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I. Curve Fitting a Gaussian by the Least-Squares Method

A. Statement of Problem

We want to represent a set of observational points, (Ri’ ;Zi), By the
gaussian function :
R-R, -2 ) S (1)
exp l: _._.2_ : v

2p
The observed function value, R., is measured at an accurately known argu-
ment value, B -2 , with an estimated standard deviation, 8R.. In order to

represent these po?nts by the smooth function R, we shall use the least-
squares method to evaluate the best arbitrary constants R, and B for R.

The best arbitrary constants in the least-squares sense {Appendix A) are
such that the sum of the squares of the weighted re51duals is a minimum; that

is, : N\ 2 o N L ,
: b2 Ri _ Ki = a minimum, ' (2)

1

where R; is the observed function value, 6Ri' the observed experimental
standard deviation of Ri at !i, and 'I._{i- is calculated at Jli using the best

arbitrary constants in the 1east-~squares sense. Thus,. we write

- . 2 S
R, - R .- JZ ’
= < eXP[ ]>— a minimum “{3)

1

This is the least-squares criterion for the best constants R_ and B.

We will transform this criterion to an equivalent criterion in which the
arbitrary constants appear linearly. The linear criterion is then differenti-
ated and equated to zero. This process gives us two linear equations in the
arbitrary constants, which are easily solved by determinants.

B. Linear Form and Definition of Weight

The gaussian representation in Eq.: (1) transforms to the linear form

vy =a_ %+a,x, I - B (4)
where o 1 ' ; S : '

y =fn R, ~ (5a)

2 S o
= -1 )%, - e (50)
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1
ay=- T ‘ - S (54d)
Here a_ and a, are the new a.rbit'r.ary' constaptsA. "
The least-squares criterion for the new function is v
. > -
iV :
= .] = a minimum, ‘ : (6)
1. Syi ; '
where ')'7.1 is calculafed_from a, and_axl at X, and Gyi is the standard
deviation of the function v | | -
" We now wish to show that
‘ R, - R, \* Y. - 7.\ |
s i i - 5 i 1), (7)
' T\ OR; 1 by, : ‘
since we are interested in finding the best gaussmn representation ﬁ . (A
" more detailed proof appears in Appendix B.) If we relate the re51dua1 R1
- R to the residual Y; y1 by the law of the propagation of small errors
(Append1x C), we get '
’ -2 _ [dy = .2 : .
R, - R, 2
= _..____R‘. (9)
i
Equation (9) follows by substituting for ' % from Equation (5a).. With the
aid of Eq. (9), -the left-hand member of Eq. (7) can be written '
R, - R .\ V. - V. 2 C ' S
o\ =) = 37w | (10)
1 i i if i/ - C - -
Now, if we identify §y: by the law of propagation of small errors,
& 2'—..'GAJZ:R)Z = >-R—6Ri 2 - | (11) -
the right-hand member of Eq. (10) becomes identical to that in Eq. (7). -
- We now define the weight W of a residual, y -y , at x; as
_ ; ;
2 2 '
LA , | (12)

(6y,)°  (8R,/R)®
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method of determinants. The solution is

5.  UCRL-2783

where r2 is an arbitrary constant so .chosen that the ‘.iw,-i's‘, have a range of

~ values that are convenient in computing’ the normal equations. Once a value

of r2 is assigned, all w1 s are determined. Note that r is the standard
deviation of an observation of unit welght
The least-squares criterion finally is given by

=W, (y, - ¥)° = a minimum, o ; (13)

C. Normal Equations and the1r Solution

In order to satisfy Eq. (13), .the part1a1 derlvatlves with' respect to the -
arbitrary constants should be zero: =

8_ zw, ( -a-ax)Z
§aoi i 'Yy o 171 =

=0, (14)
N 1
0 ' : . 21
831 E}wi (yi-a0 alxi):l—o. (15)
- Expanding these sums, we get the normal equations
a T W, +a, %}wixi = ?Wiyi’ ' _ (16)
a Tw +ta, Tw 2 . W, V. X (17)
o FViTitA TWX T BV VN -

These two equations for the two unknowns a, and a, can be solved by the
S W.Y., T WX,
11 171 1 1 1

TV Wixiz' (®w; Yi)(zi wix;) - (ZW Y% ) <2 %)

a_- i \T T 171 i ’
D D (18)
FY BV
121 Wiy Elwlylxl (1 )KZI}W le) - (ZW xl) (Zl wlyl\
a., = = ,
1 D D
(19)

D= ' ' (ZW)(ZWX (zw x}z. ‘ ‘(2.0)
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- The best arbitrary constants for a gaussian funct1on are, from Eqs (5¢) and
(), - -

:R,0 - e o ’ . . | . _ . | (21)
B = ZaLI (22)

In conclusion, Eqs (21) and (‘22) give the best constants as defined by

- (3).

Note that if '  is not known exactly but is a parameter to be adjusted,
we cannot use the 9echniques of this paper. An alternative technique is the

method of differential correction (Appendix D). Also, if £. has a significantly

large error, we are confronted by a multi-error problem v%fhose solution re-
quires knowledge not only of 6R but of §2; as well.
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II. The Estimation of Standard Deviations

A. Statement of the Problem

‘The problem of estimating the standard deviation of the values obtained
for thé arbitrary constants can be discussed in two parts. The first part con-
cerns the error expected on the basis of the statistical error of the observed
points and the propagation of these errors through calcylations.. This kind of
error is called the error based on internal consistency. The second part con-
cerns the error computed on the basis of the deviation of the approximating
function from the observational poipts. This kind of error is called the error
based on the external consistency . :

B. Weighted Observations and Internal Consistency

It is of value at this point to show the relation between weights and errors.
When we weight a given observational value, we say that one observation with
a small estimated standard deviation is equivalent to the average value of a
number of observations with large estimated deviations. The standard devi-
ation r of the ith observations is related to its weight W through the equa-

i ' '
tion {Appendix E) v : : _

: r
r Bl —- : ’ (23)
Yi ' \,’W;' . . o . .

where r is the standard deviation of an observation of unit vi/eight, Equation
{23} is the same as Eq. (12), where ry' = 6yi, Since the weight of the weight-
ed average of n. observations is ? W, the standard deviation.?y- of the av-

erage value of the weighted observations is

T, = _ . - (24)
PV |
Now ;y' is the error based on internal consistency, since it is computed on

the basis of the estimated observational errors.

The errors based on internal consistency for the arbitrary constants can
be calculated by applying the law of propagation of small errors to the solu-
tions of the normal equations. From Eq. (24) and (18) the internal error in
a_ is. —

) > wW.x. . i
? - r 1 1 - _ . ) ) _ (25)

The derivation of Eq. (25) is given in Appendlx F. Similarly, from Eqgs. (24)

and (19}, the internal error in a, is
zw,

. ) (26)

The standard deviation of B is found by again applylng the theory‘ of propa-
gation of small errors to Eq. (22). Thus,

et e
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This is the standard deviations of B based on internal consistency. This is
not our final answer, for it shows only how observational errors affect the

solution and does not show the: error introduced by the approximating function.

'C The Relation of the Internal and External Errors . 4 : U

“In our problem where the observations are weighted and n different
points are observed, the standard deviation based on external consistency is

given by the following equations (Appendix G): NV
_ 21 . }
T owly; -y) - .
N (n =) | (28)
and ) ’ |
.)7)2 | , ) | :
L= =, (29)
(n - 2) w. T W

where, ¢ is the standard deviation of an observation of unit weight, which is
est1mated from the residual v; - y , and where ‘€ . is the standard devi-

ation of the linear form of the gaussian function, ‘

We now want to evaluate the external standard deviation of the arbitrary
constant a We shall again apply the theory of the law of the propagation
of small error to estimate the standard deviation of the arbitrary constants
based on external consistency. We finally derive a simple form for these
errors by relating éxternal errors to internal errors.

We can calculate the propagation of the external error through the normal
equatlons in the same manner as Eqs. {25) and (26). This ‘calculation is given
in Appendix F with the change that ¢'s replace r's. From Eqgs. (29) and

(18), r______z.*
. z:w x ) :
€ (it ’ S (30)
'a .
o D ‘ , ,

-and from Eqs. (29) and (19),°

Lo (31

If we con81der the ratio of the internal and external errors, we can re-
write these equations. From Egs. (24) and (2.9)

Sy, UNE W) (32 .
or ) ' i

- € A

'EY = F ry. ) R » . ‘ . v (32a)
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Similarly, from Eqs. (25) and (30) we have the relationship

- € .

fa, T F B 33)
and from Eqs (26) and (31)

Gal = 1‘— ral, ) . » L ; (34)
and also

_ . _ ' . . .
where ‘ .

e 1 [EWly-v) - (36)

T T " (n - 2) : o '

These are the estimated standard deviations of the arbitrary constants based
on external consistency, because ¢/r depends on the dlfference between the
observaticnal points and the computed curve.

D. ][nterpretation of the Ratio of the Internal to the External Error1

If the true distribution is a gauss1an then e/r should be unity within
some. statistical deviation; that is, the standard dev1at10n estimated from the
residuals should be equal to the observed standard deviation. If the observed
distribution is gaussian-like, the deviation from unity should not be too large.
We have to examine two special cases e/r <1 and ¢/r 1. If e/r <1
then the fitting function fits the observational data more closely than is expect-
ed on the basis of the statistical errors of the observational points; therefore
one should use the internal consistency to estimate errors. Thus in our
problem if ¢/r is less than one,

A 2
— — ]/6 ™
r, =7r s 27
BN @)

"is taken to be the best estimate of the standard deviation of B.

If ¢/r is much 1arger than one, either there are systematic errors in
the observations if a gaussian distribution is to be expected, or the gaussian
function is not a good representation of the true distribution. In this problem,
the argument 2 - 1 was assumed to be exact; but a small error in 1 o’ for

example, will make a systematic error in the gaussian representation.
When ¢/r is greater than unity but not too large, as determined by the
problem, we use the external consistency to estimate errors. In our problem

- S F | : (35).

B &

is to be taken as the best estimate of the standard deviation of B, if we have

‘¢/r >1 but not too large.

Because of these considerations, the examination of this ratio ¢/r
constitutes an important test in problems of curve fitting.
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III. Sample Calculation

A two-counter telescope was used to measure an accidental coincidence
counting rate as a function of the delay line in one input to the coincidence
circuit. 'Ri measures the relative counting with cable length L., and SRi .

is. the statistical error based on total counts. ,

The problem is to determine the best-fitting gaussian for the observed
‘data, the standard deviation for the gaussian, and the estimated error of the U
standard deviation. We wish to find the best value of £ where

R —‘R : 1 'ei--goAZ
"R T R ©XP 2T\T v /!

and where —'ﬂo = 39.40' was ‘dete.rmin‘ed by the oscillator frequency of the

synchrotron. We transforim to a linear form,

yl ;aO T*.’alxi ’

where x = (4, -4 0-)‘2 and :'Y'i =4n R,. . The weight of the residual y, - y; is

1
Lo 2 )
w o2 (R
A 5R. |’

1

PR |

where r = 0.1 is assumed for convenience in computing.
A complete discussion of the collectlon of these data is glven in Refer-
ence (4) :
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ﬁ1 121 B ﬂo *3 %4 R1 yi_ Y
34 -5. 40 29. 16 850.31  32.8  3.4904  101.780
» 37 -2.40 5.76 33.18 115. 2 4. 7467 '27. 341
40 0.60 0.36 0.13 365.0 5. 8999 2. 124
% 43 360 12.96 167.96  129.0  4.8598 62.983
46 6.60 43. 56 1897. 47 8.6 2.1518 93. 732
6R R./6R W W.X WX 2 w W X,
i i/ 0%y i i iR WY i¥i%
2.0 16. 400 2.6896 78.429 2287.0 9.3878 273.175
4.4  26.128  6.8550 39.485 227.4  32.5386 187. 42
9.8  37.245  13.8719  4.994 1.8  81.8428 29. 46
5.1 25,294 6.3979 82.917 1074.6  31.0925 402.96
1.3 6.615 0.4376 19,062 830. 3 0.9416 41. 02
Sums ~ 30.2520 224.887 = 4421.1 155.8033 ' 934.61
D = [ 2y o %)% = 83173.0
= wy) (Zwpx) - (D wyx) = 83173,
i i . i
| o 2 -
D = W, V. W, X, - (= w. vy x. w.X. } = 478640.
ao (? ly'l) (21 1x1 ) 21 ly}xl) (Zl 1};1 )= 5.7547
[o]
Dal = (}i: we ) (Ei W Ys Xi) - (Zi Wixi) (Zi: WYy s - 6764. 32
a;= - 0.081325
N
= . | |
—_— i L R
‘ral -\'r -—H- —:l:O. 001907 Y = Ta-.—z = 2.4796
- 57""“?
-_— = 4 Y _
r =r ft =+ 0.02907
Y Y Tapnéa
i
i i = a + alx. Vi = Yl - yl
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2 4 2

i Y Y DR

3.3833 0.1071 - 0.01147 0.0308
'5.2863 0.5396 0.29117 1. 9960 ¥

5.7254 0.1745 0.03045 0.4224
47007 0.1591 - 0.02531, S 0.1619 ' -V

2.2122 0.0604 1 0.00365 0.0016

. s . . - - - . : . . Z . . .

Powv; = 40.0012 oWy = 2.6127

1 2. 6127

K2R SN B

T.o= = T =% 0.2714..
r 'y
The final answer is -
.Y =2.48 £0.27.

In te‘s'fing“thefse results, ¢/r  was found to be quite ‘Vlafge. This large
value of ¢/r indicates that a gaussian function may not be the best represen-’
tation of the true distribution. Also, since a chance coincidence counting
rate was measured, fluctuations in beam intensity could easily lead to sys-

tematic errors in the observations. In the above example, however, the
solution was not rejected, as y was significantly larger than re'Y. '

¢
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COUNTS PER UNIT OF INTEGRATED BEAM

380~ R T }i T
340}~ T -
300 - i
260 }- -
220 -~
180} -
1401~ —
100 [— -
eoL —
20} _ -
L; $ 1 I 1 I .
0 <% 30 @ 34 38 42 46 50
LENGTH OF DELAY CABLE IN FEET (94 FEET = 1G° SECONDS)
MU-4565

Fig. 1 Plot of calculated function compared
to observed points. .
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IV. Appendix

A. Definition of Least-Squares Criterion3

In the simple case where a single quantity x is measured, the proba-
bility of observing a given set of random errors is the product of the proba-
bilities for observing each particular error. It is assumed that the errors
are normally distributed and that the standard deviation for the error of each
measurement is known. The probability that an error x. - X may be found
in the interval x, - x to X, - X +dx; is -

P. = .___}__
! . éxi,'Z'tr

The probability:for the set of errors is

1 (%5 " %\ |
exp _,2_< 5% >dxi. . - {Al)

, | 1 a 1"1’“
P=0 P, =] S - dx.
Frcn gme) iyt w

were x is the true value, X is the observed value, X, - x .is the observed

error, and 6xi is the standard deviation for the ith measurement.

If the true value x is uhknogvn, a reasonable assumption is that the ob-
served set of errors is the most probable set. The probability P will be a
maximum, giving the most probable set of errors, if '

i

X, - X - '
‘143<__5?(.;_.> =a minimu-mv. ’ : (A3)

Now the value for x that would satisfy equation (A3) is fde,-ﬁr‘;e-d as x. The

: : X, - X
1 .
least-squares criterion is = minimum. . A4
q ! ?i“ Fx ) ) (A4)

Let us partially differentiate Eq. {A4) with respectto x and equate to
zero for a minimum: . .

Soiving Eq. (A5) for x, we find
x. .
1 .
_ = 5 x2 :
x= Lyt (A6)
2 —
6 x; z
i

or that X is just the weighted averagé value of the xi's.

. Xi __X_ “ . .5... . -
%, /. . . . o '
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B. Criterion for this Application

We wish to justify the equation

4

1

—\2 _\2
< Ry - Ry _E/Vi‘,yi

Rewrite the left-hand member

2

R,

‘.E(Ri'Ki\ 1 =z<l-Ri> 1 ,
R; } (5 Ri/Ri)Z %) er/RS

Now the identity

Ki'
1 - =1-e
R4
‘becomes
. R, e -ly; - ;)
-g— = 1-
1 v

since y = fn R.

If the difference y, -y; is small compared with unity,

1 -e

then

. 2 - =2
R -Ry f *‘,Vi—]
z SR, | T Z| T3, |

- (‘Vi = ?1) _
RO -V

t

1

(7

(B1)

(B2)

(B3)

(B4)

(7

wher_e“ 5 vy = 8§ Ri/Rin ""I‘.hus's' the criterion for this application is that the

residuals vy, -

Sr'i are small compared to unity.

C. The Law of the Propagation of Small ErrorSS

Given the function

‘y:F((xi Xy Xy X,y xk)

and given the error 6%, in X, s the observed function is

y’+6y=.F'(xi +6x1, X, +.-8x2, cee s Xk+6}_{k)"

where &y 1is the error in y. ‘Expanding in a Taylor's series about

X1s Xys Xzs oo

. and assuming second-order terms and higher terms are

(C1)

(C2)
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negligible, we get

k- . . :
Syj =& -5-—1 6xij R . (C3)
"where subscript j differentiates independent observations of the same
- function. Let us square- 8§y, and sum over the j observations. Now
dividing equations by the nuthber of independent observations n, we get the
mean square error, 6y”“. :

Y
¥

2 ' 2 2

6y22§ ¥ . oa ok (aF> &5 | - (c4)

0 z 2 \ox)

We note that the average value of a cross product terms in 6'y.2 should be-
come vanishingly small when averaged over a large number of’ observations,
because the probability for positive and for negative values of an error 6x..

1)
are equal; for example, for large n,
' ox.. Oox, . '
22 ‘.gf: gf; U_iHli s o . (C5)
Fl i i+l

. 2 :
Letting 6xi represent the mean square error in % .

\ 2 5x 2 C\2
2k [oF ij _ k [oF 2
by = % (a?) % T % <a‘>?1) bx; (C6)

1/

The root mean square error is

DX, | - i
1 i

2 .
sy = |3 C’F 5x.2. S (C7)
Because values of &x,, are required only to be small as implied by
* equation {C3), and positive”as frequently as negative, as required by equation
(C5), the §x's may be probable errors, and then &y is a probable error;
if &6x's are standard deviations, then 8y is a standard deviation; if &x's
are residuals, then §y represents a residual. '

D. Method of Differential C'orrect'ic»n3

If the arbitrary constant lo is not .précisely known then we cannot re- W
‘duce ‘Eq. (1), . : - ce

_ VIR
R='Roexpv- : .
_ : ' 28"

directly to a linear form in the arbitrary constants. Let us define new
arbitrary constants as follows: | '
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R_=R! +AR, U B '7 ' - (DD
B=p + AB, (D2)
RN + AL o | | | (D3)
wherg R‘.o s B', .2:) are approximations to Ro , B 20 , and where the

new arbitrary constants ARo > AB . AJZO are small correction terms. By

a Taylor expansion of the géussian, we get

: 8R(R'  B' £) dR(R' B’ 1})
- . PRt i \ [ ,
‘R = R(R-o 6 IO) + BRIO ARO + - ” :aﬁv . Aﬁ
+ ar——— AL, (D4)
o PR

where second- and higher-order terms are neglected. R is now a linear
function in the new arbitrary constants ARO, AR, Al o The residual

R. - R. is
2

| - o | 0, -2
5 : 174 o 171 o
Ri ~ Rl = Rl - {-R'o exp [,7_ 2_(.-._5'—_>7+ exp “— Vi <—HJARO
2 a = ”

(£ - 250" 1 ’Zi‘ﬁ;\a
Fes To Rz )PP

4 -1, 1 "Zi‘%z |

We can now derive the normal equations and solve for the best least-squares
corrections to the original approximations. This correction process is to be
repeated until the correction term is less than the estimated error. The
process should be repeated at least once just as a-check on the numerical
results. '

E. The Standard Deviation of the Average of a Number of Observations.

In the simple case of a set of n .observaftions of equal accurac;lr of a
single point, the standard deviation of the average value of the point is given

by C L ' ' ) ’ ' »
r o o (ED

where r' is the standard deviation of any one observation. This result
follows simply from applying the law of propagation of small errors (Appendix
‘C) to the equation for the simple average of n measurements of equal accu-
racy. _ .
Let x be the quarntity measured and x.. Xys Xgp o0e 5 X be n meas-
urements of x with equal accuracy so that 'r' is the standard deviation of
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each measurement.' The average value of x is

8 x.
i=1?

x = (E2) o
Applying the law of propagation of small errors,
. v
12 2
-2 _rf r' . n 2
T =t et = T (E3)
n n : n A

we confirm Eq. (E1). :

Since weights are defined so that an observation with small standard
deviation is equivalent to the average value of a number of observations with
large standard deviations, it follows that the standard deviation T, of the
ith observation with weight w, is :

- X | . . o | (E4)

r. = -
1 \iW.I
. 1

where r is the standard deviation of an observation with unit weight. If we
‘now apply the law of propagation of small errors to the weighted average,
- TV
. X = .—W_-.
z W

. | . C(ES)

the standard deviation of the average of the weighted observations is

-— r
r =

(E6)

)-"M
H-s ’

F. 'P'r'f(’fp'a'g'_ation. of Errors thr'ou'g.h,-the Normal Equa.tib_ns

Let us consider the error in a_: nyfequa't'ion (18), a is

(i%lwi ‘.Y; g 2w xiz.) - (.%lw.i b4 X) (‘5 i *i) | | |
a = = 1= C\1I= . . : 1—- - - s (18)

o . . D )

"Take the partial derivations of a, with respect to each y, and square each
term, according to the law of propagation of errors, to get
2

F 2 L8 (5y.2 %N o (F1)~
: R = B ‘ayj . . ;

a
H

e

-
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W, T W.X - W.X., T W. X
2 2-9 14 3y
F,1° = = (6y) (F2)
D
° J
2 2\ 2
w, | S wx, -2 W. X {TZTwW T W. X
2 i ! JoOING \
(T, )" =2 (6y) 5
o D
w2 @,“'wlx) 2’
PR 5 J . (F3)
D | '
__J
We have the condition from equation (23) on W that
5 . : | |
r : : o
W= ——y ‘ o | (23)
(8y;) : o
or
2 . - .
2 T o
AR | (232)
j B
Substituting by equation (23a) for 6 yj,, equation (¥ 3} now has the form
e 2 |
W-ZWXZ - 2 wW.X. waz T W. X
- 2 2’ j ;& i 373 YA i i)
(ra) =r 3 - — :
o] j ' D
W, X z':.w x 2
< (3 v)
+ > (F4)
D~
After cai'r'ying out the summation over 'j, and since
g W.X, = ﬁ W. X.
j=l i7d =1 1
and
n ) ",
Twp= Bw,
Fl i=l
| ’v , S )
: W, zw.xiz)‘ z W, x 2“)zwx" :
T, )% =1 & ")E ™ (2 & ) (F5) .-

c D



-20-. UCRL-2783

Finally, factor out = w, xi2 and D as given in Eq. (20); the error squared
is i .

: T W. X.
- 2 _ 2 i *! F6
(rao? = r D ( )
and finally
‘s 2
*i;, W X, .
rao = I‘\ —D——— M (25)

- G. Error Estimated from Residuals3’ 6

We can estimate the standard deviation of a single observation on the
"basis of the consistency of a number of observations.
Let x be the quantity measured and Xyo Xy e, X be n measure-

ments of equal accuracy of x. Let X denote the average value of the ob-
servations,

The residual of the ith observation is - ‘

v.=zx -X%X , ‘ - . - (G2)

€. = X, - X . ‘ (G3)

The error of the average value is o
z & ‘ |
X-x= > ) (G4)

n

The true value x is used to relate errors and residuals, since
€. '
z €

X:—)E—' 1n1 :xl_.elzxz-e =X, - €., -. (G5)

By rearrarigé»ment of Eq. -{GS)‘tvhe_ true error of the ith measurement is

( e
€. =x, - \%x -2 A (G6)
i i n _
or ‘
T :
€, = v, + 1 (GT)

1 1 n

\)
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or

v.=e -1/n f: ei . : ‘ | . | 'W(GS) '

i
Thus, the residuals can be written as linear equations in the errors,

e/ ez o (@)
. - F - |

Let us apply to Eq. (G9) the law of propagation of small errors to find the

the relation between the standard deviation g_ of a set of residuals, and the

‘standard deviation e of the corresponding sef of errors for a single measure-

ment, _—
o, = e\\kﬁzl(avi/a ekv)z . S (G10a)
2 2 | , |
o, = e (n-1/n%)+ 1/n (1?1—1) , : (G10b)
0, =e/n-1/n | (G10c)

The standard deviation of the residuals is

o —1§ /n . (G11)

Solve Egs. (G1l0c) and (G1l1) for the standard deviation of the true errors for
a single measurement: : :

¢ = & v, /n 1 ' - C(G12)
\11— ' ' _ v

In Appendix E we found the standard deviation of the average of n
observations of equal accuracy. In this case,

—— e 7
- & .» - (G13)

Thus, the estl.mated standard deviation of the average of the observatlons is
e 2 ) [
iz V. '

e

Now take a general case where x is a linear function of g unknown
independent parameters and where the observation x, is given weight W,

The estimated standard deviation of the weighted mean of the n observations

(G14)

S
= w; vy .
-4 | - - (G15)

N q)zw ’
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and the standard deviation of an observation of unit weight is
T w, v, | |
1y rt -
Ny 3 , ‘ -(Glé.)
Proof for Eq. (G15) can be found in Reference (6).

‘ For the case of the gaussian function in Eq. (1), the number of independent gy
parameters is two, viz., .Ro_ and B. ’ ' ! .
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