interest. (1 ~ W ~ 2) 

is characterized by a very sharp rise from the threshold. 

The essential test of any theory--comparison with experiment--cannot 

be applied to our results since we have used scalar mesons. Nevertheless~ 

it would perhaps be desirable to "explain" the qualitative nature of the 

curves~ e.g o} in t-erms of resonance with a virtual isobar leveL Even this 

proves difficult since as g increases from 2 to 8o66 (where the charge 2 isobar 

becomes stable) the peak in the dG"" /d...I'J-- vs. W curve moves to the right} 

while we would expect that the excitation energy of a virtual isobar should 

decrease as g increases. As yet we have not found a simple "explanation" for 

the variation of (d<J/d.ll...) with W and g in terms of properties of the 

single nucleono Since the scattering problem for intermediate values of g 

has not been extensively studied heretofore, it is difficult to say whether 

our results are "reasonable 11 o This question will be resolved} however} by a 

comparison of the experimental pion} nucleon scattering dC).ta with the 

results of the calculations for pseudoscalar mesons which are now in progress. 

One of the most unpleasant consequences of our static approximation 

for the nucleon is the necessity for a cut-off. Since this cannot be avoided 

in a non-relativistic treatment, we can simply hope that it is not very 

important for the low energy mesons. To verify this~ we intend to repeat some 

of the above calculations using a different choice for the cut-off. Moreover} 

a generalization of the methods described in this paper to include recoil 

and relativistic effects is now being investigated. If a renormalization 
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procedure can be found, it will be possible to eliminate the·cut-off 

altogether. In this connection, it may be noted that·· even in its· present, 

static form this matrix formulation has the advantage that only energy 

differences, and not the energies themselves, appear in the equations. 

We wish to express our very sincere appreciation to Mr. James Baker 

and Mrs. Joan Lafon for their excellent computational work on both the 

scattering and the one body problem, and to Messrs. Robert Ceder and 

Lawrence Lasnik who carried out the solution for the one body state vectors 

on the IBM Card Programmed Calculator at UCRL, Livermore. We are also 

indebted to Dr. J. Lepore for many interesting discussions of the Tomonaga 

approximation and the strong coupling theory. 
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Appendix I. Variational Calculation of Meson Scattering. 

The problem of meson scattering can also be treated by a modification 

of the Hulthen variational principle9' 
10

• For the state vector describing 

the scattering of a positive meson of initial momentum p by a proton we 

make the ansatz 

where ~ (~) is the Fourier transform of a function which for large r 

has the form of an incident plane wave plus an outgoing scattered wave, 

while /(_ is asymptotically just a scattered wave; viz. 

· (A.3) 

9 / . 
Hulthen, Kungl. Fysio. Sallskapets Lund Forhand. 14 (1944), 1. 

10 
This approach has been used by R. Christian and T. D. Lee in their 

work on the Tomonaga approximation (to be published). 
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The functions /(t and the constant ~ 
VJ) stationary, with 

are to be determined by making 

E = El + wP = El + / P2 + /'-2 
(A.4) 

Before carrying out this variation, we shall make a few remarks 

concerning the choice of the ansatz (A.l). The first term in (A.l) 

corresponds to the ordinary JT+, proton scattering while the second term 

takes account of the charge exchange scattering which can occur when the 

coupling is sufficiently strong. (Since we are primarily interested in the 

s.c. limit for this method we shall consider first the case in which g is 

large enough to make the Q = 2 and Q = 3 isobars stable.) The role of the 

third term can be appreciated if the variation with respect to is 

carried out. We obtain 

8 ~;~ < 2 llf > = 0 

which shows that the value of .~ simply makes . . \f .·orthogonal to 

~ -<21 a: jl) - ( 21 b: 13) . 
(A.5) 

The importance of including this term may be understood from the following: 

1. The scattering problem for a neutral scalar field, which is 

closely related to the s.c. limit of charged theory, may be treated by an 

ansa t z analogous to (A. 1) • · (Of course, it can also be solved exactly. ) 

If. a term corresponding to the ')I 2 ;> of (A.l) is included, the correct 

answer, d~/d.n- = 0, is obtained. However, if this term is omitted, 

the cross-section is no longer zero. Instead, we find 
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( d<r"/d~ = 
heu.+. 

=2 I ~1'( = (pj7() ,log (p + wp)/)-4 + ?/2 + i pI • 

(A.6) 

2. As shown below, the charged meson scattering may be calculated 

by approximating the jQ)> in (A.l) by the corresponding Tomonaga state 

T vector, FQ. If we consider the s.c. limit of the H problem and retain 

only the leading order terms in g, then we obtain dcr/d~ = 0, indicating 

that higher order corrections to the Tomonaga state vector must be considered. 

If, however, the ~ I 2 > term is omitted, then the cross-section turns out 

to be just 1/4 of (d~/dJL) t 
1 

which does not agree with the correct neu ra 

s.c. result (59). 
10 

This discrepancy has been pointed out by Christian and Lee 

In this case it is clear that higher order corrections to the Tomonaga 

approximation could not remove this lack of agreement • 

. A final point concerning the ansatz (A.l) is that we shall consider 

only the case f't~"{, ~2/Jw•· At higher energies, additional terms 

would of course be needed in (A.l) to take account of meson production, etc. 

Returning now to the variational problem 

S~'f'IK-Hif> = 0 

""Y. we see that variation with respect to /l;- gives 

s ~ g x:<~) (11 A{~) {E- H111f > - o. 

Commuting A(k) with (E - H) and taking account of (15) and (A.4) we find 

0 
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which by manipulations similar to those used in section 2~ can be reduced to 

+ <!ll b~ "J' FJ) ¢3-l-s X- ¢1- + "l {Fll a21 F2) ¢2+} 

t g R { (Fll a~ 4- I Fl) 5 J.+ ~+ + .<, Fl I ~ J+ I F3) sA -¢1-

(A.?) 

where, according to (Ao5), 

1 = - <"2la~ !Fl) 5 A+ ¢21-- <F21b~ h>S X-¢2-. 

(A.S) 

Here we have made the approximation of replacing j Q) . by the corresponding 

eigenstate, FQ3 of H~ o The integral equation for )(_ can be obtained 

from (A.?) by the substitutions 

(in all subscripts) 
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These coupled integral equations for 

UCRL-2341 

-y and Y can be solved 
ll.r /\-

once the Tomonaga matrix elements appearing in (A.?) and (A.S) are known. 

Using Tomonaga 1 s s.c. solution1 of (S), we have evaluated these matrix 

elements in the s.c. limit. Table I shows the leading term~ and also the 

first (i.e.~ l/g
2

) correction thereto~ for all of the relevant matrix 

elements. (The ~:t. calculated from {13), which are also listed for 

convenience, agree with the expressions given by Tomonaga1
, who obtained 

them in a somewhat different way.) 

From Table I, we see at once that the right side of (A.?) contains 

terms of order 2 0 
g ' g ' 000 

However, upon-substituting the various 

matrix elements into (A. 7) we find that all terms of order g2 cancel. WithoUt 

the g=2 corrections to the matrix elements there would be no scattering. 

(As pointed out above, this cancellation does not occur if the 

term is omitted from (A.l).) With the aid of equation (12) and Table I we 

obtain 

R(k) wE rR~ + 
R(~) 

~ ~ 4ul K3 g K2 w 
(A.9) 

where 

X ;r: -Y. 
+ -
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. 0 . . 

Since we are concerned with terms of order g , we may drop ~13 which is 

of order g - 2 • Taking the sum and difference of the "- and X_ equations 

we find two elementar,v, uncoupled equations 

(A.lO) 

(A.ll) 

According to (A.lO) 

i.e., At and (- /( _) can differ only by a plane wave so that the direct 

and charge exchange scattering cross-sections are equal, in agreement with 

s.c. theory. From (A.ll) it is easy to obtain a solution of the form 

0 (~ _ £) _ f(W) 

W = Wp- i~ ' 

where f(C.V) · can be found explicitly by solving a pair of algebraic equations. 

In the limit of a point source, ~(~)~ S (~) , the scattering amplitude 

f(~) has the value 

f(CVP) = [ R(J2)] 
2 
w~2 

[ K3 t- C( ~) 1-l , 
where '· · 

C(Wp) = s~ __ R_2__;(lf::;...)---'--

W ((()- Wp - ic ) 
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Consequently~ both the ordinary and charge exchange cross-sections have the 

value 

2 r2· . dcJ'/d.JL - 1 ~ +~ = _E_ log P+4> + Lt i p - 4 4/k rr 11 ~ 2 

(A.l4) 

In Fig. we have plotted the s.c. limt of do-/d~ as a function 

of incident meson energy. The solid curve is the correct s.c. result, (59). 

The one below it represents equation (A.l4) which is seen to be correct only 

in order of magnitude. Lest we be tempted to accept this as a partial 

fulfillment of condition 2° of the introduction~ we have plotted in Fig. 

also !(dcr/dJL)neutral as given by (A.6), i.e., the result obtained by 

omitting the Y'l.l2) · term from the ansatz (A.l). It seems to us that 

this spurious neutral scalar cross~section has very little to do with the 

actual charged scalar problem and yet it, too, shows what might be called 

order of magnitude agreement with the correct charged scalar s.c. result. 

We conclude from this that nothing less than exact agreement with the s.c. 

answer can be accepted as fulfillment of condition 2°. 

Finally, in the weak coupling limit the isobars of charge 2 and 3 

do not exist so that no question concerning the term arises. 

The ansatz (A.l) then simplifies to 

(A.l5) 

and an analysis like that which led to (21) gives 

(A.l6) 
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As Christian and Lee
10 

have shown, the cross section obtained from (A.l6) for 

small g agrees with that given by ordinary .perturbation theory, so that 
• 0 

condition 1 is satisfied. For intermediate values of g the cross-section can 

be found numerically by using for the various Tomonaga matrix elements required 

in (A.7) or (A.l6) the values computed from a ntimerical solution of the one

body problem, and so this method also satisfies condition 3°.' 

So far we have discussed only the ~~, proton scattering. However, 

,;+'. the problem of 1, , neutron can be treated in an exactly analogous fashj_on. 

The appropriate ansatz there is 

'f = a: r 0 > + b: t 2> + "1' \ 1 > 
for large g or 

?f = a: I 0> + ~~ fl > 
for small g. In this case, the ~ 11> term should be included for all 

values of g, since f J;) (real proton) and I 0> (real neutron) are 
0 0 0 

always stable. Again, conditions 1 and 3 are satisfied but not 2 • 



UCRL-2341 

-41-

TABLE I 

= % v2 [ 1 - 2Q v -2 ] 

fl 

~ = (!Q I bQ 4 I FQ > 

= % v L 1 -\- ( Q - ! )v -2] 

= % v l1 - (Q - !lv -2
] 

where 

~1 I a2l F2 > 
(!3 ~ b2l F2 > 

'· 
- ! v2(1 +v-2) exp(L v-2) 

4 

= 1 v(l +v-2) exp(* L v-2) 
'2' 

= ! v(l r 2 v-2) exp(! L v-2) 
2 

{!1 1 b~ ?; I F3> . = t v(l- ~ v-
2

) exp(L v-2
) 

(!1 I r.,.. I F2) = 1 exp(t L v=2) '2' --

<F3 ., a; r- I F1) = 

)Q t = [±(Q - !) - K1 K3(K2) -2 Jfi2K3 

v = g(K2)i ( 1 + g -2 [ 1 - K1K3(K2)-2] (K2) -1} 

-2 
L : 1 - K2 K4(K3) 

Kn = s d~ R2(k) UJ-n 
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FIGURE CAPl'ION 

Figure 1. Matrix elements of the one-body problem computed from the Tomonaga 

approximation. 

Figure 2. Nucleon isobar energies computed from the Tomonaga approximation. 

The charge 2 isobar is stable for g > 8.66. 

Figure 3. Ar vs. g for the isobars of charge 1 and charge 2 in the 

Tomonaga approximation as computed from (13). 

Figure 4o Average number of positive and negative bound mesons in the meson 

cloud surrounding the charge 1 and 2 nucleon isobars. 

Figure 5o Cross section vs. total energy for 71-r, neutron scattering with 

g :: 1, 2, 3, and 5.25. The result of lowest order perturbation 

theory for g ~ 1 is also shown for comparison. 

Figure 6. Cross section vso total energy for 1r+-, neutron scattering with 

g ~ 7o46, 10o5 and 15o The charge exchange cross section for the 

latter two coupling constants is denoted by (exo)o The SoCo theory 

result is also includedo 

Figure 7 o Cross section vso total energy· for 71'+, proton scattering with 

g = 1, 2, 3, and 5o75o The result of lowest order perturbation 

theory for g ~ 1 is also shown for comparisono 

Figure 8. Cross section vs. total energy for rl-t- , proton scattering with 

g = 7.46 :J 10.5 and 15 o The soc. theory result is also included. 
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Figure 9. S.c. limit of the variational scattering calculation described in 

Appendix I. The lower curve is a plot of (A.l4) while the upper 

curve shows the result obtained if the ? / 2) term is omitted 

from the ansatz (A.l)o The s.c. theory2 cross ·section is also 

shown for comparison. 
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