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I. Curve Fitting a Gaussian by the Least-Squares Method 

A. Statement of Problem 

We want to represent a set of observational points, 
gaussian function 2 

(1-J.) ' 
R = R exp [-

0 l o 2 13
z J 

(R.' 
1 

( 1) 

The observed function value, R., is measured at an accurately known argu­
ment value. J.. - J. , wi'th an eshmated standard deviation, oR.. In order to 

1 0 ' 1 
represent these points by the smooth function It, we shall use the least-
squares method to evaluate the best arbitrary constants R and j3 for R. 

The best arbitrary constants in the least-squares sen~e (Appendix A) are 
such that the sum of the squares of the weighted residuals 1s a minimum; that 

is' ( Ri - Iti ). 2 1 5 R. = a minimum, (2) 
1 ' 

where R. is the observed function value, 5R. the observed experimental 
1 1 ' 

standard deviation of R. at J.., and R. · is calculated at J.. using the best ' 1 1 1 1 
arbitrary constants in the least--squares sense. Thus, we write 

( 

Ri - Ro exp r' - .}' r J. j - J. I 
2J) ' . . 

~ L . \ Q . 0 
.1 = a m1mmum 

i 6R. . . 
1 

( 3) 

This is the least-squares criterion for the best ~onstants R and (3. 
We will transform this criterion to an equivalent criter~on in which the 

arbitrary constants appear linearly. The linear criterion is then differenti­
ated and equated to zero. This process gives us two linear equations in the 
arbitrary constants, which are easily solved by determinants. 

B. Linear Form and Definition of Weight 

The gaussian representation in Eq. { 1) transforms to the linear form 

where 
y 

y 

X 

=a +a 
0 1 

x, 

= J. n R, 

= (J. - 1 )2 
0 ' 

(4) 

(Sa) 

(5b) 
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Here a
0 

and a
1

. are_ the new arbitrary consta~ts. 

UCRL-2783 

The least-squares criterion for the new function is 

( 
yi - yi )'

2
_ 

~ Sy. . 
1 . 1 ·-

=a minimum, 

( 5c) 

( 5d) 

(6) 

where. yi is calculated from ~ and a 1 .at xi, and 5yi is the standard 

deviation of the function y .. 
. 1 

We now wish to show that 

(R. -R j2. ( .... · ·_ )2 
~ i - i = ~ yi - yi . , 
1 , oR. 1 5y 

1 i 

( 7) 

since ~e are interested in finding the best gaussian representation R. . (A 
. . 1 

more detailed proof appears in Appendix B.) If we relate the residual R. . . . 1 

- Ri to the .~esidual · yi - yi by the law of the propagation of small er:r:ors 
(Appendix C), we get 

- 2 
(y. - y.) 

1 1 
( 8) 

(9} 

Equation (9) follows by substituting for ~ from Equation (Sa}. 
aid of Eq. (9}, .the left-hand member of Eq. (7) can be written 

With the 

(
R .. -R.)2 (y. _ y. )2 1 . 1 1 1 

~ = ~ . 
1 5Ri i 5RJRi . 

Now, if we identify 5y_: ·by the law of propagation of small errors, 
1 . 

2 
(5 Y·} 

1 
~ (5£nR/ ~ (~:i) 

2 

,, 

the right-hand member of Eq. (10) becomes identical to that in Eq. (7). 
· We now define the weight w. of a residual, y - Y. , at x. as 

1 i 1 1 

.,· 
w. = 

1 

2 
r 

2 
( 5 Y·) 

. 1 

= 
2 

r 
2 , 

( 5R./R.) . 
1 1 

( 10} 

( 11} 

( 12) 

u 
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whexe r
2 

is an arbitrary constant so chos~n ~l;lat the. wi 1 s h~ye ?t rang~ of 

values that are convenient in co.mputing the normal equations. Once a value 

·of r
2 

is assigned, all w. 1 s are deter~ined. Note that r is the standard 
deviation of an observati6n of unit weight. 

!0 The least-squares criterion finally is given by 

\J 

I u 

( - )2 .. 
·~ w. y. - y. =a m1n1mum. 
i 1 1 1 

{ 13) 

C. Normal Equations and their Solution 

ln order to satisfy Eq. ( 13), . the partial derivatives 
arbitrary constants should be zero: 

with respect to the 

(14) 

. I 2] a . . 
-a-·- I~ w. (y. - a · -a

1 
x.) = 0. 

v a 1 li 1 1 o 1 
( 15) 

Expanding these sums, we get the normal equations 

a ~w. + a1 ~ w.x. = ~ w. y., ( 16) 
0 i 1 i 1 1 i 1 1 

2 
( 17) a ~w.x. + al ~ w.x. = ~ w. y.x. 

0 i 1 1 i 1 1 i 1 1 1 

These two equations for the two unknowns 
method of determinants. The solution is 

a and a
1 

can be solved by the 
,0 

~ w. y. ~ w. x. 
i 1 1 i 1 1 

2 
~1 W

1
. y. X. ~ W. X. 

1 1 i 1 1 

a o = ~---0------' 

al 

where 

\
~ w. ~ w. y. 
i 1 i 1 1 

1l: W.X. ~ W. y.~. 
=11 11 i 111 

D 

,; 

l·~w.y.)(~w.x~)- (·~;,.,.y.x .. ) (~w.~.) 
= 1 1 1 i 1 1 i 1 1 .1 i 1 1 

D 
( 18) 

( ~w.)l~w.y.x.) .- .(~w.x.) (~w.y.) i 1 \:i 1 1 1 . ' i 1 1 i 1 1 

= 
D 

( 19) 

D = 

~w. ~w.x. 
i 1 1 1 1 

= c~ w.\f ~ W. X~) • ( ~ W. X.\ 2 
. 

1 1/\i . 1 1 \ i 1 1 ) 
(20) 
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The best a~bitrary constants for a gaussian function are, from Eqs. (Sc) and 
(5d), 

a 
R. = e 

0 

0 
( 2 1) 

(22) 

In conclusion, Eqs. (21) and (22) give the best constants as defined by 
Eq. (3). . 

Note that if e is not known exactly but is a parameter to be adjusted, 
we cannot use the Pechniques of this paper. An alternative technique is the 
method of differentiat correction (Appendix D). .Also, if 1. has a significantly 
large error, we are confronted by a multi-error prqblem ~hose solution re.­
quires knowledge not only of 5~· but of 51i as well. 2 
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II. The. Estimation of Standard Deviations 

Ao Statement of the Problem 

The problem of estimating the standard deviation of the values obtained 
for the arbitrary constants can be discussed in two parts. The first part con­
cerns the· error expected on the basis of the statistical error of the observed 
points and the propagation of these errors through calcylations. This ldnd of 
error is called the error based on internal consistency. The second part con­
cerns the error computed on the basis of the deviation of the approximating 
function from the observational poipts. This kind of error is called the error 
based on the external consistency . 

B. Weighted Observations and Internal Consistency 

It is of value at this point to show the relation between weights and errors. 
When we weight a given observational value,. we say that one observation with 
a small estimated standard deviation is equivalent to the average value of a 
number of observations with large estimated deviationso The standard devi~ 
ation r of the' ith observations is related to its weight w. through the equa-

yi 1 

tion (Appendix E) 
r 

(2 3) r = 
yi .,:jWi' ' 

where r is the standard deviation of an observation of unit weighL Equation 
(23) is the same as Eqo ( 12), where r ::::: oyo 0 Since the weight of the .weight-

yi 1 

ed average of n observations is ::E w.' the standard deviation r of the av-: 
1 1 . y 

erage value of the weighted observations is 

r = y 
r 

~~· w.' 
1 1 

(24) 

Now r 
y 

is the error based on internal consistency, since it is computed on 

the basis of the estimated observational errors. 
The errors based on internal consistency for the arbitrary constants can 

be calculated by applying the law of propagation of small errors to the solu­
tions of the normal equations 0 From Eqo (24) and ( 18) the internal error in 
a is 

0 

J ~w.x .. 2 
- 1 1 
r = r 

ao D 
{2 5) 

The derivation of Eqo (25) is given in Appendix F. Similarly, from Eqs. (24} 
and {19), the inte~nal error in a

1 
is 

"a! =rW (26) 

The standard deviation of ~ is· found by again 
gation of small errors to Eq. (22). Thus, 

J 2 
r - r 13 

[3 - a
1 

(2a
1

) · 

applying the theory of propa-

(2 7) 
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This is the standard deviations of ~ based on internal consistency. This is 
not our final answer,. for it shows only how observational errors affect the 
solution and does not show the error introduced by the approximating function. 

C. 'Th'e',Relation of the Internal and ExternalErrors 

In our probl~m where the observations are weighted and n different 
points are observed, the standard deviation based on external consistency is 
given by the following equations (Appendix G): 

- 2 
~1 w. (y. - y.) 1 1 1 

E - (n - 2) 
(28) 

arid 

~ 
( -)2 _ f wi Yi - Yi .E 

Ey = (.n - 2) ~ w. = ,-;: l::;:;;~==w::;. ' 
1 1 '\J1 1 

(29) 

where\ e is the standard deviation_of an observation of unit weight, which is 
estimated from the residual yi - yi, and where .e. is the standard devi-

ation of the linear form of the gaussian function. y 
We now want to evaluate the extern.al standard deviation of the arbitrary 

constant a 1. We sh~ll again apply the theo~y .of the law of ~he propagation 
of small error to est1mate the standard dev1at1on o£ the arb1trary constants 
ba.sed on external consistency. We finally derive a simple form for these 
errors by relating .e.xternal errors to internal errors. 

we· can. calcul~te the ·propagation o£ the external error through the normal 
equations in the .sa-me manner as Eqs. (25) and (26). This calculation is given 
inAppendix F withthechangethat e's replacer's. FromEqs. (29)and 
( 18), 

l 2 

~
'l:;W. X . 

. E = E i 1 1 

·a_ n· 
0 

- (30) 

··and from ~qs. (29) and (19), 

( 31) 

-If we consider the ratio o.£ the internal and external errors_, we can re­
write these equations~ From Eqs. (24) and (29}, 

E e(l/J~ w.) 
(32) y_ 1 - 1 E -=- :-

r( 1/~ ~ r w.) r 
y 1 1 

or 
E (32a) E = r 

y r y 

k 

( · .. 

(' 
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Similarly, .from Eqs. (25) and (30) we have th~ relationship 

E 
e = - ra a . r . 0 ' 

0. 

and from Eqs. (2.6} and (31) 

and also 

where 

E 

r 

( 33) 

(34) 

( 35) 

(36) 

These are the estimated .standard deviations of the arbitrary constants based 
on external consistency, because e/r depends on the difference between the 
observational points and the computed curve. 

D. Interpretati~n of the Ratio of the Internal to the External Error 
1 

If the true distribution is. a gaussian, then e / r should be unity within 
some. statistical deviation; that is, the. standard deviation estimated from the 
residuals should be equal to the observed standard deviation: If the -observed 
dis-tribution is gaussian-like, the deviation from unity should not be too large. 
We have to examine two special cases e/r < 1 and e/r >> 1. If e/r < 1 
then the 'fitting function fits the observational data more closely than is expect­
ed on the basis of the statistical errors of the observational points; therefore 
one should use the internal consistency to estimate errors. Thus in our 
problem if e/r is less than one, 

(2 7) 

· is taken to be the. best estimate of the standard deviation of j3. 
If e/r is much larger than one, either there are systematic errors in 

the observations if a gaussian distribution is to be expected, or the gaussian 
function is not a good representation of the true distribution. In this. problem, 
the argument 1 - 1 was assumed to be exact; but a small error in 1 , for 

0 0 

example, will make a systematic error in the gaussian representation. 
When e/r is greater than unity but not too large, as determined by the 

problem, we use the external consistency to estimate ·errors. In our problem 

( 35) 

is to be taken as the best estimate of the standard deviation of j3, if we have 
e/r > 1 but not too large. . 

Because of these considerations, the examination of this ratio e/r 
constitutes an important test in problems of curve fitting. 
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III.' . Sample Calculation 

A two-counter telescope was used to. measure an· accidental coincidence 
counting rate as a function of the delay line in one input to the coincidehce 
circuit .. R. measures . .the relative counting with .cable length 1., and 5R. 

1 1 1 . 

is the statistical error based on total counts. 
The problem is to determine the best-fitting gaussian for the observed 

·data, the standard deviation for the gaussian, and the estimated error of the 
standard deviation .. ·we wish to find the best value of 1. where 

and where J. = 39. 40' was determined by the oscillator .frequency of the 
0 

synchrotron. We transform to a linear form, 

Y. = a + a
1 

x. , 1 . 0 . 1 

where x. = (1.. - J. )
2 

and •y. =In R .. 
.1 1 0 '1 1· 

The weight of the residu.al yi - yi is 

2 
w - r 

1 

. ' 

where r = 0. 1 is assumed for convenience in computing. 
A ~omplete discus~sion of the collection of these data is given in Refer­

ence (4): 

\ 

(: 
v 
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~ 0 £ .. - £ 
2 

R. x. x. y. 
1 1 0 1 1 1 1 

34 -5.40 29. 16 8 50. 31 32.8 3.4904 

37 -2.40 5.76 33. 18 115. 2 4.7467 

40 0.60 0. 36 0. 13 365.0 5.8999 

43 3. 60 12.96 167,96 129.0 4.8598 

46 6.60 43. 56 1897.47 8. 6 2.1518 

oR. R.joR. 2 
w. w.x. w.x .. ·· wi Yi 1 1 1 1 1 1 1 1. 

2.0 16.400 2.6896 78.429 2287.0 9. 3878 

4.4 26. 128 6.8550 39.485 227.4 32.5386 

9.8 37.245 13.8719 4.994 1.8 81. 8428 

5. 1 25.294 6. 3979 82.917 1074.6 31.0925 

1.3 6.615 0.4376 19. 062 830. 3 0.9416 

Sums 30.2520 224. 887 442 1 . 1 155. 8033 

2 .. 2 ' 
D=(~w.) (~w.x.)- (~w.x.) =83173.0 

. 1 .11 .11 . 

D 
a 

0 

1 1 1 

. . 2 
=(~w.y.} (~w.x.)- (~w.y.x.) (~w.x.)=478640. 

1 
1 1 i 1 1 i 1 1 1 i 1 a1 

:; 5. 7 54 7 
0 

D = (~ w. ) (~ w. y. x.) - (~ w. x.) (~ w. y:i)·. = - 6764. 32 
a 1 i 1 i 1 1 1 i 1 1 i 1 

a 
1 
= - 0 . 0 8 1 3 25 

= ± 0. 02907 

y.=a +a 1 x. 
1 0 1 

xi Yi 

101.780 

·27. 341 

2. 124 

62.983 

93. 7 32 

w. y.x. 
1 1 ·1 

273.75 

187.42 

29.46 

402.96 

41. 02 

934~ 61 
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2 2 y. v. v. w ... v .. ·. 
1 1 1 1 1· 

., 
3. 3833 . 0. 1071 0.01147 0.0308 

5.2863 ..a·. 5396 0.29117 1. 99'60 
. ' 

5.7254 0. 1745 0.03045 0.4224 

4.7007 b: 1591 0.02531 0. 16.1'9 .. 

2.2122 ..o; 0604 0.00365 0.0016 

+o.oo12 2 '2.6127' !;. w.v. = -~ w.v. = 
i 1 1 1 1 1 

2 

~ 
E 1 ~- w.v. 1 E y 1 .. 1 1 .... :.:. 9.332 =--- = - o.-I = r r r n - 2 y 

E 
0 .. 2714 .. E = - r = ± 

'{ r '{ 

The final answer is 

' '{ = 2. 48 ± 0 .. 2 7. 

In testing these res~lts, e/r, was found tq be quite ·la~ge. This large 
value of e/r irtdicates that a gaussian funCtion may not be the best represen­
tation of the tru·e distribution. Also, since a chance coincidence counting 
rate was--~ea~ured, fluctuations in beam intensity could-easily lead to sys­
tematic errors in the observations. In the above example, h.owever, the 
solution was not rejected, as 'I was significantly larger than :e . 

'{ 

'J 

' 
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Fig. 1 Plot of calculated function compared 
to observed points. 

UCRL-2783 



-14- UCRL-2783 

IV. Appendix 

A. Definition of Least-Squares Criterion 3 

In the simple case where a sing~e quantity x is measured, the proba­
bility of observing a given set of random errors is the product of the proba­
bilities for observing each particular error. I_t is assumed that the errors 
are normally distributed and that the standard deviation for the error of each 
measurement is known. The probability that an error xi._- x may be found 
in the interval x. - x to x. - x + dx. is 

P. = 
1 

1 1 1 

1 
[ 

1 (x. -x)J 
exp · z- ~~ dxi 

The probability for the set of error's is 

P=IT 
1 

P. = n 
1 .1 

.1 · t 1 (xi - x\1 exp - -2 o -)1 dx. x. il 1 
. 1 LJ 

(A 1} 

(A2} 

were 
.. 

x is the true value, x .. is the observed value, x. - x )s the observed 
1 1 

error, and ox. 
1 

is the standard deviation for the. ith measurement. 

J[£ the true value x is unknown, a reasonable assumption is that the ob-
served set of errors is the most probable set. The probability P will be a 
maximum. giv(ing the)~ost :probable set of errors' if 

X. -X 

""' 1 4J --,..--- = a minimum. 
1 5xi 

(A3} 

Now the value for X that would satisfy equation (A3} is defit1.ed as X. The 

( -)2 X. -X 

least-squares criterion is· :r !- = minimum. 
i o xi 

(A4) 

Let us partially differentiate Eq. (A4} with .respect to x and equate to 
zero for. a .minimum: 

}:; 
1 

·.~. 

Solving Eq. (A5) for x, we find 

X= 

x.-
1 

~ ox? 
1 1 

I 
:2::-.-2 

. 5 xi 

or that x is just the weighted average value of .the x. 1s. 
1 

(A5} 

{A6) 

y 

•\j 

\. 
, .. l 
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B, · ··c:i-iferion for this Application 

We wish to justify the equation 

-15-

. 1 1 1 1 ( ·- j2 ( -~2 
(

R, - R. . y. - y. 

~· 5 R. = ~: .. •\ 5 y. 
1 1 : 1 1 

Rewrite the left-hand member 

(

R. _ It.j2 
1 1 

~ R. 
1 

Now the identity 

1 - - l 

becomes 

IL 

1 

I 2 (5 R. R.) 
1 1 

- (1 n R. - 1 n R. ) 
. 1 1 

- e 

-(y. - -y.). 
l 

1 

-~ = 
1 1 . 

1-e 
1 

since y = .tn R. 

UCRL-2783 

·If the difference yi - yi is small compared with unity, 

1 - e 
-(y.- y.) 

1 1 
·::::: 

then 

~R .. -.lLJ 2 
1 1 "" 

~ 5 R. -
1 

[
Y· - y.lz 1 . 1_1 

~ 5yi j 

( 7) 

(Bl) 

(B2) 

(B3) 

(B4) 

(7) 

5 R.(R .. 
. 1 1 

Thus, the criterion for this application is that the 

residuals yi - yi are small compared to unity. 

c. 5 
The Law of the Propagation of Small Errors 

Given the function 

and given the error 5 xi .in xi, th.e observed function is 

where 5y is the error in y. Expanding in a Taylor 0 s series about 
x 1, x 2 , x3' , .. ·and assuming second~order terms and higher terms are 

(C l) 

(C2} 
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negligible, we get 

k - oF 
'6y. = .~1 ..-:-:.--- ox.; , (C3) 

J 1= oxi IJ 

·where subscript j differentiates independent observations of the same 
function. Let us square. '6y. ·and sum over the j observations. Now 
dividing· equations by the nufuber of independent observations n, we get the 
mean square error. oy2 . 

2 

o Y2 = ·...:;_~ __ o_Y...:;__j 

n = 
n 
~ 
J 

2 ox:. 
---.:2_ • 

n 
(C4) 

. . . 2 
We note that the average value of a cross product terms in oy. should be-

.. come vanishingly small when averaged .over a large number ofJ observations, 
because the probability for positive and for negative values of an error ox .. 

lJ 
are equal; for example. for large n, 

' 

£ 2 .aF 8.,....F __ 

J'=1 ax:- t:)x. 1 
1 r+ 

'6xij 5xi +1 j 
n 

:;:: 0. (C5) 

2 
Letting '6x. represent the mean square error rn x .. 

1 1 

l: 2 _ k (:a:FJ 2 
.D uy - ~ - ·4 

1 ax. J 1. 

l: . 2 
ux .. 

lJ 
n = f (~F~2 ox_. 2. 

1 uX. · 1 
1 

(C6) 

The root mean square error is 

'6 y = k~-.F 2 
··.2 -r: . ox. . 

1 ' x. . 1 
1 

(C7) 

Because values of · '6x .. are required only to be small as implied by 
equation (C3). and positivJJas frequently as negative, as required by eqw.tion 
(C5),. the ox's may be probable errors, an~ then oy is a probable error; 
if ox 0s are standard deviations, then oy is a standard deviation; if ox's 
are residuals, then By represents a residuaL 

D. Method of Differential Gorrection
3 

. . . 

H the arbitrary constant P.. is not precisely known then we cannot re­
o · duce ·Eq. (l). . . 

R ~ Ro exp t (12 ~2~or 
directly to a linear form in the arbitraJ?y constants. Let us define new 
arbitrary constants as follows: 



R = R' + ~R o o o' 

£. : £I + /),.£ 1 
0 0 0 
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. (Dl) 

{D2) 

(D3) 

·if~ . where R 1

0 
.f3 1 

, .1. ~ are approximations to R
0 

13 , J. 
0 

, and where the 

v 
i ; 

new arbitrary constants ~R , A13 , 6,.1 are small correction terms. By 
. .o 0 

a Taylor expansion of the gaussian, we get 

+ 
ClR(R' 13' i I ) 

0 0 

81' 61 o' 
0 

(D4) 

where second- and higher -order terms are neglected. R is n·ow a linear 
function in the new arbitrary constants D,.R , ~13 , t:::..£ • The residual 

0 0 

R. - R. is 
1 1 

R.- R. 
1 1 = R. -{R' exp 1 0 

(l.-/.')2 
1 0 

+ 

£. - l. i 

+ 1 0 

13'2 
R' 

. 0 
(D5) 

We can now derive the normal equations an.d solve for the best least-squares 
c.orrections to the original approximations. This c_orrection process is to be 
repeated until the correction term is less than the estimated .error. The 
process should be repeated at least once just as a chec:k on the numerical 
results. 

E. ·. The Standard Deviation of the .Average· of a Numbe.r .of Observ·at16ris. 

Iri the simple case of a set of n observations of equal accuracy of a­
single point, the standard deviation of the average yalue of the point is given 
by . r' . 

r = .J"'r" • (El) 

where r' is the standard deviation bf any one observation. This result 
follows simply from applying the law ofpropagation of .small errors (Appendix 
C) to the equation for the simple average of n measurements of. equal accu­
racy. 

Let x be the. quantity measured and x 1; x 2 , x 3 , ... , x be. n. me as­
urements of x w1th equal a.ccuracy so that r 1 1s tlie standarH dev1ahon of 
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each measurement.' The average value of x is 

X= 

£X. 
i= 1 

1 

n 

Applying the law of propagation of small errors, 

-2 r ,2 .r ,2 
n r = T + -z- + .. = --z-

h n n 

we confirm Eq. (El). 

UCRL-2783 

(E2) 

(E3) 

Since weights are defined so that an observation with small standard 
deviation is equivalent to the average value of a number of observations with 
large standard deviations, it follows that the standard' deviation r. of the 

1 
ith observation with weight w. is 

1 

r 
r. = ~~ 

1 ~wi 
(E4) 

where r is the standard deviation of an observation with unit weight. If we 
now apply the law of propagation of small errors to the weighted average, 

X = 
-~ w.x. 

1 1 
"='---,-
~ w. 

1 

the standard deviation of the average of the weig};lted observations is 

r 
r = 

F.- -Pr-opagation of"Errors through the Normal Equations-

Let us consider the error in a , By equation ( 18), a is 
0 0 

a_ 
0 

(E5) 

(E6) 

( 18)-

Take' the partial derivations of a with respect to each y, and square each 
0 

term, according to the law of propagation of errors, to get 

('r }2 -~ 2 (aa0 )

2 

(Fl) = (oy .) 
a - .Fl - J 0 y. 

0 J 
---

/ 

v. 
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. 2. 

(

W. ~ W. X. - W.X. 
2 _Ji 11 JJ 

= ~ (5 yJ.) 
j D 

UCRL-2783 

- )2 ~ w.; x. . 1 1 
1 

rr- >2 = ~ 
a. 

0 
[ 

2 ( 2) 2 
2 ( 2\ I ) W. ~ W .X. - 2 W. X. ~ W. X.)\' ~ W. X. 

2 J. 11 J J. 11.11 
(5y.) 1 1 - 1 

J D 

2 2 (. " 21 W.X. ~W.X.) 
J J '\: 1 y 

+ 2 . ! ' 
D i 

_j 

We have the condition from equation (23) on w. that 
1 

or 

w. = 
1 

2 
r 

2 
( 5 y.) 

1 

2 r
2 

(5 y.) = 
J w. 

J 

Substituting by equation (23a) for 5 y., equation (F3) now .has the form 
J 

t' ... (~ w. x~)
2 

- 2 w.x. (~ w. x~){ ~ w. x.)· 
J i 1 1 J J i 1 1 \i 1 1 

~ - . 

j . D 

2 ( . ~ w.x: ~. w. x.) J J i 1 1 

+ ' 2 . 
D 

After carrying out the summation over j, and since 

£w.x. = :fw.x. 
j =1 J J i=1 1 1 

and 

£ w. = ~ w. ' 
. j=1 J i~1 1 

2 = r 

2 

~ wi)(r wi xg, -(}~ wix0 (r wi xi) 2 

D2 

(F2) 

{F3) 

(2 3) 

(2 3a) 

(F4) 

(F5) _ 
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Finally, factor out 
is 

2 
~ w. x. and D as given in ·Eq. (20); the error squared 
. 1 1 

and finally 

r'. 
a 

0 

1 

2 = r 

2 
!; W. X. 
. 1 1 
1 

b 

\ 2 
!: w. x. 
. 1 1 
1 

= r"'\._ . D 

G. Error Estimated from Residuals 
3• 6 

(F6) 

(2 5) 

We can estimate the standard deviation of a single observation .on the 
basis of the consistency of a number of observations. 

Let x be the quantity measured and x
1

, x 2 , ... , xn be n measure-

ments of equal accuracy of x. Let x denote the average value of the ob­
servations, 

~ x. 
• 1 
1 

X = n 

The residu.al of the ith observation is 

and the true error of the ith observation is 

E i .::. Xi - X . 

TI?-e error of the average value is 

~E. 
. 1 
1 

X- X= 
n 

'·' 

The true value x is used to relate errors and residuals. since 

X = X -

:!; E. 
. 1 
1 ---n- = Xl - E 1 = X2 - E 2 = Xi - E i . 

By rearrangement of Eq. (G5)·the true error of the ith measurement is 

(G 1) 

(G2) 

(G3) 

(G4) 

(G5) 

~E. 

~ .n ~ 
E i = xi - x - in 1 (G6) 

or 
~ E. 

i 
1 

E. = v. + 
1 1 n 

(G7) 

I/ 

" 
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or 

v. = E. - lin ~ e .. 
1 1 i= l 1 

(G8) 

~~ Thus, the residuals can be written as linear equations in the errors, 

j' 

v. = (n-lln) e. - lin z e. . 
1 . 1 • . J 

. . J=1 
· (G9) 

Let us apply to Eq. (G9) the law of propagation of small errors to find the 
the relation between the standard deviation a of a set of residuals, and the 
standard deviati9n e of the corresponding set of errors for a single measure-
ment, 

(]" 
v 

(]" 
v 

' . ---1 

I I 2 · .1 2 
= e .J ( n- l n ) + l n ( n- l) 

. .-----r 
a = e--.\ n- lIn v 

The standard deviation of the residuals is 

i 2 "l 
a = lf~v.ln 

v "\j i 1 

(GlOa) 

(GlOb) 

(G l Oc) 

(G ll) 

Solve· Eqs; (GlOc) and (Gll} for the standard deviation of the true errors for 
a single measurement: 

. l 2 e = 
1
: ~ v. In .;..I 

"i= l 1 
. 

In Appendix E we found the standard deviation of the average of n 
observations of e.qual accuracy. In this case, 

T = _e_ 
n 

(Gl2) 

(Gl3) 

Thus, the e.stimated standard deviation of the average of the observations is 
~~--2-1 

lz v. 

e =J~(n~O (Gl4) 

Now take a general case where x is a linear function of q unknown 
independent parameters and where the observation xi is given weight wi. 

The estimated standard deviation of the weighted mean o£ the n observations 
is :--·--··y---r 

1z w.v. 
. 1 1 

'E - i ..,i --.-=---­
- \\ (n-q)Z wi 

(G 15) 
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and the standard deviation of an observation of unit weight is 

.. ~ w.v .. 
. 1 1 

J 
. 2 

1 (Gl6) 

Proof for Eq. (Gl5) can be found in Reference (6}. 
· For the case of the gaussian function in Eq. (1}. the number of independent ') 

parameters is two. viz. • R and [3. 
0 
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