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ABSTRACT

A classical calculation has been carried out to determine the
effect of nucleon structure upon scattering of photons. This structure
is provided by a pseudoscalar field with gradient coupling tc an
extended source of size %/b' = 77/2. The nucleon is coupled directly
to the electromagnetic field by means of its Dirac magnetic moment.

The results for both charge-symmetric and neutral pion-nucleon
coupling are obtained. It.is found in both cases that the scattering
exhibits a resonance near a)épb = l.4 for coupling constant
/LT = 3.

The angular distribution is symmetric about © = #/2 for
the neutral case, but shows a forward peaking below resonance in the -
charge-symmetric theory. This beaking shifts to backward angles above
resonance.

The general features of this calculation indicate that
observation of the scattering of photons in the appropriate energy
region might provide a sensitive means of studying the structure.of

nucleons.
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I. Introduction

A fundamental probiem of current physical research is the
investigation of the nature of elementary particles. Nucleons (protons
and neutrons) are important as the constituents of atomic nuclei and an
understanding of their properties is a necessary basis for the theory
of nuclear structure. Information concerning the nature of nucleons
may be obtained through study of their electromagnétic properties, e.g,
~ anomalous magnetic momentsl and the neutron-electron interactionc2
Both of these effects have been studied theoretically on the assumption
that they arise out of the nucleon-meson interaction°3’h

The structure given to the nucleon by this interaction will
also modify its ability to scatter light. Corrections to the Klein-
Nishina cross section for the scattering of light froﬁ Dirac particles
have been calculated by Sachs and Foldy,5 and Minami, wusing weak
coupling perturbation theory. The present paper deals with a classical
calculation in which some of the meson effects can be included to all
orders in the meson-nucleon couﬁling coupling constant, in particular
those having to do with the gyration of the nucleon spin and isotopic
spin. Such a treatment leads to results qualitatively different from
the weak coupling calculations.

Experiments on the scattering of light from nucleons at energies
up to several times the pion rest energy can be expected to provide

information about the virtual meson cloud surrounding the nucleon.
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II. Description of ‘the Model -

The nucleon has an intrinsic ‘angular momentum or spin of
2 #, (H = h/2% where 'h ‘is Planck's constant), and obeys Fermi-Dirac
statistics. Consequently,; if it were coupled to no other-fields, its
field amplitude would satisfy the free Dirac eguation. To describe the
production, absorption, and scattering of pions by nucleons; the
nucleon and pion fields are coupled together by a relativistically
invariant interaction. It is generally assumed that this interaction
provides a major part of the nuclear forces acting between nucleons,
at least in the energy region well below the rest energy of heavier
mesons., We wish now to consider the way in'whicﬁ the pioh—hucleon
coupling modifies the photon-nucleon scattering process;

Tbe scattering of light by a free Dirac particle is given»to
order cfz(c{ = ez/hﬂJ;ﬁc is the electromagnetic fine structure
constant) by the Klein-Nishina cross section formula°7 Because of the
prJn-nucleon coupling the nucleon is surrounded by a virtual pion
cloud. This cloud affects the scattering of light directly through its
cﬁarge and current and indirectly through its dynamiqal interaction with
the spin and isotopic spin of the nucleon. |

To distinguish between the two modes by which the scattering
is modified, calculations have been performed for both charge symmetric
and neutral pions. Since the latter are not directly coupledfto the
electromagnetic field, and comparison of the two models will permit a
separation of the effects.

The problem will be set up in a relativistically covariant

manner and equations of motion will be obtained for the nucleon, pion,
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and photon field amplitudes. Terms involving nucleon recoil will then‘
be neglected and the nucleon,soufce densitj will be identified.
Equations of motion for the expectation values of the nucleon spin and
_isotopic spin can then be derived. These spins are the dynamical
variables in terms of which the static nucleon is-described° The
pion-nucleon coupling can then be treated to all orders of the-
coupling constant. In thisvway both weak and strong coupling limits
can be evaluated in the static nucleon limit. |

The meson field will be chosen. te correspond to pions and

- therefore will be a pseudoscalar field describing particles of mass

/Lkﬂg 140 Mev/cz. and spin zero. The pion-nucleon coupling is taken

to be pseudovector which reduces to O~ 7. ¢ in the stati¢ limit.,
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ITI. Derivation of the Static Nucleon Limit -

In order to trace the connection between the covariant field
equations gnd those describing the static nucleon approximation we begin
with an appropriate Lagrange density from which the relativistic field
equa.t'ions for the nucleon, photon, and pion may be derived by the use of
Hamilton's principle.

The Lagrange density describing these fields will be taken to be

L6 = - Plgprn]y-s [DpLp+4 0 |- 2n,,-l Ip
(1)

where :lp(x), the nucleon field amplitude, is a two-component symbol in
the isotopic spin space of the nucleon and a four-component spinor in
ordinary spin space. The amplitude LP(x) = L}}*(x) ‘01 , where ()U*(x)
is the Hermitian conjugate of ()U(x) and the bf"} (¥ =1, 2, 3, 4) are a

set of Hermitian operators in spin space which satisfy the relations

AR AT (=125 0
(2)
The operator
D, = Q) - ie ’pr)) (-J-;_l, 2, 3, 4)
(3)

where &)Ea/@'x_}' 5 with xb’ =ix, . The proton electric charge
is denoted by é, As)(x) is the four-potential of ‘the electromagnetic

field, and ’fp is the operator in the isotopic spin space of the
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nucleon having eigenvalues of <41 and O for the proton and neutron
respectively. (We have chc;séh:na,tural units such that AT = 1, ¢c=1).
The nucleon and pion rest masses are M and /u. s respectively.

The pion field amplitude, @#(x), is a three-component vector
in thé isotopic spin space of the pion. The operator 21\) acting on a

vector ? in the isotopic spin space of the pion yields

Hvi(-’: 3\27+e1\9(x) YXZ (v =1, 2, 3, a)v
| - (4)

where Y X ,@ is the vector product of X and a unit vector ,éx

‘with components (0, O, 1) in the representation in which

| 1 0
% a)
The isotopic spin operator 7‘—-’); (7”1, ’7'5, 7’3) is a vector in pion
isotépic spin space, having as components the Pauli spin matrices in
nucleon isotopic spin space. With Z dvefined in this way, 7"p may
be expressed as

5 |
» = 3a-7T4y . O (5)

(From this point on the arrows on isotopic vectors will be omitted,
and juxtaposition of two such vectors will denote the inner product.)
The electromagnetic field F/‘a_p, is given by the antisymmetric

tensor

L 4
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Fap®) = 8 0 = 3, B, | (6)

The final term in the Lagrange density is the pion-nucleon

‘charge symmetric interaction, where

G:ig‘;’(})vagTsu (7)
is a pseudovector in configuration space and a three-component vector
in pion isotopic spin -space. ' The Hermitian operator

L7 R SR |

' anticommites gith thev“(’) (v =1, 2, 3, 4) and satisfies the
condition 'b's = 1. Finally, g 1is the pion«—nucledn pseudovector
coupling constant, and a factor 1?4, is included to make it.have
the dimensions of a charge., |
-In the case where only neutral pions are coupled to the
nucleon, its isotopic spin will be a constant of the motion. The
classical equations for the neutral case will be inferred from those
of the charge symmetric theory ‘in order not to duplicai:e the derivation.
In order that the variation of S dhx S(x) vanish when
L’V(x), Lp(x), #(x), and ‘AV(X) are varied independent;Ly, the field

amplitudes must satisfy the equations

[{yD-,)"'M +%K’)K5'ro(ﬂv¢) Jll/ ;‘O P (8)



[%)2-/*2] o = -1, e ) (9)

and

Q/JF/u,) .= -ie 978;,‘1’10 Y +ef x I[U.}sﬁ + /3] :

(10)

To obtain the static approximation for the nucleon field, we

make'the usual decomposition_leading to ﬁhe nonrelativistic limit

W@ =N+ X @)
where | k

Nx) = 31+ ) Yx) (12a)
and | :

A& = 3a- MY . )

Making use of the anticommuting properties.of the .
}{v (¥ = l; 2, 3, 4). and X% ;, and multiplying equation (8)
-from the left by (1 + YA)‘"

|yt F N5 T Hk¢']ﬂ—+'[7knk+%r5- yIp X -
| (13)

where the Roman subscrlpt k is summed from 1 to 3 only

Similarly, multiplylng equation (8) from the left by %(1 - X')s

[{Dk 753'57‘%¢]n,+[-—n +M+/1l_§fkf TE(VJ]X

(14)
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The energy of the nucleon may be written as the sum of its
rest energy and a term W which includes its kinetic energy and

interaction energy, and which remains finite as M approaches infinity.

Substituting into equations (13) and (14), we obtain

[_wgleAhTP"' /—%XKYS ’F'Hk¢:|_fl+[’0’k k'f'/.&?%'rﬂ-ﬂf]?( 0
‘ (16)

and

‘[Yka“i/%XS T 108 ].fl-\— W +2M+1¢A47‘p+/:_lug,zi( G T Hk¢]2’: 0.

(17)

If we expand "F(X.) \\gln inverse powers of M

VJ(X) E ‘U( )(X) 5 (18)

n=0

the equations for SU(O) s obtained'by equating equal powers of M in

equations (16) and (17), are

[»W=ieAh Tt %5 Y Y5 Tﬂ'k¢]'n‘(o) )
| (19)

- and

7((0) = O, . . (20)
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In the limit of a fixed nucleon of infinite mass

Yo —=2 Ihoy + Ay = oy (21)

Redefining the zero of energy to eliminate the infinite mass

term, W 1is then to be identified with the energy operator 14 = - Vi
: gt~ 9 x
If we choose the spin representation so that Xk = =ip Yi s

b’h = p where O(k, ,B are the usual anticommuting Dirac matrices,

then it follows that

(22)

where 0 : ar \ I : 0 i 0—k : 0
Oy O ' 01-I 0 1 &

(23)

are Axl, matrices expressed in terms of the 2x2 unit matrix I and
the Pauli matrices o}, which satisfy the relations

cioy T o1& 0y . (24)
(E’ijk is the completely antisymmetric pseudotehSor which vanishes

unless all subscripts are distinct, in which case it equals + 1 (-1)

for even (odd) permutations of (i, j, k).)
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The equation (19) “for the static nucleon amplitude has been
obtained by neglecting all inverse powers of M, the nucleon rest mass.
One such termb, the Dirac magnetic moment interaction, may be written

in the form

L ar A
- e &,y F = e cﬂﬁ _ (25)
m oMY R ‘
where
G;UV = é}l.(\)) G; (/‘3752 :19_ 29 3)
- -5
and H = curl A is the magnetic field. Since we can consider the
nuclear magneton /40 = e to remain finite for a static nucleon;
T .

we shall include this spin-dependent term in the nucleon field equation,

even though it is of order M-_l, to obtain
i 4. $ = Hs )U (26)

where

' - - =
= -ieh - GH-zg 70 ;

and we have replaced _f)_.é by $U which therefore has only two

nonvanishing spin components,

Y1
su : ‘7“2 v _ (28)
. 0 -

?
so that ﬁ Sy l7l) simplifies ’go c'k%,
The nucleon spins are the only dynarhical variables describing

the nucleon. Itv is therefore desirable to identify a spin density
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Q§;>(x) and an isotopic spin density 7Vk(x), and to express all other
nucleon-dependent quantities invterms of these,

The nucleon-dependent terms occurring in the pion and photon
field equations (9) and (10) a;e of two types, which may be simplified

to the following form by the use of equations (22), (23), and (28),

[y o= PowTYimz -5 Yo7y

(29)
where
S, = o
The second type of term is
— i % I' | {-;(-.
POTYiSe SV TV % ¥ o TY
o | (30)

To elaborate these expressions, we begin with the anficommutator-

between ()l)e i('x)- ‘and SUQ,i;(x?) -at equal times, where the. f) g

and 1i's are s%in and isotopic spin indices respectively,

_ [L})e‘i(X)’ \ﬁe/i.(x)l‘-": %?' Sii' Sx - x') s

this allows us to write

(31)
. %* Y : L k
Sx-x") Q*f(x)g; Y 9)(;() = QJQi(x).G'Q') %/4 Sie §x - x\)7Jfk ‘%{(x )

¥* * g g L
= PRGYE PEITYE T Y e Ehperpe .
. o o N (32)
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The last term of this equation has two %Kx) factors on the
right which annihilate nucleons or create antinucleons. The creation
of antinucleons will 6orrespond to vacuum fluctuations in the nucleon
field. In deriving the classical model; we shall neglect all such
effects.  The remaining term that annihilates two nucleons gives zero
when acting on a one-nucleon state and so vanishes in the present case,

If we now identify the spin and isotopic spin densities to be

T(x)

5u*<x) Tyw | (33)
and ' |

?;Cx)

Y & Yo (34)
equation (32) may be written in the form

Sx - x') LP/’(X) S ’r _()U(x.) = 5 (x) T(x') + (2 nucleon terms) .
: (35)

Neglecting vacuum fluctuations as was proposed above, we notice that

the prodﬁct term on the left hgs been separated into an ordinary spin
density multiplying an isotopic séin density. ,This product is seen

to vanish unless fhe two denéiﬁiés are taken at the same point, x = x',
and furthefmore_this point-mﬁst be the origin in order that a function
of (x - x') on the left will be equal to a product of séparate functions
of x and x' on the righf° This will occur if gix) and L%(x) are

each pfoportional to S(X), and so we write

Fx) $x) (36)

gkx)

and
»T(x)

T(x) 8(x) (37)
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whereupon equation (35) takes the form -. -
S i

Py TYE = sy ) T Sk (38)

The infinites presented by ¢§(x) may be removed by spreading
out the point nucleon to a source of finite size, which we accomplish
by replacing the delta function by an extended source U(x) - with the

same volume integral. Equations (36) through (38) are then

Sx,t) = T, U@, (39)

x, t) = Tx, ) Ux) , | (40)
and : 7

Yooy TY@® = oy T ik, BN CSY

where the fixed source is normalized to one nucleon,

Sd3x U = 1. | O w2)

The equations of motion for Ez(x) and 7T’(x) may now be
derived from the equation for L,l(x)° ‘For EF(X), we find, using

equations (39) and (41) and dividing both sides by U(x),

Q?‘ (x)

iLP*(x) [’)72, c?‘]_ LP('x) S -(l+3)

2 I,D*(x) [/é 7*&")( ﬂ¢(X) + /uo Tp'é" X?(X)]‘ \P(X)

| >
& (x) % 2[/5 76 [ 560+ g7, Feo |

. -
where the dot over & signifies differentiation with respect to the time.
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Similarly for Y (x),

e [ 7] o

i

¥ (x)
' (Lk)

S - ,
2W*(x)[/%7’)<5"‘ﬂ'¢a__/;‘o_; 7'%[5"»?--1_%,?](/)(;;)

NI

(}]
i

= -
P X z[ﬁs—(xwﬂvf(x) - Lo [F@T6) - 1o fay00].
2
The introduction of the spin densities will also modify slightly'
the form of the pion and photon equations. In place of equations (9)

and (10) we have, by direct substitution from equations (39) through (41),

[(Hv)z, /uz] #x) = % 1 ))[c",)(x) T(x) u(x>]

(45)
where IL) acts upon the entire bracket expression, and for the
photon field |

Qubuy) = =30 8, 7,0 VG + 4 4, [frpoc)v T 0o ]
+ ef() x L '[T_[,);é(x)"« A JCOISICY u<x>_]
: - (46)

where the Dirac magnetic moment term has been added for reasons
discussed previously.
These two equations, together with the spin density equations

(43) and (LL4), characterize the interaction of the pion and photon
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field with an extended nucleon"so’ur_ce° The way in which this extension
has been carried out is not unique and is to be considered merely as a
heuristic device rather than as 4 precise derivation.

The equations at.which we have arrived involve point interactions
between certain spin densities and the other field quantities. It will
now be shown that the introduction of these spin densities has preserved
the differential conservation of‘the electromagnetic current density.
From equation (46) for the electromagnetic field, the current density

is seen to be

L = e Sy T 06) - 9, [7}’(}() o) 0 | -

4

- o g6 X L [Ipe) - & 70 s )]
- ~ | (47)

In order that the charge and current be conserved pointwise within
the nucleon source, the divergence of Jyﬂx) mast vanish. To verify

this we differentiate equation (47), obtaining

1YHe = FW U - g X L [Tpe - £, 709 S5 U]

-8 x Ao |8, )00 - 2 937 ) ()
7
~ (48)

where the divergence of the second term in Jg(x), the Dirac moment term;

vanishes because of the antisymmetry of G;h)(x_)o
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To evaluate the right-hand side of this expression we notice

that

’

ACIEIEERAOD g 760 X L o) T )
' ' (49)
using the definition of 7’p(x) and equation (44), the equation of |

motion for the isotopic spin density. In the second term of equation (48),

4,060 x X T80 = -3y 960 X £ [3,) 800 + ety x L]

- eAy(x) Q/ @(x) )( £ oF(x) X £ ,

(?0)

since in the first term Q))¢(x), X f s, orthogonal to oL B(x) .
The last term on the right of equation (48) can be rearranged into the

" form

- #(x) "X A °v[c9,) E; #(x) - _%Q/ (T (%) s3(x) U(X)]

- g X L- %[(I(v)z - p2 ] p "4 I)[760) s5yt) u@]

- eayGIC [T 86)) XAy %% Ayx) 7). % L §5)(x) U(x) z

oA (x) Bx) X ,e[og, g0 x L - £ 760 x £ <500 1),

(51)
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where we have used the pion field equation (45) and the isotopic spin
dependence of I[Q @#(x) to arrive at the last line.
Substituting these results into equation (48) for the divergence

of the current,; we have

13 46 %‘ﬂx) x £ c;)(x)lI #(x) U(x)
+ gy¢<x> X I[ﬁ M) &)(x) U(x) - eA,xxm(x)x[]

+ eA,,(x)ps(x) x £ Pv"’("))‘ 0. /E'r(x)x Resf0)]

(52)

2]

£ T £ ofx) I #x) 0(x)

- ',%C ) x £ 0"7}}{) [q?’) g(x) - e fx) B(x) X ,(] U(x)

from the definition of the operator I[,. We have thus shown that

this model of the static nucleon, in which the spin and isotopic spin

 are ihterpreted'as densities that vary over the extension of the

nucleon, conserves charge from'point to point within the fixed source,
In this model the spin densities at different nucleon points are
independent dynamical variables and the spins are therefore represented

as field quantities.
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It should be noted ﬂhat equations.(AB) and (44) for the spin
densities are nonlinear simultaﬁeousvipﬁegrodifferential equati&ns,
and attempts to solve them in the présent application have proven
uniformly unsuccessful. Expansion of o(x) and T (x) in terms
of their radial and anguiaf debeﬁdéhce have shQWn that approximations
based on linearization must'necéésarilyvl§Se many imporiant-ﬁspects of
the spin behavior,"Nevertheleéé,'in order to make the.problem
mathematically traCﬁable,vwe'shail Hencefofﬁh retain only the Space—
independent parts of (x) (x) . and obtaln approx1mate
equations of motién for Kem and 'T’ by multlplylng equations . (h3)

and (44) by U(x) and 1ntegrat1ng over space to obtain’

F- @ x 2 S Ox [ﬁ_ _Tff?f(X) + M 7*}p Hx) ] U(x)
| | | (53)
and
’ a ._’
o T xo Sd?x.[/%_ & o0 - Lo £ 3T
-t £ 8, J U.(x) -

These, it will be recognized, are the more usual classical
spin equatioris° We look upon them as appréximate counterparts to the
spin density equations. Because of the nonlocal interaction implied

in their integral structure, the continuity equation is no longer
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saﬁiéfied by the éléctromagneticvcurfent density. Current is conserved
~ over the nuclebn source ;s a whole; but not in a differential sense.

These eqﬁations, together with those for the pibn and photon
fields, will be made the starting point for the next section, in which
the Compton séattéring will be calculated in this charge-symmetric

theory.'
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IV. Compton Scattering in the Charge Symmétric and Neutral Theory

Let us take for the Lagrangianrdescribing the coupled photon,

pion, and nucleon fields
e ydB <x>%<x> [ﬂgﬁf(X) gty + p2 82 |

[/%, Too > ﬂ:)ié(X) ¥ %/Ub » /u,)F/‘u,)(x)

o+ e Swly(X) '7’ ]U(X) |
(55)

where the various symbols have been defined in the previous section.
In addltlon we assume that the nucleon spln and 1sotop1c spin have the

P01sson brackets,

/A)))G—) . (56)

o ddas

507“’ C:S--"QLZP B“

and

-lzéijk. Tk. . : (57)

Jp.B,
The spin equations of motion'aré of the form

=, = {om, = ;o o (58)
since the spin dependent parts of the Hamiltonian, 2% ;, and the
Lagrangian, o  , differ only in sign. -

Varying the Lagranglan with respect to A){x), we find that the

photon field satisfies the equation,
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3 F,, () L -ied OIS (CORT VIR SNV 0,Ji(x) +
+ e d(x) x L [ II;¢(X) -g 70T, U(X’] .
VR
' (59)
Similarly, varying with respect to @#(x), we obtain

«y® - W g0 - 2 I (vue) . (60)

, 5 :
Introducing the D'Alembertian operator | - 0 Qb* ~ and rearranging,

,L

this becomes
(0% -p?) g = £ o, I, (7 0) - 2eh (x) 3, #lx) x L
}A—

2
- A A ) B x L) x L,
(61)
where the first term on the right couples the pion to the nucleon spin

and isotopic spin,and the remaining terms couple it through its charge

to the electromagnetic field.
From the Poisson brackets for the spins we find the equations

governing their time dependence. Thus for the ordinary spin we have

S

. o N . — -
6_3:{1,0'} = 0 X ngx\_g_'r‘_uﬁf_(x)-!-/w ’T’H(x)lU(x
P.B. Jos ' ° P :
| - | (62)

and for the isotopic spin
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-Mo ﬂ?o;x) +el Ao(x)] U(x)
2
(63)

where we employ three-dimensional vector notation in configuration space
and isotopic spin space and write ﬁhe magnetic field g?x) = curl K?ﬁ)
and the potential A, (x) = - i'Ah(x)o

These equations (59) through (63) are nonlinear. But if we
treat the electric charge e as a perturbation and expand the field
quantities in powers of e, we obtain in any given'order a set of linear
equations which we may proceed to solve.

In this expansion, the n'th order term of any quantity will have

the subscript n, e.g.:

A (x)

A:(x)-+ eAI(x)-+ e2A;(x) + e (64)

g(x) Po(x) + effy(x) + ... 5 - (65)

and similarly for the spins.
Equating coefficients of e° - 1, we obtain the following

zero-order field and spin equations:

O 28 () = 0 D, ke x) = O, (66a,b)
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(02 -p D g = g ¥, T V) (67)

v Nadt) &

N — 3 =

Vo ® Yo* 28 S‘ d-x quV g.(x) U(x) , (68)
(69)

P - =2
To =T X2g gdBX S oV B,(x) Ux) ,
}Nf

where we have restricted the electromagnetic potential to the Lorentz

gauge by requiring its divergence to vanish.

The solution of the photon equation (66), representing a
‘transverse plane wave of momentum W , is

(0% - W, t)
-V . - . » (70)

AO (X) - & o e

where
W oo = oo°2 ' (71)
L

and we choose & - 0. The gauge condition, (66b), implies the

orthogonality of € and w
_ .
8 0° Z)_> - 0. (72)
— 2
To fix the normalization, we take & to be a unit vector, £ 0 = 1.
- Transforming to momentum space,
- 3/2 8 0 o o -lwt
NG = em e S E-3re O, (73)

where we have used the three~dimensional Fourier transformation
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e
— 3 —i k"x -—p
F(k) = 1 gdx e F(x) , (74)
(27,,)3/2
with the inverse transformation
>
i k.x
F(x) = 1 Ak e F(Q) . , (75)
(2,”)3;2

The pion equation (67), becomes in momentum space

2 2 2 — . - -
04 2+ g0 = g P P kU (76)
2 [¢]
G M-
: =
The boundary conditions which we impose on ¢o(k) follow from
the fact that it represents the pion field surrounding a nucleon in its
ground state. In order that this state correspond to the lowest energy
of the pion-nucleon system, we choose the static solution of equation (76)
and add none of the homogeneous solution which would represent free
mesons. The zero~order pion field then has the form
- -2
e , 2.
Bok) = -ig To S ok U0K)
2 2
P

The pion field is seen to have the angular dependence of a

(77)

—>
p state, arising from the 5?»‘7 coupling to a spherically symmetric
source density U(x).
Continuing with the zero-order equations, we transform the

spin equations to momentum space to obtain
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T, s Foxan (AR L@ uD (7€)
,)- . .
and
,‘L’Jo - 4 X 2i_g°§d3k T K ¢O(;) u(-K) . (79)
G ' )& °

Locking at eduétion (78), and remembering that the angular
—>
dependence of ¢O(E3 is E?ook s we see that the integral must be a

vector directed along E?o and therefore.

o - s and = o = constant, (80)

: -5 - ' '
Furthermore, in isotopic spin space ¢o(k) is parallel to ‘YO,

which implies
‘® . . . . :
-qu =0 , and T’o = constant. ) (81)

In the zero-order solutions then, the nucleon spins are fixed
vectors independent of the time.
The first-order field equations obtained by equating coefficients

of & in equations (59) through (63) are found to be

. L —>
0% ) = 48,7 UG 4 LW, T x V ux) ,
| o (82)

\

-

220 =g
(A7 - p) 1(x) = g (ToT1+T 1 To)oV U(x)
v M-

, =>
b BT B Tox L) - )V x L,
R

(83)
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> - 3 =
T = le 2 g dx“r“oV;do(x) U(x)
/J- .
+ 6'-"0 X 2§ [_g_ (v, VQS (x)+ T Y_7>¢1(x))
: M-
+ 'I_)_Eg ;O(X)E U(X) 3
2M

(84)

L] ﬁ
T =TiX2g Sd?x Foe V o) U(x)

+ 7 X 2 SdBX [ & (@, -V (0) + Ty R ()o(x) X L)
fk«

—
-B! o o (x)l} U(x) .
LM

(85)

where certain terms from equations (59) through (63) are zero because of
the 1sotopic spin dependence of @ (x) and because Ah(x) has been
chosen to be zero,

The boundary conditions to b:'e imposed on the solution of these
equations follow from the fact that in the absence of the incident
plane wave K:(x), the pion field and nucleon spins must reduce to
their zero-order solutions. This requires that only the inhomogeneous
solutions proportional to K:(x) be dhosén, which further implies that
the time dependence of the first order pion field and nucleon spins

will be eal"bt where > 1is the photon energy.
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Transforming to momentum‘space and making use of the fact that
only a single frequency is excited by the incident photon, we get from

equations(82) through (85)

2 \I =, . ' ~> | _ — —> .
kKA (k) = m’po U(k)( SM - % G k)y), (86)
(k2 - 2+ /-"*’2) ¢ld:) = =i £ (E’OQE’ 'T’l'f" ?l"? qu) U(.l’?)

_ P

N ,
-g z;;°;f; T X L u-&)
}Jv

I N
218,k (k-w)x L,

(87)
-1 wc—::l' = 24ig SdBk v, [ (¢o(f).?l+¢l(?) o‘i) X ?}U(-?)
/J— )
e i T ox (IxE D),
M Po o (¢]
(88)
and

1T, T 2ig gdBk B’-oe_f(’fl X ¢°(—;)+ . % _¢1<-1?)) 0()

'Iv

| —
+T, X2z §d3k E"Oo-éz ¢o(§>- Syx L uEd
N .

3/2 -
- (2m _i 'I‘oxﬁ,'?oc?x ?O'U(~°0) .

2 M °
' ' (89)
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From equation (80), we see that the first-order electromagnetic
potential is tﬁne-indepeﬁdent and yields the static electric and magnetic
fields arising from the charge and magnetic moment of the proton. There
is>therefére no'scattering of electromagnetic radiation in this order
and the lowest nohvanishinngrder in which it occurs will be be2§

To solve the spin equations, let us eliminate thevfirst—order
pion field ¢1623 with the aid of equation (87). The spin equations then

take the form,

— - => 2
WS = Pox TN+ 1 F x (WxE )LD,
1 o) 1 [o) (o]
(90)
— -
ST = VX T ONW) 1T X (Pox L) KW+ 1% x L L(ed),
(91)
where the angular integrations have been performed to obtain
N(@):_j_a;fdkku(k) 1 - 1
0 - Jad S o
(92)
and the remaining symbols represent the expressions
- 3/2 -
a(w) = (2m) " Xpo U(-w) (93)
M

K U(R) Uk - ) ) 280k Tok Too(k —u;) |
[kz—wzvf][@:’w) ]

_ Ty ey Tk T, € (k w)

0
[k2“w2+f_’2] i(k-b—?-) +/~2]

= ,
K(w) = 2 Sd
=

b

(94)
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‘L(Z)’) - - g211‘23/2 ?o“u—)’;g Eo U(-3) . B (95)

S -
In arriving at these results, we have made use of the fact that O‘o

. ’ ' %
and ‘T’ are unit vectors and that the first-order spins N , and

iy 1 are orthogonal to the zero-order spins ? and 'T‘ 0’ respectively.

Proceed:.ng to solve the vector equatlons (90) and (91) in terms of the

quantltles N, G, K, and L, we resolve EY? and ’T’l into components as

4

—-a
follows, with § = o x A
- -3 - — —5‘ g ‘
T1 T SE Tox T o+ S Tox (T x o) s (96)

andv
T, =7, P xL + 1, . (. x L).-
Ao B e ° | (97)

Substituting into equations (90) and (91) we find for the components

. of the ordinary spin,

ws, T - N(w) Sy + 1 G() (98)

-1 wSp N(W) s, | (99)

and for the components of isotopic spin,

o
-iwTy = - NW) Ty + i L(W) - (100)

R

ﬁ
~i'u)'TB NT, +1 K(w). (101)
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The solution of the first pair of equations (98) and (99) yields

5, = WG ; S = 21 N G2 ,
2 2 .
- N - (102)
while from equations (100) and (101), we find
T = -{1NK+wl ; Tg = LNL+ LK
A P 2 2 p)
N =W N™ - W
(103)

At this point, let us evaluate the expression N(w) given in
equation (92). The first integral which occurs in this expression may

be written in the form

o2 —

oo 2 2.2

§ de it 0P - j ak U(k) | 12+ (@ - WA (- )

) kz_wzﬁpz A kz_wzﬁwz
(104)

. 2 :
In the last term, which converges without the U (k), we replace the

latter by l/(2'rr)3 , while in the first two terms we make the same

TH
kc — -550

In evaluating the last integral, poles appear in the denominator for

substitution but integrate only up to a cutoff momentum

e > To define this integral we deform the contour away from the
real axis to yield a result which corresponds to an outgoing spherical

wave,

° (105)
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which gives for N(w),

r 3/2
Mw) = 2g° _1. [w 2. a/~3+ ia(w2 ;~2) }
R

The remaining first-order equation (87) for the pion field has

the solution

- e d ' —_ = = >
QSl(_]:) = -ig (c_o;i: ‘1‘14-5:101{ ']Jo) U(k) _ g googo q‘OXQ, U(k =)
- kz"'“‘)z"‘/*’z - kz—u.)2+/.;..,2
2 B K Te(I-B) ¥, x L Uk-3)
_'-—

[« w2+,4—2][(k 3)% 2]
(107)
To obtain the scattering cross section; we must evaluate the
ésymptbt‘ic form of sz(x)o The boundary conditions on A‘;(x) should
correspond to an outgoing spherical wave. We know that the time
dependence of A; is e *®% pecause this is the only frequence

L v
excited in jz(x), and so we may separate it off and write

(vP-0® gy = - . (208)

The solutién corresponding to an outgoing spherical wave is then

. = —Hl
v 3, ifwix-x1 y
Ax(x) = 1 |dx e Jo(x")

i (109)
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where '
: X
—’

e I d .
n=x WwWe may write
X

- b =
\ X - xﬂ‘ = XZW/ 1-2mnx __l; =. X “ X 4+ O(_%_) R
X X
(110)
‘and so
N iwx 3 i W R v
Ay(x)  _1_ e d’x' e Jolx') + 0(;%2_.) s
hav X
| (111)

which may be written

Y dw x r——-ﬁ Vo
AQ(X)~ Q) }e{ . : _Irs_, j2( wf) (112)

n «) and j2(0)f) is the three-dimensional Fourier

where u)f =
v

transform of Jolx).
Returning to the electromagnetic field equation (59), we see

that
v v Y
- ; p p
1209 = 16,0 - 1 (P ol o) L ue

| , , o ,
=¢JQXﬂ.Lav%bd+A*ﬂ¢Jﬂxﬂ.-ﬁﬁﬁtowﬂ]

- ¢i(x)>é L [QV Po(x) - &2 7, C‘ro\) U(X)] 3 .(113)
)J—
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Transforming to momentum space, inserting the expression for
- .
g1(k) from equation (104) and for IIJ]_, from equation (97), and

evaluating at the point 3 £ s We have

Vo> - w v I
INCANE 1:u<wf>[gmrplazlm_<rrpocrl+rr’pl oty wl” |

= T - = -5 — -
b2 )| P 8o To W - ) T (k-D)0(Fp - ) UK D)

P @2 | T (& -B% e ][ @-30% 2]

L L T, ojo?oe(_lf- a3, Uk - £) U(k)
+ U( @ - k) (2k - W), o-oo(u'?f-k) +G_,,
(kz 2\ - - 2 2 o

aiadi S (k- w p)"+
- > = - - -
iT, .3'05? U(k)+ ?oo L U(?-z) -2 80°kvo°(—i: ~«) U(k -w)
(k -2 )24_/*/2

(114)

_5
In the evaluation of these integrals, as well as those in K(w),

we shall replace the nucleon source by a cutoff momentum k., = '")/2a°

Here a is an appropriate cutoff radius, which we shall take 4 times

the nucleon Compton wave length. Since the integrals are divergent
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- without such a cutoff; we shall approximate them by retaining only the
leading term proportional to kco For wJ ¢« kc’ this will indicate
the order of magnitude of the integrals.

Applying this procedure, we obtain

() = 10T § 4, Py -1 (7, O 0 2w
+ L & (rxd )’2_1”!;1= g7 - 311,(3 T, &7 - 3up)
o @em)? g 15 a °

(o] o}
(115)
and for K(Z:);
k(W) = (L)1 oo s

2
Making use of the fact that in the asymptotic region the electric
and magnetic field intensities are equal in magnitude and perpendicular

to each other, we can evaluate the magnitude of the Poynting vector

—
for the scattered wave, P

a’ to be
g A A S S
s e [E;, X Hy = H2°H2 H2 s

(117)

- = —> iwx f R > > 1
H2 - VX: AZN e .gi :LUJfX Jz(wf)'i‘ O( }—c?) .

oo X

where

(118)
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L N
Taking the curl of the asymptotic form of A,(x) given in equation (112),

we find for the magnetic field,

X v\ 2| PO 1
2 = g 2
7 (W LT BTy + 1 ¥ (v x L)
pl o o f = o
15
No B ornin, ¥,8, XD, 33,8 &x 3
E:ox“uf’-"BlTAt"owfO-ox f-BUo% ) f
(119)
where we have introduced the dimensionless quantity
2
¥ - (g )_1_ M (120)
b (ma)
‘ .y ,\3/2
and have set the nucleon source density equal to l/(2¢() , the

_ Fourier transform of a point nucleon; wherever it remains in equation

(115). This allows us to write in place of equations (93), (95), and
(116),

6() = Tpo , (121)
| T
- -
K(Z3) = 2 ¥ Q‘oaoc_')ofz’, (122)
5™ ° °
ad W@ s -1 FoBxXE (123)

N
=
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The differential scattering cross section is given by

do = < 2 \\ Bf)l Pg = e[+<X2 ;I;( Q?f):ﬁz( Bf) >
T @ BH,

<x° (B (3) >
“ (124)

where the brackets < > indicate averages to be taken over the nucleon
spin, the isotopic spin, and the polarization of the incident photon.,
In performing these averages; E?‘o and o are treated as classical

unit vectors and use is made of the relations

ey ' - -
<O'O°Al oAy V= %._AloAz (125)
<;—->—=,—»-¢»—->-*=—> — o = =5 -5 >
oAl U-OQAz c-onAB Q"oaAh> = %[Al A2 A3°Al++ A10A3 A2°Al+

(126)
where for n E’O-terms, the coéfficient on the right is

1
3%X5 .00 X(n+1)

The relations for the T o - averages are completely analogous. .

. The averages vanish for an odd number of terms.

To carry out the E, -averages we note the relation

e e N s R IR e B 4
<& A& B 2: 3 (AB-AwWBW) (127)
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v
since there are only two independent orientations of S o» Which are
both p;ar‘pendicular to 3

A straightforward 'cal(:ulétion, carrying out the averages over
the nucleon spin ?o and photon polarization Z 0? yields ﬁhe following

expression for the cross section

2 2 ' '
do = 1 (&) )Xy (W+coste) [ (w)
a2 2 " Y 2,25 - °

2
4 [ %1 ¥ (14cos  0)+ %2 ¥ (L-3 coss 8)+3(3 - cosze)i\ri(m)
5,250 150 | 2, |

: L
+ \“. °_L‘_l,(3+ 6052 6)+l"°(l\6 (3 -3 c052 e +4 r:osl+ 8) -

960 196,875
oy L %" (1 3c 2. X | 2T @
-%2 (1 ¥ - 3 cos 8)4 X3 (11+7 cos” 8) || L)
1516 25 120

- 3
4+ i_l._:(_, cos @ - 4X1 ¥~ (3 cos 0 +2 cos® e)+_2=_c(2'6'0056][;(w)
180 39,375 45

(128) .
where the isotopic spin dependence is contained in the K 15 0(2, and 0(3
coefficients, which are as follows

o IN .
K= (Pox L) (129)
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- _ . 2 2 B ) 27 2
o, = (Pox Ly = afi- ) Ja- v
\ (130)
oo k |
®g =V = ilz(lf’T’offL) o (131)

~ The .Tﬁn(oo), (n=zo0, 1, 2,‘3), are dimensionless functions of

the photoh ehergyo If we separate N into real amd imaginary parts
N = R+1iJ , (132)

the 1 n(LD) - take the form

T -1, o )
I 6
| 1(03) = W 1 5 (134)
| 2 lNz_wz )
T k22 | S
2(“)) T W R +Jd s (135)
2 lNz FE
2 2 2 2
T = @ » @+d -0 | (136)
T Y R lL?|? ‘ |

To find the cross section in the charge-symmetric case, we

average the <¥,1; 0(2, and <>'(3 over all oriéntations'in isotopic
'spin space and obtain
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<°(1>2I_85_ ":’ v <°<2> :<°<3>:' _-;,
' | | (137)

For the case of a neutral pion field, the nucleon isotopic spin
is parallel to Q s and“;ﬂjpo' is one for a proton and zero for a neutron.

We then set

*1:0, S Eo, &= L0
S | (138)

for a proton, (neutron). The cross section in this case has the much

simpler form,

J

o~ , .\ (n - 2T (w
p (neutrai) (3 -~ cos 0) 1( )

a0 24 M2

it
,\
I (0]
=4 N
-,

| +; (11 +-7 cos” e)T'z(@)

A%

and ) - o (139)

d “n (neutral)

a0

i
(@)

It is clear thaﬁ{the'ErOSSféeCtion for a ﬁéuﬁron should vanish
in this case, since the Aeutral pion cloud provides no currents to
l“'scatter the photon,.and the neutron has no Dirac moment.

-A In order to 1nteroret the results contained in equations (128)

and (139) for the scatterlng cross section in the charge-symmetrlc and
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neutral theories, respectively, we have plotted the .rﬂn (n=1, 2, 3)

as functions of the incident photon energy in Fig. 1. The source

radius has been taken to be times the nucleon Compton wavelength, which
corresponds to a cutoff momentum kc = M, and the pion-nucleon

coupling constant is chosen to be gz/hﬂ’ = e3. With these vales for

the parameters, the cross section formulas may be written in the

following form:

. 3
: ‘ =32 2
d o (symmetric) = (.539x 10 om ) >  Cp(8) T ()
dl)y o ' n=0 .
. (140)
and
3 2 —
d o (neutral) = (1.0 x 10 ~° em ) E Dﬁ(@)Tﬁn(UJ)
dﬂ .- _ ) . n=l (lhl)
where the C,(8) are given by
Co(8) = 1+ .0769 cos® © , | (142)
cl(e) = 127 - .221 cosz 6, ' | (143)
Co(®) = .69 - .205 cosz‘@-+:100h cosh-e 5 | (144)
c5(6) = - .302 cos” 6 , - (145)

and the D,(8) are
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Dly(e) = 3=_c0526 R | , (146)
and
Dy(8) = 1 (1L +7 cos> ) . | (147)
5 : .

The constant term in CO(G) " has been normalized to unity. These
O-dependent coefficients are plotted in Figures 2 and 3.
It is seen that 03(8) is the only coefficient which is

T

asymmetric about 6 = /2. In addition we note that 3(W) is

negative for small « and becomes positive for w > <2 o Where
' )

0.)0 is an energy near Lh,-\, =" 200 Mev. Therefore, in the charge

symmetric case ,the angular distribution is peaked in the forward

Y

direction for energies below «J N

and this peaking shifts into the
backward direction for w > O o° This may be contrasted with the
behavior of the angular distribution in.the neutral case. Here the
peak appears at € = ’n)/2 for ‘energies below the resonance energy
) o and this peak diminishes and is replaced by a trough for
w > W o’ These angular distributi ons are illustrated in Figure 4 and
5 for typical energies.

Integrating equations (140) and (141) over solid angie we
obtain for the to’pal cross Sections,'

O (symmetric) = (.697 x lOmB:L cm2) 1+ oO/+9—\_\1(“)) + 0805]_’2(“))}

(146)

and



T~ (neutral) = (3.4 x lO_‘32 cmz)]j-r1 l(u)) -O—Tj 2(00)} .
(147)

These cross sections are plotted in Figure 6. It is to be noted that
the magnitude of the cross section is smaller in the neutral than in

the symmetric theory. However both exhibit a resonance peak in the
total cross section, This confirms the fact that the pion cloud modifies
the scattering of light through the mechanism of inertial effects as
well as directly through its charge.

The general featurgs of this ;alculation indicate that the
pilon-nucleon coupling may modify the scattering of light in a
sensitively energy-dependent manner, Experiments at higher energies
could provide interesting new information about this coupling.

It should be pointed out that the neglect of the recoil effects
of the nucleon will invalidate the details of these results to some
extent. However, it may be expected that the main features of these
results, ihcluding the peak in the total cross section and a strongly
energy-dependent angular distribution; will be valid.

In conclusion, I would like to acknowledge the help and
encouragement extended to me through all phases of this calculation
by Dr. Joseph V. Lepore; In addition, I wish to thank Mr. Edward Robbins
for helping me in checking the computations. This work was performed

under the auspices of the Atomic Energy Commission.
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FIGURE CAPTIONS

Figure 1l: Graph of coefficients /~;(60) (n -1, 2, 3) as functions

of COé%po

Figure 2: Graph of C_(8) (n =1, 2, 3) as functions of 6.

Figure 3: Graph of Dp(®) (n =1, 2) as functions of &,

- Figure 4: Differential cross section for the scattering of photons on

nucleons in the charge-symmetric theory for energies of

“’4“‘ = 1.2, 1.3, and 1.4.

Figure 5: Differential cross section for the scattering of photons on
nucleons in the neutral theory for energies of 404}4 -

1.0, 1.2, and 1.4.

Figure 6: Total cross section for the scattering of photons on nucleons

in the charge-symmetric and neutral theories.
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