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THE CONCEPT OF SETS ENCHAINED BY A STOCHASTIC PROCESS
AND ITS USE IN CASCADE SHOWER THEQRY :
Bayard Rankin
Statistical Laboratory
S and
Radiation Laboratory, Department of Physics - -
‘University of California, Berkeley, California

July, 1954

ABSTRACT

Almost all solutions for'_;ch’e number distribution of electrons and
photons .in cascade result from one. genéral methodology. These
solutions. (including those of Nordsieck, .Larnb, Uhlenbeck, Scott,
Bhabha, Ramakrishnan, Jaﬁossy, Messel, Potts, and one previously
given by the author) are obtained bjr solving for the probability, or
probability density, that the electron-photon system belongs to one or
another of a set of states after it has penetrated x-units of absorbing
material. This general method of approach is in contradistinction to
the conceivable method of determining the probability weighting for
each state individually. It has the advantage of entailing fewer
parameters --just enough to specify the sets rather than the detailed
configurations of states within these sets. It may have the disadvantage
of leading to’!equétions_ that are non-linear or otherwise difficult to solve,
for the Markovian property of a cascade may be lost when the detailed
description of a state is given up.

In the present paper, the above methodology is investigated for
stochastic processes in general and it is shown how certain choices of
sets can be made which preserv‘e the linearity propverties, though not
necessé.rily the Markovian properties. It is then shown how in the
particular case of a cascade shower these sets can be used to eliminate
the need for low energy spatial parameters (those that describe the
three -dimensional spreading of the shower at low energies) and also
individual energy parameters for all particles. .Only three parameters
are retained, the number of electrons, the number of photons, a.nd‘their

total energy. These are enough to carry one directly to the number
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distribution by means of a linear function of exponentials. No matrices
or integral transforms are needed, provided the assumptions of the |
previous paper are retained and the bremsstrahlung spectrum is idealized
in the region of photon energies less than € , € >0, The elimination
of the spatial parameters is done at some expense: The results refer
only to the population of particles whose energies are above € , The
elimination of the individual energy parameters is dependent on an
assumption: For the population of particles whose energies are above )
the detailed energy configuration of the particles is known and is
independent of x when the number of particles present at x and their

total energy are known. € can be chosen as the critical energy.
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THE CONCEPT OF SETS ENCHAINED BY A STOCHASTIC PROCESS
AND ITS USE IN CASCADE SHOWER THEORY
Bayard ‘Rankin

Statistical I aboratory
and
Radiation Laboratory, Department of Physics
University of California, Berkeley, California

July, 1954
INTRODUCTION

1.1 History _

A long standing problem in theoretical physics concerns the
growth and death of a populétion of fast electrons and photons as they
pass through matter. It was first realized by a few physicists
(Nordheim, Carmichael, Bhabha, and Heitlerl) in about 1934 that suc-
cessive branching processes could ex.plain some expei‘imental observa-

~ tions of Rossi and Regener, and that these branching processes were
just the radiation loss by electrons and materialization by photons
that the new quantum theory predicted. As Bhabha and Heitler1 say,
however, "Owing to the illfounded suspicion in which the (quantum)
theory was then held, it did not seem worth while carr.::ying out any
calculations. ....... It was believed that the direct rheasurements of
Anderson and Neddermeyer on the energy loss by fast electrons showed
that though this énergy loss b..y radiation existed, it was muc‘h smaller
for energies greater than about'108 ev. than that theoretically pre-
dicted, and it was therefore assumed that the present quantum mechanics
began to fail for energies g;reater than about this value." We find by
1937 that more experiments had been made and Bhabha and Heitler1 and
Carlson and Oppenheimerl_' ! had published their first caléulations on
"The Passage of Fast Electrons and The Theory of Cosmic Showers"
and on '"Multiplicative Showers, " Their papers, while dealing with a
number of aspects, inaugurated the long standing problem which is the

subject of this paper: to predict the number of shower particles, electrons

and photons, that emerge from a piece of absorbing material, assuming

some initial conditions,
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Their work and the work of the many author‘s* to follow them up
to" 195@ orought reahstxc results in terms of the average number of
particles in the shower population as a functmn of the thickness.
Valuable results on the second moment were also advanced in this period

by Nordsieck, Lamb Scott, and Uhlenbeck3’ 4. More work was later

. done on the second moment by Bhabha and Ramakrlshnans, Janossy and
Mesee_llé, and Ramakrishnan and Mathews7. Since 1950 the efforts by

Bhabha,g’vg, Ramakrlshnanlo 1 . J’a_nossylz@l‘l, Scottls, and Messel and

Pot'csléD 17 to find. the distribution of the number of particles as a function

of thickness have been theoretically successful and quantum mechanically
correct, but not yet have theée efforts, which met extreme complexity,
yvielded numbers which can be compared with experiment. It is not surprising
that the attempts by Bhabha, Heitlerls' Arley18 and Furry19 to find the

. : sfedde
distribution prior to 1950 were based on model building and imposed
20

.. severe: ;approximations; nor is it ~sur’prlsmg that Robert Wilson has

. finally resorted to Monte Carlo techniques in order to bypass a general

solution and force numbers for some particular cases.

L%
A comprehenszve rev1ew of the work on the first moment is glven by

Bruno Rossi

""As shown in the next chapter it is possible to evaluate the average
numbers of electrons and photons, with given energies, which are pro-
- duced from a parent electron (or photon), with definite energy, in a
certain layer of material. This calculation is, however, already so
complicated that it would be quite hopeless to try to evaluate directly
the probabilities of finding given numbers of electrons and photons as
~functions -of the primary and secondary energies and of the thickness
of the layer. The problem is, therefore, to construct a simplified
model of the multiplication process which on the one hand retains most
of its characteristic features and gn the other hand permits of
numerical results being obtained. Niels Arley, loc. cit. p. 88.



1,2 The Failure of the Obvious Markovian Description:

The reasons for the mathematical difficulties will be clear
after the process for electron-photon deveiopment-has been described
mathematically and a general equation for it has been written down.
First, it is necessary to remark that the basic p:r‘oc:esses>=< which contri-
bute to the development of a shower are: (i) radiation loss by an
electron (an electron branches into an electron and a photon),
(ii) collision loss by an electron (an electron branches into two electrons,
as in collision with a free electron, or it simply loses a fraction of its
energy to excitation of an atom, as in collision with a bound electron),
(iii) deflection of an electron in the Coulomb field of a nucleus without
the electron losing any energy (the electron path becomes curved at
random from multiple scattering), (iv) pair production by a photon
(2 photon branches into two electrons), and (v) Compton collision by a
“photon (a photon branches into an electron and a photon). Pictorially,

these processes can be illustrated in the following way:
g

() “«”\
\ o

i) -

v j*c"e‘”éis
(iii) /\//\_

(iV) AAAANA A~ A M,

Throughout this paper it will be assumed that energy is conserved

in each of these processes. The assumption is good if the energies
involved are large compared to the rest energy of the electron.
Trident production by electrons and positron annihilation are ignored
as are other unlikely processes.
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While only two of these processes, (i) and (iv), are jmportant at high
energies‘whvelge the slhb-wer begins, aH prbcéssés Will contribute before
the energy of the shower has been completely dissipated through excita-
tion.-. L ' '
Ignoring: for the time being process (iii), and ignoring the fact
that there is actually an angle of emission at each branch point, one
E can sp'ecify the. stafé, S, of a shower at the point x » 0 of penetration
by giving some particular values to a set of parameters. A suitable
set of parameters might be n, m, E, and W, »fepreSenting’; respectively,
-. the number of electrons,. the number of photons, an n + m dimensional
energy vector, E = 1((E1,~E2', cee s En+m),,and the ordering of electrons
" and photons among the energy components of E, The ordering parameter,
' p;:cantake on any of'ZnJrn.1 permissible values, each value representing.
_one of the 2n+m ‘ways in which n+m particles can be distributed among
n+m _e,nergi'es':‘.,‘ V,Aip'oésibll.re sta.feak of a shower will be written - -
" S=(m, m, E, u)y° n=0 2, ..., |
m=0, 1, 2, ... ,n+m>0,
E I

s k=1, 2, ..., n+m)

I is the initial energy of the shower at zero penetration,
With these conventions, ore can say that a shower is completely

described by the random. function CS((x}), where G (x) may take its

Notice that these conventions allow one state to be described by more
than one value of E, One could impose the restriction

O0<E, € E € ... - 4 E < 1. Without this restriction
1 2 n+tm |

the resulting functions that will be called probabilities will not be
normalized but will differ from the desired values by a factor

(n! mi)"’l. When actual solutions are obtained, the normalizing factors
can be restored and in the meantime the limits of the integrations will
be simpler. o
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values in the space Z = {S} of all possible states S. The mathematical
problem is to determine the probability that $(x) will belong to some

set of states AS, given that ' (0) coincided with some initial state So:
P (&S, x | Sy 0)=Pr { Sx) ¢ a5 | $(0)= 5}

This will be written without the initial condition appearing explicitly when
the initial condition is constant and understood:

P (A4S, x) = P.(AS, x S 0)

0,
"AS will be understood as the set of states, S, with common n, m, and p

but with energy components Ek" taking values anywhere in the intervals

(E

X’ Ek+ek), € 20, k=1, 2, ..., n+tm. Thatis,

AS = {S':E'6Q(E,Efg),n'=n,m'=m,pf'=p,},

where e = (el, €51 w0 s € Since it can be assumed (a) that the

n+m)°
processes (i), (ii), (iv), (v) all occur at some discrete points in space,
namely the points of impact with the coulomb field of the nucleus or the
electron, and (b) that before each process the partiéle remembers only
what its energy is and whether it is an electron or a photon, the

following assumptions I and II can be made.

I. The process is purely discontinuous and temporally homo-

geneous. That is to say, the conditional probability of & (x) being
contained in As, given that at the fixed point y, 0 € y < x, the

%
variable § (y) coincided with the state S', 'is a continuous function

of x and vy, independently, and has the limiting form:

P(as, x | S y) = {1 -a () xy)} S(S', AS) (1.1)
' + w (S' —> AS) (x-y) + o(x-y)

1
: J\(S" AS) ={1 St € A,S )
0 Otherwise |

For a precise definition of this function, see Section 2, the para-
graph containing equation (2. 2).
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In general ofx-y) will depend on S''and AS. The explicit forms of
a{S')-and w(S'—> AS) will be given when they are needed. At this
‘time, it is enough to say that from the mathematical point of view, if
AS is fixed, w(S'—2* AS) is mieasurable with respect to some ¢ field,
/B, of sets in . For fixed S',. W(S'—%?AS)' is a completely additive,
none-neg;attive function of sets in /B with |
n(S'—X) = afs') |
and | |
w(S'—> S')= 0.

w(S' —rAS) is independent 'of x and y. From the physical point of view
P{AS, x , S'; 'y) is the probability for transition from the state S' to
‘the set of states AS while passing from . y to x and w(S'—>AS) is the

cross section for transition from S’ to AS.,

' II. “The process is Markov1an., That is to say, the probablhty .
distribution of ¥ (x) given {@(t):t ¢ y} andthatof §(x)

given S y) are the same. In other words, the future state of the

system is independent of the history prior to y, so longas (y)is
known Symbohcally

Dlst{g<x)|g(y»} Dlst{g¢x’gqt vy} , x‘;y >0. (L. 2)

- -Once one is assured pf properties Iand II, the most obvious
approach to the calculation of P(AS, x) is to write down and solve the
diffusion equation which it satisfies. Followmg Feller' 821 treatment

' of a purely d1scont1nuous Markoff process, one has

(D/200P(88, ¥ = | Plas . wis—as) - | Pazg. x) )
R - o > : . . AS | <

(1.3)

A general solution that can be extracted from Feller's proofs concerning

Equation (1. 3) is:
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- |
pas, = = PN (as, (1. 4)
N=0

Where P(N) (AS, x) are given in terms of an integro-difference equation
which can be solved in successive step>s in N. The P(N) (AS, x)

can be interpreted as the compound probability that while penetrating

x thickness of material the system will experience exactly N transitions
and that $(x) € AS, if it is known that S (0) = .507 Thus it

appears that a formal solution for the cascade shower problem was already
available in 1940. Why then have physicists continued to work on the
problem for fourteen years? The answer will be clear in the sequel.

The three main points of this paper are to show, fii'st,. why the Markoff

property has been abandoned for much weaker properties whenever

practical solutions are attempted and, second, how the Markoff property

can be used to obtain a working solution in the form of linear functions of

exponentials, and third what new non-Markovian techniques, suggested by

present methods, can be used to expedite further the exponential solution.

These three points will be made in Section 3 and Section 4, Parts 4.1 and 4, 2.
The two reasns that Feller's soltitionﬁ= of equation (l.3) cannot be |

used in practice are (a) that uncommonly many recurrence steps in N are

requirebd and (b) the equation contains no correctioné for multiple

scattering (process iii) or angular divergence at branching. In refer-

ence to (a), the myriad steps are a consequence of the fact that collision

loss {process ii) occurs very often with only a slight loss of energy at each

transition.  Feller's solution, as it stands, counts the number of transitions

and, hence, the number of times an electron collides with an electron.

In reference to (b), the neglect of the lateral spreading is not serious at

high energies, but equation (1. 3) follows particles down to zero energy

The remarks made here do not imply that Feller, himself,
. seriously considered using his general solution for the cascade
problem.” : . L
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and so follows them into a reg-i-on where the direction of both electrons
andv_photons are prectically random and the motion of electrons is
similar to Brownian motion, The fault appears in the parameter set
(n, m, E, M vwhich is inedequate to describe the state of the shower in
b.the low energy region.. ‘ _
It now becomes apparent that either the original neglect of multiple
| scatterng (process iii) and angular divergence was serious and more
p‘ar“-a_.meters ’_slhouid be enumerated to describe the lateral spreading, or
e:]lse eciuation_((l, 3) must be solved in some app’roximate manner. Outside
‘ “thesve two alt_ernatives,v one must reach for an entirely different approach
to the problem. The first alternative seems unnecessary, leading as it
does to a thre_e' dimensional equation. After all, the problem at hand is
to f'ind: the number of particles as a function of thickness only.. Physicists
, have }v‘orn'g’feflt that the behavior of low energy particles, the residue of a
| s'howe:,v shouid h;eye'l—i»tﬂe influence on ones mathematcal investigation of.
high energy ones. The second alternative does not seem fruitful for reasons
that will be_i_expia.ined_immediately.v Hence, the following sections will be
concerned with fresh techniques that start from different bases than have
already been descr1bed ' _

If, as a last resort, equation (1. 3) is to make physmal sense
approxlmat_ely, the solution must somehow refer only to those particles
whose energies are above the region of serious lateral spreading. It
could be made to do this in three possible ways. First; sum out all
narticles whose energies are below some appropriate cutoff energy and
mterpret the result as the cond1t1ona1 distribution of the numbker of
particles. The condltlon is that their energies are not below the cutoff
Unfortunately, th1s still means tracing the transitions of the system
through all electron-electron collisions. Alternatively, electron collisions
as well as lateral spreading could be disregarded altogether for a high
enough cutoff energy, but then no energy would be lost from the .show'er.
The numb'er of particles would increase indefinitely. In this case, the job _
of summing out all particles whose energies are too low would be a matter
of summing out infinitely many of them. Finelly, one might wish to say

that collision losses occurred infinitely often along an electron's path so

M v
-
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that a continuous deterministic process could replace the discrete stochastic
one. Little is gained by this approach. The myrlad step recurrence is

avoided at the expense of addmg terms of the type

2P (S, x)
IB Lo Wy A
9 Ek

to equation (1.3). P is the average energy lost per unit path length,
The process is not longer purely discontinuous and a practical solution
is not known, |

- The third section of this paper will describe what methods have been
used up to the present in order to handle the energy loss and the awkward
‘behavior' of the shower particles at low energies. It will be seen that all
of these methods are non-Markovian in structure. In the fourth section,
part 4.1, a modification of the energy loss process will permit a solution
in a convenient number of steps. A new random function will then be
introduced. It will be Markovian and purely discontinuous but will describe
the shower in such a way that the low energy particles are immediately
eliminated from consideration. The serious lateral spreading does not
affecf the solution and a moderate amount of multiplé scattering can be
corrected for., The solution is different from Feller's and does not
depend on an expansion in terms of the number of transitions, as in (1, 4).

| In the fourth section, part 4 2, a non-Markovian technique will be
introduced to further simplify the solution of 4.1. The two methods of
- Rarts 4.1 and 4. 2 can be conveniently catagorized within the general logic
that underlies most presently known methods. For this reason, the next
section will be devoted to an abstract development of probability theory
. as it relates to this general logic. The terminology for comparing
techniques throughout the rest of this paper will be more in keeping with
the ideas introduced in the next sectionthan with Markovian and non-Markovian

ideas,
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2 PROBABILITY THEORY .

In‘this section some i’dea'szwﬂlill- be 'int__r::gdilc':ed.and'some statemenfs
relating these ideas will be proved. As pr:é*s‘é;n'ted here, in thé concise
forfn that is convenient for reference, the ideas are purely abstract.
Upon closer examination they are the probabilistic formulation of methods
and techniques that either have been used in other places or will be used
later in this paper to solve the cascade shower problem. It is hoped that
" this section will Bring the various approaches to shower theory under a
common heading and will lift any useful principles to an accessible place.

In order of presentation, Theorems 1 and 2 establish the basic
‘methods that are unique to this paper. Theorem 3 establishes the essen-
tial features of the method that has been most extensively used up to the
presenf. This latter method has not been presented in a similar light
before (so far as the author is aware) and, infact, has appeared in such
~diverse forms that its omnipresence has not been properly appreciated.
It is expressed in the form of Theorem 3 to show clearly its relationship
to the methods of this paper. Theorem 4 establishes the basis for
Janossy's approach. One can see that almo’st all methods used in the
shower theory break up the observation space into subsets and then solve
directly for the probability (or probability density) of the corresponding
states of the electron-photon system. The difference in -techniques is
found in the differnce in the choice of subsets and one technique may be
more powerful than another because of the judiciousness of this choice:
ideally, the unhecessary parameters of the problem are eliminated
(or relegated to a convenient place) by partitioning the observation space
and the resulting equations become easy to solve. -

In subdividing the spa'ce for the cascade 'shower problem, one
is motivated by a desire to achieve two things: to be freed from the
low energy pérticles' effect on the high energy shower and the high
energy particles' interdependence in energy. The advantage in the first |
accomplishment was made clear in the introduction and that of the second
comes in dismissing all of the rapidly multiplying energy parameters

that encumber the equations. In effect, there is a demand to limit one's
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"observations'' to the set of particles whose energies are not too low
and also a demand to '"observe' the set of particles whose individual
energies are not explicitly specified. Definitions 1 and 2 specify the
choices of sets which, when introduced into the shower problem, meet
the first and second demands, respectively. The corresponding theo-
rems establish what equations relate the probability weightings of these
sets. More will be said about the interpretation of the theorems in
Sections 3 and 4. ‘ |

In the second part of the present section a general solution will
be obtained for a large and ffequently met class of diffusion equations.
It is a solution which can be used in the cascade shower problem, as
a later discussion will show.

There will be no existence proofs given, because examples of

-all the newly defined entities will be encountered in the later sections.
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2.1 The Concept of Sets Enchained by a Stochastic Process

Let (£2, @) , [P.) be a probability space, (r' (53 ) a measurable
space, and R the space of p051t1ve real numbers. L_et (%) be a meas-
urable function defined on _QXR to r The symbols 0N and [ repre- L
sent some general spaces made. up of points w and G, respectively,
while %3_(1 and r are some G -fields of sets in. {) and r‘, respectively.
[P is a probability measure defined for all sets in @_O_ . The function
(gw(x) defined above will be called a random function or a stochastic
process and will be written G(x) when no confusion arises. r‘ will be
.called the range space of G(x). ) e

Let y = {g} be a class of ‘sets in r‘ . That is, each g = {G} will
be a set of points, G. It should be noticed that if y is measurable in
the sense that for all g € vy, ge @; » then it is possible to construct
the following O -field, (53 that contains the sets y = {g} @ contains
all sets Ag of points in y such that the set of all points G € I—' wh1ch be-
long to any g in Ag belongs to @)’_. . The condition of measurability will
be imposed on y in Definition 1 and the symbol "Ag" will be used in The-
orem 1 to represent the set of points G that belong to any g in Ag as well
as a set that belongs to % . That is, in Theorem l‘and elsewhere the
statement gg(x) € Ag, Ag EY@'_; will appear. |

It should be further noticed that if y is chosen to be a measurable
partition of rﬂ and if the random function (x) is given, then it is
always possible to treat {vy, @ ) as a new measurable space and to de-
fine a new random function o}"w(x) as follows: fw (x) is the measur-
able function on _Q.XR+ to y such that %(x) = g whenever w(x) € g.

In other words, if @(G) denotes the function on [ to y defined by:

@ (G) = g for all G eg,

then C}C:)(x) = CP [gw(x)] . This new random function will appear in

the first definition. ‘ “
In what follows, the concept of conditional probability as introduced

by Kolmogorov will be used. It can be summarized within the context

of the present ideas as follows: Let @(x) be any ) -set which is the

inverse image of a set Ag € @ as mapped by C.F,(x) or the inverse image
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of a set Ag € @r—. as mapped by gw(x), (Either function C};(x) or

- CO(X) would yield the same inverse map of Ag.) That is, (J (x) is made
up of those ele ments @ for which L:Fc;(x) € Ag. (O'(x) may be different
for different values of x, Let (53 be any G -field of @W-sets. The con-
ditional probability of (J(x) relative to _(53 is defined at any @ -function,
Pr { @(x)l @} , which is either measurable with respect to @ or equal
almost everywhere to an @ -function which is, which is integrable, and

which satisfies the following equation for all sets T3¢ %:

]pr{mx)|<§3} aP(@) - P(ox1B) (2. 1)
B
With one further convention, this definition will include the conditional
probability of (O(x) relative to {T(t), t € T}, {g(x),, t € T} , OT
{T({tl), G(tz), t € Tl’ 'cZ € TZ} , where Tl’ TZ’ and T can be any index
sets chosen from the positive real axis. It will be agreed that whenever
a symbol appears such as "Pr {@(x)lc}’(t)}, t € T} "' that it is the condi-
tional probability of (J(x) relative to the smallest g -field induced by
the set of functions {T(t), t € T} . That is to say, Pr{@(x)l?(t), t € T}
is a probability conditioned on the smallest ¢ -field with respect to which
all functions C‘F(t){, t € T, are measurable. If T consists only of one
point, vy, the conditioning G -field of the function Pr {O’(x) I T(LS)}
will, in general, be different for every different value of y. In the text
the symbol “a(x)"will generally be replaced by "C‘F(x) € Ag'" or
"gj(x) € Ag' in order to make explicit which @ -set is being referred
to.

In one instance it will be necessary to use the conditional proba-
bility of an @ -set which is the inverse image of a set AG ¢ @r as mapped
by C‘)((x)', This conditional probability will be relative tb some O -field,
@, of @ -sets and can be defined just as the above conditional proba-
bilities of (J(x) relative to g?)

It is necessary to remark in this place that the following has been
proved for a large class of spaces and that the spaces are general enough
to serve the practical needs of this paper: Corresponding to the random

'functioncs\'(x) there is, for all x >y >0, a transition function
Pl({Agsx | g',y), sgch that for fixed x, y, g' it is a non-negative com-
pletely additive function of Ag with respect to the smallest § -field in-
* duced by &F(y) and such that for all Ag ¢ @Y and x>y = 0:
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Pidg.x|Fiy) v =P {Fixe ag|Tin}, (2.2)

with probability 1. More generally, there will be transition functions
Plag, x|G.y), P,(Ag, x|g.y3gp 0), PylAg, x|G.y; g4, 0), and
4(AG y lg Yi8gs 0), with definitions similar to P (Ag» lg y), for each
of the conditional probabilities Pr {?((x) e A g\ (y)} Pr {?(x)c Ag ‘?(y),
T} Prifixieag |Giv), F 0}, and Pr{gixj € aG| Ty, F0)},
respectively. All of these transition functions will appear in the follow-
ing definitions and theorems. In instances when a symbol such as
v'p(dyg,y | gg° 0)" appears under an integral sign, .as in Kolmogorov's
notation, it will be implicitly assumed that the integral has the usual
- Liebesque-Stieljes definition. |
- The purpose of the first definition is to place conditions on y and
g(x) which f)ue,‘rmitf the random function Tg x) to be Markovian. This is
done essentially through condition (iii) which is equivalent to asking that,
for' each fixed x and y, the conditional probability Pr {‘F(x) € Ag ‘g(y')}
is measurable not only with respect to the smallest ¢ -field induced .
by g((y), but also with respect to that induced by ’}'((y)., Intuitively speak-
ing, condition (iii} extends the Markov property from 8'(}() to F (x) by
demanding that any transition of the process g(x) from points in g € @
at x;, to a set Ag € (S).) , at’ X5 X, > X 2 0, have the same probablllty
Though one ult1mate1y wishes to erte down an equation for the transitions
of the process g(x through the sets of y, the new function °¢ (x) becomes
a convenient tool to help one do so. One sees in Theorem 1 that the
Markovian property of ?(x) (and also its purely discontinuous property)
leads to the diffusion equation (2. 3) similar to (1.3). Equation (2. 3),
however familiar in form, is a linear equation for the transitions of
the process G(x) through the sets of y. As such it provides a conven-
ient alternative to the usual diffusion equation governing g(x), because
any specific realization of equation {2. 3) will involve only enough param-
eters to specify the sets of y rather than the detailed structure of the
étates, G.,_ . }
The similarity between condition (iii) of Definition 1 and the basic
condition for a Markov process, (1.2), should not escape the reader.
In both cases a conditional probability (Pr {C‘F(X) € Ag ‘%" } in the first
case, Pr {}g(x) € Ag |g’((t), _ y} in the second) is assumed to be meas-

urable with respect to a smaller (g -field than appears explicitly in the
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notation. Intuitively speaking, a certain proportion of the events on
which the probabilities are conditioned is superfluous -- in the first
case, the event that 8(1:) takes a specific value within a set g ¢ @Y’ |
at t = y, and in the second case, the event that 8((1:) takes any specific

value for t <<y. These likenesses suggest that a new term such as "

en-
chained' should associate the new condition with the oldér one, the Markov
""chain'" condition. More géne'rall'y speaking, the word "enchained,"
sometimes qualified, will be used in connection with any condition on

the class of sets, y, and the process 3{x) which permit one to solve

directly for the transitions of the process g(x) through the sets of y.

Definition 1: The class of sets y = {g} in the space r is enchained

by the random function Gfx), if the following conditions hold:

{1) y.is measurable in the sense that g € @I_. for each g e vy.

(ii) vy forms a partition of [ . That is to say, the sets of y are dis-
joint and their union covers the whole space r

(iii) If c};(x) = (p[gw(x)] is the random function defined earlier,
then for all x, y, 0 Xy <%, and for all sets Ag € @Y:

Pr [T € ag| Tin} = Pr [ Fiw € se g},
with probability 1.

Theorem 1: - (i) If (a) G(x) is a Markovian random function with range
space [ and if (b) vy = ;g} is a class of sets in rl which in enchained
by %(x), then “F(x) (the random function defined in (iii) of Definition 1)
is Markovian, ' '
(ii) Suppose {b}) in the above statement is true. If (c}) G(x) is purely

discontuous and temporally homogeneous, then %\ﬂ'(x) is also.

. (iii) If (a), (b), and (c) in the above statements are true, then for
each 8p € Y5 for all Ag € @Y’ and for all x > 0, the function
P{Ag, x|gy, 0) satisfies the equation: '

( 0/ 0x)Py(Ag, x|gg 0) = JPl(d Yoo % |gg: O} 7' (g' = Ag)  (2.3)

= Jpl(d ngs X ‘gos 0) o' (gn)

2%
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and

lim P, (Ag, x |go-, 0) = Sigy Ag). - (2.4)
x=0 :

The functions n' (g'— Ag) and a' (g'), as functions of g', are unique

. up to sets of measure zero and are defined by:
W {g'—Ag) = (G ag) - 1(Gg) g, Ap), (2-5)
a' {g') = a(G) - 7 (G—>g'),

for any G € g', where 7 (G —Ag) and a (G) are the functions appearing

- in the definition of 8(,)5) as a purely discontinuous and temporally homo-

- geneous process. T - S

- Proof: To prove that ”ﬂx) is Markovian, it is enough to show that for
all Ag € @

Pr { Gix) € Ag\‘?’(y)} - Pr {3@) € Ag |’§‘(t), t<v} tgy_<x°

(2.6)

From property {iii) of Definition 1, it follows that the left hand side of
(2. 6) is equal to Pr {-g(x) € Ag |8<y)} for all Ag € @Y. From this and
the Markov property of g(y), it follows that: :

Pr [g(x) ¢ ag|F(y)}=Pr {8(x) € Aglg(t)g , (2.7)

Eciuation (2.7) .implies (2. 6) because the smallest (" -fields induced by
C3‘."(}7), {C\S\“’(t), t < y} , and {g(t), t < y} have the relation:

”; % 8
Fin (T e<y} {go), ts
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If 8(y) is purely discontinuous and temporally homogeneous, then
the transition function corre spondlng to g(y) is continuous in x and vy,

independently, and has the 11m1t1ng form:*
PAg, x|G, y) = {1-aG) (x - y)} 8(G ag) (2.8)
£ G ) (x - ¥) + olx - ),
where a{G) a‘nt‘l TT.(G‘ —}Ag) are definea in _S{;ec.vti‘o‘n 1.2. Ferrn the defini-

‘tion of y = { g} as a set enchained by 8(5{)_, it follows that for all sets
Ag € (57%(
Piag x | @[G] . v) = Plag, x[gy), v

with probab111ty 1. Hence, it is seen that for all Ag € @ and for almost
allG el .

P]_(Ags x lg'r. y) = P(Ag, x ' G, y), Geg', g'evy.

By "almost all't is meant up to a set N(y ) é @l—' such that
[P(Gly) € N(y)) = o. Thus, s

Pag, x | g, 9 = {1 ~al@) (x- )} (G, Ag) (2.9)
+ 7 (G = ag) (x - D)+ ol - ), Gegh g'ev.
This equality can also be written:
P(ag, x|g' y) = {1 - [aG) - «(G g Jx - y)} S(g', ag) (2.10)
+ [MG—ag) - MG—rg) S(g'y Ag)] (x - y) +olx - y), Geg's &' €,

* It is implicitly assumed through Feller’ le paper and the present
one that the term o(x - y), appearing in the limiting form (2. 8),
is such that o(x - y)/{x -y)—=0 asi(x - y) =0, uniformly in G for

all G € .
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where the convection,

Sw.oo- {38,858, | :
is meaningful, since the sets of y are disjoint. The right hand side of
(2.10) is obviously constant for all G € g', g'¢ y, but it can also be shown,
by using the properties of the functions a(G) and w(G —*Ag), that this

also true for the terms in square brackets. In other words, the terms

in square brackets are reélly'fun.ctio'ns of g' é.nd Agonly. Since it is
furthér true that they satisfy the pr"operties'of a(G) and 1T.(G —2Ag)
respectively, P, (Ag, x | g', y) has the limiting form of a transition
function for a purely discontinuous and temporally homogeneous process.

One can write:

P (ag, x| g y) = {1-a(g)(x-y] &g ag) (2.11)
+ ' (g'—rAg) (x - y) F olx - y),

where the functions a'(g') and «' (g'— Ag) have the definitions (2. 5).
This establishes statement (ii)' of the theo;'em and éives an explicit form
for the transition function of Gy(x) in terms of the functions a(G) and

7 (G — Ag) that correspond to 8(x).

To complete the proof of the theorem one can write down the
Chapman-Kolmogorov equation that follows from the Markov property
of 4 (x). For each 8o € Y, for all x v, 0y <x, and for all
Ag € @Y:

P, (Mg, x|gg, 0) = IPI (dvgr v |gg: 0) P, (Ag, x|g's ¥). (2.12)

This equation, together with the form (2. 11) yields:
[Py (2, x |5 0) - Py (g, y|gg O /x-y) (2.13)
= [Pl (dyg,,g l go,-'O) T (g' — Ag) - /Pl(dyg,, ylgo, 0) a' (g')+_é____3iy

X-y
23
The limiting form of (2. 13) as y—x is (2. 3).
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The continuity condition of a purely discontinuous process implies

the boundary condition (2. 4).

Definition 2 is 1nsp1red by the desire to achleve under different
conditions (preferably weaker) the same ultimate goa.l that was achieved
in Theorem 1. The goal was a linear equat1on for determ1n1ng the tran-
sitions of the Markov process g(x) through a class of sets y (that is,
for determ1n1ng the functlon Py {Ag, x|g0, 0)). The reason for Thecrem 1
was to simplify the parameter problem Its shortcomings are these:

It might not always be pos'sible to eliminate unnecessary parameters by
choos1ng a class of sets Y accordlng to the cond1t1ons glven in the hypoth-
esis of the theorem. The conditions are in fact so strong that one is
really brought back to the Markov property. Before stating abstractly
the new conditions as they appear.’in Ijefinition 2, it will now be shown
how the tran51t10ns of a Markov process, 8(x) through a class of sets

Y can be determlned from a linear equation even though it is not possible
to describe the transitions by means of a Markov process (such as f-(x)
of Definition 1). ' |

Assume that the class of sets y is a measurable partition of [.
According to the usual rules governing conditional probabilities, one
can write down immediately the following equations for the transition

functions defined earlier: (In these equations x > y =0.)

P (ag x|gg 0) = [P (dyg v[gg- O) B, (Ag, x|g' ¥i g, O

y o s

: PZ(Agn X|gv» Y; ‘gos .0)':'jp3“(Ag: "'X|G, Yi 8gs Q")P4(_d. l—cl;s Ylg's Yi Bgp: 0)

‘3/ - I (2.15)

. These equations hold in general for any process, g(x), ~so long as the

~ transition functions are defined. If it is assumed that the process 8(x)
is Markovian, the function P {Ag, x lG Y 8g» 0) can be written

- Plag, x lG, v). . The two equations oap,be,combrned and if 8(x) is

‘ Markovian then:
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'Pl('Ag’.x |g0’ 0)= /Pl.(dyg“ legoi O)[ [P(Ag: X |G: Y) P4(d r;}’ Y‘| gi’ Yy go’ 0)]

Y I 3'ﬁ". S | (2.16)

Thls equatmn is 1mmed1ately suggestlve of the Chapman Kolmogorov
equatlon (2.12), the difference belng that a weighted transition function,
the bracketed term here replaces the usual term, P (Ag, x \g , V).

In order to obtain a diffusion equation from it, 1t is posmble to proceed
along the same steps that would be used if the more familiar equation
were at hand. The basic process, (x), must, of course, be purely
d1scont1nuous and temporally homogeneous. As in the proof of Theorem I,
one would invoke the asymptotic form (2.8) for the transition function

P (Ag,. x l G, v), subtract off the proper terms as in (2. 13), and pass

| to the limit as y—x. The result would be

V(‘a/_ax)_Pl(Ag, x | gg» 0) = fp'l('dyg,,'_x | 89> OT(g'— Bg, x) (2. 17)
- B
- [PI (dYgI! X\go:o)a(g': X):
&%

where

?r_’(‘g'—-kAg, X )= [Tr(G—}Ag) P4(d rG’ x_|g“, x; gb, 0),
| g’ | (2.18)
a(g', K)= fa(G) P,(d FG, x|g', X; gg» 0).

/

S

This is a linear equation for the transitions of the function g_(x) through

a class of sets y. No assumptions have been placed on the class y rel-

ative to G(x). The only basic assumptions are: (i) y is a measurable

partition and (ii) G{x) is a purely discontinuous and temporally homo-

geneous Markov process. »
From the practical point of view, equation (2. 17) would be simpler

if the weighting function, P4 (AG, X l g', x; 8¢ 0), were independent B

of x. Moreover, the equation can actually be solved only if the weight-

‘iné function is known a peiori. Therefore, there will soon be imposed,

in Definition 2, the condition that the wrighting function is independent

of x. It must be implicitly assumed that the weighting function is known

a priori, though such a statement is devoid of mathematical significance.
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Compare new the strength of the conditions in Definitions 1 and
2. Both are conditions on equation (2. 16). Both are designed to make
. that equation a practical one -- dn integral equation from which a solv-
able diffusion equation can be derived. In the first case, P (Ag, x |G, y)
is assumed to be a measurable function of G with respect to the g~-field
@Y' In the second case, P4 (AG, x|,_’g', X; gg» 0) is assumed to be in-

_ dependent of x.

Definition 2: A class of sets yzig} in r is conditionally enchained by

the random function G(x), if the following three properties hold:

(i) vy is measurab?e in the sense of (i), Definition 1.

~ (ii)  The sets of y represent a partition of I—‘;, '

(iii) The function P4 (AG, x | g % gy 0) is independent of x for all
x > 0: :

P4 (AG, x|g, X; gg» 0) = P4 (AG |g, go), say. (2.19)

Theorem 2: Let G{x) be a purely discontinuous, temporally homogeneous
Markov process with range space |—' Suppose that there exists a class
of sets y = {g} in rwhich is conditionally enchaingd by G(x). It follows
that for all Ag ¢ @Y’ Bg € Y and x > 0, the function P1 (Ag, x\go, 0)

satisfies the equation:

(g/ax)Pl(Ag, x|ggs 0)= fPl(dYg's x | gg: 0) 7 (g'—Ag) (2.20)
| 4
- fPl(dan x|gg, 0)3(g')

%

where

lim Py (Ag, x|gg, 0) = d(gy, A8). » | (2.21)
x—0 o

The functions ?r‘( '—Ag), a (‘ ") ére determined by the iﬁte rals:
v TAE v g Y' g
R(g'—ag) = [1(G—=ag) P, (d] g g
: _ 471 G 0
S (2.22)
2 (g = /a(G)_ P, fg|e" g
3,
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m (G —Ag) and a (G) are the functions which appéar. in the definition of
a purely discontinuous and temporally homogenéous process as applied
to g(x') and P, (AG |g“, gg) is the function defined in'(iii), Definition2.

‘The proof of the theorem ehould'be obvious from the discussion
‘preceeding it. o ’

Definition 2 was an attempt to generalize the idea of enchainment.
In fact, it was shown in the discussion preceeding it, 'that the generali-
' zation was nearly complete: No restrictions really had té be imposed
on the class of sets y beyond the properties of a theasurable partition.
The further restriction that was imposed, namely, that the weighting
function be independent of x, was done to facilitate the later solution.
‘Now a generalization in a different direction will be tried.: It will no
‘longer be required in Definition 3 that y should form a partition of the
space r Instead, a new set of conditivonis will be imp'osiedf. "These new
conditions will define the concept of loeal enchainment.

The idea of local ehchainment comes from observing how one passes
from the general Chapman-Kolmogorov equation to a diffusion equation.
One does it by passing to a limit in the independént variable that cor-
responds to time. The resulting diffusion.equation refers only to changes
that occur in the stochistic process in differentially small increments
of time. This observation might suggest that the linear properties of
a diffusion equation can be recovered under more general conditions
than go into the Chapman-Kolmogorov equation. The following defini-
tion exploits this idea and makes it useful in solving for the transitions.
of a process G(x) through 'a class of sets y. One asks in Definition 3
that some additive and disjointness properties hold in the limiting sense
of Properties {(v) and {vi). As the proof of Theorem 4 shows, one is
then allo wed to write down equation (2. 33) which suggests a "local”
Chapman-Kolmogorov equation for sets. Property (iv), a "local'" Markov
property allows one to pass from equation (2. 33) to (2. 30) in such a way
that the limiting transition functions = (g’ ——->g) and a{g) are independent
of the initial state of the system. Thus, the greater freedom allowed
by imposing only 1oca1 conditions on the process %’Kx) permits a linear
equation, similar to {l. 3), to hold for a new class of sets. The same

advantages against the parametric obsticles might be reached now that
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were reached with the classes of sets of Definitions 1 and 2. It should
be noticed, however, that a partition of the space l_' is not required for
local enchainment and consequently the equation (2.30) cannot be inter-
preted in terms of a process such as ?'(x)a ' ‘

The following concept of setsiocally enchained need not be res-
tricted to finite class of sets y. In fact, in examples from cascade shower
theory the locally enchained sets are not finite. The reason for avoid-
ing the generalization in this paper is precisely to keep the definitions
and theorems as close to intuition as possible so that the basic princi-
ples involved will be seen.- A second r.ea;son‘ is that the added compli-

cation would not be justified,. sihce the methods of this paper are not

based on local enchainment.

Definition 3: A finite class of sets Yy = {g} in [ is locally enchained

bjr the random function G{x), if the following six properties hold:

{{i)  y is measurable irli, the sense of (i}, Definition 1. '

(ii) For all G € | there is at least one set g € y such that G € g.

(1ii) For each By € Y there is some gﬂ € Y such that (a) Pr [%(y) € gf} #0;
{b} Pr {g (x) ¢ 81 ‘8(y) £ gﬂ} ,» x>y »0, is a continuous function of x

and y, independently, and{c) for x >y > 0:

Pr [8&)' € gk-lg(y) é'gf} =rig g ix : yl +olx -y), (2.26)

where (gp — gk) is a positive function of gj and gic and is independent
of x and vy.

For each g € Y such that (a) holds, there is some 8k € Y such
that (b) and {c) hold. ‘

(For each g € Y let C (gk) be the set of all g = gy for which
(a), {b), and (c) hold and let cC (gk) be the same set with 8y added. )
(iv) For each Bk € Y and for allg € C ((gk) and for any set, {8(t) € g}
of events of the type (t) € g s 0 t <Yy, g' € y, quch tha.t

Pr {Gly) € . [gin € g} 7
Pr{ g € g |G e 6}
Pr{%ﬁﬂ?éﬁ(ﬂég» {g«t)eg“}} =ltolx-y)h 0<y <x
, (2.27)
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'

(v) For each g € Y:
Pr:{ 8(3’) € C(g) |’g(X) € gk} =l+o(x-y), D<y <X (2.28)
{vi)y F'or_each g, € Y and for all g g €T (gk)’ g g

pr{g(x)egﬂ } 0, x>0 | | (2.29)

Theorem 3: Let G(x), x > 0, be a random function with range space

I—' = {G} . Suppose that there exists a finite class of sets y = {g} in
r—"which is locally enchained by G(x). It follows that for each gg €V
for which Pr { (0) € go} £ 0, for all g EY; and for all x >0, the
function P (g, x|g0, 0) = Pr {g(x) € g |8(0) € go} satisfies the follow-

ing equatlon -

(/9% + alg) Py g, x|gg 0= Y. Pslg' x|gg O) 7 (g—g)  (2.30)
‘36C(c$

where, if 0 <y <x,

S = 95 {E}(X ¢ g'[gy ee GO e go}/x—y) -
a8) = (7 { G € B|G e & GO e go} fix - y)

and both w(g'— g) and a(g) are indepéhdent of.x, y, and go- g = r - g.
In the limit as x — 0, :

- 1 g=g '
P (g, XIgO’ 0) = {O Otherwise

Proof: Assurne that there is at least one gy € Y for \}vhic'h Pr{G(O) € go} #0. .

If not, the theorem is trivially true. From property (v), Definition 4,

one obtains " for each g ¢ y, and for all %, v, 0 < y < X:

v

{g(X)égl%}(O)Ego - Pr{g(x) €g Gly) eC(g)|g(0)ego} +o(x - y)

(2.32)
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Using property (vi), one can write this equation as:

Pr{G(x) eg|G0) € g %;Z_Pr{_(x)e & Giy) e &'| GO) e g} + ol - y)
{S} |(& 0} §€ C(g) g d g 0} (2.33)

= ) Pr{G(y) € g' |Gl0)€ gof Pr{Gix) € g |Gly) e &', G(O) € gy + o(x - ¥).

3'66(3)[(& g . 0}. {8' o lg g : 0}

The first part of property (iii) and property (iv) allows that for each

g €y and for all g' € C(g):

Pr {%(X) €g lg(y) €g' 3(0) € gb-} =m(g'—g)(x-y) +o(x-y). (2.34)

It is always true that for each g e y:

Pr{Gix) e g |Gy eg GlO) €} <1-Pr{Gx eE |Gy e s Glol e g -

(2.35)

The second part of property (iii) and property (iv) allows that for each
g €y there is some gk such that:

Pr{Gix) € g, (G ee glore 8o) = (8 —rg) (x - ¥) +otx - y).

This gk cannot be g, because of the continuity condition (iii, b). Hence,
there is some function a(g) which is non-negative, finite, and indepen-

dent of x, y, and g such that
Pr{Gix) € |Gy) ¢ g, GO € gy} = alg) (x - y) +olx -y), (2. 36)

where g = r— g. | o S L
By combining (2. 35) and (2. 36) and putting the result into (2.33)
with (2.34), one obtains an equation which passes into (2.30) as y — x.
The same stép's were followed in the proofs of Theorems 1 and 2. The
final boundary condition of the theorem follows from the continuity prop-
erty (iii, b). A
The essential assurﬁption of Definition ‘4 might appear somewhat
artificial at first sight and can be justified only in terms of its applications.

The objectives associated with enchained sets should be clear now from
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the past ideas, and those of multiply enchained sets'are nothing new.
Condition (iii) of Definition 4 that is responsible for equation (2. 38) is
somewhat different from prev1ous ones, _however and a diagram might
help. This condition says that the probab111ty for a transition of the
 type represented in Figure A by a double arrow is equal to a sum of
probabilities, each term in the sum being ; product éofrééponding to

transitions of the type represented by a single arrow.

Fig. A

IThe advantage of Property (iii) 1s that it leads to equation (2. 38)
that in_vélves onljr transitions into sets geEY from points, G, of a rela-
tively 1imited set r—(‘) One should refer to .Sectioh 3, Part 3.:3, for
a practical example.

Definition 4: A class y = {g} of sets in ris multiply enchained by the

random function G(x), if the following three properties hold:

U
(i) Y is measurable in the sense of (i),  Definition 1.

(ii) vy = {g} represents a denumerable partition of rin the sense that

_the set y = {g} is denumerable and property (ii) of Definition 1 holds.
{iii) There exists a set of points I_—(‘) {G} properly contained in l_‘
ro(::[_' ’_' 7 r, such that the followmg holds: For each g ¢ y, for
all x, v, 0 <y <x, and for all G € r ,—('), there is a finite set of
points in ’ﬁo,. Gl( QG), GZ(G), e, -Gk(G)"' dependent on G (where k also
depends on G) such that:
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P(g, x|G, y)= 2 Plgp, x| Gy(G), ) Plgy, x |G,(G), ¥) - .. Plgy, x|G(G), y)

{(2.37)
where the sum is extended over sets of the form '(gl, Bys oo gk), each
set containing k sets, g‘j ey, j=l, 2, ..., k, which belong to y. Each

set (gl, Bpr o gk) is dependent on g..
_ . - *
Theorem 4: Let G{x), x >0, be a pu_rely discontinuons, f.ernporally
homogeneous Markov process wh‘ose range space is |_‘ Suppose that
there exists a set y = {g} of sets in ’—_‘which,is multiply enchained by
(x). If so, it follows that for each G € 0 for all x >0, and for all
g €Y, the transition functmn P (g, le 0), where G € [—6, satisfies

the following equation:

(9/9x +a (Gy) P (g, x|Gy 0)

_ . S (2.38)

= ]P (g, x|G)(G), 0) ... P(gy, x|Gy (G), 0) m(Gy—rd | )

where w (G —AG) and a (G ) are the functions appearing in the definition
.of a purely discontinuous and templorally homogeneous process as ap-

plied to G(x), and the sum in the integrand is defined in (iii), Definition 5.

‘The boundary conditions are:

Ilim P(g, X‘G O)T—‘S(GO, g)°
x—0

Proof: From the Markovian property of (x) one has the Chapman-

Kolmogor ov equatlon

P (g, x |Gy, 0) = fp (@[ G v|Gyr 0) Ple, x|G', y).
) [ |
By introducing the form (2. 8) (with Ag replaced by AG) for the first term
in the integrand, one has an equation which, after the operations familiar
in previous proofs yields (2.38). The v‘only s'tep that is new is that (2. 38)
is finally obtained by letting y —0 rather than y—)x
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2. 2. A General Solution.of a Clais'.sof Diffusio'n.Equa.tio;ns .

Let 2 . be a space of p.oints S, ) .= {S} . Suppose that (i) a(S)
is a non-negative, finite, real function defined on Z; (ii) for fixed Se€ Z,
“mw(S'—S) is a n’on—neg’ativ_e,'. bounded; 'r"eall function of S' defined onjy;
{iii) for fixed S' EZ , the sa.rne properties hold for (S'—%S) as a func-
tion of S; (iv) and finally, suppose that the same is also true of f (S, x)
" when x is fixed, x > 0. Assume that for each fixed S EZ’ f (S, x)is
a continuous function of x for x > 0. It will be said that S can be reached

in one step from S(l) if (S(l) S) > 0; S can be reached (in one or more

_ steps)from S( ) if there exists a finite sequence S( ), S(Z), .. .; S(n)- =
such that S(kH) can be reached in one step from S( ) k=1, 2', ., n -1,
Suppose that for every S éZ there is a finite sequence of points
{'Sk(S) k=1, 2, : N(S),} , Sk(S) é Z(wuh the same f1rst element B
Sl(S)v = . for all § EZ and with the last element SN(S) (S) = 8) such
that the followmg is true: ' ' ,
(i) Every point of Zfrom which Sj(S)_, i=1 2, ..., N(S), can be

reached is one of the points S.(8), i <j. In particular, S, cannot be
reached from any point of Z
{ii) For every j = 2 3, . .. , n, there exists i <_] such that S, (S) can
be reached from S, (S), and for every j =1, 2, N(S) -1, there exists
k > j such that Sk(S) can be reached from S, (S)

Imagine that a system is movmg through a space, Z of states,
S, according to some law, and that if 7 (S' —S) > 0 then the step from
S' to S is allowed. A sequence satisfying properties (i) and (ii) might
be called a "route' to S from S determined by the function w (5'—S).
Without saying just which steps are takan by the system, it has been

"route" from

required that every point S € ann be reached by some
Sl' Since any point S. (S) on the route to S m1ght be reached by a step
from any number of other points S' EZ it is clear that every state on
the '"route' to S need not be utilized in gettlng to S. It is required, how-
,ever, that every state, S. (S), on the route to S can be reached only from
below, so to speak, or only from some pa.rt of the route already traversed.
It is alvso requlred that the last pomt S can be reached from any point

SJ(S) on the "route''.
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In the following theorem the symbol " Zpathsﬂ" will be used.
It is defined as follows. Consider the sequenze of uclte)gers from r to
s.. A ''path' will be defined as a subsequence of ascending integers
0,090 2

N( /4, =, s)} where n, ,q <n 2,q4 might be a subsequence chosen

chosen from r to s and including r and s. For instance, {h

from {r, r+l, ..., s}. In this ¢th subsequence there are N( /, r, s)
integers, where N( /, r, s) may change with ¢, r and s. Let the number

of such sequences be N (r — s). Now for any function Q (u, v) define:

N(r=s) N@ys)-1

S
TG s Y 1T @n n ) 2.3)
F (1)) /=1 i=1.
s
Thus, " Zpaths TT'" means sum over all "paths" from r to s and, cor-

’ ujn
respondinrg to each Jpath, take the produce of all terms, Q(n 2. %y i+1)’

involving two successive integers of the path. As an example:

Zpaths Q(i, j)=Q(L, 3)+Q(1, 2)Q(2, 3),
Gij

f:paths TT @i, =0, 49 +Q(l, 2)0 (2, 4)
1 (13)
+Q(1,' 3) Q(3, 4) + Q (1, 2) Q(2, 3) Q (3, 4).

Theorem 5: L.et the space Zand the functions w {(S'—38S), a(S), S, x)
satisfy the conditions outlined above, Suppose that for all S GZ and

~all x > 0, the function f (S, x) satisfies the diffusion equation:

(9/9x+u(5))f(s x) = ) £(S', x) w(S'—S) (2.40)
Sey

with boundary conditions:

lim 1 S=25;
x—=0 £(s, x')‘[o Otherwise

For any fixed S = S% G'Z let a "route" from S1 to S*, S e

This condition can be weakened by allowing a (Sk) = a (Sf ) in cases
where the state Sy cannot be reached from the state S, . Such

a modification in the statement of the theorem would not affect -

the basic logic of the proof, but would be responsible for notational
complications.
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{s(s%): k=12, ... --N(s*)}, be wfitte‘n.{SI‘r(, k=12, ..., NJ. Sup-

pose* that a (S, ) 7( a / ‘) for k #/ . It follows that = .

- - xa(S ) _ .
£(Sy %) iﬁt(sk) th k=12, ..., N, (2.41)

where the coefficients ﬂt (Sk) are determined by:

Byisp =1

Tr(S.—)S.) X

/Bt(sk)_ﬁt(s)zpaths i a(s) - a(S)’t

i i
— N
[\SIRON]
o
I
b

k=1 o | |
o Bes = ) Bt k=23, L N

=1

Proof: In the definition of a "'route" in terms of the two properties given

above, there was freedom enough to allow more than one route from
5
SZ’ then the indeces of S and S can be 1nterchanged On the other hand

to any S E—Z For example, if N(S) = 4 and S, canhot be reached from

any two routes from S to SGZ will contain the same points and can d1f-
fer only in the order of sequence of the points. This follows from the
fact that the route consists of all points from which S can be reached

and only those points.

- Next consider any route {Sk(S), =1,2, ..., -N(S)}' from S, to
S. The sequence {Sk(S), k=1, 2, ..., N(S) - 1} will contain any route
((up to ordering) from S to SN(S) 1 (S) as can easily be verified from
the definition. In general {Sk(S) k=1,2, ..., F } ¥ < N(S), will

contain any route {(up to ordering) from 'S? to S (S) Therefore, for
any S = 5% ¢ Z(and letting the route from S to S* be written as in the
statement of the theorem) the points S' GZ which will contribute to the
sum on the right hand side of (2. 40) will belong to the sequence

{S, k=1,2,..., Nj. Fors =8, (8%), ¥ < N(S%), the points §'¢ 37
which will contribute to the sum on the right hand side of (2.40) will’
belong to the sequence [Sk" k=1, 2, V} . It is also clear that for

.’5‘ -See footnote, pagbe 33.
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S = S,, the right side of (2.40) is zero. Hence, if one keeps S* fixed,

1’
equation (2. 40) can be written fo_r all Sk’ k =1, 2, ..., N:
(9/ax+a(sk))f(sk, x) = Zf(sj,x) (s —)S) (2.43)
. ‘ £=1. . .
* When S = Sl’ this equation can be integrated to yield f (Sl, x) = e_xq‘(sl).
In general, it is easily shown by induction that f (Sk, x}, k=1, 2, ..., N,

is a linear funct1on of exporentials and the form (2. 41) holds for some,

as yet undetermined, coefficients ﬁt (S The coefficients will depend

).
k
on Sk’ in general. After putting the form (2. 41) into the right hand side

of (2. 43) and integrating one obtains:

k-1 VANNE ) @ xSt (2. 44)
t\g
£(S, x) = ) 7(S,—5) Za(sk) ~a(5)
s =1 ¢
) -Xa(sk) k“i , ; / ﬁt (S/Q ) _
e : 'n'(S—)Sk) Za(sk)_a(st), k=2, 3, ...,

An interchange of summation leads to:
k1 -xa(S k-1
e XCl.( t)

L £(S,, x)= 5 (s, —'S,) B.(S,) (2:45)
v k xuq 5o (5 - a5 ;é; m Z < P ¢

k1

-xa(S

el k) [o.(S ) - a(s)] Z"“‘S —r S ) o (Sy ) k=2, 3, ..
The two steps of putting the form (2.41) into the left hand side

of (2. 45) and then equating coefficients results in the following set of

recurrence relations for the ﬂ's:
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FLs) =1,
/B]. (sk) = [G. (Sk) - G(Sl)] Z(S — Sk)p (Sﬂ )1 oo 2» 3, LR | N;
!‘ k- o :
Py (50 = [a(8) -als,)] ]Z (S S) B, (S, ) k=3 4 . N, L
. | »_l .K—i . -
Pr1 (8 =[a(s) - a(s )] Zn(s — S) P (8 ), k=2,3, ..., N,
| - = .
Pe(8)== ) B(s) k=2,3, ..., \.
t=1 S

"The solution of this set of recurrence relations-yield (2.42). . - -

Npticé that the solution given in Theorerﬁ 5 involves all possible
"trans{tions” along the route from S to S k = Z 3, ..., N;t=1, 2,

. k- ‘l The function w (S -—)S ) for many of these transitions might
vanish and any product of terms 1n the expression for ,3 (Sk) that in-
volves such a function will, of_course, vanish. Thus a solution for any
particular problem which satisifes the conditions of Theorem 5 will be
completely determined by a knowledge of the traﬁsitions that are forbidden
(transitions with « (S —->S ) = 0) and a knowledge of the non-zero values
of the functions w (S'—S) and a{S). In other words, a formal solution
for any particular problem can be obtained from Theorem 5 if one knows
- for every point S eZ the set of points S’ from which S can be reached
in one step. This set of points, {S'} , will, of course, form a subsequence

of the points on the route from S1 to S.

-t
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3. THE STRUCTURE OF KNOWN SOLUTIONS

3. 1 The Irnportance of Catagor1z1ng Prev1ous Solutmns

v A detalled theory with a h1story overlayed with exten51ve researches
may long smce have had its basic structure obscured. This seems to be
_the case with cascade showers Varlous methods of attack evolved Near
the end of the chain Janossy s method appeared and was later elucidated
" in terms of a non-Markovian and regeneratlve process by Bartlett and
_Kendall Now we can look further back and say that nearly all known
methods for a quantum solution of the d1str1but1on, nearly al_l the methods
of attack on the average number of shower particles and the second moment
are non-Markovian in structure. The possible value of making a general
observation of this kind lies in picking'out the strength of the stochastic
properties on which present solutions‘are ultimately based. As will be
 seen, the properties presently used are much weaker than those actually
 satisfied by the shower phenomenon, itself. One might hope, after real-
izing this, that by making fuller use of the special properties of the
.Zshower, namely the Markovian property, that a simpler solution would
result. To use stronger properties (or less general ones) is to be
v closer to the problem at hand and in possessmn of techmques that were
not available before _ _ v

" The possible danger in makmg a general observatmn of the kind

above lies in overemphasizing a half truth. A solutlon mlght be non-
Markov1an and st111 have advantages for other reasons. The last section -
was devoted to outl1n1ng the structure of cascade shower solutions from

a view that cut arbitrarily .through the lines of Markovian and non-
Markovian distinctions. From the point of view of Section 2, it is most
important to decide which of the set of ‘sets enchained by the basic
stochastic process will allow one the greatest freedom from the unwanted
‘parameters of the problem -the direction and dispiacement parameters of
the low energy particles and the individual energy parameters of all the
_ particles in general. It will be seen in Section 4, Rart 4.1, that
Theorem 1 of Section 2 can be used to return to the Markov property even
while solving for sets of particles whose specified energies are above
some lower cut-off. This would appear to be a great advantage from the
point of view of the last paragraph, but the energy parameters of each
of the high energy particles are still present and make for bulky nurneri-

cal results.
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Owiné to the energy dependence of the particle branchings it might
appear that all parameters must inevitably be p'resent throughout the
calculations. Theorem 2 says otherwise. ~Banking heavily on the chance
to find an enchained set of sets which will simplify the parameter problem,
one will soon realize the“foll'owingbz If an a-priori distribution of i‘ndividual -
particle energies is knewn', given information about the total energy of
the system and the number of electrons and photons present, then the
cross sections for the transitions of the system can be mbdified to allow
direct calculations for the probab111t1es of n electrons and m photons
hav1ng regard only for one energy parameter ‘the total energy. This
realization is a consequence of viewing the structure of prev1ous solutions
and cont1nu1ng the essential features to a 10g1ca1 conclusion. By comb1n1ng
the advantages of Theorem 1 and Theorem 2, that is, by str1v1ng to keep
the- Markovian.property whenever poss1b1e and yet adm1tt1ng further
" reduction of the observation space into subsets to sunphfy the parameter
problem, one-is freed of the low energy spacml parameters and the individual
energy parameters alike. Details will be given in Seetien 4, Part 4. 2.

In this section, the. consequences of analyzmg prev1ous solut1ons,
as described above, will not be’ studied. " Only the previous solutions
themselves will be briefly reviewed. Having the results of Section 2 at
free d1sposal the approach’ will be to demonstrate how the assumptions’
of Theorems 3and 4 are satisfied in the case of two broad methods of
attack and how the consequences of the theorems lead to the 'sam_e results

that have been obtained by these methods.

3.2 Methods of Nordsieck, Lamb, Uhlenbeck, Scott, Bhabha,
Ramakrishman,- Messel, Potts, and Kendall

By far the most fam111ar entity in cascade theory is a function
of the energy parameters var1ously called "product density', '"moment
density'", or "correlation function". This function can be solved for
directly and can Be_ related -to't‘he moments of the number distribution
through summation and energy integration. It appears throughout most of

the work on the average number of shower particles under a special guise,



-39-

"the average number of electrons at'fhe- thickness: X with energy between
E and £+JE". Under a similar interpretation (where age replaces
energy, time replaces thickness and the number of people replaces the
number of particles) it appears in Kéndall'sz3 population studies. It

appears in the papers of Nordsieck, Lamb, Uhlenbecks‘, Scott4, Bh_abhag’ 9

10,11

and Ramakrishnan with the interpretation, 'the'averageproduct' of
‘the numbers of particles at X 1n n - differential energy ranges'. It
appears in the papers of Scottlrs, Messel, and Po*[;ts169 17 with the
interpretation, 'the probabilit;’} of finding  n particles at X , each in
preassigned differential energy ranges, without regard to the _poss'Ble
existence of further particles of other energies'. The various techniques
for solving for this function and relating it to the moments offer the
only features that distinguish one of these studies from another. The
fundamental entity is always the same. It would seém wise, then, to )
investigate the probabilistic meaning that appears everywhere in common:
In the terminology of the last section, this function is the probability
weighting of a set of sets locally enchained by the basic stochastic process
of a cascade shower, 'given a knowledge of some initial conditions.

After accepting the last mentioned interpretation ofthe product
density function, one can immediately recognize equation (2, 30) of Theorem
. 3(or, more exactly, its continuous counterpart) as the basic equation
v ap‘pe‘aring in all of the above mentibned papers., Without further justi-

fication, though, the equation,- which in reality has some very special
relation_s to the moments of the eleé_tron distribution, here emerges quite
incognito. The importance of attaching the same '"locally enchained' to
an otherwise familiar entity is seen in emi)hasizing the basic logic:

Some fundamental sets are chosen whose prob'ability weightings are solved
for directly without influence from the low energy particles of the system.
" These probability weightings aid the direct solution for the moments of
the number distribution of electrons, while one ignores the population

of particles with energies below some arbitrary cut-off.

To see that the "product density' is really the probability

weighting of locally enchained sets, the special notation introduced in
Section 1.2 to describe a shower will be needed. \Let S(x), S, &5

and 2 be the same as in Part 1. 2. The cofresponding .symbols in the general
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notation of Section 2.1 are @(X), G , 46 . Ignore processes (ii),
(iii), and (v) listed in Section 1,2. The justification for ignoring the low
energy processes is just that the method to follow is aimed at side stepping <
the low energy particles and finding the distribution of high energy ones
directly. Corrections ‘for-proce__s.sﬂl(ii) might be introduced later or included o
in a 'second modified approach modeled after the present one.

For any parameter set (YL m, E/éé) € 2, , there will be a set

of the form:

Z(S (n m’, /a) >h o m2zm (E/z)DCF/‘)}

where the symbol 7/ means that the electron and photon energies speci-
fied by the couple (f,/éf ) contain the electron and photon energies,
respectively, specified by (L? ) . In other words, for each parameter
set (h m, £, ét) , or for each state S = (h v, A’/t) 5 the carresponding
“set, & ,; w1ll be the set of all states S' for which there are at least n
electrons and at least m photons and n of these electrons and m of these
: photons have energies which are specified by the parameters [3./1 The
set of all such sets, s, will be denoted by 7={5},

If the as surnpt_ion is 'made that for fixed values of x and 50 and
for fixed values of- nmand e in the expression for S the function
P (A S) X / So) ©) (defined in Section 1.2) is absolutely continuous with
respect to Lebesgue measure in the n + m dimensional energy space, then
a probability density function ( S)'X / 50) 0> exists. This density plays
the role of the analogous function E{ Slx)= S{ 6,5‘ (0)= 50} that would
" have meaning if the space Z were discrete. That is to say, for all sets

- A S defined in Sect1on 1,2:

fp(s x | S, 0)dF = R{g’(;oez(sl S@) = 55 . (3. 1)

Simllarly, a density transition function 70? ( / S) 3 ) exists which
plays the role of ’R{ S(x)e s ] S’(zf) € 5’} and a special case of this is -
the "product density'': ’/g ( s,x | S, 0) S Mo’re‘exactly, let the transition »°

function P (As) x |s X ) be defined like the function in equation
(2.2). If As represents all sets. s corresponding to states in AS, then 4

for ail AS y

J(s,z]s)dE = Plhs,x | %),

3.2
As (3.2)
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In terms of this density transition function, all of the properties
(i) - {vi), of Definition 3, can be varified for the set of sets T = {s% ,
assuming, of course, thatv_Definitivon is modified to accomodate a density
transition rather than a conditional probability. As a hint of the modi-
fications necessary, property (iii) will héve the condition {a) dropped
and for each s, the set C(S) will be all sets s' such that the differential
" cross section for transition}from s' to s is non-zero, Property (vi} will
require not that the probability for & (x) belonging to overlapping sets
in 0 1is zero, but that the differential probability for such events is a
differential of higher order. Unfortunately a completely rigorous modifi-
cation of Definifion 3 would be too lengthy to include here. Intuitively
speaking, the essential logic for all cases is contained in Definition 3
as it stands, _ _

The two relations that have been used between the ""'product densities"

and the moments have been that of Uhlenbecks’ 4, -et.al., Bhabhas’ 9

, and

Ramakrishnanlo’ 11: | _

n n 2 ’ 4 IJE-: . ' "—/ ’ |

Nlexlel = 2 & Counm) JdEgunlF vlx]g,0) .

n'=0 m‘=0 €,

/tl

and that of Messel and Pottslé"17:
S -

T(nm e x|s)= [JFZ’(“,M,ZF/«/X/%)M; | (3. 4)

The symbols in 3,3 are defined as follows: N (&, >v:]sz'o)"l is inter-

preted as the nt.}-1 moment of the number distribution of electrons whose
energies lie above € , assuming that the initial state coincided with
8o \«so might correspond to a singletelectron or a single photon of

energy I.) C(n', n, m') are known constants dependent on n', n, and m'.
€, . is an n'+m' - dimensional enérgy vector in which ¢ appears for each

/(

electron component and 0 appears for each photon component, as deter-
mined by ', 1 is the n'+m' dimensional unit vector and I is the upper
~ limit on the energy components as defined in 1,2. The symbol on the
‘left of (3. 4) is defined as the n, mth factorial moment of the number
distribution of electrons and photons whose energies lie above € ,

assuming some initial condition, SO"
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The chiéf disadvéntagé‘s in the general method -of this section
are (a) the e<v:1ua‘t'ions governing the "product densities' 'are,., in reality,
zla.rge sets of simultaneous integro-differential-difference equations.
(b) As a consequenCe of {a) the solution for the 'product density' corres-
poriding to n. electrons a‘nd m pho'.co'h's generally involves matrices of order
n+m and inverse integral transforms of multiplicity n+m+l. (c) The
solution for the probabilities, themselves, of; ‘'say, n electrons must be
carried out thrbﬁgh the moments. - Unfortunately, many moments are needed
because of the irregularities in the magnitudes of.the‘probabilites (the
probabilities for an odd number of electrbns being depressed because of
pair production). (d) With the handicaps of (a), (b), and (c), only
asjmptbtic cross sections can be used, that is, full screening approximations,
valid for high energies, are used throughout. (e) Finally, Compton effect

_.and multiple scattering (processes (v) and (iii))are ignored and collision

loss (process (ii) ) can be corrected for only approximately.

3.3 The Method of Janossy.

Let §(x), S, AS and Z be as in part 1, 2. Ignore processes
(ii), (iii), 'and {v). (Corrections for process (ii) will not be discussed here,
though Janossy does take it into account.) The sets in Z whose probability
weightings Ja.nossylzm14 chooses to solve for will immediately be defined:
Let € be a number in the interva.i' O,f_ € <I1. For every parameter set
(n, m,€), n=0,1, 2, ..., m =0,1, 2, .., » there will be a set
5. = {S‘.‘} which contains all states with (a) exactly n electrons and m photons
- whose energies are greater than € and (b) zero or more electrons and
photons whose energies are less than or equal to €. The set [s} of all
such sets. s. will be denoted by 0" = {s} . It can be v_erifiéd by the reader
that all three properties in Definition 4 are satisf:‘;edby g, whére the sub-
set ZO of Z (corresponding to f; ) can be taken é,s ai_l stateé of the type
8" =(1, 0, E, p) or 8" = (0,. 1, - E, k), 0 < E < I, that is, all states made up
of exactly one electron or one photon of any speqified enérgy, - The meaning
of property (iii), Defintion 4, in the case of cascade showe‘rs, is that the
future states of'the system, given any initial state, are determined by the

events initiated by all of the electrons and photons taken individually. - Every
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particle initiates its own shower when it branches and the compound effect
of these individual showers yields the whole. The significance of property
(iii) is that it permits equation (2. 38) to be written, an equation involving
transition functions conditioned only on single particle states.

In Janossy's treatment, where the only branching processes involved
are processes (i) and (iv), only two terms enter in each product of the
summands of Equation (2. 38). VThese correspond to events initiated by

the two branch products from the initial state G The awkward sum-

mation of Equation (2. 38) can be eliminated by tc;'ansforming the equation
to one satisfied by moment generating functions. The non—linearity
remains throughout and, once having resorted to generating functions, one
must ultimately recover the probabilities through the moments. The
épparent simplification, the disappearance of the individual energy parameters
of each particle, does not seem to have brought one closer to a knowledge
of the basic probability weightings of the sets T = {s} . Most of the
objections made" at the end of Part 3.2 hold now for Janossy's technique.

It is interesting to see from another point of view, as in the papers
of Bartlett and Kendallzz, and Ramakrishnan and Mathews7, that Janossy's
method is based on a regenerative process. A random function (j(x)), x >0,

is regenerative, if there is some y >0 such that for all x >vy:

Dist { GO0 B} = Dist{F0)| G(1), e 2}

Any point, y, satisfying this definition is called a point of regeneration.

Such a point in the development of a cascade shower described by the random
functionfg(x), is the point of the first collision and this is true even if the
shower is incompletely described (or described by a new random function)
as belonging to sets of the type s. From this viewpoint, Janossy's method
is clearly based on properties that are weaker than Markovian, for in the
basic Markovian process, S(x), every point y is a point of regeneration
(see Assumption II, Part 1, 2). ‘

Though Janossy developed his theory independently, the idea of a
- regenerative process seems to have been developed in other contexts by

Pa1m24’ Bellman and Harriszs., and others.
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3.4 Other Known Methods.

- It will be remarked, without elaboration, that Bartlett and Kend,a.llz'2
have investigated the characteristic functional in'relation to a cascade shower
and Ra,makr’ishna..n‘-26 has invest‘igé.t'ed -Jano‘sééz’“’s‘ equations in the special
case when € = 0. The first approach is more general than Janossy's and,
hence, should meet at least as many difficulties in a practical solution;
the second approach-is much less general and avoids the difficulties at the
expense of accuracy. The assumptions of the latter approach will admit
realistic answers only for small penetration thicknesses, as the author

"points out.

F
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4. METHODS BASED ON ENCHAINED SETS AND
CONDITIONALLY ENCHAINED SETS

4.1 A Markoﬁan Solution Bésed on T’he_orer‘ns 1 and 5.

It was pointed out at the beginning of Section 3 that nearly all
known solutiéns of the cascade shower problem are non-Markovian in
structure. Section 3 was then devoted to showing that the majority of
solutions have used locally enchained sets or multiply enchained sets.
One should now glance at Theorems 3 and 4, which involve the latter

concepts: It .is' not necessary, under the hypotheses of the theorems, for

the functions satisfying Equations (2.30) and(2. 38) to admit interpretation
as traﬁsition functions that correspond to.a Markovian process. Thus,
the original statement about non-Markovian structure.

Granted these things, it may now be useful to apply Theorem 1
to the cascade problem and arrive at a function that has immediate
physical meaning, that can be solved for directly through equation (2. 3),

and which must be interpreted as the transition function for a Markovian

random function. An-approach of this kind was made in an earlier paper by
the present au’chor27. The basic model in that p'aper‘»included the exact
cross section for process (iv), radiation, and permitted approximations
under which the divergence of the radiation cross section cdncelled out.
The diffusion equations were a genuine simultaneous set and had to be solved
by matrix met-héds. In the present paper a model will be introduced that
imposes a slightly unrealistic view of the radiation spectrum but that
permits a solution to be carried out in terms of Theorem 5.  The advantage
is that the probability weighting for n electrons & m photons of specified
energies can be directly expressed as a linear function of exponentials.
- Compton collision, a process ignored in the previous paper, will be included
in the model of the section. Collision loss and multiple scattering will be
present as before.

Let. S(x), S, AS, £ and Ibe as in Section 1, Part 1,2, Let ¢
be any number in the interval 0< € <1, Fof any parameter set
(n, m, E, p) € Z, 0 < €< Ek, | k=1, 2, ..., ntm, n>0, m >0, there
will be a set s of states S', s = {S'}, defired as follows: s = {S'}
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is the set of all states S' for which (i) there are at least n electrons

: aﬁd_at least m photons and (ii) n of these electrons and m of these pho-
tons have energies which are specified by the parametéfs (E,_ p)), and -
(iii) the remaining electrons and photons whose energies are not speéified

by (E, 1) have energies less than or equal to € ., Let: o'be the set of

all sets s so defined and’let s° =X - o', It follows that ¢ , that is

defined as 0 with s° added, will represent a partition of = in the

sense of Defintion 1. The event that the system belongs to the set of

- states s° corresponds to the event that no electrons or photons are pre-

sent with energies above €& .- o '

The reader can easily verify that the set of sets 0 satisfy all the
conditions of Definition 1. U is then enchained by the basic-stochastic
process, g (x); of a cascade shower, Theorem 1 can be applied and,

. moreover, the cross sections for transition in-Equation (2. 3) will not be
influenced by the low energy behavior of the particles. If As represents the -
‘sets of all sets 's corresponding to points S in As, then the solution of
Equation (2.3} will yield P (As, x| S, 0): the probability that the system
of electrons and photons at depth x w‘i\ll be made up of n electrons and

m photons with energies in some specified energy intervals above € ; this

is regardless of how many electrons or photons ére» present with energies less
‘than or equal to € .. ' L .

. It will be desirable to apply the solution of Theorem 5 to Equation
(2. 3). "In order to do this, it will be necessary to introduce some assumptions
about the basic processes (i) - {v), Section 1. Physically, speaking the
_ assumptions: are these: o ' ' o A
I'. For convenience of notation, shower penetration will be measured in
radiation lengths and the initial energy I ;;vill be taken as unit energy. |
I All five processes described in Section 1, Part 1.2, are operative.

II. The effect of angular emission at branching is negligible for processes

(i), (ii), (iv), (v), when the primary er}ergies of the processes are above € , w
The effect of multiple scattering (process (iii) by an electron of energy u,

u > € , is to increase the cross sections for radiation and collision loss 3O
by the factor.w (u), where b Ac_l(u) is the average distance that an electron

of energy u would penetrate into the scattering medium after entering
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normally to the surface and traveling b radiation lengths (the primary
electron is identified with its secondary if radiation occurs); b is some
constant which for simplicity can be chosen-as 1., Hence, the shower of.
electrons and photons above € energy is one dimensional in the sense that
no angular or lateral parameters are necessary, and the parameter set

S = {n, m, E,/éé ) is adequate for describing the shower,.

III. The differential cross sections (to be defined below, (4.5), (4.6),

in terms of transition functions for radiation loss and pair production

(processes (i) and (iv) ) are given by the following, in which € <u < 1

§ e 5 €<
(Z>(%(-V;-J) _ ijyi(l)/u-) v/ )E V = 6 - (4. 1)
o Oleruwise ,
a)-(a_v)y_)v: -‘5&)(“’ y/a)/}t , oLy | (4.2)

where u represents the primary energy and v, in the first case, represents
the photon energy and, in the second case, the electron energy. The g's,

as functions of v/u, are slowly varying over most of the range and g(Z (a o)

is symmetric about the point v/u = 1/2 as it is, for instance, when com-

puted under the Born approximation.

IV, As for the process (ii), an electron of energy u. can lose energy (in
addition to radiation losses) only in amounts € and the cross section per
radiation length for this loss is e(u)/¢ , where e(u) is the true collision

loss per radiation length for an electron of energy u.

V. In every Comptdn collision (process (v) ) the full energy, u, of the
photvon is transmitted to the electron and the cross section for an event

of this type is the total cross section for Compton collision, say, ph(u).
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VI. The integrands of certain integrals, to be discussed later (see (4. 20),
(4.22), (4.23) ) are approximately linear over regions of length € . A

special approximation will be made for integrals of type {4.21). (This “ "
assumption is introduced here, bec‘aus‘e its justification essentially depeﬁds

on the energy variation of the basic processes.) L

V. € > pcz/l, where I is the initial energy of the shower at zero pene- :
tration and p,cz is the rest en'ergy of the electron. AssumptionsIli, IY,
and VI are better, if it is also true that ¢ << 1,

The justification of thé'se assumptions will be made during the dis-
cussion of the solution that is a consequence of them. It should be noticed
that the material difference betweén these assumptions and those made pre-
viouslyz7 is the accomodation for Comptdn collision, Assumption V, in this
paper and modification of the radiation cr‘oss section in Assumption III.
~ " Imorder to solve equation (2. 3) under A§su3rnptiops I-VII it would
be convéhienf to solve for a probability density (see equation 3 17) rather
than for the transition function P (As, xﬁso, 0}). Unfortunately, the trans-
ition function can no longer be considered absolutely continuous as it
was in Section 3 (see the paragraph éontaining Equation 3. 1), for Assump-
tions III and IV allow discrete amounts of energy (specifically & -
amounts) to be lost from the system of electrons and photons whose ener-
gies are above € . It can be seen that for fixed initial conditions and
for fixed 'penetrétion thicknesses, the probability weighting for finding
N particles of specified energies above € (regardless of how many particles
are below € ) is not a continuous function of energy over N-dimensional v
energy space. Instead, the probability we'ighting is distributed contin-
uously over the N-dimensional space except along the hyperplanes
H(l - vé¢) = {E‘ 3 E;O 1=1- ve}, where the set of N-dimensional
energy vectors, - E', satisfy the relation E”o 1-= k-‘llEli =1-2€,0=0,1,2,...
On these hyperplanes the probability weighting is distributed in N-1 dimen-
sions. For exampie., suppose that a shower is started by an electron of unit .
energy. " If one ignoreé how many shower particles have energies below € ,
then at any specified thickness there will be positive probability of

finding a single electron with energy 1, 1 - &€ , 1 -2& , etc, These
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probabilities correspond to the event that no process has occurred, one
collision process or one radiation process-with energy loss € has occurred,
and so forth. At the same time there will be a probability density distri- |
buted between € and 1 which is due to the fact that continuous amounts of

energy can be lost from the system through the creation of particles with

‘energies less than € ., As a consequence of the fact that the transition

function is not abs‘blutely continuous, it will be necessary to solve for a
continuous and a discontinuous part. That is, the probability weightings

along the hyperplanes will have to be solved separately from the probability

weightings elsewhere.” The solution will presently be carried out after defining . .

what is meant by the continuous and discontinuous parts.

One may begin to doubt the advantages of Assumptions like III and
1V, if they are responsible for discontinuities. Then again, it would be
best, one might think, to ignore the discontinuities, if they are present
and € is small. Simply treat the transition function as though it were
absolutely continuous, This was done, in fact, in the earlier paper27
mentioned above. As will be found, however, there are even pr-actical
advantages to the present more accurate approach of accepting the full
consequences of Assumptions III and IV. For instance, the high energy part
of the shower will be determined almost completely by the discontinuous
part, the easiest part to solve for. Continuous modes of energy loss
from the éystem become important only at low energies, or, in other words,
toward the end of the shower.

The ‘continuous and discontinuous parts of the transitionv function

will now be defined, as well as the differential cross sections appearing

iﬁ‘Assumption OI. Let H represelr}tefhe sum of all the n+m-l -dimensional

hyperplanes defined aboye: Hs=s .Z)é'oH (1 - V€ ). In this notation, the
dimensions of H are implicitly understood. The symbol H will always appear
in contexf with other symbols such as s, As, S, etc; , and it will be understood
that the dimensions of these symbols are consistent. That is to say, when

s is a seét in n+m dimensions, H has n+m-l dimensions. For any parameter
set (n, m, E, w) € Z, 0< € <Ek’ k=1,2, ..., ntm, n>0," m>0,

let the corresponding set s defined above be written s (n, m, E, u)

and as special cases let sy =8 (1, 0, 1, 1), $, = s (0, l, 1, 1). Let

AHS= {s(n”y m', E._", HU)S'Eq € H, n'=h, m' =m, lJ-ﬁ:}L}.
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It will now be possible to define the continuous and discontinuous
parts of the transition function, P, {(s{n, m, E, ), Is . 0) and
py (s (n, m, E, u), xls, i 0), j= 1, 2, respectwely For all fixed
se o , ntm >1 let the funct1ons be contlnuous in %, for all x > 0.
For all fixed values of x >0, n, m, ntm >1, and u, let pz(s, xlsj, 0)
be a measurable function of E and let pl(s, xlsj, 0) be measurable with
respect to:the Borel field defined on H. Finally, for-all x >0, for
all sets of the fype As, ntm > 1, and for ji=1, 2, let:

sxl 0)dF - ”P( /AHSISJ,)O);

Do
n
,\Té

(4.3)
[ p(s,x]s OdE] - ,‘_(.A.SM_, tey
Asff?AHS [ _3 /H " H JSJ)O) b
T’l (IS/XISJ') 0) =0 , S £ AHS» : (4. 4B) .

The 1ntegral in (4. 4A) is an n+m-l dimensional integral extended over the
intersection of the hyperplanes’ AHS and As. The symbol " JE! " reminds
one that the differential really involves n+m-l independent var1ab1es.

When nt+m =1 the continuoils ~part is still deﬁned as above. For all fixed
values of E, E > € , andfor j =1, 2, let By (s , x|s, It 0), pl(s(l 0, E, w),

xIsJ, 0) and pl(s((() 1, E, u), xIsJ, 0) be continuous functlons of x, x >0.

For allx >0 and all E > ¢ let:

p, (s ,xls, 0) = P(s ,xls, 0), | (4. 4C)
P, (s (1,0, E,u), Xlsj’ 0) = P(S(I,O,E,M. x|s;, 0), 11 (4. D)
Py (s(0,1,E,u), xlsj,‘.p') = P(s’(O, LLE,p), ‘xlsj, 0). (4. 4E)

M can be set equal to 1 in the above. It should be noticed that the right

<
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hand side of (4.4D) and (4. 4E) is zero except perhaps for E = 1 - V¢,
V=0, 1,2 ..., 1/e . |

From the definition of the discontinuous part, it is possible to
define the differential cross sections for pair production and radiation

used in Assumption III:

W cv,vi=1im p, (s(1,1,E,p), xls),0) /x (4. 5)

- x =0 _ _

W@ (1 v, = lim ) (52,0, Euw), xls, 00/ x, (4.6)
. _

where 0 < v<1 and E = (1 -v,v) and the value of i is understood to
associate the photon with v in the first place and the electron with v

in the second place. . Since the unit chosen is entirely arbitrary, this
definition extends to differential cross sections for initiating particles of
arbitrary energy. Similar definitions would hold for the collision loss and
.Compton collision cross sectidns but will not be given here.

The following notational definitions will also be used:
s 0 ' - .
pl(J) (0,0,x) = pl((s ’ xlsj,O)), | (4.7)

for jv= 1,2; x$0;

P(I'p (n,m, E,u,x) = pl(é(n, m, E, u), g]sj, 0), s (4. 8)
P«g) (n,m,E,u,x) = p,(s (n, m; E_’M" x| 85 0), (4.9)

for j=1,2;n=0,1,2, ..., m=0,1,2, ..., n+m'>'o;-‘-Ek> €,

n+m

k=1,2, ..., ntmi'p = 1,2, ..., 2 ;xZO.
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v D v/a = e g G v/u/v, (4.10)

: for €<u_<_1', E<v<uy

W @), v/u) = 2 (u, v/u)/u, (4.11)

for €< u <1, 0<v<wu. Inall of the following definitions the range

of u is 6<u_<1:

e ) ‘ .
@1(1) (u) = ]eb//&c (w) Cj( (4, 1 u )€ , (4, 12)
0 |

C-'Pz(l)(wf: Ae(u) () e

 (4.13)

¢
@),
JV@ (2,074 U Vé<z[ézé, (. 14)

]

@;Z oy 2! W
0 - ofhe?wise P
(2) |
CPZ, (u) = M(“)) (4. 15)

y

), 0 z (1)

Bk [y v Z9)w,
w2 (2) |

L2 (0 = fdvv/ (2 v /) + CPfj(u),

0 (4.17)
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The function Py (J) (n,m; E, u, x) will be zero unless.the energy

vector, E, belongs to some hyperplane H(l -V¢), V=0,1, .... Hence,

. it will be convenient to have a symbolism to show which hyperplane E

- belongs to.. This will be accomplished bywriting E]) when - EV Jd=1-p€,

Notice that 1) "does not refer to the dimensions of E The function
(J)’ (n, m, E,p,x) may be non-zero for all values of E but from the practical
po.mt of view it will be enough to know the limiting values of this function

as E -approaches 'ITD'V , V=1, 2, 3, ..., that is,the limiting values along

. the surfaces of the hyperplanes. It is only necessary to establish which

way the limit is to be taken.  If one writes fr when ]_E:.roT =1.r , r:O,

then pzq‘]) (n, m, Ev , 1y x) will be understood to mean:

K A7) (4.18)

(1) _ ') _
’f’a (h,m/ Fy/z, )c') = Im //Da ()7}.};1/ /:-]~ )/z) ;()

where the rising arrow indicates that the limit is taken through increasing
values of r. The convention (4.18) means that the surfaces of the hyperplanes
are approached through decreasing values of total energy, E. 1. 2 is an
index of the total energy of the system and will play an important part in the
solution of the ensuing equations.

The boundary conditions of the problem now take the form:

{) =
f’t’. (nm, by/l,ﬂ) f(h+J ar(m-rlg ) (- 1)

]

. | | 4.19
(Z)(M? E, wX)=0  Forad £ cé o
75[ ) /v 2)4/{’// = or all Xx2o I)( <o , OF £} )

k= 2,0, ntm ok n<o okm<o,

.The limiting form of equations (2. 3) becomes equations in the contin-

uous and discontinuous parts, (4.7) - (4.9), when the sets As (or in the

general notation, Ag) represent the set of all sets: s corresponding to points

S in AS, and when the energy intervals, (E, E + €), appearing in the
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definition of the sets AS {(Part 1. 2) are taken to be arbitrarily small.
This limiting form can‘be written down immediately'and the 7 (g' - Ag)
vand‘ al (g")-'are now expressed in terms of the differential cross sections,
(4.10) - (4.17). The functions 'fl-(j)' (n,"m‘,:Ev » sy X) can be solved for
without any knowledge of the functions fz(']) {n, m, ED ) 1y X) a'.nd, hence, -
- one set of equations will involve only the discontinuous part and will

involve no integrals. On the other hand, the equations for

E fz"(J)' {n, m; EV s, x) will include some terms involving the discontinuous

“ parts, because it is possible for transitiéns to take place which carry

the systern from the hyperplanes into the continuous'region. The latter

set of equations will also involve integrals of the the types:

ﬁn‘j @ =7 @)

u mel E 4 =

E - fe h ) ’,,,L; e 4 (4, té/a)f (4. 20)
Et€é . -

B N

Z[GQ‘ f; <’7*1)(ﬁq~1)_1i,//4‘, x)}ﬁ («, b/ u ) | (4. 21)

2e ) NP e
f C/[( 7L ( hT}/ U / £ /‘/c/ )C> é, CFS (Z() 7 (4.22)
€ )

2.€

4, .
[ £ mar, £y 000 (4.23)
fa .

2

in which the variable of integration, u, is considered to be a component
of the vector variable E', p' orders the electrons and photons among the
: comp’onen‘ts of E', 'a’nd.Ek is some energy component of the energy vector
EV ‘in s{n, m, EV ;). The first integral above represents the fact that o
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a transition can take place whose differe,ﬁtial éross_ sectibn is W(Z)(u, Ek’ /u)
and which carries the system fram the set -of states s{n-l, m+l, E', u') to
the set of states s(n,m-,—E‘p ;). The valu,e'\s of the energy vector, E',
and ordering parameter, u', need not be explicitly specified because there
is only one set of states s(n-l, m+l, E', Qi) whiéh can be carried by
W(Z)((l, Ek/u) into s(n, m, ]—S—y ,i). Physically speaking, the first integral
means that a photon can make an electron pair one member of which has
less that €& -amount of energy and the othér member of which has Ek -
amount. The electron with energy Ek appears as a defining member in the
new set of states s_(n, Vm,EU s). The other integrgls have similar inter-
pretations. For instance, the integral (4. 23) corresponds to a transition
in which the total number of particles with energies above € decreases by
1. A photon may be responsible for such a transition when it makes an
electron pair and both members of the pair have less than & amount of
energy. |

Assumption VI, above, will now be understood to méan that all
integrals of the type (4.20), (4.22), and (4.23) that appear in the equations
for P, b {(n, m, E.?) ,H, X) can be replaced by the product of the length of
the interval of integration and the mean value of the integrand within the
limits of integration. Assumption VI will also mean that
]OQJ) (n+l, m-l, E', u', x), appearlng in (4.21) can be replaced by the
constant value, 7% J)(n+1 m-l, E' PR B', x), everywhere in the interval
((Ek, Ek

equations would be a simultaneous set in spite of the special form for

+ €&). If this last special assumption is not 1mposed the resulting

the radiation cross section chosen in Assumption III.

If full advantage is taken of all the Assumptions I -VII and the
special notational definitions (4.7) - (4.17) are used, then the equations
for the continuous and discontinuous parts of the transition function can be
written as follows: {The equations hold for any values of the parameters

and variables for which the functions are.defined. )
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(%) /D (MX) Zf (w Ve-2, /x)ZCPs(ze) [J6)+£d(rz) ]
| '+7Z(Z>(l>4/ “Lhx Z Cfg)(f)
+ (g')(aj;:yé_];]/x),.% gg(f)(é')' o

(4.24)

(4. 25)

0
/%Z+zo< ([) Z ’([p)ﬂ/n)m,f;/})

n, g (1)
=2 f /nm—] L5 ) W( 5k R
ks i |
7"2'27)((”2“*' /a,X))V (Fv‘[ F’/E*m>

k_,/ﬁ'q(h-éw g, e[ C?f)@ ) £¥ N -
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+j;§§ /;“@)(”‘j )4 EV/-I, ez VZ) Fié b )6 556220
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In order to see that equation (4. 25) is a special case of equation

(2. 40) already solved in general, consider the following. Let
R é (i, j, n, m;, EV,p) be a set of parameters‘whos.e values may fall any-
where in the domain of definition of the function pi(‘]) (.n, m—,f:v y By X),
for any x>0. For a fixed value of j, the space {R}(J)of all possible
values of the parameter set, R, will correspond to Z of Part {2.2). For
any fixed values of the parameters, R¥ & {R} (j), there is a finite sequence
Z(Rk(R*)]} R Rk(R*) G{R} (j), of parameter sets which depend on R% and which
satisfies all the conditions of a ""route', as defined in Part 2.2. {(When
j =1 or 2 the point S, of Part (2. 2) is Ry = (1, 1, 1,01, 1)or
R, =(1, 2, 0, 1, 1, 1), respectively.) The function w (S'— S) has now
the various forms mr[((n, m-l, E”V s ') = (n, mE ,p,)] =
]//UNEk + E[_ . Eﬂ /(Ek + E )), ﬂ_!;(n,m, E'V-l’ w') - (n’;‘m', E_V ,p.)] =
é?j» (1) |
S=1 Cps

is specified by the sequence of Table 1. Table 1 can immediately be exten-

(Ek +¢), etc. As an example, a."route" from R2 to(1,2,2,0,E, 1)

ded to represent the "route' from R1 or R2 to any point R.  In doing so,
it is noticed that the order of sequence of the points along any route is

completely determined by the parameters (i, n, m, ] ) only.

Table 1.

| | vy v
i 1 1 111 11 1111 111
n o 1 012 01 0123 012
m 1 o 210 1 0 3'216 210
7 0¢ o000 11 o_'_odo_ 111

As remarked at the end of Part 2.2, every point on the route to R
can be reached by one step transitions from a subsequence of points lying
somewhere on the route before that point and those subsequences alone give
the special character to the Solution (2.41), (2.42) for a particular
case. The subsequence of points corresponding to the point (1, 2, 2, 0, E, )
has been especially marked in Table 1. This as well as any other can be

determined immediately by reading the right hand side of equation (4. 25).
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The Assumptions II - VII that make equéti-ons_ {4.24), (4.25) possible
all involve the quantity € . -The physical justification for the assumptions
will be in order when this quantity is properly chosen. For instance v
Assumption II requires that multiple scattering is not so great for energies
above € that it cannot be corrected for by the factor 4¢(u), roughly L
interpreted as the ratio of integrated to projected path length for electrons.
Assumption III requires that the éfféct of a delta function placed at v = &
-in the bremsstrahlung spectrum will not significantly alter the shower,
provided this delta function, which replaces the region of the spectrum
‘below €, has the weight of the average energy lost to this region. Assumption
IV, an assumption about the way that energy is lost through electron-
electron collision, allows that, as far as the shower is concerned, £ -amount
of energy could be lost in each such collision and all would be the same.
'T,hi:s,,asvsﬁﬁmptiqri, of cﬁou;s_e,ﬁ_includes the proviso that such artificial collisions
occur few and far enough betweén to pejrmiif.;vt};e aVLrverﬁa.gef energy loss per
radiation klength by electrons to be correct. Ass.um.ption V implicitly demands
that the effect of Compton collision on the shower is slight enough to permit
-aﬁ'idealization of the energy transfer. The effect \}v'ill be smaller, as is
known, the larger €. Assumption VI requires that the eriérgy variation
of certain functions is not too great over intervals 'of length €. Assumption
VII asks that the rest mass of the electroh can be neglected in comparison
to other energy parameters of the problem - all of which are;greater in
magnitude than & . For instance, when a photon materializes into an
electron-positron pair, the fraction of its energy that goes into the rest
mass of the pair can be neglected. It is immediately seen that Assumptions
'II, V, and VII are better justified the larger €, while Assumptions III, IV,
and VI are more consistent with a small €. These opposing requirements
need not be incompatible from a practical point of view:
If € is chosen in the region of the critica.l energy (the region where
collision losses are nearly equal to radiation losses) and if the initial
‘energy of the shower (which establishes the unit of energy) is chosen at
least 10 times the critical energy, then all requirements are approximately. Y
satisfied, simultaneously. This means that the methods of this section
" are valid for showers whose initiating energies are about 70 Mev or greater
in'lead or 1000 Mev or greater in air, provided € is chosen near the

critical energy.
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The assumptions which require special comment are II - VI. In
reference to II, it is necessary to point out why a correction for multiple
scattering takes precedence over a correction for angular emission
at branching: It does, becawe, according to Rossi and Greisenzg, the
average angle of emission per ra.diation length for primary electrons and
primary photons is roughly one fortieth the root mean square angle of
scattering of electrons in one radiation length. In reference to III,
the modification found there eliminates an otherwise divergent term but
at the same time keeps the radiation process intact- in the sense of
preserving the correct average energy loss to radiation. Assumption IV
was introduced to eliminate the myri‘ad - step transitions encountered in
the trial solution of Part 1.2 and yet to permit the correct average
amount of energy to be lost from the shower per unit path length. Assumption
V is justified for two reasons: One sees, first, that Compton scattering
that decreases rapidly above € (the critical energy) has a cross section
there one {ifth as great in air as the cross section for pair production:

The effect of Compton scattering on the shower cannot be very great. Second,
one calculates from the Klein-Nishina formula that at 20 Mev more than 70%
of the photon energy is transferred to the electron in roughly 70% of all
Compton collisions., It is sufficient to assume that all the photon energy

is transferred to the electron all of the time, especially since the most
imporfant contribution of this process to the shower is to introduce charge.

The justification of Assumption VI must ultimately re.st on the

() (2)

fractional e'nergy, v/u, and especially on their behavior near the end point

behavior of the functions g u, v/u) and g'“'(u, v/u) as functions of the

v/u =1, Unfortunately, these functims have been computed2'9 for high
primar'y energies under the Born approximation, which is not valid near

the end point cited above. More recent calculations3o, while not limited

by the Born approximation, are still,not valid when, for instance, the electron

31,32 which have been per-

radiates the most of its energy. Experiments
formed on the radiation and pair production spectrurhs shed no light on this
point. The resolutionin detérmining the secondary energies is too broad

to resolve a rapid change in curvature. The experiments are not inconsistent

with relatively uniform spectrums and non-zero cut-offs, In view of our
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knowledge of non-relativistic radiation sp;ec,truims,. it would seem wisest

to modify the Bethe Heitler calculations so that 'g(‘l).(u_,-v/u) and g(z) (u, v/u)
_are weak functions of v/u when the Born approximation is no longer valid.
The Bethe Heitler values should be furtler normalized in accordance with

" attenuation experiments?):s"38 39

and more accurate theory.
Having justified equations (4. 24), (4. 25), -one may now commence to
wonder what the advahtages are in obtaining them. Even though a formal -
solution, (2.41), (2.42), is immediately applicable, one can justly surmise
that a numerical problem, perhaps insurmountable, lies ahead. Even though
all of the objections to known solutions laia down at the end of Part 3,2
are now largely eliminated, it is still necessary to carry along all of the
individual energy parameters throughout the calculations. The presence of
the energy vector ]:?27') is the one impractical element in equation (4. 25).
- In the next part of this section it will be shown how the application of
Theorem 2 will make the solution developed so far a‘;facti:al ere;alit';rr. With
the use of Theorem 2and an assumption about our knowledge of a certain
distribution, the equation (4.25) will be replaced with one identical in

form except that the vector E_, and parameter . become one parameter, the

1%
total energy, the summation signs disappear, and the cross sections become

modified.

4,2 A Soiution Based on Theorems 1, 2, and 5.

Instead of applying Theorem 2 in its abstract form to the solution
'.develbped in the preceding part of this section, it rhight be well to give
' it as much intuitive me’aning as possible., At the same time the method of
Part 4.1, gener’alizéd in Theorem 1, will be given similar broad meaning.
In the terminology of Part 1. 2, let Z represent the’ space of all possible
states, S, in which a caséade shower might fall. For the preSent argument,
consider the states, S, as'p'oint_s in the plane, though they are actually
rather complicated vectors. Recall that these vector -points should actually
contain anglilar and spati-azl'components to describe the three-dimensional
spreading of the low energy pafticlés through the absorbing medium, though

‘the cOfresponding paraméters were not displayed in the definition of a

N

4

-
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state, S, given in Part 1.2. (The incompleteness in the dééx;::iption of a

shower as supplied by the parameters (n, m,- E, 1) is just the basis for

~proceeding with the problem as follows.) As in Fig. 1 the development of a

shower would normally progress from state to state and Fig. 1 would be an
adequate illustration of a particular transition if one imagined that the

state vectors, S, really contained all the components necessary for a complete

description, /
/

o 2

——

Fig, 1

The diffusion equation for a shower would involve transition probabilities,
w (S' = S), corresponding to the transition illustrated. '

~ Due to the desire to avoid including all the low energy spatial
parameters, it was found convenient in Part 4.1 to consider the transitions

of a shower from set to set, as illustrated in Fig. 2.

Fig. 2

The sets were chosen to include a certain number of high energy particles
of specified energies and an arbitrary number of low energy particles. By
choosing them in this way, the transition probabilities, w (s'—+s), for
motion from set to set were not affected the changes taking place between
low energy particles within the sets. 'In fact, the transition probabilities
could be determined by the transitionto s from any state S with s'. That is,
the particular conf_iguratiori of low energy particles within s' at the time of
transition was immaterial. The sets chosen from ‘T in Part 4.1 were said
to be enchained by the basic process of the cascade shower because the
transitions of the system from set to set could be treated identically to the
transitions of a system through a Markov chain of events (to use the

terminology of a discrete space).
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‘Suppose that a similar technique of solving for transitions from sets

to sets be used now to eliminate; if possible; ‘the individual energy parameters.

"If the method of sets worked for the low:ehergy spatial parameters, it might

work for others as well,

nated the need for spatial parameters, and group these into larger sets, r,

One could keep the sets, -s, that have already elimi-

according to the number of high energy pa'f‘t‘tcles present and the total energy

represented by the high energy particles. See Fig. 3,

Fig. 3

Though it is too rnuch to ask that, 1n analogy to the behav1or of the transition

between the sets, s, the probabilities for tranS1t1ons between these larger

sets will also remain una.ffected by the conf1gurat1on of part1c1es within

them, still the following will be true: If there is an a pr10r1 knowledge of

the conditional probabilities correspond1ng to various h1gh energy particle

configurations within each set r (in other words, a knowledge of the energy

distribution among high energy particles conditioned on the event that they

belong to r), then the transition from a;’set,a-‘r', to a set, r, can be determined

by averaging. One will take as w (r'-» r) the average value of w (s' » r)

for all s' in r', weighting each m (s' = r) according to the a priori

conditional distribution. These ideas are just the substance of Theorem 2

intuitively expressed. The sets r, so chosen, ‘are called cond1t1ona11y

.enchained, because a probablhstm knowledge of the conf1gurat1ons that are

conditioned to exist within each set. perm1ts the transition probabilities to

be treated as before --as though referrlng to a Markov cham

- In return to the actual problem, let all the notatmns be the same as

in Part 4.1 and let all the assumptions of 4, 1 hold Let r(n m, T, ),

V=012, ..., n=1, 2, =1, 2, cess n+m >0 represent the set
o . . n+m
of all sets, s(n,m, 'EV’ |.1.), for wh1ch EV;’ l’= s B =1-p¢-=

k=1 K

.\'

A
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Let r°=35% Let AEV be an n+m-dimensional energy interval of the type
appearing in the definition of AS, Part 1.2. Assume that there is known the
distribution of energies among the particles, given a knowledge of the number
of electrons and photons and their total energy. Assume that this distribution

is independent of x. In other words, for each»AEV and i, the probability,

' P(AEV » #ln, m, T ), that §(x) belongs to AS, given a knowlege of n, m,

~and T, 1is known and is independent of x. Such a function corresponds to

P4(AG lg, go) that appearsin Definition 2, property. (iii), If it exists and
is known, then the set, f = {rk , of sets r 1is conditionally enchaired by
C:D’(x), because all properties of Definition 2 will be satisifed. The justi-
fication of the essential assumption about P(AEV , &ln, m, T) will be left
till later.
.Let Ar be defined as any set of the form:.

‘Ar = {r (o', m', T") DTV E (T, T +e), n' = n, m' = m} , e >0,
With the use of Theorem 2, it is possible to obtain a diffusion equation for
the transition function, P{Ar, x:’lro, ‘0); which in the general notation of
that theorem has the form P(Ag, xlgo, o).- The hypothesis of the theorem
stating that the basic process is Markovian will be satisfied in the present
case even though the sets, r, are sets of sets, s, and not sets of points, S.
This is true because ¢ = { k is conditionally enchained by a process
{ @‘(x) in the general notation of Definition 1) that Theorem 1 proved to be
Markovian. As in Part 4.1, when the argument referred to the functon
P(As, x| S o), it would be convenient to solve for a probability density.
Again, however, there is a continuous and discontinuous part. The reasons
are the same and the points of discontinuity are the same, ﬁamely, the zero-
dimensional hyperplanes H(1 -p¢) =1 -)¢, V=0, 1, 2, ... The defitions
of the continuous and dlscontmuous parts of the transition function
P(Ar, xlro, o) are completely analogous to the corresponding definitions

of Part 4.1. Consequently they will not be reproduced here. Since Sy and s,

‘pelong to r = {rk ;, one can define Ty =8, T, =8, and write :

£, 0,02 =59 0,0x (4.74)
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in cqrrespondence to (4. 7). Let fl(j)(n, m, T','x)f.andv fz(j) (h, m, T, x),
n=1,2, ..., m=1,2, ..., ntm>0, T> €&, x>0, be the continuous and
discontinuous parts in the present case, corresponding to (4. 8) and (4. 9).

-fl(,']:) (n;m, T, X) will be zero except perhaps for 2/ = 0,.1,2, ...
fZ(J) (n, m, ‘—[; , X) can be defined in direct.analogy to (4. 18). Integrals
similar to (4. 20) - (4.23) will again appear in the equations for the continuous
‘part and will have to be approximatéd-thrdugh an assumption almost identical
to Assumption VI. (See the discussion following-the integrals (4. 20)-(4.23).)

' The equations themselves that are satisfied by f L('j) (n, m, TV’ x) are so much .
like (4.24) and (4. 25) that they will be written down immediately along with
the boundary conditions. Their solution follows the same pattern as that of
(4. 24), (4.25), even to the use of Table 1, Part 4, 1. Suffiée it only to say
that the weighted cross sections, such as )Z(l), that app'eabr in place of the
cross sections of (4.-25), have an obvious:construction out of the latter. . __
Their general definition is given by (2. 22). Afgument' variables seem
unnecessary for it will be clear that each weighted cross section represents
a transition from the set of states pararﬁetfized'by the arguments appearing

in the accompanying function. For example: -

o) | o
- yo= IT/“[ 5(5,m— L Ep/‘)"_’~.77"‘(”""”»E)ﬁlfp(‘/gh)5>) (4 26)

Ylnm-1, )
- where, -- )
ol : - f . : : 'T‘—: ' (1) -
PletneLfy s orrlom D= 20 (4 3 )

-The equation follows:

(4. 275

)
f[g(h/)@ /ij>: 0) 5;. a)/ ;r>/0) /f D <o

YNh<o o m<p
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The final link in the justification of equations (4.27)(4.29)
concerns the‘\v‘eightiﬁg function PA(AEV‘,T'}LIn, m, T ) ‘itsv exvistence
and our cognizance of it. Its existence depends only on whether such
‘a function ex.ists.‘tha-t is independent of x, for in the proof. of “Theo="
rem 2 it is seen that there would always be such a function which
depended on x. That is, the conclusion of Theorem 2 could be reached
without a conditon on the we1ght1ng function provided the weighted
cross sections (2.22) in the conclusion were xA-dependent. From this
point of view, the existence of the function must be postulated. One
can only say that, intuitively, it appears to be independent of x. If
it is not, it cah be substituted for one that is,. a_nd the answer will
suffer an approximation from.this source, : |

‘ Our knowledge of the function will come from experience,
previous exact calculations (such as_ those of Part "4 1), or experiment
and Will not be deeply probed here. The main purpose of th1s part of
Sect1on 4 is to show that it is not necessary to carry all the energy
parameters throughout all the calculations. If one carried the energy
parameters through onie simple case by the method of Part 4.1, sufficient
information would be had about the weighting function to fac111tate any
further calculations. Another purpose of this Part is to demonstrate
by example the potential use of any detaiied kriow,ledge conditioned on
partial knowledge that relates to the energy'distribution among particles.,
For instance, it was purely for simplicity that the number of particles
' and their totai energy were chosen as the only parameters from which to
infer the energy distribution. It would have been even more realistic
to choose four parameters, the number of electrons, the number of
photons, the total energy of the electrons and that of the photons
The generahtles of Theorem 2 permit any such modification of the method
presented ‘here. v

It is worth not1c1ng the kinship between the method of thls Part
and that suggested by the present authorf]:0 to S1mp11fy the earher
matr'ix solution. 27 The present method rests on stronger theoretical

grounds and is more effective in eliminating unwanted parameters.
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5. SUMMARY

In the Introduction the basic problem of electron-photon
showers was introduced. It was shown how the collision-loss process
was a first cause for mathematical difficulties. The'vbeha.vior of the
low energy particles was a sec'ond cause. In Part 4.1 the first of
these difficulties was eliminated by ab convenient idealizafion of the
| physical process of collision-loss and the second difficulty was over-
come by paftitioning the space of state vectors so as to make the
presence of low energy parameters unnecessary. After reviewing the
known~solutions to the proble'fn in Section 3, it was noticed that large
simuitaneous sets of equations had élwéys been used and asymptotic
cross sections had been necessary in order to permit integral transform
methods. In Part 4.1 a slight ideélizatidn of the radiation process
and an approximation to an integral made the simultaneous equations
\ unnecessary. A general solution de\}eloped in Section 2 could be
immediately applied to yield a direct answer for thé probabilities in
terms of a linear function of exponentials. | At the same time, the
presence of the idealized collision-loss processdand the partitioned
SPace mentioned a‘bov.e made it i)ossible to use energy dependent cross
sections rathervthanvasymptotic‘ ones. Multiple scattering and Compton
effect could be corrected for so that the solution of Part 4.1 was
valid for showers initiated by'high energy pfiméries and medium energy
primaries of about 70 Mev in lead. ‘ |

As in most of the solutians examined in Section 3, the solution
of Part 4.1 contained all of the individual energy par.ameter‘s of each
particle. Though the results of Part 4.1 were desirable from many
’-po‘ints of view, they were sofnewhaf impractical for this reason.” The
use of’Theore:m 2 made it possible to eliminate all but one of the energy
parameters and thus bring Part 4.1 onto a realistic ground. The
application of Theorem 2 \;s}as made in Part 4.2 and was reminiscent of
the application of Theorem 1 in Part 4.1: A partitioned space was
used once again to eliminate unwanted parameters.

Throughout the paper an awareness of other techniques was kept
alive by the use of terminology and ideas that were developed in Section 2.
Section 2 was responsible for holding some géneral logic that lay beneath all

previous methods and that could be extended to the framework of Section 4.
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