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ON THE ANALYSIS OF NUCLEON-NUCLEQON SCATTERING EXPERIMENTS
Geoffrey F. Chew and Marvin Goldberger
Radiation Laboratory

University of California
Berkeley, California

Abstract

A method of perturbation calculation, especially adapted to nucleon-nucleon
scattering problems, is described. Any contribution to the energy of the system
which is relatively small where the nuclear potential is large may be treated as
the perturbation. Two principal examples are discussed. (1) Energy as the per=
turbations &n expansion of the phase shifts in powers of the energy is written
down which extends earlier results of Schwinger, Blatt and Jackson, (2) The
coulomb field as the perturbation in the proton-proton problem: Expansions are
gi#en which relate the nuclear p?ase shifts in a combined nuclear and coulomb
field 1o the corresponding phase shifts for a purely nuclear problem., Attention

is confined to central forces throughbu"bo
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ON THE ANALYSIS (OF NUCLEON-NUCLEON SCATTERING EXPERIMENTS
Geoffrey F, Chew and Marvin Gbldberger
Radilation Laboratory
University of California

Berkeley, California

I Introduction

The study of nucleon-nucleon scattering has long been recognizéd as a source
of direct information about the nature of nuclear forces, In the absence of a de-
tailed theory of nuclear forces, the procedure commonly adopted in the past has been
to describe the interaction phenomenclogically by a short range ?otential of some
particular shape, OCalculations of scattering cross-sections were carried out and
comparisons made with experimental data, with varying degrees of success depending
on the energy region in question,

In the low energy region ( € 10 Mev) it was foﬁnd that no potential was
obviously superior to any other., The underlying reason for this lack of dis-
erimination was first pointed out qualitatively by Smorodinskyl and more recently
quantitatively by Schwinger2 o The reason is that the scattering characteristics
of a giwen potential shape may be described, in this limited energy region, by
only two parameters, These may be chosen as the scattering length at zero energy
and the so-called effective range4 » Since there are only two pafameters to be

fitted, it is evident that any shape potential is suitable provided the proper

choice of range and degﬁﬁf

s pade,

v Schwinger!s analysis, which has been confined thus fer to central forces,

. . , . . 2 .
is based on an expansion of the guantity, k cot J o in powers of ¥~ ° k is

the wave number and df is the S phase shift for neutronmprotoﬁ scattering,
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Koot & = A+ A4+ ALK+ o o0 o | (4)
o) 1 2

For any positive (or negative) definite short range potential, A2 turns out
to be so small that the third term cannot be noticed experimentally at low energies,
This, of course, is the ﬁnderlying reason for the well shape independence of low en=-
ergy cross sections, It.is not clear from Schwinger’s prcgedure, however, why the
quantity k cot é should be representable by a rapidly convergent power series in
thé energy., In fact, the appropriate quantity to expand in the casevof proﬁondproton
scattering is considerably more complicated, In this paper we derive a general ex-
pression for that quantity which in a particular problem can be expected to have a
convergent power §eries representation, The actual deterﬁination of any number of
the terms in the expansion can be carried out in a sﬁraightforward way, and the form
of these terms is, in general, simpler in appearance than that given by Schwingér's
variational method, The higher terms in the energy expansions are of physical in=-
terest because of the information they give about the shape of the nuclear potential,
but we shall not discuss this aspect of the problem. Blatt and Jackson5 have made a
detailed investigation of the coefficient A29 using the variational principle. They
discuss the physical implications in detail,

The expansion (A4) will also be generalized fo an arbitrary ahgular momentum,
The possibility of making analogous expansions in parameﬁers other than the energy

i

t

pointed out, and in particular the case of the coulomb field as a perturbation
ié discussed in considerable detail, =~ The usefulness of the various expansions will
be discussed in Section V .

We shall confine ourselves, for simplicity, to central forces, The general=
ization to tensor forces has been made by R, S. Christian and will be published by

himo
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IT The General Methéd
The problem to be solved is the determination of the asymptotic form®of the

regular solution of the following differential equations

{nw} w(x) = - Eglx) ulx) (1)
where
dZ
=45 +aw (2)

f is a short range self adjoint operator, & is a parameter of smallness, q(x) is an
arbitrary function no more singular at the origin than l/x2 , and g(x) another
function no more singular than 1/% o

Equation (1) is therefore a general form for the radial Schrodinger equation
for an arbitrary angular momehtum, -The choice of q(x), €, and g(x) will vary from
proﬁlem t6 problems The asymptotic form of u (x) shall be called X(x); i.eo, X(x)
is an irregular solution of the eduation |

L X (x)=-E (x) X(x) (3)
Since an expansion in powers of € is the object here, we define explicitly
the limiting forms of u(x) and X(x) as ,6 approaches zero. Thus, vh(x) is the reg-
ular sclution offthewequation
{L-i—f}’_u' =0 (4)
R
and Yl(x) is the asymptotic form of ]ﬂh(x), being in turn an irregular solution of
the equation
LY (x)=0
I (x)
It is convenient also to define at this time an irregular sclution of eqﬁation

{4) and the regular solution of equation (5) . These will be designated as lji(x)v

and YR(X) respectively, and chosen so that
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Ve (V3 ym}.: 1 ‘
for all x (6)
v (YI’ YR) =1

and so that asymptotically ‘)jiI(x) ‘approaches aYR(x) o The notation Wx(f, g)

- del daf
neans [f((x)_ &(x) -g(x) (=) o These conditions can be achieved by a proper
: dx dx

choice of the constant in the following representation of ‘U‘I(x) 8

Bl

- constant '
vy (x) = ‘))‘ (x) 5)1_&2( 0 + (7)

Wa now derive the fundameﬁtal 1den£1ty from whmh all subsequent results can

be obta;n«ado From equations (1) and (4), one see’? that

o V@) =8, (W, +E [ e vy & (®)
Xy
Similarly from equatlona (3) and (5)
W, (¥, %) ;wxﬂ (¥, x)+ & X g(x) zl(x) X(x) dx | - (9)

The difference of these equations gives

WX (YIQ X) - W (1,'9 u) = x (YI y X) = W (lr 3 U)

+ €& 5 g(x) I:z <x> Ix) - v <x>u<x>:| dx

Now pass tc the limit zcl——) @ xm,) (@) o We obtain

1im W (v x)._ 11m 55 g(x) [:{ (x) X(x) - v (x) u(x):i (10)
)(‘90 "’&) -

sinee the Wronskian of the two regular fumctions wu(x) and vii(x) must vanish at the

origin, Henceforth the limiting process, x@-a—; 0y, will be implied wherever X, is

written,
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Later examples will show that Wxé (YIQX) is a measure of the influence of the

.term € g(x) on the scattering characteristics of the system. It is evident that

*o

the functions, u(x) «

W '(II,X) can be represented by a rapidly convergent power series in € whenever

;';u'_,.: and X(x) , can be so represented in the region where

the nuclear potential is ;‘.inpo;tan’b, This, in turn, will be the case if € g(x) is

relatively swmall ip the region where £ is effective.

It.should be noted that equation (10) is homogeneous, i.e., it is independent
of the normalization Of”vﬁ(x) and uw(x) . This follows from the fact that if vy oF u.
is multiplied by a constant factor, the corresponding asymptotic form must be multi-
plied by the same factor, In subsequent examples the normalization will be chosen
for convenience, |

A procedure is ﬁow set up by which any number of terms in the required expan=
sion can be obtained, The expansions of u(x) and X(x), if they exis;tB can be obtained
‘by the iteration method ﬁhich f0110W86 e

The differential equation (1), together with its boundary conditions, may be
replaced by the following integral equation,

u{x)=W_ (vpv)vR(xH—E ivI(X) j
i ’ :

X ~ Ky (11),

g{x")v (xM)ul(x)dxt+ v (x)j g{xt)v (x')-‘u(x“)dxﬂ}
B R I

x 7z

If we chooss x, sufficiently large to be outside the range of £, then
wxl (vP u) = Wx, (gYRQX) A,
=W, (G, D4 65 glx" )Y (x1) X (x1) (12)
Thus ° % v
\ X
W (x) = ~W0(Y;.K) +e v‘:(z)S;gw-)v;(xMw dy! — vi(x)j‘gu')v;(x')u,(x')dx'
. , )

Ry
+17;¢x)gsw)[¥;(x') Loy + U (x)) . ey dx’
o
It is obvious now that x, may just as well be taken as4-o» , and one can always

adjust the relative normalizations sc that

WQ(YR,X) ==l
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Assuﬁng this to be done and defining | ' '
fly (9= X6+ 7, (0t W)
we arrive at the fina.l 1ntegra1 equation
u(x)=v (X)—I—E{ v_(x) J‘ g(xﬂ)v (xt)ulxt)dx?=v (X)j g(xﬂ)v (x*)ulx?)axt
« +v (x) j g(xt)H, (x1)dx? (14)

~ The corresponding equation for X(x) is
X(x):YI(X)+WXO(YI,X)!R(X)+€{YI(X)/X g(xn)z (x*)X(x?)dx?
azR<x> f g Y (x1)X(xt)axt (15)

The three equatlons (10), (14) and (15) may now be used to find the desired ex=-

pansion of WXQ(YIX) g -

W, (Y X)= € 2 w el
*o T n=0 (16)
Designate the correspoeréding expansions of u(x) and X(x) as followss
' ’ n
wx= ) . u (x) € | (17)
=0
K
/ L4 n
0= 1, 1€ (18)
' n=0 =

A . 2 2, 2 2
It is convenient to define hll(x) =YI_ (x) = Vo (x), h22(>c)—YR (x) = vI (x),
h =y (%) .
1p(x) = L1 Yo(x) + v (x)v (=)
The zercth order terms are writiten down at once,

uO(x) = vR(x)

Xo(x) = YI(x) (19)
W, ::fg(x)bu(x)dx
' o
To obtain W19 we must substitute in (10) uo-|—€ u for u and Xo+ € X1 for X,

Xl is written down from (15) ,
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X X )
X, (%)= W@E'Ri{x) +YI(X)jg(x“) YR(X“)II(xﬂ)dx“ - YR(X) f g(x“)YI (xf)dx?

and u tfrom (14) /
u, (X)“v (&)J (X“)v (X“)GX“ - v (X)f v (x“)v (D+ v (XJ g(x‘”)hl’ (x?)dx®

- This lea&s to

L))
W2 f @) (xaj o)1, ()T, () mzfg@:)h (%) j gx)v  (x)axt  (20)
X, Xo

This procedure may obviously be continued to give any number of terms which may
be desired, We write down only one more, since the complication is rapidly increasing
and theré is as yel not sufficient experimental information to permit conclusions about

the size of higher terms; in the energy expansion at least,
0 : « ' A . [ X & ) ‘ro( M)i 'f)d '-:}
‘A]; = fjj&x) ;},R," €% gﬁu-)xw)Y;w) Ak’ ""21);; (=) g‘j(x')Y;:(X')K lw) dx x3 X 1 (%) A

. o ) X
' H{,‘,,‘(&) J:;w) V;(i) J’U]l- 2 ﬁ,l(x)[ Sf;gx')'y;(w) Ax}]{ Yog (x) %‘(xﬂjaﬂxﬂ

4= Y’*(x) g %(x‘),&mw) JXJ - 2Y (K)Lj 9 (x?) 1}"! (2) Ax][& () ,ﬂ, (ma) Ax'] |
- R W[ 3""»&1(*’)‘*‘] = AV, ﬂx)bgw)) 14 a)aﬂx][h u«)/(.,.u")cﬂxy-} (21)

Applications of the expansion (16) will now be given,
III, DNeutron-Proton Scattering
(2) Low BEuergies
The chief motivation for this investigation was %o find a systematic scheme
for determiring the coefficients in. the expansion (A). The differential equation in

guestion is that for an S state of the n-p systems

id . g 0= -K A= (22)
X!

where the unit of length has been taken to be the range of the nuclear potential, f,

and K iz the relative wave number of the incident proton in these units., As usual,
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w(x) is r times the radial wave function, We wish to treat the energy as a perturba-
tion, so that in terms of our general notation, q(x) = 0, g(x) =1, and € X2,

Let us first determine the meaning of W, (YI, X) . Write
)

' 8 o e
% (x)=X cot & iﬂ&%ﬁv + cos X x (23)
Q
where & is the S phase shift, A possible way of writing X’I(x) is
p.4
e = o _
YI(X) = 1+& (24)
[+]
where d is the scattering length, It follows immediately that
g L (25)
— - a
WX(@:(YISX)_ K cot & 3

and we have from (16)
[+]
!

Kéot@n?

s o & o 8re given by the expressions (19), (20),(21l)e o o in which

) ) &
e §1+ X %‘éﬂ, oo o (26)
©

G @] ©

where WPD Wl” W2

QR(X) is taken as the zerc energy solution of equation (22), normalized to (24) at

- 0
infinity, and vI(x) is the irregular solution, normalized teo -Tp (%) = =x o
e . - 2
In (26), the coefficient W@ is half the effective range, as defined by Schwingexr ?
: o -
and the coefficient Wl has been obtained by Blatt and Jac;:kssonﬁ by a variatiornal method.
Their method, however, does not introduce explicitly the irregular zero energy solution
. ’ o)
'VI(X> » and cousequently leads to a more complicated expressiorn, W2 has not previously
o
v

been given, From a practical point of view, the introducticn ef {x) is justified

because it san always be constructed from its representation (7) in terms of S‘R(x)g
~ ohee the latter is known, |
The ejzpansion (26) is correct for both singlet an& triplet S slutes ~f the
n=p system, In the triplet case, however, it is desirable *u relate the scattering
R < ]

length, d , to the binding energy of the deutercn., The relation may be obtained

at once from the above formalism,
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The radial equation for the bound state of the deuteron is

2 «
-:—;{-2- +r uD‘(x)zo( 2 uD(x)
: CIY 2 (@
W:Lth r the range of the force, B the bindlng energy of the deuteron.)

‘I‘he boundary cond:.tlon is that U (x) approach zero for large x. We must set

6‘7‘“0(2 R q(x)__ 0, and g(x)= 1., Then vR(x)9 vI(x)g YB(X)9 YI(x) will be the

~

same functions as above, If we choose
—oX

X (x)__e 9 tflen v
W (X,5) =W (l+3-, M= — o 3,!- 5
so that
—:-.——~:@d+dz§ -l W+o( W + ... (28)
d o 2

The coefficients in (28) are the same as in (26), so that we may rewrite the latter

for the triplet case as

X sot S=—ethh o) 4 (K <o 4 (1 4OF (29)

The.._ coefficients here are defined iﬁ terms of zero energy scattering functions, not
the.deuteron funetions, as is sometimes done,
(b) High Energies

| ~ If the value of X cot J' is known at some energy other than zero, say at
)‘ﬂ. “then the energy dependence in the neighborhood of this value is given by the
identity '(10) The generalization of’ the procedure in (a) is obvious, The result is
Koot &= &' obt & + (= K"™) W, + (x— Kl)\f\/, ' oo
where the coefficients ﬂnl are defined in terms of the regular and irregular SOiu-

O

bR | ,
“tions at the energy K' and (Y is the corrr-:ionding rhase shift,

\
oy T e S



UGRL = 272
=12e

{c) Higher angular momenta

We next generalize equation (22) to
2 o 0
[’3?2*“ J%Li-'ﬂ%(x):“xl U, & (1)

still treating K> as the perturbationo Choose

$x)= 522+ cot 8 ZZ/_(X_) + K,Z - )

Kl-l-l
and )
. , _ 2
% (x) = (Zal)// X l+ / ?el:/ XI.-H
£ al’ zéi_z ) l?sz;%
where ZZ {(x) and /n% (x) are respectlvely( ) %(nx) and (~1) (2_) J_l_%(KX)o

Aeymptotically, 7, ¥ sin e LX), my(x) —> cos (5x- £

Then

0 =gl & L _ o)/ AN
W'XO(YI ) =& o d‘z Ag 22/./ \A/Xo (X > X mf) 2

\
The last term on the right hand side will in general become infinite as x approaches
e}

gero, but reference to (10) shows that this will be exactly compensated by terms on
the right hand side of that equation. This fact is guaranteed by the identity (9) .

Therefore let us deflne a series

(22)/ ) Z v
‘—E?izjjﬂ“- (X , K ’"ﬂl) K DE,/ru )
and write out the expansion (16) as

2 241

7 oo Sz‘“'i_[: (Wpo=Dy,) o1+ (WQ,—D@))Y*-% L (33)

where the ﬁ&,n, are defined in terms of the zero energy solutions of equation (31) .

For potentials without ®a tail®, such as the Squaré well, the expansion (33)
ceuverges equally well for all £ . The criterion for convergence stated in II shows
u3, however, that if a small tail is important in producing the phase shift in question
the perturbation approach fails as soon-;s the energy is comparablé to the strength of
the tail, Since the phase shifts for higher / have a strong tail dependence, the

convergence of (33) will become rapidly poorer as £ increases. _ ’
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It is quite feasible, however, to use the analogue of (30) to investigate
the effect on any phase shift of small fractional changes in the energy.

IV, Proton-proton scattering

(a) Low energies

Proton-proton scattering may be treated in much the same way as above,

The radial equation for the S state of this case is

[dzz __p/x.,_f] u(x) :ﬂ)(zu(x) : . (34)

dx
where /8=”7({ /Mez) , with r the range of the nuclear potential and M the proton
)

mass., For low energies, we again identify X 2 with € to obtain the expansion an=

alogous to (26) » Choose

X(x) = 0023( cot d‘%}?— + GG (x) (35)
ov

where F (x) and Go(x) are the regular and irregular solutions in a repulsive cou=
o i

lomb field defined by Breit, Wheeler and YosJ&;6 o

r L, et |

G, =E_/;-[/ ~EE 3 B Bt [ U Br-1+Q }+_' , ;] (36)
F, =2 sin (X+ &) |

Gy o cos (KX+ 4 )

where
6% = 2wk /(2T 1)

& = arg Rl-&—do()——d,ﬂm A
Q =iRealPartM}..% A

The zZero energy asymptotic form is taken as-

= K +1(x) /e (37)
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where

:(::):1//31;@'75— I, (2gy)
Kx= 2Ygx K (2087) (3)

and a might be called a dimensionless “coulomb scattering length® .
I (x) and K(x) are the mddified Bessel functions of the second kind of pure
imaginary argument as defined by Watson7 o The behavior of I(x) and K(x)
near the origin is | ks
I(x) ~ x +8 x2/2
K(x)~ 1 +I8x i’&"' Yﬂ%-/j
allowing us to calculate ,
V(T X)= cozx cot 8-41-5- + 0 Q (39)

The reqﬁired expansion is, therefore
602 K cot §+BQ=1/a+4> W+ K "!1-4—)16 W, (40)

where the W, are defined in terms of the appropriately normalized zero energy solu=
tions of the equation (34) . Here again the coefficients Wo and W; have been obtained
and discussed by Schwinger and others, We believe that the method of approach given
here is simpler and makes the relation between the n-p and p=p expansions clearer o

It is obvious that the results of III (b) and III (c) can be generalized tp
the p-p case, The formulae become quite complicated, sovwe shall write down only ;
single special case, one that might be of interest in the near future., This case
is the p phase shift.for triplet proton=§roton scattering., The appropriate ex=

pansion turns out to be .
: ' R _
(l+ ul.l’)c: )(,3 <".ot “ ¥ FK‘<Q," 2) *‘(5 Qﬂ/“‘ '/a.,o (41)

= (W -l i ) ¢ W, 8 W
where

[} .
@1:.- RoPo [ (2- i) — em/ (= ¢ and the W are defined in terms of the solutions

[T (2-c«)
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‘of the equation o |
{ .ji__ﬁ/x_ 2/x2 +f} % (=0
= :

normalized at infinity to

1= BYFF K, (Vg% )+ + %F[ (2VE7)

R;—%U%_ I, ( 2)/'/37)

(b) A treatment of the coulomb field as a perturbation

and

Up to this point we have consistently had g(x)= | in all applications.

As was ﬁointed out in the introduction, there is no reason why this must be done,
One might, for instance, investigate the effect of small changes in the nuclear
potentiél itself. - We describe here an application, in which the coulomb term
K3Kx s is considered as small, This is possible even though outside the rénge
of the nuclear force, the coulomb term may fepresent ﬁhe main contribution to
’ fhe total energy. The point is that the integrand on the right hand‘side of
equation (10) fails to vanish onlvaithin the range of the nuclear force, - What
the perturbation may do to the function u(x) outside the range, thergfore, does
not affect the value of the integral., The only requirement is that its relative
effect inside the range is smalle This condition is clearly satisfied by the
coulomb field, even when the kinetic energy of the incident proton is small,

Let us consider equation (34) again, therefore, this time regarding w/&éz'
as the perturbation, icee, €= ‘ﬁg, g=1/x i is again given by (35) but YI

is now to be

Y_ncoté‘M ~+ cos & x

where é‘ is the phase shift produced by the nuclear field alone, We calcula'be
WXO(YI’ X) = Co K cot 8—“00t8+,85m[,81&-,8@ 3
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The expansion (lg) becomes .
¢ i cot S+BA=pcot§—0 Wl B20) + 0%, —F W, | (43)

where the coefficients Wﬁ are defined in terms of the purely nuclear #wave functions

at the energy in question, - Sincelx9 is always of the order 1/10 or less, the series
converges rapidly and we have a method for domputing coulomb phase shifts without
actual recourse to the complieafed and only incompletely tabulated hypergeometric
functions, The corresponding relation for the p phase shift is
(1 +2?) ¢ 252 cot &0 2a,— 2) 8% /4—x ot &=
=-0 [:Wo-f-,ﬂ,‘, r?0x,—1/2 7(02]1;6’2 Ev,-l/z x{] (44)
-3 E’2+%.ﬂmr2ﬁxo+ 3/§+,84 LIS
. where the Wnbare defined in terms of the purely nﬁcleaf p=wave functions at the
energy ) 2 normalized as in III (c) . |
(¢) Coulomb field plus energy as perturﬁation
The last applicationvof the identity (10) to be given here is provided
by the case in which fhe energy term and the coulomb term are simultaneously con-
sidered‘as perturbations., We restrict our attention to S scattering, In equation
(34), therefore, we regard X 2—-ﬁ/x as € g(x) . Here we use (35) for

X(x) and (24) for II(X) o This leads to
' on (YI,X): 002 ¥ cot 5‘«978@’4-,8%0 & zﬂxg._.&
and thus to ' o ' ' ,
002 % cot <S‘+,:3@:—éf+ [ 6)] 2=ﬁ/x) (5?13‘ VRZ)GX—/@M %Xo
o +2f o — L/x) [gll(X)ffI(X')fﬁ(k“)
5 - 2 . (40%)
) —ﬁ/i\”)dX“—ﬁlz(,X) f v;(x“)(“ —ﬁ/X')dX':l
s |

\

A comparison of (40') with (40)\§}lows us to express the coulomb scattering

length and effective range in terms of the corresponding purely nuclear quantities,
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Thus

:/a_ 1/&0 (3[ g . = vi (x))dx - b Yﬂxo] | (45)

X
+apt [ g iy th‘)YM f’%k‘:k cx)jci;g v"iz(,e)] + o(eY
4

(46)

+o(e)
n.‘x)S‘ JL Ve k) — —%—09 S”ﬁ‘e"(x') dx! -
These last two formulae are of considerable practic;1 use, because the best

way of analyzing low energy p-p data at preéent is tqzﬁlot the left hand side of (40)
versus energy (or 0(2) and then read off (in dimensional units ofxcourse) the inter-
cebt and slope of the resulting straight line, The problem is then to find out what
these two numbers, the coulomb scattering length ahd the effective range, imply
about the nuclear potential which is acting, A definition of 1/a and Wo ip terms
of a purely nuclear zero energy wave function is much easier to interpret than one
which involves the combined nuclear and coulomb field. The terms actually written

above give sufficient accuracy for the available data, the residual error in each

‘expansiom being less than 1% .

Discussien

. The advantages of analyzing nucleon-nucleon scattering data via expansions
in powers of the energy have been mentioned in the introduction and are discussed
in great detail by Blatt and Jackson5 o Unfortunately the data available at pres=
ent make this a completely practical procedure only for singletS proton-proton
scattering, Higher angular momenta and n<p scattering in general still require
the direct computation of phase shifts from an assumed potential for at least
part of the analysis, We believe that in many cases expansions such as pre=

sented in this paper afford the most convenient means of making such computations,
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It is necessary to determine a wave function, in general by numerical integration,
and then to evaluate various definite integrals involving this function., Once these
integrals are known, the behavior of the phase shifts over a considerable region of
‘variation of the parameter in question is also known., We give a few typical examples,
. + (1) Energy dependence of phase shiftss )

| (a) A knowledge of ﬁo and %1 in the expansion (26) will yiéld the
n-p singlet=S phase shift with an accuracy of 1% up to an energy of 40 Mev, A
similar situation exists in expansion (40) for the p=p singlet S phase shift, In
the expansions '(33) and (41) a knowledge of the coefficient of 2 yields d; to
2% up to the energies of 30 Mev for wells withoﬁt tails, | e

Triplet phase shifts are given with a comparable accuracyo‘.The triplet S
is an @épe@ially Pavoreble case because of the nearness to 90° during much of the
interestiﬁg,rangeo ' |

’(2) Modification of the nuclear phase shift due_to.the cou;omb fields
Expansion (43), keeping only terms proportional to /é? s may be used at all energies
Withlroughly the same accuracy, At 32 Mev the error in the phase shift is about
002° , The accuracy of the formulae in Section IV (e¢) has already been discussed.

We have b;e;‘purposely vague about the nature of the potential, f., The .
only requirements that need be made are that it be a short range, self adjoint

operator, Professor Breit has pointed out in this connection that an operator

fY(r)::.fdr“V(r,r“) \‘V(r’“) ’

. with V{ry,r') =7V(r', r) may be treated by this method,

of‘the form
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