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ABSTRACT 

A feature of' the Levy-Klein solution of the Bethe-Salpeter equation for 

the deuteron is the elimination of ¢+- , ¢_+ 1 and ¢ __ · in terms of' the ¢++ 

component of the wave function via a perturbation expansion. To investigate the 

validity of this procedure, the coupled equations for the various components in 

the first non-adiabatic approximation to the !1 + interaction were ·examined. A 

set of first order radial equations with multiplicative potentials (in the 

region r > 1/m) was obtained, involving ¢±±(r) = *(1± ~1)(1· ± ~2)¢{r). 
A rigorous elimination of ¢+- and ¢_ + led to equations containing ¢ ++ and 

¢~· Neglecting velocity dependent tenns, potentials of the type 

Y(r) 

2 
Po+ 1 .L... T. ·1:: Y(r) 

2 411 1 2 

appear. Expanding the denominator yields the usual Yukawa second order potential 

plus a term proportional to i•< T 1 o~) 2 
0 Such an expansion however is poor 

for r ~ 1/f-1- , a pole actually existing near r rv • 7/ ~ for the charge singlet 

state. For the J = 1 the structure of the lowest order tensor interaction is 

greatly altered~ Thus, the perturbation expansion appears to radically alter 

the structure of the equations. 
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EFFECT OF NEGATIVE ENERGY COMPONENTS IN THE TWO-NUCLEON SYSTEM 

R. Arnowitt and S. Gasiorowicz 

I. Introduction · 

The difficulties in obtaining solutions to the four-dimensional two-
1 

nucleon equation have resulted in calculations being confined to approximations 

1 
J. Schwinger, Proc. NatL Acad. Sci. U.s. Jl, 452, 455 (1951); E. Salpeter 

'and H~ A. Bethe, Phys~ Rev~ ~, 1232 (1951). 

involving instantaneous interactions, and their non-adiabatic corrections. This 

approach, carried out in a number of papers ·b.Y tevy2 and Klein3, led to the 

2 
M. M. Levy, Phys. Rev.~' 72, 725 (1952), denoted hereafter by Ll and L2, 

respectively'. 

3 A. Klein, Phys. Rev. 2Q, 1101 (1953). 

construction of a series of static potentials appearing in a non~relativistic 

Schrodinger type equation. A feature of the method used (from the point of 

view of the Bethe-Salpeter formalism) involves an elimination of the negative 

energy components of the wave function by a perturbation procedure. The nature 

of the pseudoscalar interaction and the large size of the coupling constant 

enhance the importance of the negative energy states, a fact brought out in a 

calculatiqn for the meson-nucleon system4. It was therefore felt worthwhile 

4 
R. Arnowitt and s. Dee~~, Phys. Rev. ~, 1061 (1953). 

to examine the validity of such an expansion. 
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For reasons of simplicity, and because comparison with experiment was 

not an object of this work, the calculations were limited to consideration of 

the lowest order interaction corresponding to theecchange of one meson. In 

particular, the coupled equations between the positive and negative energy 

components of the wave function for the first non-adiabatic approximation were 

examined. The "potential energy" parts of these equations are of the form of 

integral operators. The assumption of a short range hard core allows one to 

limit the investigation to the asymptotic region (r""' -tl/ f-LC), where these integral 

operators may approximatelY be replaced by multiplicative potentials, correct to 

/: 
. 5 

order f-A m of the leading term • The velocity dependent terms were neglected. 

5 2 
The inclusion of ( ~ /m) terms would, for consistency, require a treatment 

of the second non-adiabatic approximationo 

Beyond this, no further· approximations were made. Although the negative energy 

components were found to be fA /2m times smaller than the positive energy 

components, the perturbation expansion of Levy and Klein completely alters the 

structure of the potentials and thus appears to be incorrect. 

While this conclu~ion could have been arrived at in a more direct fashion, 

the development of sections III and IV was included because of its more general 

applicability to equations of the type considered. 
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II. Wave Equation for the First Non-Adiabatic ApProximation. 

We brieflY review the derivation of the first non-adiabatic approximation 

to the ll+ interaction given by Levy and Klein. The wave equation in momentum 

space, after the separation of the center of mass motion, is
6 

6 
The natural system of units 11 : c = 1 is being used. 

and_, \'5 = X, '1 2 ¥3 '10 

(: ', ' .. 

[ (t~ + Fo)-Ji,].[.(i ~ -r~)-~J-tz]+ (p) = S r (p, p')lf(r')dr'. 

' ·:.) 

""P. = total -energy 

where 

I(p,p') 

To obtain the first non-adiabatic approximation the following ansatz for 

If (p) is inserted ·on the r.h.s. of equation (2.1): 



7 where 

-5-

+ c :I\ p ) c ~) ( p ) . ~ ( 1 ) 
- ,__ - ,.,.,.,. 

c ;I) . ( l ) c ~z) (f.) ~ ( t ) 

UCRL-2402 

7 As pointed out by Klein, such a definition of X (t) gives results that are 

equivalent to those obtained from the Tamm-Daneotf method, which allows one 

to overlook the tact that it is somewhat inconsistent. 

¢(p) is the equal times wave function defined- by 

(2.4) 
' ~ . •' . 

and C ± ( =:. (o1, 2)) are the usual Casimir projection operators. Carrying out 

' the indicated integration over p
0 

and integrating both: sides with respect to 

p0 , one obtains t~e desired three dimensional equations 



-6- ' 

where 

and 

~ (1 + E:~ +- Et- EKEt) 

in the notation of tev,r8• 

UCRL-2402 

I - '/4 ( E • - f J ) ( £ k - E L ) 

4 WK -

(2.6) 

8 l_ Cf. Ll, equation (42). The factor :e(l + E ~ + E:t -f,.€,~.) has been inserted 

to take account of an error in sign appear~ng in that equation 9 

It is convenient at this stage to retum to coordinate space. Eq. (2.5) 

then becomes 

. 
(2.7) 
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where 

The assumption of a short range repulsive core limits the region ot interest 

to values ot r N 1/f-l. o Since V(r, r') is a function sharply peaked at 

,! ~ ,!' , f V(!> !') ¢(r )cfr• may be replaced by 

~ 

J (P r I v (t . r. I ) cp( i ) ::: V ( r ) ¢ (~ ) 

where 

V ():) =-(·ur r j a• R e'k·J: t:·> ( ~) C ~·~ (~) A C ~~ ( o) c:•> ( o) 

, K :~~ ( ~ . o) 
~ (2.9) 

Furthermore the potential V(r) can formally be expanded i~ the usual power 

series in p /m • To order ~/m or the leading term, the functions K~~t 

·become9 

9 In the expression for K~t in (2ol0) the velocity dependent terms were 

neglected, since to investigate them consistently would require consideration 

of terms in the fourth order potentialo It is not totally clear that the.y 

will cancel, as they do in the work of Klein .• 



1-\ II -
II 

I -
w~ 

I/ 1'2. . 2.1 

) f\ II = K II -
2.'2 . I/ II 

1'\ II = - r\ 2.'2. 

K '2.1 - K 12. - ~ 3 
I?. - 21 - 2.W~ - 8_w_K_E_I< - ,... 

_g_ .. t'' 

Kll 
1'2. 

I 

4 E~ -
. K '2.'2 

1'2. 

. 
..) K 'L.'l -

'2.t. -<tw~< f?K 32. E; - ,... ,.,. 

(;.)! ::: (~'- + ~'L )'1~ 

• 
) 

1/ II 
r\.21 -

K 1'2 
1'2 

+ 

I -2.w~ 
K'2.' 

'2.1 

=·-

.. 
) 

0 

(2.10) 

-· 1/'2.1 
- r\2."2. 

By a. straightforward but tedious calculation the potential may be recast in the 

form 
' ( ,· 

v (.r l = 'a' '1, • 'I,_ [ v, Ct: ) - ( I''" + ~ '') ) v, ( r. \ 

- ( ~(·: 1- ~{~). t )~ v~ (~)- ( :((I·}J:- t{?.~!) ~ v't r~) 

- (~l•}il~)p- ~("1) '(l'!_e )..!- Vs(!. \-(~Mo(t,.>.b- p,l"L)o<('~. p)..L V, (y;) 
~ r ,_ m -..!.. r,..,_ _._ rn 

_ ~~~~ ~~>~ V7 (r..) J (2.11) 

where 

v~ ( t) v~ (.@) 



v, ( l) rn 
4w~ EK - -

v~ ( ~) 3m -
32. W~< El(,. 

.... -
Vs (~) n• = 8w: ~K - -

4W~ -

. 
) 

+ 

El\ + 2nr ,.,. 

/6 W~t E~ ... .... 

v+ ( R ) ,... 

ttl 

!bwK E!" --
n1 +- 2 E ~ 

({; W~t E~ - ,... 

UCRL-2402 

Vt(~)= 
5' rn + 3 E~ E~- m 

32 WK £~ ~ w: El< ,.. .-
,... -

m n1 
2w~ EK l=t.. 16W~~: -K - - -

(2.12) 

\{ (~) n1 -) -
32. WI( E; - ,_ 

The equation (2o7) involves the sixteen component wave function ¢(r). The 

next section is devoted to a natural rearrangement of the component equations. 
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III. , Reduction of the 16-Component Equation. 

The 16-component wave function may conveniently be labeled by two 

spinor iridices~ (e'ach running from 1 to 4) ¢o<.o <r), where the Greek index is 

chosen to refer to particle 1, and the Latin index to particle 2. In this 

scheme ¢(r) may be viewed as a 4 x 4 matrix9 The left hand aide of (2.11), 
I'M. 

when in matrix form gives: 

(3 .1) 

where 11f'v'" denotes "transpose", and the derivatives in the last term act to the 

left • Defining a new function 

(3 .2) 

. 10 
where C is the usual unitary charge conjugation matrix , the r.h.s. of (3ol) 

10 
• 
) 

c 

.becomes 

{3.3) 
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The matrix may be expanded in a complete set of 4 x 4 matrices11 

ll Cr ot for example, R. Finkelstein, Phys. Rev. ~~ 555 (1952). 

where the r;-
1 I are the sixteen Dirac matrices: 

r: = 1 ; r" f 

(3.4) 

The f index may alternately be specified by the set of numbers (s1, s2, s3, s
0

) 

which can take on values 0 or 1. They are defined by 

where 
f":O 

Manipulations similar to the ones leading to (3.3) can be carried out 

for the right hand side of our equation. Inserting (3.4) in equation (2.7) 
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and cancelling C on both sides one obtains after some rearrangement 

+~ /'c(t+l-t)''+S')(C-tl'' V.(r) + 3(-1)'•~ V3 rr))~~ ¥;~ r; 
+ A r: (- I ')cr VL ( r ) ,(I - (-I Jo--Sa ) ~ r ~ 

+ :n p; ( (- I ) ~ V4 ( r ) + (- ) 1 
+So \1.( r ) ) ( / + (- I r + s; ) '( r; J 

,: . 

On the roh.s., the Pi operate both on the potentials and A~ 0 

The equations for the i\; (!:) may now be obtained by multiplying (.3<?6) by 

rr' r p • and taking the spurs of both sides. Introducing the notation 

./\. 
' 0 

(A: ~~ ) A lo :::: A o Q - Oa ) ' '' ) - (.3.7) ,..,.,... 

H = ( i\ ~3 ) ' ' ' A ~'L ) E ( A~. I " A ~3) ----- ) ...-.. 

' 

A ( A~n J A !.2 ) /\~ 
3 

\' .A Lt - = >. 1'2.3 -,_.. ) ' 0 

one.· obtains the set of eight equations 
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fo .1\ - 2_t· ,S_ = '1'\. '1, · T?. [- !\_ ( V, +- V7 ) + ~ f · § ( V3 + Vs-) (3.8&) 

+ 3. p . a ( v + +- v, ) ] · · m ,... ,.__ 

- f. S!_ - 2 f X ~ + 2m §: = ~~ 1", •lz [- ,9 ( V,- V7 ) -::- 2 §_ V'4 

+ ~ 1: X ~ ( Vs- v3) 4- ~ t A (V,- v4 )J 
Oo ::::. 0 · 

P. §_ - 2 .t 1\ - Z m .9 = <;j 
2 

T, • '1, [- S: ( V, - V 7 ) - ~ t 1\ (V s-V • ) 

- ~ p x ~ (V~-V4 ) - 2,g v,J 
,_ 

-P.~ + 2_tX9. - q'I,·T.._[-~(V,+V7 )+~):x~(V,+V,) 

+ ~ l X s ( V, + \/q ) J 

- P. l::\ - 2 f r =- <a' T, · i'- [ li ( \1, + V7 ) + ~ f r ( V5 t V3 ) - ~ pA. ( V, + V + ~ 
. IV"' 

P. A. + 2rn r = ~· T, · T, [A. ( V,- V1 )- 2 r V, - ~ _E: !:1_ ( V, - V~ )] 

P. r +- 2 rn >-. + L,t· li_ = <;J 
2 -r. · T2 [- r ( v, - v7 ) + 2/\. v. 

' . 

+- 1:.. p .. H ·(· Vs-·- V )· ·]·. 
II) _... """""' ~ 

(J .. 8b) 
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As can be seen, the equations split into two uncoupled sets (3o8a and 3c>8b) 

:involving 1\ J 0 J E I A and r, /\0 J H respectively. In the non-relativistic ,.,.,.. ,..,.- ,._ ' ~ 

limit; the first set corresponds to the charge singlet state and the second to the 

charge triplet stateo Each set may further be rearranged in terms of positive 

and negative energy components by making use of the fact that 

4 /\u 4 = Z A; { (H-)""'•) 1"',"" + (1- (-t)o-->.) ~ r~} C 

= 4 cp±t 

+ /\±.+ <P = Z A~ [(1+(->)~-s.)r;+ (1+1-t)""-s·~r;-}c 
I 7: 4 cp+-

-t-

12 where 

(3oll) 

12 These definitions differ from those of Levy and Klein by terms of order v/c. 

In their work Casimir operators replace our 1\ .t. • 

4-1\++ _ (It-~~ ) (1 + ~'Z) ~ 41\+- =. ( I+P, )(1-~.l) 
e.t.c. 

Equations (3ol0) and (3oll) imply that for the triplet state 

-

(3ol2) 

.(Jol3) 

~ +- ~ ~ ( It~) ( !\ - L _g- • ~) C ; ~-+ = ~ ( 1- ~ J (I\ + L g · ~ J C. 
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and for the singlet state 

{3o14) 
~-~-~·=t(1+~)¥,~,'t3 C (~[)- r); cp __ =~(1-~J~,¥~~lC (Ao+ r) 

4>+- "t(lq,)(-Lg-. !:[) C ; ¢_+ = ~ (1-~)(-Lz·J:!)C 
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IV. Angular Separation. 

The angular momentum integral allows one to separate the angular 

dependence of the wave function" For a system in a state J, Mj one finds 

where L is the orbital angular momentum operator o Hence the quantities -
satisfy 

0 

( tv\ - Lt) S = 0 

and the quantities Q • E 1 A 1 H 
N#' ~ ~ ~ 

satisfy 

( J?.- L'- 2.) V 
~ 

2.l- LX V 

= L VY. 

( M - Le) Vc D 
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13 m Y"' The latter are the equations for the vector spherical harmonics Yl t > fL t > 
,..:.( ,_. 

13 
Cf. Kemmer, Helve Phys. Acta. !Q1 47 (1937)~ H. Corben and J. Sch~nngers 

Phys. Rev. .2§., 953 ( 1940) • The notation used is that of Kemmer. Note the 
I'll 

three components or a YJ l -
and - 0 + etc. 

etc. listed by him correspond to 'r{ _ , I'{ : 

To decide upon the correct combination of these functions we make use 

of the generalized parity operator 

TI (4.5) 

(which reduces to the ordinary parity operator P in the non=relativistic li."llit). 

Since 

and since the triplet and singlet wave functions are separately eigenfunctions 

of 1T (with eigenvalues ±1), one finds th~t the most general form for the 

functions is 

1\ ( . y'"'~ ul 11.) ::r 

Cl 



, 
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lVI M 

E U.q.('t) X !1-· + Us h.) 3" :ft I 
~ I'M rM (4o7) 

A 
·M u, (rt.) Yl:r 

roN' ,..._. 

r - v, {rt) Y;' -

/\I) ·- \/z ( rL) Y~' 

1-i h. ') )( tvl lVI 
.-· Vs + V4('lJ 'S" T-t I :i- I 

"""'' "'"'' """"" 

where 'U 1 1 ... lA (, ·, V, . V4 are radial functions. 

After substitution of these functions into (3o8a,b) the angttiar parts 

may be divided out and general radial equations obtained" We state the 

results only for the J = 0 (triplet charge state) and J :: 1 (singlet 

charge state) cases: 

J = 0 

(P
0

-2m)f.H -t·· L (d/ctr+2./r)~ :::::. ~1.1":-T-z. [(VI-V7-2V:a.)·F-- c4.$a) 
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l P~ + ~'lit· Ta ( V, + V1)] v4 

-2. [ cl./ar [ f++- { I + (OJ' T,· T,_fm)( V1 + V,.. t- \1
5 

t-V,)} 

where f++- = y, ( \)'2- v,) and f-- = 'A {'LY-z + v,) 0 These linear combinations, 

as may be seen from equations (3.14) and (4.7), are the radial parts or ¢++ 

and ¢__ respectivelyo 
5 

For the J = 1 case, we similarly define the quantities f++ = '/z. {U 1 + U+) 

+~- = 'h .. ('U2-'U4)) f~+;:: 1/?...{'U)+'Us-) I f~-· = 1/-z. ('U.l-'U,s-) 

which are the appropriate radial functions for the i. = 0 and· t = 2 states. 

Writing U~ = - ~ Jiu. 1 l 'U:: JSu, we obtain 

(Po- am)f:+ + 113. (d./o.~-+ 2 /r) ( z.u~ + u~) =ft·T'l. [ f_s_ ( V,- V?- 2V1.) (4.9a) 

- '/1 n'i ( Gil/ e\ r "f- 2/ r J f ( v 5" - v Lf + v ~ - v~ ) ( 2 u ~ - u ~ ) } J " 

(4.9b) 
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(Po-2m)f!. + VJ(d/~r-Vr)(U~-ut)::-<1tT,·l;[t-~ (V,-V7-2V'L) (4.9c) 

- 1/3rn ( o\f~r _: '/r·) [( vb ~ v~- v.., - v3) ( u: + u /) 1 J 

( Pe. + 2 m ) f ?_ + 1/::. (dId 'r - '/ '( ) ( Ll: + ll / } = ~ z T, G r, [ f T: ( 'Vt - v 7 + 2 v?. ) ( 4. 9d) 

+- '/3m (4/a.- 1/r) [ (V, t V,- V4 - V3 )(u; -u:)}] 

[ -p 0 + ~ ,_ '11 • r~ ( v, -r v 7 ) J u ,' ~ 2 r:l/ ~ r ( f; + - f ~-) 
(4.9e) 

- 4 ( d(<J.- + 3/v-) ( f+1>~ - f' ~) +- 29.'T,· T,j m [f.. f ( V3 t Vr) (f;. -f!..) 

+ (Vb+-V~t )(f+~ + f_:_)J -2 (d/aY +3/r) f(v~ t Vs-)(f1:- f~~) 

-r ( v, + v~) (f~~ + f_,_ \] ] 

+ 2 (tl(dr + 3/v )(f .. ~+ f~) - 2q'T,•Tt/m[d/clr[ (V3-t V,) (f +st + f.:) 

+- (VGt V~)(f;+-· f:_) t (cl/c\r+ 3(r ){(Vl+Vs-)(ftfi f-~) 
' 0 A ' 
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V. Discussion of the J = 0 and J = 1 States. 

The quantity v4, which is related to the ¢ +- and ¢ _ + components in 

the J = 0 case, may easily be eliminated from equations (4.8 a,b) with the aid 

of (4.8 c). One thus obtains a pair of coupled differential equations for +~+ 

and f __ • Separating out, in the first equationJ the quantity - '/rn (d'l./~rl..+ ('2../dd(dr )f++ 
which is the kinetic energy structure with reduced mass, one obtains 

(5.la) 

(fo +'2m) f __ 

14 
· The remaining terms were not explicitly written down as their structure is 

not germane to the subsequent discussion. Th~ consist of velocity dependent 

potentials generated by the elimination of the ¢+ _ and ¢ _ + component·s) 

and of 1--L/m correc~ions to the leading potentials .• 

Setting P 
0 

::: 2m and neglecting fA /m corrections to the leading potentials, 

the first two potentials on the r.h.s. of ·(5.la) become· (see 2.12): 
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(5o2a) 

and 

~1. 
----. ------ ----
(z m +- (~2/nr) T,· T'-

(5.2b) 

>< ( I + 1/ ~ r ) "L e- '2 ~\ '( I ( ~ y )''-

(In obtaining (5.2a) the contact term has been dropped.) The first ~otential 
clearly corresponds to the usual Yukawa potential modified by the factor in the 

denonunator. Upon expanding this denominator one obtains 

[ 1- V~(~ 1/4TT) "·T, (~/-zm)e-~ff-w 
+ .... ] 

(5.3) 

While the second term in (5o3) is of order rz/2m of the leading fourth order 

potential obtained by Levy and Klein, it appears from (5o2a) that an expansion 

of the denominator is poor in the region r ;S 1/ 1"- (for g2/41T' ~ 2m/~ ) • 

The second potential, (5.2b), corresponds to part of the one-pair terms obtained 

by Klein, modified by a similar denominator factor. If one elirrd.nt1tes f by 

perturbation theory, which to first order would correspond to neglecting the 

"other terms" of (5.lb), one obtains a two-pair term which is however of order 

~/2m of the dominant two-pair potential of Klein. This potential o~rresponds 

to the two pair structure when both are in the field at a given time. The latter 
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case arises in the second non-adiabatic approximation to the Li + interaction 

(and in the crossed meson diagram (cr. 12, Fig. 1, a1, a2)), the first non-

adiabatic approximation apparently not allowing "sufficient" retardation for su~h 

a situation to occur15. 

15 ' 
We may remark parenthetically that the ~/2m two""pa.ir tenns mentioned above 

will cancel with the ~ /2m correction to the dominant two-pair structure in a 

perturQation scheme, as shown b.Y Klein. To see whether this will happen in the 

present approach, would require detailed calculation. 

The rest of the one-pair terms come from a similar source •. 

Turning to the J : 1 case, it is clear that the elimination of U 1
1 

and u: in (4o9 a-d) via (4~9 e, f) will yield denotninators of the structure 

l'o + ~'l I,. T'2. ( V, -1- v7 ) Since T, ·T'l. = - 3 the upper sign 
-1-1/ 

produces a singularity which occurs approximately at the zero of 2.rn- .3/, (~f41T )e tr 

iQe., at r~0.71i/fc for '~~tt1T = 2m/!A. 
1'-

16 
A·s:iinilar calculation using the lowest order kernel recently derived by 

Dyson, Phys. Rev. 21, 1543 (1953) in the new Tamm-Oancoff formalism does not 

alter this conclusion. 

Although it is not necessarily true that the above singular behavior persists 

in the more rigorous equations containing integ~al· operator potentials (because 

there the explicit elimination of the ¢+ _ and· ¢--+components is not possible), 

it is certainly clear that the perturbation expansion is invalid for ~Xtrr ~'2m/fA. 
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.. \ 4' \ 1 

If one now proceeds to eliminate all negative. energy';C:omponents in a < · 
. ' '· . 

perturbation fashion, one obtains the follo~dng equations, to lowest order 

• 

(5.4b) 

where 

v 'c - ~ ( ~ 't/41r ) ( ~ /2 m ) ~ ( I -r 3 /~ Y" -t 3 I ( , .. {\") t ) e- tA y I r 
'\ 

It is interesting to observe that the tensor and central forces do not appear as 

in the usual structure (e.g., 12 equation (71)). The reason for this·may be 

seen by returning to equation (2.9). TWo of the terms appearing in the 

integrand of the potential are 

Taking the non-relativistic form of these two structures one obtains 
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and 
(5.6) 

-·'h..(i/4 rn) '(~1 ) (I-t ~( 1 )) ~(~).J: (1 + ~Cz>)- (Y4m )~ (;!:(~J )(It~ (•\) 
• '. 'J ( o:(t) .. ! ) ( 1-t ~ {t)) 

respectively. The first term is the one considered by Levy and clearly yields 

the usual tensor force in the ¢ ++state. However, adding the two expressions, 

the tensor part disappears, leaving only 

1/2. ( 1/4m) Yt) (It ~(•)) crl
2

) .. p ( 1-t-~c 1~) --.- (5.7) 

Had one made a perturbation expansion on the second of these terms, its effect 

would appear as a fourth and higher order potential. On the other hand, from 

the cancellation observed here and elsewhere in (~o9) one sees that these higher 

order potentials sum so as to repla9e vt w by ,Vc. 'UJ in C5o4a) and 

•. 



VI. Conclusionso 

The procedure utilized in the preceding sections allows one to examine 

the validity of the perturbation treatment of the negative energy components. 

It was hoped at the outset that the avoidance of one of the perturbation 

approximations inherent in the Levy-Klein program might lead to a convergent 

series of potentialse This now appears to be doubtful. The pole that appears 

in the potential for the deuteron ·seems to invalidate the t--~/m expansions which 

are necessary to replace the integral operators by multiplicative potentials. 

Aside from thiaJ the large nmnber of t-J/m corrections to the leading potentials 

tends to cast doubt on this method~ 

Perhaps a more dist•1rbing feature is the change in the structure of the 

'Jsual tensor interation. Here one has an example of a series of supposedly 
) 

"small" potentials, adding up so as to modify the lowest order potential. This 

phenomenon is independent of the size of the coupling constant, and hence is 

characteristic of the pseudoscalar nature of the interaction only. 'l'he 

possibility is thus raised that other "leading" potentials may similarly be 

modified by series of terms not even considered in a perturbation scheme to a 

given ordero 

To see whether these difficulties occur in higher order approximationa 9 

would of course reouire detailed calculationso 


