
' 1' 

. -
-~ 

UCRL 

UNClASStifufEiiT 

UNIVERSITY OF 

CALIFORNIA 

TWO-WEEK LOAN COPY 

This is a Library Circulating Copy 
which may be borrowed for two weeks. 
For a personal retention copy, call 
Tech. Info. Division, Ext. 5545 

BERKELEY. CALIFORNIA 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



.. , 

'·· 

UCRL-25922· 
Unclassified Physics Distribution 

UNIVERSITY OF CALIFORNIA 

Radiation Laboratory 

Contract Noo li~740S~eng-48 

Compton Scattering on Nucleons· 

Richard Harold Huddlestone 

(Thesis) 

May 24.? 1954 

Berkeleyll California 



.. 

COMPTON SCATTERING t'ON NUCLEONS . 

Richard H. Huddlestone 

Radiation Laboratory~ Department of Physics 
University of California~ Berkeley, California 

ABSTRACT 

A classical calculation has been carried out to determine the 

effect of nucleon structure upon scattering of photons. This structure 

is provided by a pseudoscalar field with gradient coupling to an 

extended source of size ajk = The nucleon is coupled directly 

to the electromagnetic field by means of its Dirac magnetic moment. 

The results for both charge-symmetric and neutral pion-nucleon 

coupling are obtained. It is found in both cases that the scattering 

exhibits a resonance near ~~ = 1.4 for coupling constant 

g
2 
/4 71 :;: .3 0 

The angular distribution is symmetric about e : 1//2 for 

the neutral case~ but shows a forward peaking below resonance in the · 

charge-symmetric theory. This peaking shifts to backward angles above 

resonance. 

The general features of this calculation indicate that 

observation of the scattering of photons in the appropriate energy 

region might provide a sensitive means of studying the structure of 

nucleons. 
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Io Introduction 

A fundamental problem of current physical research is the 

investigation of the nature of elementary particleso Nucleons (protons 

and neutrons) are important as the constituents of atomic nuclei and an 

understanding of their properties is a necessary basis for the theory 

of nuclear structure. Information concerning the nature of nucleons 

may be obtained through study of their electromagnetic properties, eog. 

anomalous magnetic moments
1 

and the neutron-electron interaction. 2 

Both of these effects have been studied theoretically on the assumption 

that they arise out of the nucleon-meson interaction.
3' 4 

The st~cture given to the nucleon by this interaction will 

also modify its ability to scatter light. Corrections to the Klein-

Nishina cross section for the scatte~ing of light from Dirac particles 
5 6 

have been calculated by Sachs and Foldy, and Minami, using weak 

coupling perturbation theoryo The present paper deals with a classical 

calculation in which some of the meson effects can be included to all 

orders in the meson-nucleon coupling coupling constant, in particular 

those having to do with the gyration of the nucleon spin and isotopic 

spino Such a treatment leads to results qualitatively different from 

the weak coupling calculationso 

Experiments on the scattering of light from nucleons at energies 

up to several times the pion rest energy can be expected to provide 

information about the virtual meson cloud surrounding the nucleon. 
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II. Description ·of ·the' Mddel · 

The nucleon has ari'intrinsic angular momentum or spin of 

l 11, (il = h/211' where ·h is Planck's constant), and obeys Fermi-Dirac 

statistics. Consequently, if it were coupled to no other·fields, its 

field amplitude would satisfy the free Dirac equation~ To describe the 

production, absorption, and scattering of pions by nucleons, the 

nucleon and pion fields are coupled together by a relativistically 

invariant interaction. It is generally assumed that this interaction 

provides a.major part of the nuclear forces acting between nucleons, 

at least·in the energy region well below the rest energy of heavier 

mesons. We wish now to consider the way in which the pion-nucleon 

coupling modifies the photon-nucleon·scattering process. 

The scattering of light by a free Dirac particle is given to 
2 2 

order of ( o( = e /41(11c is the electromagnetic fine structure 

.,; constant) by the Klein-Nishina cross section fonnula.
7 

Because of the 

pion-nucleon coupling the nucleon is surrounded by a virtual pion 

cloud, This cloud affects the scattering of light directly through its 

charge and current and indirectly through its dynamical interaction with 

the spin and isotopic spin of the nucleon. 

To distinguish between the two modes by which the scattering 

is modified, calculations have been performed for both charge symmetric 

and neutral pions. Since the latter are not directly coupled to the 

electromagnetic field, and comparison of the two models will permit a 
•' 

separation of the effects. 

The problem will be set up in a relativistically covariant 

manner and equations of motion will be obtained for the nucleon, pion, 
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and photon field amplitudes. Terms involving nucleon recoil will then 

be neglected and the nucleon source density will be identified. 

Equations of motion for the·expectation values of the nucleon spin and 

isotopic spin can then be derived. These spins are the dynamical 

variables in terms of which the static nucleon is described. The 

pion-nucleon coupling can then be treated to all orders of the 

coupling·constant. In this way both weak and strong coupling limits 

can be evaluated in the static nucleon limit. 

The meson field will be chosen-to correspond to pions and 

.therefore will be a pseudoscalar field describing particles of mass 

2 ;;-·"t. 140 Mev/c and spin zero. The pion~nucleon coupling' is taken 

to be pseudovector which reduces to o- ·~ ¢ · in the static limit. 



IIL Derivation of the Static Nucleon Limit 

In order to trace the connection between the covariant field 

equations and those describing the static nucleon approximation we begin 

with an appropriate Lagrange density from which the relativistic field 

equations for the nucleon, photon9 and pion may be derived by the use of 

HarniltonRs principle. 

The Lagrange density describing these fields will be taken to be 

.:t, (x) = - o/ l ((yD.,; -t- M J o/ - ! [Jiv¢. 1IJ + ;l ¢2 ] - ~ ~-YFf.y - ~,If.) 
(1) 

where (/J(x), the nucleon field amplitude, is a two-component symbol in 

the isotopic spin space of the nucleon and a four-component spinor in 

- * 'P (x) = '/' (x) '64 * , where (/) (x) ordinary spin space. The amplitude 

is the Hermitian conjugate of ~(x) and the ~ (?1:: 1, 2, 3, 4) are a 

set of Hermitian operators in spin space which satisfy the relations 

The operator 

D 
)> ~ = ie ~p A.y 

<? '.y = 1' 2' 3 ' 4) 

(2) 

( -,) = 1, 2, 3' 4) 

(3) 

where d.J =a/ fix.; , with x4 = i x0 • The proton electric charge 

is denoted by e, Ay(x) is the four-potential of the electromagnetic 

field, and ~ is the operator in the isotopic spin space of the 
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nucleon having eigenvalues of + 1 and 0 for the proton and neutron 

respectively. (We have chosen' natural units such that -tr::: 1~ c = 1). 

The nucleon and pion rest masses are M and ~ ~ respectively. 

The pion field amplitude, ¢(x)i is a three-component vector 

in the isotopic spin space of the pion. The operator 11...; acting on a 

vector ~ in the isotopic spin space of the pion yields 

ax 
'}) 

(")) :1, 2, 3, 4) 

' (4) 

~ 7Y 
where X X .-c is the vector product of -+ ~--;r and a unit vector~-

with components (0~ 0, 1) in the representation in which 

The isotopic spin operator 
_, 
I= is a vector in pion 

isotopic spin space, having as components the Pauli spin matrices in 

nucleon isotopic spin space. With ~ defined in this way, ~p may 

be expressed as 

(5) 

(From this point on the arrows on isotopic vectors will be omitted, 

and juxtaposition of two such vectors will denote the inner product.) 

The electromagnetic field ~y- is given by the antisyrnmetric 

tensor 
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(6) 

The final term in the Lagrange density is the pion-nucleon 

charge symmetric interaction, where 

(7) 

is a pseudovector in configuration space and a three-component vector 

in pion isotopic spin·space. The Hermitian ope,rator 

anticommutes with the~ (-.) = 1, 2, 3, 4) and satisfies the 
2 

condition --(5 = L Finally, g is the pion-nucleon pseudovector 

coupling constant, and a factor 1~ is included to make it have 

the dimensions of a charge. 

In the·case wher~ only neutral pions are coupled to the 

nucleon, its isotopic spin will be a constant of the motion. The 

classical equations for the neutral case will be inferred from those 

of the charge symmetric theory in order not to duplicate the derivation. 

In order that the variation of S ct4x S,. (x) vanish when 

~(x), ~(x), ¢(x), and A~(x) are varied independently, the field 

amplitudes must satisfy the equations 

0 
(8) 
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and 

-ie 

To obtain,:the static approximation for the n~cleon field, we 

make the usual decomposition leading to the nonrelativistic limit 

'f (x) = .{)_ (x) t :X (x) 

where 

and 

· X<x) = i(l - ~) ip(x) . 

Making use of the anti commuting properties .. of the 

"(.y ( ~ = 1~ 2, 3' 4) . and r5 ~ and multiplying equa:tion (8) 

from the left by !(1 + Y'4): 

(9) 

(10) 

(11) 

(12a) 

(12b) 

I.o4 t M ""~ · Yk 'd5 1 l4clil ]..n... t[ YIA + ,;t y; r 1I4¢ ].X = a 

(13) 

where the Roman subscript k is summed from 1 to 3 only. 

Similarly, multiplying equation (8) from the left by i(l- ~4)~ 

0 0 

(14) 

.. 
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The energy of the nucleon may be written as the sum of its 

rest energy and a term W which includes its kinetic energy and 

interaction energy, and which remains finite as M approaches infinity. 

8
4 
\f = -(M + W) ljl . (15) 

Substituting into equations (13) and (14), we obtain 

and 

b•knk -~¥57' ll"JJ'l J.n. + lw +2M HeA4 7'p t ~ ~ '15 7' ]"k~1 )' = o . 

(17) 

:\ 

If we expand 'f (x) l1in inverse powers of M 
l. 

lfCx) 91n) (x) 

the equations for ¥Jco) obtained by equating equal powers of M in 

equations (16) and (17), are 

[ -W- ieA4 rp + !g 'l(k Y5 r Ilk ¢ J 11co) = 0 

fA- (19) 

·and 

):'(0) 
- 0 (20) -
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In the limit of a fixed nucleon of infinite mass 

(j)(x) M~ ..f1.co) + A(o) = ~o) 

Redefining the zero of energy to eliminate the infinite mass 

term~ W is then to be identified with the energy operator ia = 
at 

If we choose the spin representation so that lfk = -i~ l(k 3 

(21) 

~ = ~ where ~ k' ~ are the usual anticommuting Dirac matrices 3 

then it follows that 

I 

= i~~ 
(22) 

where 
cr-k I 

0 <1k c I Q 
I 0 

I . 

- -:---
I 

o(k - f - CJk = I - ~ - ' 
' 0 0 ! -I 0 I c:s-k 

(23) 

are 4x4 matrices expressed in terms of the 2x2 unit matrix I and 

the Pauli matrices ork 3 which satisfy the relations 

( E.., 'k is the completely antisyrrnnetric pseudotensor which vanishes 
~J . 

(24) 

unless all subscripts are distinct, in which case it equals + 1 (-1) 

for even (odd) permutations of (i, j 3 k).) 

.. 



-12-

The equation (19)-for the static nucleon amplitude has been 

obtained by neglecting all inverse powers of M, the nucleon rest masso 

One such term, the Dirac magnetic moment interaction, may be written 

in the form 

- ~ cr-?.y ~')) = e 
2M 

Cfol{ (25) 

where 

~y = ~v) a; 
.., ~ 

and H = curl A is the magnetic field. Since we can consider the 

nuclear magneton /A-o = e 
2M 

to remain finite for a static nucleon, 

we shall include this spin-dependent term in the nucleon field equation, 

even though it is of order M-1 , to obtain 

where 

o_r{s = 

and we have replaced -'1-a by r which therefore has only two 

nonvanishing spin components, 

= 

., 
so that ~ ~k lf simplifies to o-k 'f. 

(26) 

(27) 

(28) 

The nucleon spins are the only dynamical variables describing 

the nucleono It is therefore desirable to identify a spin density 
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<S))(x) and an. isotopic spin density "( k (x) , and to express all other 

nucleon-dependent quantities in terms of these. 

The nucleon-dependent terms occurring in the pion and photon 

field equations (9) and (10) are of two types, which may be simplified 

to the following form by the use of equations (22), (23), and (2S), 

(29) 

where 

G4 = 0 

The second type of term is 

(30) 

To elaborate these expressions, we begin with the anticommutator· 

between * Cfe i (~) · and lf e' i I (Xi) at equa•l timeS' ·Where the f · iS 

are s~in and isotopic spin indices respectively, and i 1 s 

(31) 

this allows us to write 

* y 
(/J'(i (x) -~) 

* -1:- . I * * i = f Cx) ~ ~(x) <f (x') r ~(x ) + tf Cx)~ lf Cx') tjJCx)1tjJCx ) 

' (32) 
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The last term of this equation has two ~(x) factors on the 

right which annihilate nucleons or create antinucleons. The creation 

of antinucleons will correspond to vacuum fluctuations in the nucleon 

field. In deriving the classical model, we shall neglect all such 

effects.· The remaining term that annihilates two nucleons gives zero 

when acting on a one-nucleon state and so vanishes in the p·resent case, 

If we now identify the spin and isotopic spin densities to be 

T(x) = * t (x) ~ 'f(x) (33) 

and 

y;* (x) ~ lfJ (x) (34) 

equation (32) may be written in the form 

6(x- x 1
) f(x) ~ r lf(x) = S-J(x) T(x') + (2 nucleon terms) • 

(35) 

Neglecting vacuum fluctuations as was proposed above, we notice that 

the product term on the left has been separated into an ordinary spin 

density multiplying an isotopic spin density. This product is seen 

to vanish unless the two densities are taken at the same point, I 
X::: X 

and furthermore this point must be the origin in order that a function 

of (x- x 1
) on the left wilL be equal to a product of separate functions 

of x and x 1 on the right. This will occur if ~(x) and .T(x) are 

each proportional to ~ (~)' and so we write 

-+ _, 
8(x) (36) S(x) = o-(x) 

and 
T(x) = '/(x) o(x) (37) 
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whereupon equation (35) takes the form ,, 

y;* (x) ~ i tfJ (x) = CS"'.y (x) /'(x) &<x) (38) 

The infinites presented by S(x) may be removed by spreading 

out the point nucleon to a source of finite size, which .·we accomplish 

by replacing the delta function by an extended source U(x) with the 

same volume integral. Equations (36) through (38) are then 

~ ..... 
S(x, t) = CS'" (x~ t) U(x) 

T(x, t) ::: 'r (x, t) U(x) 

and 

* tf (x) Cl)J r lj)(x) : cr'.,;(x) r(x) U(x), 

where the fixed source is normalized to one nucleon, 

The equations of motion for ~(x) and ~(x) may now be 

derived from the equation for 'f (x) • F.or ~ (x) , we find, using 

equations (39) and (41) and dividing both sides by U(x), 

·a 

Q2 (x) = i tp* (x) [ (fs, ~ ]_ lJ)(x) 

= 2 \1!* (x) (ji 7' at X D~(x) + f"o 7'P ~X it(x)] 1/J(x) 

= ~ (x) X 2 [,J 7'(x) Ii ~(x) + jA-o 7'p H'(x)] 
..... 

(39) 

(40) 

(41) 

(43) 

where the dot over ~ signifies differentiation with respect to the time. 
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Similarly for / (x) ~ 

(44) 

= ?'(x} j. 2 [p '& (x} • J]¢(x) ~ ~ ..( ~ (x} ~(x} - i ~ ,(A4(x}] • 

The introduction of the spin densities will also modify slightly 

the form of the pion and photon equationso In place of equations (9) 

and (10) we have, by direct substitution from equations (39) through (41), 

where ~ acts upon the entire bracket expression, and for the 

photon field 

+ e¢(x) X ,i. • [ [.y¢(x)'- JL 1Cx) ~.y(x) U(x)J 
)N 

where the Dirac magnetic moment term has been added for reasons 

discussed previouslyo 

(45) 

(46) 

These two equations~ together with the spin density equations 

(43) and (44), characterize the interaction of the pion and photon 
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field with an extended nucleon 's~urce. The way in which this extension 

has been carried out is not unique and is to be considered merely as a 

heuristic device rather than as a precise derivation. 

The equations at.which we have arrived involve point interactions 

between certain spin densities and the other field quantities. It will 

now be shown that the introduction of these spin densities has preserved 

the differential conservation of the electromagnetic current densit~. 

From equation (46) for the electromagnetic field, the current density 

is seen to be 

- e ¢(x) X ,f.· [ 1T ,d(x) - _g_ /(x) ~(x) U(x)J 
~ p . 

(47) 

In order that the charge and current be conserved pointwise within 

the nucleon so~ce, the divergence of Jy(x) must vanish. To verify 

this we differentiate equation (47), obtaining 

1 
e 

~ (x) U(x) - cV ¢(x) )( j • [ TijCx) - fo, '?'(x) <Oy(x) U(x~ 

- ¢(x) ')( J. [ dy Tf..J ¢(x) - "JL .9,.J<7'Cx) ~(x) U(x)~ 
(4S) 

where the divergence of the second term in JY(x), the Dirac moment term, 

vanishes because of the antisymmetry of ~v (x). 



To evaluate the right-hand side of this expression we notice 

that 

• r (x) = 
p' 

- ~ 7Cx) • f = .JL "Y(x) X L cr(x) ·:II ¢(x) 
~ 

(49) 

using the definition of 't (x) and· equation (44), the equation of p . 

motion for the isotopic spin density. In the second term of equation (48), 

- Qv ¢(x) )< l ·11..; ¢(x) = - ~-J ¢(x) X .R [a-.) ¢(x) +- eA.,; ¢(x) /<· J. J 

- - eAv(x) ~ ¢(x) )< fl. •¢(x) X f , 
(50) 

since in the first term · is orthogonal to :b7.y¢(x) • 
' 

The last term on the right of equation (48) can b~ rearranged into the 

.form 

- ¢(x) ·~ J. • ~y .Ify ¢(x) --Jx CV (/ (x) cr;;<x) U(x) J 

. _ - ¢(x) X f. H CJ!y/ ~;i] ¢(x) - ft Ifv[1<x) <O)I(x) U(x)] 

- eAy(x)( I1y ¢(x)) X ,( t ~ A.,;(x) 1'(x). )( £ l!"',)(x) U (x) } 
' f-

- eAlxl ¢(x) )( -f [.v ¢(x) )< .,( . -:);. 7'(x) )( j 9(x) U(x)], 

(51) 
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where wehave used the pion field equation (45) and the ~sotopic spin 

dependence of Ifv ¢(x) to arrive at the last line. 

Substituting these results into equation (48) for the divergence 

of the current~ we have 

· ; ~ J,;(x) = ~ 1(x) )(f. O"""~(x) ·]'J ¢(x) U(x) 

+ Q y¢(x) X i [jt ?'(x) cry<xl U(x) - eA_)x)¢(x))<_£] 

+ eA)x)¢(x) X ,{. LJy~¢(x) X R- Ii r<x)X ..e9x)U(x~ 
. fA. 

:: JL ?'(x) X f Cr".,j..x) Jl.; ¢(x) U(x) 
?' 

(52) 

- ~ 7'(x) X R_ cr-';fxl [ a1 y ¢(x) - eA.j.x) ¢(x) X£] U(x) 

- 0 

from the definition of the ··operator Ily . We have thus shown that 

this model of the static nucleon, in which the spin and isotopic spin 

are interpreted as densities that vary over the extension of the 

nucleon, conserves charge from point to point within the fixed source. 

In this model the spin densities at different nucleon points are 

independent dynamical variables and the spins are therefore represented 

as field quantities. 
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It should be noted that equations (43) and (44) for the spin 

densities are nonlinear simultaneous integrodifferential equations, 

and attempts to solve them in the present application have proven 

uniformly unsuccessful. Expansion of cr(x) and 7' (x) in terms 

of their radial and angular dependence have shown that approximations 

based on linearization must necessarily lose many important aspects of 

the spin behavior. Nevertheless, in order to make the problem 

mathematically tractable, we shall henceforth retain only the space-

independent parts of a-(x) and ~(x) . and obtain approximate 

equations of motion for (J and rr by 'multiplying equations (43) 

and (44) by U(x) and integrating over space to obtain 

~ 
2 5 d3

x [;ft ~ 

+ )Ao 7 p lf(x) J U(x) <!'"'= ~ X 'r J1 ¢(x) 

and 

~ d
3
x [ _g_ 

~ 1 ... ~ 
I - r X 2 ~ •.. ¢(x) .- _&. j CS'"'·H(x) -

-jl- . . 2 

These, it will be recognized, are the more usual classical 

(53) 

(54) 

spin equations. We look upon them as approximate counterparts to the 

spin density equations. Because of the nonlocal interaction implied 

in their integral structure, the continuity equation is no longer 
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satisfied by the electromagnetic current density. Current is conserved 

over the nucleon source as a whole, but not in a differential sense. 

These equations, together with those for the pion and photon 

fields, will be made the starting point for the next section, in which 

the Compton scattering will be calculated in this charge-symmetric 

theory. 
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IVo Compton Scattering inthe Charge. Syinmetric and"Neutral Theory 

Let us take for the Lagrangian describing the coupled photon, 

pion, and nucleon fields 

J = S ct3x {- ! ~V(x)f. y(x) - ! [ lf~ ¢ (x) J4¢(x) + )-'_2 ¢
2
(x)] 

+ f L I cr;;JI./~(x) + ! ?a i'"'P ~Y~-i(x) L? . 

+ ie & 4)1 Ay(x) ;P J U(~) J 

where the various symbols have been defined in the previous sectiono 

(55) 

In addition we assume that the nucleon spin and isotopic spin have the 

Poisson brackets, 

(56) 

and 

(57) 

The spin equations of motion are of the form 

= (58) 
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df'- ~" (x) = - ie ~ 4 -.~ 1'"' p U(x) + tJ 0 'Y p '}.; df""U(x) + 

+ e ¢(x) X .1.( rs ¢(x) - _g_ 1 CJv U(x) 1 . 
~ 

Similarly, varying with respect to ¢(x), we obtain 

11 2 2 
( ( v ) . - fA-' ) ¢ (x) = _g_ O""v IT ( 1" U (x) ) 

~ 1/ 

(59) 

(60) 

0 2-Introducing the D1Alembertian operator ~1 and rearranging, 

this becomes 

( 0 
2 

- JN 2) ¢(x) = .1L iry llv ( 'i' U(x)) - 2eA._/x) d..; ¢(x) X J.., 
}A. 

- e 
2 

A (x) A (x) (¢(x) X 1.. ) X Q_ 
y y 

(61) 

where the first term on the right couples the pion to the nucleon spin 

and isotopic spin,and the remaining terms couple it through its charge 

to the electromagnetic field. 

From the Poisson brackets for the spins we find the equations 

governing their time dependence. Thus for the ordinary spin we have 

ir = {~ '&} P.B. 

and for the isotopic spin 

a=' )( 2 ~ ct
3 

X L f:-"' 11 ¢(x} + r 0 '1" PH(x) 1 U(x) 

(62) 
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1' - { .(_ ''t'} P.B. - 'I" X 2 j ct
3
x L;: & • fu(x) 

-t::o!if.H(x)+ ~ Q..A0 (x)l U(x) 
2 2 j 

(63) 

where we employ three-dimensional vector notation in configuration space 
--. --+' 

and isotopic spin space and write the magnetic field. H(x) = curl A(x) 

and the potential A0 (x) =- i A4(x). 

These equations (59) through (63) are nonlinear. But if we 

treat the electric charge e as a perturbation and expand the field 

quantities in powers of e, we obtain in any given order a set of linear 

equations which we may proceed to solve. 

In this e~pansion, the n'th order term of any quantity will have 

the subscript n, e.g.: 

and similarly for the spins. 

Equating coefficients of e0 - 1, we obtain the following 

zero-order field and spin equations: 

0 
2 

A (x) = 0 0 

(64) 

(65) 

(66a,b) 
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2 2 ~ ~ 

( 0 - JA- ) ¢0 (x) = _g_ tY 0 CJ • \7 U(x) 
0 

fA' 
(67) 

__...:;:, 
~ ~ s d3x ~ 

0
\1 ¢

0
(x) U(x) v .. \J"" X 2JL 0 0 

.}"-' 
(6S) 

.. r 3 ~ ~ 'Y = .,-; >< 2_&. d x cr
0 

• V ¢
0
(x) U(x) 

0 0 

r-
(69) 

where we have restricted the electromagnetic potential to the Lorentz 

gauge by requiring its divergence to vanish. 

The solution of the photon equation (66), representing a 

transverse plane wave of momentum 
~ 
W , is 

= 

where 
~ ___., w2 w 0 w = c 

4 
and we choose E.o -_.., 

e. 
o. The gauge condition, (66b), implies the 

___., 
orthogonality of and w 

2 

(70) 

(71) 

(72) 

To fix the normalization~ we take ~ 
0 

to be a unit vector, E. = L 
0 

Transforming to momentum space, 

....., 
A v (k) 

0 

3/2 'J . (' ...., _, -i wot 
(2Tr) e, d (k - w )e · 

0 
(73) 

where we have used the three-dimensional Fourier transformation 
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~ 

F(k) 1 

with the inverse transformation 

F(x) = 1 
_, 

F(k) . 

The pion equation (67), becomes in momentum space 

_.., _., ...., 
= -i L ~ o- •k U(k) • 

0 0 
f-

(74) 

(75) 

(76) 

""?' 
The boundary conditions which we impose on ¢

0
(k) follow from 

the fact that it represents the pion field surrounding a nucleon in its 

ground state. In order that this state correspond to the lowest energy 

of the pion-nucleon system, we choose the static solution of equation (76) 

and add none of the homogeneous solution which would represent free 

mesons. The zero-order pion field then has the form 

- -i 1L 
f-

The pion field is seen to have the angular dependence of a 

(77) 

p state, arising from the 
~ __,. 
'J" • '1 coupling to a spherically symmetric 

source density U(x). 

Continuing with the zero-order equations, we transform the 

spin equations to momentum space to obtain 
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• 
~ d3k-; rr' 

0 
¢

0
(k) U(-k) if -lj) 

= 0" ')( 2i .1L (78) 
0 0 

f-

and 

rp '1' X 2i .$. J d\ 
__,_, ~ 4 

(79) = CT
0

ok ¢
0

(k) U(-k) 0 

0 -
0 . r-

Looking at equation (78)~ and remembering that the angular 

dependence of ¢0 (k) 0 - --;. ~s l:l" 
0 

ok ~ we see that the integral must be a 

vector directed along t10 a~d therefore 

• 
~ 
cr = 0 

0 ' 
and Of = constant o 

0 
(80) 

-') 

Furthermore~ in isotopic spin space ¢0 (k) is parallel to rr ) 
0 

which implies 

• 
ry = 0 

·0 
and 'Y = constant o 

0 
(81) 

In the zero-order solutions then~ the nucleon spins are fixed 

vectors independent of.the timeo 

The first-order field equations obtained by equating coefficients 

1. 
of e in equations (59) through (63) are found to be 

0 
2 A~ (x) : =i g 4~ rf po U(~) + ~ ry po ~ 0 X ~ U(x) , 

(82) 
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+ 0\ )( 2 S d3x [~ ('\' 1 ;::;1 ¢0 (x) + 't' 0~ ¢1 (x)) 

+ ~ po ~0 (x)\ U(x) , 
2M 'j 

(84) 

and 

(85) 

where certain terms from equations (59) through (63) are zero because of 
4 

the isotopic spin dependence of ¢0 (x) and because A0 (x) has been 

chosen to be zero. 

The boundary conditions to be imposed on the solution of these 

equations follow from the fact that in the absence of the incident 
~ 

plane wave A
0
(x), the pion field and nucleon spins must reduce to 

their zero-order solutions. This requires that only the inhomogeneous 
~ 

solutions proportional to A0 (x) be chosen~ which further implies that 

the time dependence of the first order pion field and nucleon spins 

-iwt will be e where w is the photon energy. 
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Transforming to ·momentum space and making use of' the fact that 

only a single frequency is excited by the incident photon, we get from 

equations (82) through (85) 

_, (' __,. _,. J 
i ~ U(k)( o

4 
- · 1 (cr" ><. k) , 

po y 2M o -v 
(86) 

2 2 2 -:, .... ...., --l) __., ~ 
(k - W + ~ ) ¢1(k) = -i .A. ( o-

0 
·k ,-J1 + \J"" 1 ·k o/ 0 ) U(k) 

jJ-

~-. n _.,...., 
- rr cr , t. ~ X )!.., U(k - W ) 

...Q.. 0 0 0 
jJ-

(87) 

3/2 + (21r) i rr 
M po 

-:a __., -, ~ 

\T 
0 

X ( w ~ C, 
0

) U(- W), 

(88) 

and 

(89) 
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From equation (80), we see that the first-order electromagnetic 

potential is time-independent and yields the static electric and magnetic 

fields arising from the charge and magnetic moment of the proton. There 

is therefore no scattering of electromagnetic radiation in this order 

and the lowest nonvanishing ·order in which it occurs will be 
2 

e • 

To solve the spin equations, let us eliminate the first-order 
~ 

pion field ¢l(k) with the aid of equation (87). The spin equations then 

take the form, 

(90) 

(91) 

where the angular integrations have been performed to obtain 

N(w) 
l 1 2 2 

k+~ 
(92) 

and the remaining symbols represent the expressions 

_., 0 <!' _, .~ 
\J" o c;...o o-o k 

_, ~..., ....., .... 
cr . e o- • (k - w ) 

0 0 0 

r 2 2 2) 
Lk -W +r- ,.., _,2 21 

L(k - w) +fA' 
(94) 
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_., 
L(w) 

2. M , 

In arriving at these results, we have made use of the fact that 
-::;, 

_., 
o-

0 

and r( 
0 

are unit vectors and that the first-order spins . cr- 1 and 

(95) 

rr 1 are orthogonal to the zero-order spins if 0 and ~ o' respectively. 

Proceeding to solve the vector equations (90) and (91) in terms of the 

quantities N, G, K, and L, we resolve ~ and ~ 1 in~o components as 
-> 

follows, with g 
0 

= zJ >< f: 
0 

, 

~ ~ 
_., __., - -") 

~ o) c-1 - S1· a-ox 3o+ SB .;::r-0 X ( cr
0 

x - ' 
(96) 

.. "i 

. \ 

and 

rrl - TA. ~oX~ + TB rtl '1- ( ~o X Q., )o . - 0 
(97) 

Substituting into equations (90) and (91) we find for the components 

of the ordinary spin, 

-7 
-i w SA = - N( w) SB + i G( w) (913) 

-iwSB = N(w)SA (99) 

and for the components of isotopic spin, 

(100) 

(101) 
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The solution of the first pair of equations (98) and (99) yields 

iN G 
N2- w 2 

while from equations (100) and (101), we find 

TA = -iNK +w L 
N2 -w 2 

T8 = i N L + w K 

N2- w 2 

(102) 

(103) 

At this point, let us evaluate the expression N(GU) given in 

equation (9~). The first integral which occurs in this expression may 

be written in the form 

00 

S dk k
4 

U
2
(k) 

k2 .\2 2 
0 - ~ +;uv 

00 -s dk u2(k) l k2 + (w2 - !"' 2)-

0 

2 2 2] (w - f-') . 

k 2 .. \ 2 . 2 
- v..J + J-A-

(104) 
2 

In the last term~ which converges without the U (k)~ we replace the 

latter by 1/(2 rr )3 , while in the first two terms we make the same 

substitution but integrate only up to a cutoff momentum 

In evaluating the last integral, poles appear in the denominator for 

W > ~ . To define this integral we deform the contour away from the 

real axis to yield a result which corresponds to an outgoing spherical 

wave. 

j
oo 

0 

dk 
~2----~2~~~2~----

k - w + ~ - i6 
(105) 
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which gives for N(~), 

[
- 2 3 2 2 3/2\ 

N ( W) - ~ r!:_ ~ w = a f""' + ia ( w - fA- ) j . 
3 4tr ~a (106) 

The remaining first-order equation (87) for the pion field has 

the solution 

U(k) _ B. 

~ 

__, -=-" _, ....., 
cr • £: 'i' X g._ U(k -W) = -i 1L 

r-

+ 

0 0 0 

2 2 2 
k -w +;;-

_, ......, - __, ~ . ...:., ....., 
2 S ·k CT •(k -w ) ~ X .Q.. U(k - w ) 

0 0 0 

To obtain the scattering cross section, we must evaluate the 
v ~ 

(107) 

asymptotic form of A2(x). The boundary conditions on A2(x) should 

correspond to an outgoing spherical wave. We know that the time 
v -iwt 

dependence of A2 is e because this is the only frequence 
y 

excited in j 2(x), and so we may separate it off and write 

2 2 y 
( \7 = w ) A2 (x) (108) 

The solution corresponding to an outgoing spherical wave is then 

e 

\ ....., ....., ~ I x-x (109) 
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where 

Defining the unit vector 

and so 

iwx 
1 e ---

4'i't' X 

which may be written 

iw x 
e 
X 

~ --') 
where W f :::: n w and 

-.) 

transform of j 2(x)o 

--X 

_., _.., 
n:::;: x 

X 

x' 2 

7 

we may write 

_,......, . 

:::: . X = nox + 0(_1_) , X 

....:., _., I 
-i w nox 

e 

is the three-dimensional Fourier 

Ifeturning to the electromagnetic field equation (59)~ we see 

that 

~ 4veypl U(x)- J:.. ('t" crlr-v+tt"' 1 upv) d~U(x) 
2M po P o t 

(110) 

(111) 

(112) 

- .it cy 1 CJ"..Jo U(x) J 
r-

- ¢1 (x) X 1 [ d -v ¢0 (x) - .it ~ 0 0" 
0
-j U (x)] , 

f"' (113) 
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Transforming to momentum space, inserting the expression for 
-;;. 

¢1 ( k) from equation ( 104) and for ~ 1 from equation ( 97) , and 

evaluating at the point U1 f ~ we hav~ 

+ 

In the evaluation of these integrals, as well as those in 

(114) 

_., 
K( w), 

we shall replace the nucleon source by a cutoff momentum kc = '1Yj2a, 

Here a is an appropriate cutoff radius, which we shall take 1J times 

the nucleon Compton wave length, Since the integrals are divergent 



without. such a cutoff, we shall approximate· them bjr retaining only the 

leading term proportional to kc. For uJ << kc' this will indicate 

the order of magnitude of the integrals. 

Applying this procedure, we obtain 

+ 

~ 

and for K( w), 

~ 
K(w) = 2 

5 

+ 3 \Tv -;. :-s -j 
0 0 0 

(115) 

(116) 

Making use of the fact that in the asymptotic region the electric 

and magnetic field intensities are equal in magnitude and perpendicular 

to each other, we can evaluate the magnitude of the Poynting vector 
--'> 

for the scattered wave~ P
8

, to be 

I P; I = = = 

where 
it.Ux 

e 
X 

(117) 

(118) 
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Taking the curl of the asymptotic f·orm of given in equation (112), 

we find for the magnetic field~ 

e 
X 

ic.0x ~ --) ....., 
= cr ·w w ) 

1 f f 

where we have introduced the dimensionless quantity 

1 

(f-a) 

and have set the nucleon source density equal to 
. 3/.2 

1/(2'1'1') , the 

(119) 

(1.20) 

Fourier transform of a point nucleon~ wherever it remains in equation 

(115). This allows us to write in place of equations (93), (95), and 

(116), .., 
'1" po G(w) = ' 

(1.21) . 
M 

K(j) 
~ ....., ~ _, 

= .2 0 cr.e:, CJ 0 w 
5T 0 0 0 ' 

. (122) 

_, ·~ zj x-e and L(w) = 1 cr 0 
~ 

.2M 0 0 
(123) 
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The differential scattering c~oss section is g~ven by 

= < x2 \ F':< ;;)'f) I > 
IF';.<w)\ 

= 

(124) 

where the brackets < )'indicate averages to be taken over the nucleon 

spin~ the isotopic spin, and the polarization of the incident photon. 

In performing these averages, tr 0 and tY 
0 

are treated as classical 

unit vectors and use is made of the relations 

(125) 

(126) 

where for n d 
0
-terms, t)1e coefficient on the right is 

l 
x. (n + 1) 

The averages vanish for an odd number of terms. 
3 )( 5 

The relations for the ~ 
0 

- averages are completely analogous •. 
...... 

To car~ out the & 0 -averages we note the relation 

(127) 



=39= 

. ~ 

since there are only two independent orientations of & 
0

} which are 

both p~rpendicular to ~ o 

A straightforward calculation, carrying out the averages over 

the nucleon spin d 
0 

and photon polarization "t 
0

, yields the following 

expression for the cross section 

+( 

(13+cos
2 

9) r (w) 
0 

. 4 
DL.1(3 + cos2 8)+4 0( 1 o (3 - 3 cos

2 e + 4 cos4 9) -

960 196,S75 

. . ] - . 2 2 2 
=ex. 2 (~ + !._ ) (1 - 3 cos e)+ c< 3 (11+7 cos e) f12 ~w) 

15 16 25 120 

o/,1(( 

lSO 

. 3 
cos e = 4C<'l t 

39,375 
(3 COS e + 2 cos3 e)+ .E_o( :1Cosel~(w} 

. 45 2 J "'j 
(12S) 

where the isotopic spin dependence is contained in the o<. 1' o( 2, and o( 
3 

coefficients, which are as follows 

o{l = (129) 
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o(2 
. 2 2 

= (~ X i_ ) ·. ~ 
o po 

- ! [1 - ( fjV ·• t) 2 ]<1 - cy 0 Q. ) 2 
. 0 0 

4 

0(3 - cy po = 
4 

1 (1 - rr · t) 
~ 0 
16 ; . 

(130) 

(131) 

The -r n(W)~ (n = 0, 1, 2, 3), are dimensionless functions of 

the photon energy. If we separate N into real and imaginary parts 

N:R+-iJ, 

the T' ( w) take the form 
n 

r (w) = 
1 

r (W) -
2 

Jl (w) -
3 

' . ' 

4 
f..J..) 

M2 

2 
w 
M 

2 2 
R + J 

2 2 2 
R (R + J - w ) 

I 2 .. 2 \ 2 ' 
N =w 

To find the· cross section in the charge-synnnetric case, we 

average the o( 1, ol.. 2 , and 0( 
3 

over all orientations in isotopic 

spin space and obtain 

(132) 

(133) 

(134) 

(135) 

(136) 
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'<o<2) = <c<3 ):; l 
5 

(137) 

For the case of a neutral pion field, the nucleon isotopic spin 

and o/ is one for a proton and zero for a neutron. 
po 

is parallel to ~ 

We then set 

0(1 : 0 ~ o<2 - 0' o(3 - 1,(0) 
.. - . 

(13B) 

for a proton, (neutron). The cross section in this case has the much 

simpler form, 

do- , . ~\ 
__E \neutra.LJ 
d..n... 

and 

dcr 
n (neutral) 

d..(). 

= 
{

h.' 
\..-' - co/@) ~(w) . , J.. 

(139) 

0 ' 

It is clear that the cro$s section for a neutron should vanish 

in this case, since the neutral pion cloud provides no currents to 

scatter the photon» and the neutron has no Dirac moment. 

In ord7r to interpret the results contained in equations (12B) 
~ .· .. 

and (139) for the scattering cross section in the charge-symmetric and 
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neutral theories, respectively~ we have plotted the 1' n (n = 1, 2, 3) 

as functions of the incident photon energy in Fig. 1. The source 

radius has been taken to be times the nucleon Compton wavelength, which 
2 

corresponds to a cutoff momentum kc ~ M~ and the pion-nucleon 

coupling constant is chosen to be g2 /4Tr' ::: • 3. With these vales for 

the parameters, the cross section formulas may be written in the 

following form: 

d o- (symmetric) -
d...O... 

3 
-32 2 ~ 

(o539 X 10 em ) ~ 
n~o 

and 

d ~ (neutral) = 
d..(). 

where the cn(e) 

C0 (e) ::: 

c1 (8) = 

c2(e) ::::: 

c3(e) ... 

are given by 

1 + .0769 2 
cos 8 ' 

2 .127 = .221 cos G , 

.691 - .205 
2 . 4 

cos e + L04 cos 8 , 

·. 3 
= .302 cos e ' 

and the Dn(e) are 

(140) 

(141) 

(142) 

(143) 

(144) 

(145) 
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2 = 3 = cos e 

and 

= 1 
5 

2 
(11 + 7 cos e) • 

The constant term in C0 (9) has been normalized to unity. These 

9-dependent coefficients are plotted in Figures 2 and 3, 

It is seen that c3(e) is the only coefficient which is 

asyrmnetric about 9 = rrf /2. In addition we note that r 3(w) is 

negative for small w and becomes positive for w > w 0 where 

(146) 

(147) 

W 
0 

is an energy near L4 ~ ~ 200 Mev, Therefore, in the charge 

symmetric case>the angular distribution is peaked in the forward 

direction for energies below w 
0

) and this peaking shifts into the 

backward direction for w > w 
0

• This may be contrasted ~lith the 

behavior of the angular distribution in. the neutral case. Here the 

peak appears at (:) :::: 'IY /2 for energies below the resonance energy 

oJ and this peak diminishes and is replaced by a trough for 
0 ' 

w > w 
0

• These angular distributions are illustrated in Figure 4 and 

5 for typical energies. 

Integrating equations (140) and (141) over solid angle we 

obtain for the total cross sections~ 

o- (symmetric) = 31 2 r .-~ T1 ) 
(.697 X 10 em ) L 1 + .049 I 1 (w) + .805 I 2( w) 

(146) 

and 
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() (neutral) 

(147) 

These cross sections are plotted in Figure 6. It is to be noted that 

the magnitude of the cross section is smaller in the neutral than in 

the symmetric theory. However both exhibit a resonance peak in the 

total cross section. This confirms the fact that the pion cloud modifies 

the scattering of light through the mechanism of inertial effects as 

well as directly through its charge. 

The general features of this calculation indicate that the 

pion-nucleon coupling may modify the scattering of light in a 

sensitively energy-dependent manner. Experiments at higher energies 

could provide interesting new information about this coupling. 

It should be pointed out that the neglect of the recoil effects 

of the nucleon will invalidate the details of these results to some 

extent. However, .it may be expected that the main features of these 

results~ including the peak in the total cross section and a strongly 

energy-dependent angular distribution~ will be valid. 

In conclusion, I would like to acknowledge the help and 

encouragement extended to me through all phases of this calculation 

by Dr. Joseph V. Lepore. In addition, I wish to thank Mr. Edward Robbins 

for helping me in checking the computations. This work was performed 

under the auspices of the Atomic Energy Commission. 
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FIGURE CAPTIONS 

Figure 1: Graph of coefficients r (GO) (n - 1, 2, 3) as functions n -
of wJr. 

Figure 2: Graph of Cn(9) (n = 1, 2, 3) as functions of 9. 

Figure 3: Graph of Dn(e) (n = 1, 2) as functions of e. 

· Figure 4: Differential cross section for the scattering of photons on 

nucleons in the charge-symmetric theory for energies of 

W Jr = 1.2; 1.3, and 1.4. 

Figure 5: Differential cross section for the scattering of photons on 

nucleons in the neutral theory for energies of ¢ ~ = 

1.0, 1.2, and 1.4. 

Figure 6: Total cross section for the scattering of photons on nucleons 

in the charge-symmetric and neutral theories. 
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