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ABSTRACT

An approximation scheme for the one-nucleon Green's functions previously
put forward by the authors is renormalized. The experimental mass and the
constants 2; and 22 are rigorously expressed as free-particle limits of H
integrals over the kernels appearing in the scheme. The mass and wave function
renormalization are carried out rigorously; the vertex renormalization is
performed by a slight redefinition of the approximation scheme, without greatly
altering the physical assumptions peculiar to each approximation. General
prescriptions for renormalization are written down, and the first three

approximations are explicitly shown to be finite.
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I. Introduction

Recéntly the authofsl have proposed a covariant approximation scheme for
the treatment of the coupled Green's functions equations of meson~-nucleon systems,
The procedure led to the replacement of the infinite set of coupled equations for
the rigorous kernds by a finite set of approximate equations,invelving Green's
functions. which describe processes with no more than a fixed number of external
, mesonblineso |

In (I) the question of renormalization was ignored, It is of course not
known whether the usual infinities of pseudoscalar meson theory with psesudoscalar
coupling are due to the use of the perturbation expansioné in which they appear;
howevgr, whether the theory is finite or not; a renormalization has to be carried
out:; In the approximation scheme; whose validity may only be motivated‘in the
low-energy region, it is expected that such high-frequency phenomena as the self-
. energy, etc,, will not be described correctly; and the existencé of infinities
are a not unexpected feature, Nevertheless the lack of a correct description
in the high-energy domain does not prevent one from performing a renormalization,

. 2
For example, when a subset of perturbation graphs is summed rigorously, the

Q

1, R, Arnowitt and S, Gasiorowicz, Phys. Rev. 95, 538 (1954), to be referred

to as Io
2, 8, F, Edwards, Phys. Rev. 90, 284 (1953).
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radical difference in the high-energy behavior of the sum and the individual
- terms of the series does not prevent the renormalization of the latter by
perturbation methods, |

In this paper a nonperturbation renormalization of the approxima€ion
scheme is carried out; i.e., equations involving the renormalizea Green's
functions, with finite masses and coupling consténts, are derived; Although
it is of cours§ necessary to solve the resulting equations to see whether the
 solutions are finite, it will be shown that these equations generate the |
renormalized‘pertﬁrbatién séries, when“expanded in §owers of the coﬁbliﬁg
fconstantq

As already suggested in (I), it is hoped that neglecting vacuum polariza-
tion will not strongly affect the low-energy results. Thus the meson pfopagation
funétion z3+,(§>-§’) ' will be assumed to be a given function (namely the free
particle kernel) of the experﬁmental‘méson mass L .-

In the following section the conditions to be satisfied by the finite
. equations are staﬁédo' In subsequent sections rigorous expressions for the
renormalization constants 2y, Z,, and m' are &erived, the role of the
. overlapping diVéréences‘is discussed, andfﬁhe apﬁroximation scheme for the
- renormalized eQuaiions is set u§a< In section V' the second approximation is
renormalized in détail, and in VI, the procedure for renormalizing the third
approximation .i‘s-out.lined° -While the general case is not discussed; the work

of these two sections makes the extrapolation reasonably ¢lear,

o
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II. Preliminary Discussion

In I a rigorous set of equations coupling Green's functions involving
_one nucleon and an arbitrary number of mesons was derived. >The approximation
made there, which involves a decomposition of the last Green's function
(appearing in a finite subset of equations) into a sum of products of lower
Green'’s functions, was labeled by the nuﬁber of "thick lines" in a particular
time orderingo. While this labeling was adequate in the unrenormalized equations,:
it was found to be ambiguous in dealing with the problem of renormalization,
owing to the necessity of successively substituting the kernels back into
“earlier equations. These'equatioﬁs require an integration over some of the
“fghick ling" variables, thus destroying the partieular time ordering chosen.
An equivalent convention, which we will adobt here, is to count the number.of
"strong interactions" between the meson and nucleon. Thus, for example, in
the first approximation, writing (%% ’) ~GCA N (5-% ') involves no strong
interactions, while the second approximation, G (£§'5” )~ G(X) 4, (§L§//)+
invelves one strong meson interaction, némely the one appearing in G;(E) 0
In general the nth approximation will allow (n - 1) strong intéractionse

Introducing the Fourier transform of the Green’s functions,

o)) ipbex) k(B X)L |
G(Xx,ig,...zm):(Zﬂ')-q(H-[ /1]>JeFx " 3—__[: e G(P: lzlu km) (2.1)
| . | x d'p qurnqum

where [m/Zt] is the integral part of m/2 , the rigorous Egs, (I 2.7),

(I 2.8), and (I 2.9) become
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tYP+m]G(k)= -9 fY6(pk) dk 2.2)
mp._om)e'(p.p = iglny? [YGpkk) K | (2.3)
[K‘(P—Vkv—k’)fm]G(P.kk') = A(ESS(k+k'_) -q f¥ G(p.kKE") k" (2.0)

Ihe'particular choice of transform variablés in,(2?l) corfesponds diagrammatically
to a nucleon of momentum p emitting (in any order whatever) m mesona.wiﬁh
mémenta kl; kz, cooy km . | |

To exhibit some of the conditions which we wish to impose on the
renormalization procedure, and to illustrate_somé of the difficulties which
arise in a non-perturbation renormalization;, let us briefly consider the
fenormalizatipn of the equations in théwfirst approximation.

Decomposing

G (b kk)x CpYARS (k+k) o.5)

in Eq. (2.3) and substituting into Bq. (2.2), we obtain the equation for the

- one-nucleon Green's function,

[¥p+m ¢ ig(an)™ fye. (b-kYY 2 (R)dk ] Gp) = (2.6)
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As is well known, the integral appearing in Eq. (2.6) may be renormalized by
subtracting from it the first two terms in a Taylor expansion about YP+mM = O

Thus E§° (2.6) becomes

[(“P"m')(‘*f./)‘Smf'/-’r R(PI1G(p) = | (2.7)

where

m'=m+5m=m+.gl(m)“‘(fvc—o(p—k)m(k)dla) =m+ {0 @8

[>]

Ypims=
!‘/ = 1—(2“)-? ['3:3—,; fYGo (P"k)x A(k) dl’;]”"n:o (2.9)
and
- / /
R(P) = i@ fY6. (p-bwat)dk - § - (vpem) | (2.10)

 While R(p) 4s indeed finite, it is only true to order gz that Snn_ﬁ/ may
be neglected and the factor (1 + f{ ) utilized to renormalize the Green's
function. PFurthermore, R(p) is a function of m rather than the 7
renormalized mass m'. Thus if perturbation theory is not made use of Eq. (2.7)
is effectively still unrenormalized.
For a satisfactory program, oﬁly the renormalized masses, coupling
- constants, and Green's functioﬁs should appear in the final equations, without

any use being made of perturbation theory, though of course the limitations of
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the approximation to a given number of "strong interactions" must be imposed
upon the infinite constants. A necessary condition for -a successful
renormalization is that the renormalized equations, upon solution in powers

of the coupling constant, yield a series of renormalized graphs.

j
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I11. The Renormalization Constants

The renormalization procedure to be described below makes no use of
perturbation theory. That multiplicative renormalization can be carried out
will be explicitly assumed. Thus, in the notation of Matthews and Salam3 we

define the infinite constants Zy and 22 by
/. : : -
Y(x) = 2,7 ¢ (x) (3.1)

q = (2'/7:’1) C;,. | (3.2)

 where 4’(x) represents the second-quantized nucleon operator and the
subscript "1" will denote the renormalized (finite) quantities. From Eq. (3.1)
it follows that

Gb kb)) = 2,6, (b ki k) (3.3)

In terms of the renormalized quantities, Eqs. (2.2) to (2.4) take the form

Lipem] 226G, (p) = 1 - 9.2, JYG‘IV(':.IOGHL (3.4)

(k) +m]Z G (b ) = iq, G0 2, (Y6, (pkk)dE"  OF
Blo-kok)em] 26y b k kD= A0S (k1 ¥) -2, (Y6, (EFED AR (5.0

3. P. T, Matthews and A, Salam, Revs. Modern Phys., 23, 311 (1951).
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Defining G, (P, Ry... ke ) by

G (p ke ke )G, (B) = G, (b ki k) (3.7)
Eq. (3.4) may be written as
[¥bem +qu (/) [YG, (b k)dk 12,6, (p) = | 6.9

Invoking the usual boundary condition on GI (p), that in the free particle limit

6i(p) — Lyprm' T {(3.9)
where m' is the renormg.lized @ass, Eq. (3.8) may easily be recast into the
form
[ypem + 92, { YE (b R)dk ]G (P)=1 (3.10)
wbere
m'= M+, (?~/22>(f¥§.(\a.k)dk> =m +Cj.(?n/22)fo (3.11)

YFHTI’:D

1,= 1-9.2, (%,, (YE (p.k)d k) =1-92 §, 6w

Yp+m/= o
and

ij 5 - L - (YFTm:)L | o (3.13)

e

L&)
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Although Eq. (3.10) appears to be infinite, owing to the explicit
. presence of Zl, this constant is needed to renormalize the additional overlapping
vertex infinities arising from the k-~integration. This will be discussed below.

& of course renormalizes the vertex operator, as may easily be seen from its

definition,
e = qe) 6= 2 (g b)) 67 - 20 () oo

To perform the mass and Green's function renormalizations in the higher

L3

equations, we break up G,( la .. - ,Z.-n)

G (bikikm)s Gy lb, ko k)
T §.Q>- Ry~ = Reoe 5 km)é.(P.k..-.km-.> (3.15)

where "q =1 for m = oddj 71 = i(ZTF)h for m ; even, and define a

generalized IR. when more than one meson variable is present:

\S;(\‘G.(F.k,.n“?m>dkm = IX Glr (P' kn-'“ kmbdkm

e (LY bk bs k)b ) 6o by b) .26

The second term on the r.h.s. of Eq. (3.15) is that part of the Green's function
in which the ky meson is emitted last and its vertex is not coupled to any of

the, other vertices. Using Eq. (3.16), and the definitions Egs. (3.11) to (3.13),
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Egs. (3.5) and (3.6) take the form

—'[Y(F—kﬂrﬁ']G.'(p.L):Lq.(zﬁ)"’z. §7¢ (b k k)dE’ (3.17)
R .

(b k-k)em) G (b k)= & (DS (k4 k)= 92 [ Y6, (R K)dk"  ©19)

. We next turn to the rigorous definition of 2. Comparing the mass operator in

qu'(3¢10) with the usual expression for that quantity,h one sees that

G, (b k)= g Gm™ G, (b (b-k, p) & (k) O (3.19)

An expression for Zl may now be obtained by invoking the boundary conditions on
r (b- k, b ) in the free particle limit, namely5

e & (p-OD, (b b p)= B lowe sy e

R pt>o

[}
where 4’ (p) is the renormalized plane wave spinor, a function of mf,

 Comparing with Ea. (3.19), the free particle limit of (5, (pk)= G, (b k)A'b( k)

k. J. Schwinger, Proc. Natl, Acad. Sci. U.S. 37, 452, 455 (1951)

5. An alternate definition would be to impose Eq. (3.20) in the limit of k,-0.

- This was adopted by N. Kroll and M, Ruderman, Phys. Rev, 93, 194 (1954). It
is purely a matter of convention whether one wants to treat the meson field as
the static electromagnetic field or as the nucleon field. For the purposes of
this paper, the choice of definition makes no difference.
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GClhk) — Lca‘(nn)"‘ (¥ (p-k) +m']™ X

(3.21)

Introducing the "reaction matrix,"

R.(p.kk'): G, (b kk) =6 (B)A(R)S (R+ k')

(3.22)

Bq. (3.17) in the free particle 1limit becomes, after slight rearrangement,

ZY = Y - (fRZ.YE_T‘(F,tek'Mk')o
where < >o

Before we proceed to a more detailed discussion of Zl it might pay to

(3.23)

denotes the free particle limit defined in Eq, (3.20).

reexamine the renormalization of the first approximation, in which 2, =1, since

5R L Rl (P' k k') dk’' = D there. Using the decomposition of the integral
on the r.h.s. of Eq. (3.17), one finds that

G (bik) = G (bt )iq ™y ()G ()

-\
where G'\M(P) = [¥Yp+ m’ ]
yields the finite

(3.24)

, which when substituted into Eq. (3.10)
equation

[Yptm's il (2m) 4 jRYGf”(l:-k\XA(kMkJG. (P)=1 (.25
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in which only renormalized quantities enterb6

6. The correct Eq. (3.25) could of course be obtained in a trivial fashion

from Eq, (2.7) by simply dropping the undesired terms. However, in the

higher approximations, it is not clear which terms are to be dropped.

w
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IV. Vertex Renormalization

The rigorous Egs. (3.10, (3.017), (3.18) ... appear to be asymmetric in
that the/meson line cofresponding to the integrated variable on the right-hand
side always goes to the top of the diagram with a lowest-order vertex connection,
This asymmetry is only apparent, as the rigorous equations contain all possible
perturbation graphs, It is in fact péssible to derive from the adjoint equation

of motion,

[_y;+m+%y¢_]_—:t> (4.1)

~ €l

an "adjoint" set of equations, in which the integrated meson line ends at the

bottom of the diagram, viz.:

GI () (Ypem) = 1- 9§ 6 (prie k)Y 2 ok (1.2)

Gr(p+rk, k)LY(p+k) rm']= iq, (am)™ jRG|+(tJ+|z+!E: kk' )Y Z Ifo!k' )

G:+(P+k+k', k k'] [Y(p+k+ lz')+ m’] = A(Mg(kﬂz‘)
g [ G (rke ki K ki k)Y 2 TR 4

where G+(F, k. km) = 6, (lD, ‘?. |2,,,> ,,8 Proceeding as in Section III,

7. Any "adjoint" quantity will henceforth be denoted by + . This is not to
be confused with the Hermitian adjoint which does not appear in this paper.

8. These two sets of equations are precisely related to the two ways of writing

the mass operator: Tp XY Ghra= TepaolPGY



UCRL~2695

one may write down rigorous expressions for Zéﬁ( = 22) and Zl+_( = Zl) , in
terms of integrals over the Gl+'se

Owing to this equivalence between the adjoint Qnd'the 5nonmal"
(nonad joint) quantities, one may generate an infinite variety ofgequivalent
sets of rigorous équations‘by replgciyg any.of the Gl“s%&nd Zlﬂs by their
- adjoints. However, once one cuts éff the set of equations by means of the
breakup approximation, the apparent differences between the various sets of
equé,tions become real and each approximate set, though still having thé same
genéral physical validity, generates a somewhat differen£ set of graphs. One
is thus presented with an infinite number of approximation'schemesoy Tﬁe
requirement of renormalizability narrows down the possibilities. The particular
set chosen here is closely related to the normael set and is defined by replacing
Z, by zf in Egs. (3.10), (3.17), (3.18) ... in those parts of the right-hand-
side integrals in which the integrated meson line is connected to the nucleon

line (a similar change being made in the adjoint set). For example, using

Eq. (3.22),

Z,[YG, (bikk)dk' > 2, [¥G (1) AK)S (k+ k) dk'
+ 2V (YR, (b kE)dE’ o W)

This convention has the consequence of symmetrizing the {ree particle limits of
: i 8 _

the two vertex points in the mass operator, since now the adjoint quantities
will generate graphs that are the mirror images of the "normal" graphs. While

it appears that the introduction of the adjoint quantities (albeit only in
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their free-particle limit) into the normal equations couples the two sets,.it
turns out in practice that since the Zi# necessary in the normal set can
always be obtained directly from Zl via the mirror property mentioned above
without solving the adjoint set, the apparent coupling does not ekisto

We now consider the equations in a given approximation with the Z;'s
and their adjoints appropriately imserted. Since Zl i8 the free-particle part

of a Green’s function appearing in the scheme; itg presence in an equation

_implies that a rigorous factorization, in addition to the decomposition peculiar

to the-approximation, has already taken place, Thus the le' which appears
in the rigﬁt«hand integrals of the rigorous equations acts as a free-particle
limit of a strong interaction (at that vertex), Since we are restricted, in .
any approximation; to a fixed number of strong’interactiOnsg we must extract
the relevant parts of Z; to fiﬁlin with this limitation. Thus, in the last
equationh;, in which the largeét kernel on the right=hand side is decomposed,

the Green'’s function appearing in the factored form already contains the
largest number of interactions allowed (by definition), and therefore the

zly appearing in this equation must represént a zero interaction vertex, i.e.,
ZlX -~ Y . When the resultant expression is substituted back into the next
equation, one obtains an integral equation‘for the Green's function with the
largest number of interactions allowed. In this case one simply counts the
number of strong interactions in each term; and supplies the Z; necessary to
yield the maximum number. Thus in this equation Zl“g defined by lower
approximations (and hencebcontaining fewer %nteractions) willéppearo In
determining the relevant parts of Z1 for the earlier equations; complication
appears in that fewer than the maximuﬁ numbeyr of interactions allowed appears

on the left. Thﬁs'a question arises as to how to count the interactions
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éppearing in the right~hand integrals, It turns out that the Z1 needed here

is the one that is obtained by counting one intéraction more than the maximam, )
the meson line integration again being taken not to affect the interaction
L ¥
weight of a particular Green's functionog’lo Using these conventions; we will
show in the succeeding sections that the equations in the second and third
approximation are renormalized. The extension to higher approximations seems
in principle straightforward, but an explicit proof of convergence would involve
tedious algebraic manipulation.
9,  This convention also holds'for terms that are identifiable with the right-
hand-gide integrdls of "earlier" equations, when these appear in the last
equation, in which the decomposition is made.
10, This pfescription appears to admit an extra interaction in the renormalization
constant in the earlier equations, A similar phenomenon of the inclusion of
a higher approximation structure to renormalize one of lower order occurs
in the conversion of a subtractive renormalization into a mnltiplicative one
in perturbation theory. Thus for the second-order‘vertex operator one has
M=Y+el =v+reA+ell, = (1+etA)(Y +e )
\

where A 1is the infinite constant and [T: the convergent part of F; o
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V. Renormalization of the Second Approximation

The equations of the second approximation are obtained by substituting

.the decomposition

6i(b kKK = G (b k)A(R) SR+ E") + G, (p k) A (k) S (k"4 k)
+ G (P k) D(R)S (k+ k) (5.1)

into Egs. (3.10), (3.17), and (3718)a Following the conventions discussed in

the previous section, Eq. (3.18) becomes

Gi(pkk)= AMKS(k+k) G (b) - g, G (p-k-k)Y G, (P k) A (k')

=4 G-k kY G, (b kDA

where, in obtaining the first term on the right, use was made of equation (3.10).

Substituting this result into Eq. (3.17), one obtains
[ G-k)+m ]G, (bkD = ig, (2 2P ¥ A (R) G, (p)

g am ™ (S YE (b k- k)Y A(K)AE) G (b k)
gl ™ (Y@ (b-k-k) Y A(R) G, (bR dE" O

The subscript "R" does not appeér on the second integral, as this term
corresponds to the (. in Eq, (3.16) for this approximation, The first
integral is Jjust the correctly renormalized mass operator of the first

approximation. No Z; appears in the integrals, as Gy(p, k) and Gy(p;, k')
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already contain one strong interaction. The first term, on the other hand,

~contains the rigorous Zy (= Z§ ) )} of this approximation, defined by : -

BEgs. (3.23) and (5.2):

Z,mY =Y + q, (S;QYG;(D)(F;BE—&UY@,(};, k’)cik/z) (5.4)

(again on the right-hand-size Z of Ba. (3.23) is set equal to unity by our

convention). Equation (5.3) may be rewritten in the form
G (pk) =g (2m)7 Gf')(P-'_k)YA (k)

Cigrem ™6 (b- muw“’ b-k-k') Y G (b R)dE

(53 68 VT (AR, | AR
(5.5)

where CS?) (‘k> is the one-nucleon propagator of the first approximation.

Equation (3.10) becomes .

Dpem ]G ()= 1= qff 297V G (hb)dR )G (b)) 69

Here the rigorous Z‘f)+_ appears, since we wish to include an extra

interaction as discussed in the previous section, Writing ~

G (b k)= iqemy G (b)Y T (kb)Y A (k) (5.7)
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Eq. (5.5) becomes an integral eéuation for the vertex operator P;‘z) (P:kl A
straightforward perturbation expansion shows that Eq. (5.5) yields the graphs of
Fig. 1 correctly renormalizedoll The proof of the finiteness of Eq. (5.6)

involves showing that the mass operator Q, _fg?(,zwy C?, (b, k) dk is

finite, This can be done directly by examining the perturbation solution of

the equations, and indeed it is found that Eq. (5.6) is divergence free.

. However a simpler proof, depending only on the symetrylz of the mass operator,

is available;, and it has the advantage of greatly simplifying the proof in
higher approximations.
52 -
Consider the rigorous mass operator %7‘fRB’G A= %,zﬁ, L\XG, M2, 'A

. As is well known, the jK in the above expressions ~ ZQ"Z ; since the

«1 ) _
above expression is finite. One of the ‘Zl comes from | , the other one

13 This

results froin the overlapping divergences caused by the integration.
can be seen more explicitly by considering the alternate form for the mass
operator, '%.’LZ:’ jR \".'Zv," G ¥ A , which shows that in the rigorous case
the upper interaction point has all the structure of the complete vertex

operator. In any approximation scheme, the mass operator will still be of the
form § Y G* %A , which will explicitly go as ( 227!

11. Aside from the presence of Gf D s> Eqo (5.5) is identical with that
obtained by B. P, Nigam. (Proceedings of the Rochester Conference on
High Energy Physics, 1954).

12, By symmetry we mean that the same diagrams are present when all the gfaphs
are turned upside down.

13. A. Salam, Phys. Rev. 84, 217 (1951).
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(this factor coming from [’ . Y. Furt.hermobe, one can always find

. [
/ / /
quantities % G such that fﬁ re’Ge ¥ A  generates
the same set of diagrams, so that the approximate f R also goes as e
- , AN
( ZF’) B . GConsequently S R must be proportional to (‘Z ,q Zlq) .

If the mass operator is symmetric, it is clear that Ge’ :\ G2  and

na’_ e t+ , and therefore the dependence of Se on Zy is

( z'“ Z f"" >" . Hence in this case the overlapping divergences
produced by the integration in fg Y E_' ( b, k) dk yields a proportionality
factor (‘wa)—" . Thus %,2?+ fx 'G| (F'Hdk is finite. As can
be seen from Fig. 1, the mass operator (zbtained by Jjoining the external meson
line to the top of the diagram) is indeed symmetric ,M and hence the factor

1
252)7?' renormalizes Eq. (5.6). >

14, The symmetry of the mass operator seems to be a general feature of the

approximation scheme,

15. The mass operator in Eq. (5.6), though convergent, appears as the product
of two infinite quantities, Presumably, however, a treatment via the
Feynman cutoff method would yield a unique finite 1limit as the cutoff

approached infinity.
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Vi, Renormalization of the Third Approximation
In this approximation, the highest Green's function appearing on the
right-hand side of

[¥ (p-k-&-K)+ m'] G, (b, kk'k") = iq, (arr)™ ﬁ( G, (b, k KE k) ik
(6.1)

is decomposed in accordance with our general scheme (c¢f. I, Eq. (2.20); to

yield |

Gi(b kK'R") = cquam™ G (p-k-k'-k")Y [R. (b, k k') & (k)
FR(BRRDYA(E) + R (b, k" R) A (k)]

t A(R)S(R+ )G (b k) + O (R) S (K +E") G (pk)

+ AR S(R"+k) G, (b, k")
(6.2)

' Use was made of Eq. (3.17) to reduce scme of the structures to yisld the
G(p, k) terms. Substituting this into Eq. (3.18) we obtain the integral

equation for the unknown quantity Rl(p k kg)e
Ri(b k) =-,G" (b-k-k)[ZYC, mRIA() « 20y G, (b k) A (R)]
- Gf @G (pok- k) [Y GO k- k' k") ¥

< § R (hRRDA (KD + R, (PR EDAK) + R (b, k" F)A (k) dE (6.3)
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the Zl's being chosen in accordance with our convention of Section IV. The
reaction matrix, Rl(p k kv)ﬁ represents a two-meson emission process, and may W

be divided into four disjoint parts:

Ri(b BE) =YD &, (5K, R)G, (b, &)+ T, (b, kK)

+H2m i Q, (b-k kDG, (P EY + S, (b kk)
(6.4)

The first two terms correspond to the emission of k' followed by the emission
of k from two uncoupled vertices and from a compound vertex respectively.

The second two terms interchange k and k', Substituting this into Eq. (6.3)
and separating the four disjoint processes, one obtains the following integral

cquations for @ and S ¢
Qi (b- k!, k)lx i%,Gf")(gg-k-gy)"Z,m ¥ O (k)

g m Gk kG (pokk- k) 8 8 (pok k) )
Si(b kk) = -ig7(aM G (p-k- k) ¥ EO (b k- k- k) ¥ 4 (k)

e UG (P kLG (bR T, (b REY)
£ (p k) fak ©o

o

and a similar equation for T,. Comparing Eq. (6.5) with Eq. (5.3), we see
that
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=g T e

; @; (P.k ) = _Gf'a(?.)b("; k) (6.7)

- and hence Ziz) in Eq, (6.5) correctly renormalizes that equation, In
Eq. (6.6) it is clear that since S; (and Tl) contain only coupled vertices,
the integréted meson line k'' goes past at least two vertex points, and |
‘thus all graphs generated are of the "finite self-energy” type. Thus Eq. (6.6)
is also finite,
In terms of the quantities appearing in Eq.-(6.4), Eq. (3.17) has the

form

[¥ (p-R)4m] G (biR) = cq (am)™? 22y

+ g (2m™ [cm)‘*i SZ Y™ (b-k, k) G5 (b )b
JROTY T (e )k 20 57 () )k

v @ (fzoty g® (b-k k) dk')C¥ (b kY

(6.8)

where Z1 is the rigorous vertex renormalization constant of this

approximation:

NV

2

Wy =Y - (é?.‘”*\( [Cam) G2 (b-k k) GC* (p k)

FT (bkk)s 'S'*(Px'?'f'>]dk'>o (6.9
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(2)+ -
Again the 2, appears on the right-hand side of E@ 6.8) and (6.9) in
accordance with the rule allowing one extra strong interaction in earlier

equations,l6 We first note that the last term on the right can be identified

S

with the mass operator of the second approximation (cf. Eq. 5.6) multiplied

. by _G_,*(b: k). This was shown in Section V to be finite, We next show that

~.the Z§2)+- in the remaining right—hand»éide structures correcﬁly renormalize

: the overlapping divergences produced by the }kq integratiahg Iﬁ Eq. (6.6),

a series of generalized graphs for Sl(p k‘k') may be geherated by using
the term proportional to Gl(p k") as ;n inhomogeneocus term and iterating
; (ignoriﬁg the presence of the Ti(p k k") term). These graphs (Fig. 2a,b),

when substituted into the. Sy(p k k') term in Eq. (6.8), combine with the first

p(z)+ _

integral to yield the unrenormalized vertex structure at the top

(Fig. 2¢). Thus to renormalize the overlaps of this combination, it is clear

(2) t
2y

-that a is required at the top of the diagram., Similarly the remaining

diagrams of S, can be obtained by using the Tl structure in Eq, (6.6) as
an inhomogeneous term, When the k' integration in Eq. (6.8) is carried out

for these graphs, and they are combined with the second term on the righﬁnhand

l—wm+

side of that equation, the vertex is again obtained at the top

(2) (3)
1 Y

(Fig, 2d), and the 2 therefore renormalizes this structure. When EE,
is replaced by its definition Eq. (6.9), Eq. (6.8) reduces to the term
C%.(Tﬁ)—“'Y' together with the terme representing Figs. (2c¢ and 2d), with

their free-particle limits subtracted off. Since all vertices had previously w

16. Note that in this approximation, the equation defining Z{B) is the free-
‘particle limit of an Mearlier" equation; which requires the use of an extra L ¥
interaction on the right. The second approximation was anomalous in that
the Z§2) equation was the free~particle limit of the integral equation
of that approximation, and therefore this convention did not apply there.
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been renormalized, this finél subtraction renders the graphs of Figs. (2¢) and
(2d) finite. |

Finally, to show that the mass operator is symmetric, and therefore
that Eq. (3.10) is finite (Sec. V), we note that all terms on the right of

17

Eq. (6.8) have a Gl(p k) structure at the bottom of the graph, ' and thus a

straightforward iteration of the type leading to Fig. 2 shows that o
S, Y @'(3) (p, k) d k is symmetric, and hence that 'ZszfYé-, (P, Eddk is
finite.

17. That 8; and T, have this property is evident from iterating Eq. (6.6)

~and the correspohding equation. for Tl (which we have not written down).
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VII. Conclusion

In the preceding sections a method has been given for the

renormalization of an approximation scheme for the meson-nucleon interaction

problem, Starting with the assumption that the renormalization is multiplicative,

~we carry out the mass and amplitude renormalizations (22) independently of
the\appraximationo_ The vertex renormalization presented a more complicated
problem, owing to the existence of overlapping divergences., The definiiion
of the renormalization constant in tefms of integrals over Green's functions
was derived by imposing, upon the vertex; a boundary'condition analagoué"to
the one usually applied in‘qnéntum electrodynamics; rather than that of Deser,
Goldberger, and Thirring.l8 In order to carry out the vertex renormalization
it was necessary to consider the equations order by order, By redefining the
approximation scheme to include the necessary diagrams forming

Zi an uﬁambiguous prescription for carrying out the renormalization.was found.
Actually this seems to confirm the fact that any covariant approximation
scheme, which {order by order) approacges the rigorous solution, (i.e.,
eventually includes all Feynman graphs), can, by a sﬁitable adjunction to
what is included in an approximation; be renormalized in a consistent fashion,
provided that the renormalized perturbation series can be rearranged and
summed in any sequence, In this paper a redefinition of the approximation
was made without significantly changing the physical content of each
approximation., Such an approach would appear to be applicable to the renor-
malization of the Tamm-Dancoff method.

This work was performed under the auspices of the Atomic Energy

Commission.

18. S. Deser, M. Goldberger, and W. Thirring, Phys. Rev. 94, 711 (1954).
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FIGURE CAPTIONS

_ (2
Figure 1s Graphs generated by Gy )(p, k).

Figure 2a;b: OSome of the graphs of Sl(p, k, ki)o

Figure 2c,dg A graphical representation of the first three integrals on the
right~hand side of Eq. (6.8).
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