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ABSTRACT

This article is a review of formal perturbation theory.as it -
hag been’develqped in the past few‘years° Most of the important
formulae fqnné—in the literature are presented, fhe emphasis,is on
showing that the férmal theory provides an adequate skeleton on which.v
to hang the whole ef quantum perturbation theory and therefore plays
a valuable unifying role; Topics to which attention is dévoted'
includes Green's funeti.ons;; scattering theory, level shifts, state
vectorvnormalizétions bound state perturbaﬁion-theoryg rencrmalization

theory of qﬁantized fields, decay and resonance phenomena, and the

theory of nuclear reactions,



o jen

UCRL-288L

1

THE OPERATOR FORMALISM IN QUANTUM PERTURBATION THEORY
Bryce S. DeWitt

Radiation Laboratory, Department of Physics
University of California, Berkeley, California

and
Institute for Advanced Study, Princeton, New Jersey

e

INTRODUCTION

In the early days of*guantum mechanics approximation methods
were very largely unsystematized, Although the general'classical théofj
of perturbations which had been developed in the 19th centﬁry for appiicatiqn
to celestial mechanical problems could; when expressed in the language of. |

angle and action variables, be more or less difectly translated by a recipe

known as the Corfespondehge Principle into a scheme applicable tc the
quantum mechanics of bound systems, thé techniques introduéed intc the
siudy of other systems (e.g. colliding particles; periodic structUresﬁ
decaying atoms and nuclei) were much more specific to the individuél problems
at hand. This situation began to change as the quantum mechanical systems
receiving major attention became more complex, and particularly as intefest
arose in the "higher approximationsﬁ of quantum field theories, In recent’
_yearé increased effort has been made to generalize the earlier techniques
by abstfacting out of them certain common essentials. This has led gradually
to a compact symbolic language whicﬁ is charactefized by, full and uninhibited
use of the abstract operator formalism., The statements in this language
sonstitute what may be referred to as a formalhﬁerturbation theory.

Aside from a desire to introduce the syﬁﬁolic language in orderﬂto

" exvress key notions in a very concise form, there has also been a hope that
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the flexibility of such a language, exemplifiedAin‘various formal tfiCks
of manipulation of operators, would produce some new approximation methods
or justify previously suggested ones. In fact; the search for‘tricks has
often métivated formal developments, and these developménts have'conseqhently
been somewhat .erratic and scattered in the literature. |
This article is an attempt to collect together the most important
formulaé of the operator formalism, Sincé, howe;;r, the results of.the‘
formal theory have generally had little more than a (perhaps disappointing)
preliminary usefulness as far as practical problem solving is concerned,
the emphasis here will nbt be on tricks but rather on showing that the
formal theory provides an adequate skeletor on which tc hang the whole of
quaﬁtum pefturbation theory and therefore plays a valuatle gdifying role.
In the interest of keeping £he operator language flexible, rigor
will be maintained oniy in«a very loose fashion., In spite of the fgct‘that
the formalism is known to contain a number of logical traps theseltrabs aré
identifiable; and one may still use the formalism in a well-defined and
- unambiguous way to set.up the correct mathematical staﬁement of a given
specific physical problem. The mathematical operatiéns in the specific
case can then be teste&_for rigor.‘ This point of view has long been well
accepted (see, for example, Dirac, referepce[ﬂﬂ);
| No attempt will be made to discuss the rather specialized covafiant .
, ’ [123 to 125)
formal language developed by many authors p for use in relativistic field

theories. The equations written here will remain nonrelativistic in form,

although in many cases their generalization to a covariant form is perfectly

# - _ .
References are to the bibliography at the end of the article.
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straighfforward, This restriction is rot really'serious, since many ofvﬁhe
special features peculiar to field theoriés can be well illumihed‘by.the
nonrelativistic formalism'élone (see section 10).

In the folloﬁing section the mathematical fuﬁdamentals'of thé'
: operator formalism are assembled. In section 2 the basic Green}s-fuﬁﬁtions
ana their Fourier transform§ are introduced; Section 3 contains a'bfief
classificaticon of systems according to their}bound and‘frée states and the
grouping of their energy levels. The simple theory cf'scattering is
described in séction.h and forms the point of departuye for éubsequent
developments.,

‘The .intuitive constructs introduced in section A4 are refined.in |
section 5 through the intréduction of suitable limiting procedures; ¥Questions

.of convergence are immediately encountered and are analyzed in an elementary

fashion. One is led naturally to a study of level sbifts, which is carried
out in éecfion 6, the important phenomenon of state-vector renormalizaticn
being simultaneocusly emphasized., The utilify of the adiab;tic switching
device is also fully illustrated.

Section 7 contains simple derivations of many of the important '

formulae of the mathematical theory of scattering. In section & the method

&

of applying these formulae to the computat@on of cross sections is indicated. .
S¢§£ion 9 consists of a fairly detailed exposition of how bound'
state pérturbation theory fits into the general operator formalism, and how
the discreteness of the energy levels modifies many cf the theoretical as
well as computational techniques used, |
| The "facts of life" of simple quantum field theories are ﬁold (in a:

necessarily compressed form) in section 10. The phenomena of mass and
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charge renofmalization and their intimaﬁe relation with stafe»vector
renofﬁalization is shown; the demonstrations teing among the most géautiful
illustrations cf the power of the operafor formalism,

In ééction 11 is presented the theory of décaying systeﬁs:’ liné
breadth, Lambvshifts resonance scattéringo |

In section 12, the theory of scattering by more than one potential
' ié outiined, and the connection of this theory to the theory of nuclear
reactions is briefly indicated. |

Section 13 consists cf a number of cldsing remarks, chiefly about
those topics of currentAinterést'which have been pecessarily omitied frdm

the present -survey.
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1. FUNDAMENTALS

The perturbation operator -

The motif of perturbation theofy'is the comparison of two physical
systemss-one of which is simple and the other complic;tede Dencte by wao .
the Hamiltonian operator Qf the simple system, and by ,ﬁ\ that.of tﬁe
‘compilicated one. The central rcle of the theory is played by thé difference

ef these two operators,

S N (1)
which may be zalled thé_perturbation oper—aﬁor° In practical abpliéafions
tﬁé system of interest is naturally the complicated one, and the simple
system is chossen (if there is any:choice) to be as similar to it as peésibie
so that H. may be regarded as "small." As far as the purely formal thééry'
"is concerned, hoﬁevery.ihis is an ﬁnnecessary rgstrictionu Any ~§0 has a
certain utility, if no other than that of providing a matrix represeﬁtatibn
#

as a basis for discussion..

The dynamical equations

If }; is the operator corresponding to any physical "observable"
of the system Ji ; its rate of change with time (we choose units # z ¢ = 1)

is given by

i

- i[};‘ , g],-v— 2 Ft (12)

F
)

where the partial derivative is taken with respect to any explicit dependence

Both 4§o and H must; however; operate in the same vector space. In
field theories questions have been raised in connection with this point.,

(See references- [113] and [llh] .)
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on the time which F may have. An immediate consequence is that H "is

. n _ o
constant if it has no .explicit dependence on t. For the present, however,
‘we shall not make such a restriction.

. Basic commutation relaticns

If the system lal pbssesses'a cléssical analog than ité operators

can be constfucted explicitly through use of the commutation rélations
¢ 51 i | Ll ' L
[%)%]:o) [3,33] = 18j . {E;,’EJ]-“-‘-OJ (1.3)
whére the q's and p's are operators corresponding respectively to the
- o

classical coordinates and their canonically conjugated momentauv If the
system possesses nonclassical elements (spin in its various'fOrms; sub-
systems obeying the exclusion pringiple) then other well known methods of
construction must be employed, but Eq. (1.2) is assumedAto hold in any case.
m0? |

It is also tb be assumed that ’E) Hys Hy are Hermitian operators,

The Heisenberg representation.

If ‘|:k>' is the vector which describes the state of the system
H , and if <}k] denotes the ad joint of this vector, then the average
result of an experiment designed to measure the value of the observable

li at time t will be
), = wlrwly) . o am

Egs. (1.2) and (1.4) are the fundamental equations of the Heisenberg form

of quantum mechanics. The chief characteristics of this so-called

Heisenberg representation are 1) the constancy of the state vectors P¢>
~and 2) the change of the operators F .with time. Its utility is mainly
theoretical in that it provides the closest qguantum analog to the classical:

theory.
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The Schrdédinger representation.

Since an operator is & more complicated cbject than a vector, it
is desirable to place more emphasis on the stete vectors. This is

accomplished by introducing the Schrodinger representatien:

Define an operator function -V(t", t') as the solution of the
fellowing integrsl squation: o
t"

V(¢ , t') = 1+ %//‘ H(t) V(t, t%)dt . ' .(1;5)

6

An equivalent definition is evidently

-19 V", ) - H(s") v(t", ¢") - (1.6)

Vs, t") = 1 forall t, : )

Eg. (1.6) may also be written

#* % '
£ 9 v, ) = ve", 29T HG" (1.8)
—a t“ 0 .
where the asterisk is used to denote the Hermitian adjoint (or, in the
case of numbers, the ordinary complex conjugate). Egs. (1.6) and (1.8)

together give

2 "% ' : A - .
3;%;7W [V(t o) v(t'_ , t')] - 0, C(1.9).

which implies, with the aid of Eq. (1.7),



UCRL-2884

'

¥* . . 3 . P
v, e v, ) = v, MY v, v = v, th) (1.10a);
ey n ¥ ? i g . - 3
= Ve, )Vt ,t7) = V(t', ), (1.10b)

which in turn yields

ZCUMEARRD I JCARANIE D BRI {CRMEAS for a1l t''’, (1.11)
Vk't" 9% v, th N vit", %) v(t;' ) 21 (1.12)

2 i = 5 ¢ 3 = ° A,

' Eq. (1.12) expresses the unitarity of V(t", t'). It is important to
remember that both parts of this double equation are essential to the
establishment of ﬁhis fact, Eq. (1.10) allows the Hermitian adjoints of

Egs. (105) and (1.6) tc be written in the respective forms

vit", t') = 1 - i/ v(t", t) H(t)dt , ' (1.13)
) ) A m ’ )
1 '3;‘ vie', v - v, th) HGE') (1.14)
2t ™ :

" The analysis thus far has been completely general. Any operator satisfying
an integral equation of the form (1.5) with an Hermitian kernel will
‘satisfy also equations identical in form with Egs. Kloé - 14),

me Now introduce the SchrBdinggf oéerators énd state vectors by the
definitions |

F(t) = V(0, t) F(t) V(t, 0), (1.15)

[Py = vo, 0l . @)

1

~~~~~
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These new structures satisfy the equations

Fox RF/3t, (1.17) b

14 ) OB K200 R  $

CF),

i

OIECINIO . (1.19)

‘Eas. (1,18) and (1019) ére the fundamental equations of the Schrédinger

representation, Eq?.(l.l?)iexpresses the chief utility of this representation.

.If an operator has no explibit dependgnce oﬁa t thén its Schrdodinger form

is constant in time. 1In particular, for a system with a classical analog -

the g's and p's are constant operators, and consequently co&r&inate

and momentum representations hanAgreat and meaningful applicabiiity in

this form of quantum mechanics; Moreover, the burden of describing the

dynamipal behavior of a system is thrown completely onto the state &ectors.'
The Schrcdinger state vectors at twé differént ti@es are connectéd'

by a unitary transformation
b)) = v, e [Py @)

where the operator U(t", t') satisfies the integral equation

1A '
u(e", t') = 1 - i/ H(t) U(t, t')dt (1.21)
. ti . . .

and its corollaries. Evidently

1"

ut', ') = v(o, £") v{x', 0) . (1.22)



Lo be constant in time, in.which'case ‘:V(Og t"), V(t'g'O):} = 0.
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In general U(t", t') will not be equal to V(t', t") unless H happens

* The interaction representation.

We now bring the operator ,ﬂo ., or rather its Schrodinger form Hy »

" into the picture. The "reference system" described by Ho is assumed to

 be completely solved. That is to say, the behavior of all its state vectors

in the Schradinger representation, or conversely, the behavior:of.all ité
oper;tors in its Heisenberg represeniation, is-known. Since one is
primarily interested in the deviation in the behavior of the Schrodinger
state vector of system H from that of system H,, it is often convenient
to remove from ]1P(t)>' that part of its behavior which derives from
tﬁe known properties of H_. This can be accomplished by making a partial

transformation back to the Heisenberg representatiocn:

F () U0, t) F(t) Uy(t, 0) , L (1.23)

(4}

'W(t)) U,(0, t) [P () | 1w

4

where the operator Us(t", t") satisfies the equation

"

. t!!
Ug(t'; ') 5 1 - “1/ Ho(t) U (t, vi)dt, etc. (1.25)

t‘l

Egs. (1.23) and (1.24) introduce what has come to be known as the inter-

action representation. The interaction operators and state vectors satisfy '

the equations

aF/dt = -1 [F, }"{\)] + RF/9¢ (1.26)
2L ) = He) | Pw), (1.27)
(F). = (| Far|gw) . e
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The transformation from one interaction state vector to another

is effected'by the operator

l\)
~0D

U", w') = ougo, v U, t') u et o), (1

wniich satisfies the equations

+ 4

T, ') = 1 - 1/ Hy(t) U(t, £')dt | (1.30a)
_ ! ' ,
b - . |
= 1+ ‘/ Uit", t) Hy(t)at , ete, - {1.30b)
tll

if H, and H have nc explicit time dependence then the operators

. \ . S
UO-(t",v t') and U(t, t') depend only on the difference between the times
t" and ‘t'. It is to be noted that the operator jﬁ(t"s t'), on the other
hand, is never a function simply of t" - tvﬂ except in trivial cases

(e.g. when H commutes with H).

Iteration formulae,

By iteration of Egs. (1.30) one obtains, for t >t , [l

’ oo n 00 oo S
T J : ; . LU ’ :
U(ts v) = 2+ § (-1) / by e u/”atn 0,(t"= t1) 8,.(t) = ty)...

- - n=l - '

-0

N

' T ey T
e o0 e+(tn°1. - tn)e‘,‘(tn - T ) hl(tl) LR Hl(th)

.‘ (1.31a)

e . .
z [exp ( -%/t Hl(t)cﬁ,)]‘+ R ' ‘ _ (1.31b)
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and, for t" < ! s : ' , ,
© 00 o0 - A . '
- n . 1 : N L0 . "
Ut ,t) = 1+ E (1) /dtl / dt, 6_(t" - tq) 6_(ty - t5) ...

. ty 1y q y
8 (b - b)) O (b - 67) Hy(tg) Ll Hy(E))

(1.32a)

_ .1 Bt - _ ‘ | |
= i H d : .32b) .
- [%xp (%/(; l(t) ti]_ . (1.3 )_
- where
0,(t) = 3(1 = t/Itl ), - (1.33)
and where the "time ordering" brackets C - ]+ and [ 1. arrange

the time dependent operators contained within them from right to left in

order of increasing and decreasing values of their arguments' t fespédtivelyo
The second forms of‘Eqéa (1.31) and (1.32) are obtained from the first forms
"ﬁhrough tﬁe observation th;t one can'bermit the inclusion of all ni ways

of permuting the factors ﬁi(tl) ,oo.ﬁl(tn) (which is equivalent to omiiting
the functions 64 and replaéing the limits of integraﬁion by t' and- £")

if one simply uses the time ordering brackets as a formal device to¢ unscramble
them again, ana then mﬁltiplies by l/nS,. |

H, independent of t.

o)

The interaction representation is particularly useful when Hy 1is-

independentvbf t, as is almost always the case. The system H, then has
- - N i '< )

N independent commuting constants of motion CYo‘ (i =1 ... N) where N

is the numbgr'of degrees of freedom. (N may be nondenumberably infinite!)
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If the sygtem has a classical analog these constants correspond to ceftain
vindepgndent functions of the q's and p's which have vanishing Peigson
" brackets with one anothero‘ For convenience the '0~oi will be denoted
collectively by & o° |

The O(o ‘are a complete set of commuting Opeﬁatoré, and definé‘a

most useful basis in the.vector space of the system H,. Following Dirac [4]

we shall use dashes to identify the eigenvalues of the O(o,‘ the corresponding

g
eigenvectors being denoted by 10(0 > :

kY

o, }o<0_'> = o, o) C(1.34)

The &

o may come partly from a continuum and partly from a discrete set,

or all from one or the other. The most important of the diffefent-

possibilities will be discussed in section 3. For practical purpdses;
: v . ,
however, all the ‘0<h may be rendered discrete by placing the system’

% .
in a box, so that a single normaligzation condition can be imposed on all

basic vectors uniformly throughout the discussion:

l--i
’..h
.-4‘
K
X
2
o
-
Q
=
o
=
S
)_I

doe "o Y 2§ o) |
' 0 ctherwise,

(1.35)

H, 1is an operator function of the 0(09 'siqce the latter, being

constants of the motion; commute with Hy. Hence

Ho‘o(o‘> '= H;‘O(o‘> A - - (1.36)

t is most convenient to assume that the box does not actually contain

the system in the cense of providing an infinite potential barrier, but
that it merely imposes pericdic boundary conditions on the wave furictions,
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where the energy level H, of the state \0(0.> is the corresponding
. ' v .

ordinary function of the X . It is sometimes convenient to choose H,
as one of the O(O°

When H, 1is time independent the solution of Fs. 55,25} is

immediately written down:

K it K}
-1 H{t -t')

U (", t') = e : | (1.37)
Hence
_ iHt o -1 Hgt ‘
F(t) = e  F(t) e 5 o . (1.38) .
- i Hat o R . |

Clew)) = e 7wy, - R (1.39)
- iHgt" -1 Hgt' .
uit", t') = e o U@R", t') e . (1.40)

o

" Transition probabilities.

The operators o

o and Hy remain invariant under the trans-

formation to the interaction representation:
X, = oA, Hy = Hy . . (1.41)

As a conseéuence, transiﬁoe probabilities taken between members of the
‘basic states ‘O(o'> of ﬁhe "reference system" can be expressed equally
—well in terms of either the Schrodinger or the interaction iransfbrmation
operators. If the actual system H is known to be in the Schrddinger
, , :
state )C(o >' at the time t' then the probability of finding it in the

. LAY N
Schrédinger state \a() Y at the time t" - is
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2

[ B

P(A, " ¢ o -’ £)

RN

i
4
. w " \ tt i
-1 k"t +-1H0t<
e : : o

" ) 5('t"s t')i'o\/r'> ' 2
© . - f .

2

[CAECASIIOTNS

(1.42)
Transition probabilities are often computed approximately by'inserting the
first term or two of the expansion (1.31a) into-(l.42). ' ' "ty
This section may be closed with the observation that the Schrddinger
and interaction representations have been defined so as to coalesce with -

the Heisenberg representation at t = O: f
13@) = Jp@) = |¥) . (1.43)

The formalism above would noi'have been significantly altered if other

-arbitrary meeting points tJ had been selected, but no real generality

would have Been'gained thereby since the system can always be displaced

in time without altering its essential physical characteristics.
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2. GREEN'S FUNCTIONS AND FOURIER TRANSFORMS

Temporal switching operators.

It is often a useful mathematical device to "switch cn" a quantum

state abruptly} The operétors which perform this action for the systems

Ho and H are respectively
, | Fe(t" - t")
Goslt", t') = Fie 0,(t" - £1) U (t", t1) _
: " (2:1)
: $€(t" - ti) .
Go(t", t') = Fie C (e = 1) Uk, ),
- (2.2)
Actually; the <+ operators switch a state oh'and the - operétors switch

it off. The exponential factors damp the state in the future or the past
as the case may be., They are inserted here so as to make certain future
limiting procedures convergent. € is a small positive number, having

the dimensions of energy, which will eventually tend to zero.

Switching operators are Green's functions.

The following properties of the ©. fﬁnctions will be needed:

-

+ S(t) , “ , (2.3)

4 6,(t) =

dt

8,(-t) = eg(t) | (2.4)
o () +o(t) = 1. (2.5)

~ Using (2.3) and the differential equations satisfied by the operators

U., U, one finds

e X4
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| [i 2/92t" ~ HO‘(t") + ie] Goglth, t7) S - tt),

[1a/atn - men) = 16 Jouten, 1) T §(t7 - &)

Egs. (2.6) and (2.7) entiﬁle G an& G, to be cailed thé_Grééh?s
functions of the systems Hy and H respectively. The language of Gréén‘sA
functions allows one to reformulate thé pertur5;£ion problem in tefms qf an '
integral equation which directly cénnects éne system with the other: |

- . o0 N
G (t", 1) = Gyultn, t,1)+/ Goa(t®, t101) Hy(£571) Gu(er7r, t7)dtirs
| ) | (2

Fourier transforms.

If neither H, nor H has any explicit dependencé on t, thén.

-1 Ho(t" - t7) : -1 H(t™ - &)
Upt", t1) = e ; U(t", t') = ¢

‘

T (2.9)

and the functions Gy, and G, depend only on the difference between
the times t" and ', Setting t' = 0, one has

-1 (Ho 7 1€)t | N
Goylts 0) = 71 64(t) e : (2.10)

-1 (H¥ie€e)t

G.(t; 0) : i8,(t) e : . (2;;1)

i

With Gg,. G, depending only one one variable it is useful to take their

Fourier transforms.



UCRL-2884

-1 8-
: 00 i Et ) L
G, (E) = V[:b Goult, 0) e dt = 1 ,
R . 'E“’ Hoi ie .
(2,12)
_ P - 1 Bt
GL(E) = [” Gu(t, 0) e . dt = 1 .
- E-Hzxie
(2.13)

As long as € remains finite Gy, (E), G.(E) are not singular for real E.

Algebraic relations.

With the use of the operator identity

[1-Ga+m? 3} At (2.14)

(a+ )" = a7t [1 - B(A+ B)°1J

G, (E) may be expressed in terms of Goi(E) as follows. -

— Gu(E) = Gg,(E) [1+ HG,(8)] | (2.152)

[1+0,m) By ) ooum) . - (2.15b)

) Eq; (2.15a) is simply the Fourier transform of the integrai‘equation (2.8).
It is customary to refer to Egs. (2015) also as integral equations. Thié
is because in order to deal with them anal}ticallx it is necessary to
- express. them in matrix form, in which case integrations over ﬁatrix
elements ggnerally make their appearance. It is notewofthy;'however,
that the Fourier transformation has made the equations of inférest more
‘égmpact thén before.

Egs. (2.15) can be sclved formally to give |

6,(E) = [1 - Gou(E) iy |7 6, (B) n (2.16a)

-

GOi(E)[jl ~ Hy Got(E)] — k (2.16b)

)]
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"Approximate" solutions are obtained by taking the first few terms of &
binomial expansion of these expressicns., Obviously, difficult Questiong
of convergence are involved here. .

Time independence.

The time independénce of H, and K will be assumed throughout

the remainder of this article unless otherwise indicated, Then the system

H, like Hy, has N. independent commuting constants of motion aﬂis'which _

remain invariarit under a transformation to the Heisenberg representaticn.

X = & H - H . - L 2an

. Introducing basic vectors corresponding to these donstants, one may write

o ,°<1> — ol(l,\o(l> ) H\O(/> : H'\o(‘/> | o (218)

<°<”'°.('> = &(x”,n’). ' o (2.19)

- A central task of succeeding sections will be to set up a borfespondenCev
between the vectors }ﬁ’) and the vectors VX°(> and to express the
former in terms of the latter. The operator ﬁ(t“, t'), which now has the,

form

i Hg t" -1 H(t" - t') -1 H, t°

UlLr, t1) = e e e , (2.20)

turns out to be of great importance in this undertaking.

. = S
B S W Pl
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3. TYPES OF SYSTEMS

Classification of states.

The states |X’) of a system H may be classified into bound,

mixed, aﬁd free states. For example, if thé,system has a claséiCal.analog

one may introduce the coordinates ,qi; placé the system in a‘réctangular
box of 51de L, construct, in the coordinate representatlon, an eigenfunction
1P(q) whlch remains finite as L ~»oco, and deLlne the correspondinp state to

be bound, mixed, or free according as the 1ntegral U/ﬂTP*‘4aqu is of order.

)

Lv,'Ln, or L , where N is the number of degrees of freedom, O<n < N,
and qu is the volume element in coordinate space, Relaﬁed criteria may
be employed for nonclassical systems.

Simple and complex systems.

If H possesses bound or mixed states than the rangesof.value of
some of the o(’l must include discrete sets even when the system is not
placed in a box. If all'the 7 for a givenstate [&’)  come from
discrete sets, the state is bound. The system will be called simple if
\o(’) is free whenever at least one of the_vd' comes from a continuum,

Otherwise it will be called complex. The states of a simple system are

always either bound or free, never mixed.

A complex system is usually chafacteri?ed as being compesed of twbv
of more simple subsystems. A mixed state is‘one in which some of_the sub-
systems are in bound states while.the others:are in free states. The
subsystems may interact with one another; but not strongly enough to
des£r0y>their individual identities: Otherwige a separation into simple

subsystems becomes meaningless., Sometimes one separation may be used for

one range of values of the (’/ while a different one must be used over

another range.
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In discussing the vgrious situations which can arise ii will be
convenient to develop‘our notaticn by repiacing the general labels d(' by
other labeis which distinguish between free and bound statégn lFéf'simpié
sfstemsAthe dreek 1e§;¢r“'3. Qili be reserved tc dencte free'staﬁés‘and-
the capital J . to denote Bound states. Egs. (2.18, 19) will then be
repiaced by

33y = Ty, S ED IR ED A |
| . ’ | (3.1)
Gy = 8(sns), Gl = g, 9, &My = o
. | (3.2)
If the system has a classical analog the operators which J collectively-
denotes are usually chosen to be the quantum counterparts of -the classical
action variables. Some of these action variables mayvbe.included am§ng
thé”‘x , though not all; in the case of frée states at least one of the J!
must be replaced by a label referring to the continuous4spectrum.

Mixed states of a complex system may be designated by expressions

S b

of the form |3,', S’ ..., Jg, Jp' ...) , the labels ‘SA_s, Sy oee
referring to the free subsystems and the JEQS0 JFﬂ ... referring to the
tound ones. However; the system of interest H is scémetimes so complicated
{as in the case of interacting fields) that the physical separation. into
_ubéysteﬁs is by nc means obvious; so that the labels above may have a

zunple interpretation only with respect to the reference system H . Thig

‘eads us directly to the next topic.

Separable, Hamiltonians.
The subsystems of a complex system need not interact with one

ancther; and if they deo not the Hamiltonian operator is expressible as a
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sum of‘térms,,each corresponding to only one subsystem, and will be cailed
segaréble,‘ The separation-may be more mathematical than physicalo For _‘
exaﬁple, fof two particles ihteracting through central fofces the relative
coordinates form one simple subsystem and the coordinates of the_center.of
‘mass another. |

‘ CIf systeﬁ H 4is complex the Hamiltonian operétor Hy of the
reference system is‘usually_chosén to be separable, the perturbation Hi ,
Iproyiding interaction between the simplé subsystemso"The labels used,to
sbecify the eigenvéctors of Hy then usuéll& have a simple pnysical
inte£pretation, |

A special example.

It is instructive to consider a special example of a complex éystem'
which iliustrateé some of the important situations occurring in practice,
and for wﬁich several different feference systems must be chosen depending
on circumstances,* \

Let a particle B. be attracted by a center of forge c, thé
interaction potential being H;. Lei‘a particle A simultanéously interact
“with B through a potential Hoo (Here, instead of one perturbation we

“have two; in the preceding discussion they have been regarded as lumped

together.) The total Hamiltonian operator for this system is

H

| Hy + Hy + Hy - (33)
where

H = HA+ HB ., ; (3.4)

# _ .
This system is discussed in greater detail in section. 12.
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HA and HB being the Ylﬂ etic energiess o

zonvenient to write alsc

Hy, = Hp+ Hp (s

whers HR is the rvtati nal and Hp ,fthe translational energy of the pziv AB.

Consider a scatiering situation in which the initial state finds
particie B bound in an orbit arcund C, with A coming in from intinity
to, collide with B. (See Fig. 1.) This state may be described by labels

SAl referring to the free motion of A, and 'JBCE referring to the bound

condition of B t¢ C. For this state the convenient Hamilionian overator.

to introduce fcr the reference system is H, + Hif which separates intc QA

end Hg + H;. The perturoaflon opnrator is ther: Hp. The sﬁaie vector

.' i o < >
SA s BC > wili sometimes also bte denoted by |C>(C1 > , the subscripts
0 and 1 on the X *s indicating that the Hamlltonian operator of the

reference system. which may be called the "unperturbed Hamiltonian;™ is the
: . .

sum of H., and H-.
- W

The initial state ‘:SA”; Ige > can lead to several types of
gs. & to 5. Fig. 2

2 eat ahai
ingi suate

oy

howe a

w

-

final states, as'pictured in F
which is of the same type as the initial state., with merely new valiues
N 9 g n 0( it .f L abei
. - .
A+ 90 s Yoz or the labglis.

In Fig. 3 particie B has been knocked locse from.its bond with C
so that both A and B are free. This final state may be dencted by
label NV VNP tively £} erturbe

abtels N p s Or collectively O ; the convenient unperturbed
Hemiltonian being simpiy Hg, which separates according to Eq° (3.4). 1In

:

this case the perturbation 1s H; + Hs.

v e
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'Figp L shows a "pick-up® érocess in which particle B loses its
‘bond with C and becomes bound with A instead. The convenient unperfurbed
Hamiitonian here is Ho—+.H2, which separates into Hp and HR-f Hy, and
the perturbatiﬁn ié Hy. Suitable 1abels}fcr‘this final state are ST"‘
JR" (refgrring to the free translational motion and bcund rétatiénal motion
of the pair AB) or collective1y  CXOQ"O The inverse of this particulafv
reaction is a dstripping"'process, which ié also qf interest, o

Fig. 5 shows the remaining possibility, a capture process in which
A,,B and C become all bound together. There is no cbvious referencé system
for this state; the total Hamiltonian operaﬁor H must be examined more
or less.directly. ,Suitable labels for the state.would be J".-or ql/’
referring to the total system. We shall see later that such a state:is
'éctually not a possible final state'fd; the reaction unless some cther
physiéal process, such as radiation, takes.place; that such a state_k&uld,
in.fact, be metdstable even if it"existed"for any length of time at ali;

‘The readef'may easily construct more complicated éxamples, for
-instance by adding a third potential H3 acting between A and' C, and
 considering the final state in which A 'is bound to C while B is free,
It is‘sufficiently clear from the present exgmples hgwever, how the |
~reference‘3ystem would be chosen under almost any circumstarice, of the-

~ same general types, which may arise.
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The basic spectral types.

The precise form whicﬁ perturbation theory must take in order to
desgribe the behavior of a given physical system H depesds on the
lgtructure of the spectrum of H in the energy range of interest agd also
on the structure of the spectrum of the most convenient reference system ‘H
For gimple systems three basic spectral types may be dlstlngulshed

l; .The simplest type of spectrum is the one which occurs when H/

and:Ho each possess only discrete bound states for which a one-to-one.

correspondence can be set up. An example of this situation is pictured in

Fig. 6 in which the correspondencs is indicated schematically by dotted lines

connecting the levels. There will in general be a shift in the positions
of the energy levels in passing from system H,: to system H. The
occurrence of possible degeneracies is not pictures in the figure.

2. The second basic spectral type is one which sccurs when H snd'
Ho, possess free statss as well as bsund, the discrete energy levels of the
bound states in each case lying below the continusm.leveis of the free
states,' In the typicsl sitﬁation the free states can be put into one-to-
one COrrespondence but suffer no level shift in passing from one system
to the other. The bound states, -on the other hand, will generally have
levels shifted relative to one another as in spectrél type 1, and may not
‘hecessarily be able to be put into one-to-one correspondence owing to the
fact that ‘one system may have more bound states ‘than the other. Such a
situation is pictured in Flg. 7 in which system H has bound states
which have no counterparts in H,. This spectral type is typically
encountered in simble scattering prsslems and will be dealt with_in

sections bband 7. The situations in which one or both of the systems has

no bound states may be regarded as special cases of it.

RS o

el gty
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3. Ih the third basiclspe;tral type H and H, again possess
both bound and free-state-so Th¢ important pointg_however, is that the
energy levels of someléf the bound state; of the reference systém H§- fall.:
within the range of the continuum levels of its free states., These bound
states generally have no countérpartsrin the éCtual system H. The switching
cﬁ of the perturbation H; annihilates them except in trivial cages in which
there.i; no coupling between the bound and free states. Situations of“this
¥ind arise in the studj of decaying systems and will be treated in sectionAllql
The states of H, which have no couﬁterparts in H are those which in
‘pﬁysical reality undergo decay.’

The energy specfra of complex systems will generally combine the
features of the three simple basic types. This is evident, for example,
in the case of the special complex system pictured:in Figs. 1 to 5. The
combination of basic-type features may not, however, necessarily result from
simple additivity of the subsystem spectra. This is especially true of
complex decayihg systems, which may possess spectra of tyﬁe 3 as an intrinsic
result of their complex character combined with special properties.cf the
interaction Hl° In fact, when spectrai type :3 occurs for simple‘systemS‘
the reference system. Ho' usually has some rather artificial properties“
" which arise out of the peculiar way in which a deecay problem péses.itself°

The existence of situations involvingAdecay is responsible for our
previéus remark that the state pictured in Fig. 5 could not actually be a
poessible final state for the collision process étarting in Fig. 1. Energy
must be conserved in a collision, and a discrete energy level of a bound
state (Fig. 5) would thérefore exist lying within a set of continuum
leveZle(Figso 1 to 4). The bound state of.Figo 5 copld be stable at the

energy in question only if a barrier were placed around the system. The



UCRL»288&I
=29

removal of this barrier would be a perturbation‘aﬁnihilating the state,

Ve must finally mentlon the important 31tuatlon pictured Jn Fkbn 9

in which H has free states whose contlnuum levels are Shlfted relat;»t
to those of Hjo This situation is not counted among the basic spectza
types since it occurs non-trivially only in connectlon with comnlex
systemss specifically in quantum field theories, It can occur in
‘combination with any or all of the basic spectral types and has
historically been very troublesome, It will be dealt with in sectioﬁ-"

10,

v

. e e
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L, SIMPLE SCATTERING

‘Confingdbforcesn
The theory of scattering provides perhaps the most natural point

of entry iﬁto the further mafhematical dévelopmént of the operator fofr;alismo

For definitenesé.consider a system H génsisting of a single particle‘

interacting with a fixed scatteréfo The fcrce exerted bty the scatterer

. need not be centrélly directed nor even velocity indepeﬁd.enﬁt° H&wéver,.

it‘may be'necessary to chocse the referénce'system Ho so as to inclﬁde

part of this force, for it yili_be assumed tﬁat the remgiﬁing forée is

confined to a limited region of space called the scattering region. If the v

force is attractive the energy spectra of systems H, and H may haﬁe‘the :
structures shown in Fig. 7, although, in general, boﬁnd s£ates may Bé

absent in éither or both of the two, In any case bound states will ge“
ignored for the present. |

Retarded waves,

The'scattering problem is solved if the free-state eigenvectors of
H are known. In analogy with the wave theofies of 1light, sound, etc. one

‘may write these eigenvectors in the form -

‘3+l> ~ 13°l> + }ket'> _ - (4.1)
ﬂWhere. \ré£3>v repfesents a reﬁafdég wave and '|S°’> is a ffee—séaté

eigenveétor of H, suitable for fe@resenting the incoming bafticle (e.g.
incidént'plane Qave, or.spherical wave of given angulaf,momentum}o

-Eq. (4.1) presupposes at once a natural onefyéwone correspondence between
the free states |So’> of H, and the free states ‘3+/> of H,

 The significance of the + sign on the 3,/ will become clearer in



UCRL-288L *

-31-

subsequént pavagraphs and is conhected with the fact that a scattering prdcess
introduces a preferred (in this case positive) direction in time infélthe

. scheme of things,.

| Eq. (4.1) is supposed to be an ésymptotic equation and should more

properly be written in the form

<q;.l 3, ~ <q'| } So'> + <q" \ ret'> (4.2)

where ﬁhe_ q" are the coqrdinétes of the particle_ahd the asymptotic region

is that at léfge distances from the scatteréra However, no misunderstanding

will érise if the coordinate eigenvectors iq") are'freqﬁeﬂtly dropped.. :
- The Qriting of (4.1) as an asymptotic equation is sufficient fof |

presént purposes since a complete knowledge of the eigenvectors ]3+'>

ié not ‘actually necessary for the solution of the séattefing problen. 'Onlyh

the'asymptotic behavior of the corresponding wave functions(is needed;

vWave packets.

‘The scattering procesé is more graphically represented if one
constructs a wave packet:

v R

[y = 2 £ (1.3)

where f( So') is a (generally complex) function which is "peaked" around
a particular set of values of the: So" and where the symbol 2:'
denotes a summation over all of the dashed variables. The wave pécket

may itself be separated into an incoming part and a retarded wave.
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) ~ Ly e | ww
lm) = 20 a3,y o (4.5)
Iret,>~ S f(SQ‘)] ret') . o (»L.»,é_)

The vector 'Ef) is a constant Heisenberg state vector. To picture

the moving packet one must pass to the Schrodinger representation. With

the help of (1.20), (lohﬁ) and (2.9) one getsu ‘
-1 Ht -1 H't ‘ o
lpw) = ¥y = 2 e SOOIy L wen

Thé complex phase of the function f- must, of course, be selected
in such a way that the packet moves in a physiéally ialeresting fashion.
Here it is necessary to rely on a previous knowledge of the behavidr,ofT
wave packets, based on more precise details of the structure of a.given
Hamiltonian H (or Ho) than can be got_from the abstract operétor
formalism‘alone;‘ The packet must be formed in such a way that for large
negative and positive values of t it is found at a large distance from
the scattering region. Under these cifcumstances only the asymptotic parts
of the energy eigenfunctions cghtribute significantly to the wave packet,

and (4.7) may be replaced by

t > too

[pe) —= 3 e,y )y L e

For large ]t\»both (4.7) and (4.8) provide a mutual cancellation of
eigenwave amplitudes in and near the scattering region; although the
 precise manner in which this cancellation comes about is different in

the two cases,
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Definition of lret‘}ie

So far the vector ’ret‘ﬁ has not been well defined since an
infipity of differgnt functions '<q" ]ret') can be chosen, all héving
the same asymptotic behavior. The most practically convenient choice is
oﬁe which makes Eq., (4.1) exact,'rather than merely asymptotic, outside
cf the scaftering region:

<q”’]3+'> = <q”l§lb'> + <q"l ret'> - for q" outside scattering

region, N (h,9)'

For then, since <q",$ > satisfies the Schrodinger equatlon of the
‘ reference system outside of the scatterlng realon, S0 aloo wlll <u"‘ ret‘>
Indeed, <q" lret2> may be allowed to satisfy this eouatwon everyvhere

except at a single p01nt within the scattering region, which may be caLleﬁh

the origin:

C(Ho - H') |retty = |87) | 7 | | (4.10)

where .

hY

<q‘ﬂ S{> = O exceot when q'' is the origin: (4.11)

The function <q" lret‘> then has a simple structure in terms of known
functions which provide an analytical apparatﬁs independent of the“si;e
of - the scattering region and which can therefore be applied to a_wide
variety of problems.

(L.10) has, in general, two independent solutions. It is
necessary to choose the linear combination 6f these soluﬁions"which
satisfies the boundary condition appropriate to scattering in the nositive

time direction. This boundary condition may be expressed in a form which
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makes use of the wave pécket picture, namely

, ¢ -1 H't .. : o ' A

Z e £(3, )lret“> —_— 0 . . ‘ (4.12)

’ t > -0 . .
That is, the retarded (orﬂséattered) wave disappears as t tends to - 0o

In fact it gets sucked info the origin upon time reversal; or conversely, .

it emerges from the origin as a scattered packet as time ﬁasses from - oo

to co . The vectors | 8’> may be regardedAthe sources or ginks of this

packet,

Advanced waves .- - . o . ,:§~
The other independent solutioﬁ of Eq. (4.10) corresponds to an

advanced wave, satisfying the conditions

e et

t

(o < H) Jaav') = |8), - (4.13)

Z' e=-i Hvt-f(_‘%?)'advq> —_—0 . . NOR

o000

The advanced wave is annihilated with the passage of time.

For. the correlatiqn of actual experimental results with the results
of the theory ofjsééttering'the.ﬁse of wave packets as above is absolutely
Vnecessarye (See further. section 8.) Egs. (4.12) and (L.14), expressing

R

boundary conditions,{are'crucialo it should be observed that these

-

equations require the retarded and advanced waves to he completely sucked

into the origin as t tends to «~oo and + oo respectively. This
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‘ obviohsly requires the use of finite Eackets.*
In analogy with the definition of the "radiation field" in

electrodynamics [H{}and acoustics, one may define vectors

2

lrad') = ,lfet'> - ‘adv') | _ (4h.15)
satisfying
(Hy - H') |rad') = 0. (4.16)
Eqsf.(hOS), (4,12) and {L.14) then yield
-1 HMW .
Jpwy —=22" ¢ a3, (1.17)
L =» ~o00
-1 H't ‘ S
@) —= " e £(5,") (5o ) + ] raat)) . e

t o0

-.The scattering overator.

. At this point is is convenient to return briefly to the Heisenberg_
representation and Eq. (4.4). Instead of separating the packet into
incoming and rétardedeaves, one may also separate it into outgoing and

advanced waves:

vy ~ | °ﬁt_> + | adv) | O (4.19)

There is a slight difficulty here, connected in the rionrelativistic

case with the fact that a truly finite packet tends to spread infinitely

fast, and in the relativistic case with the fact that a complete sé£ of

eigenfunctions is not available with whichlto construct such péckets if
v oﬁly positive energy particle sfates are‘ailowed“ (Cf. van Kampén,

referencefﬁoil) A more detailed study (e.g. Low, reference [/6]) shows,

nevertheless, that Egs. (4.12) and (4.14) are-essentially correct.
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where | S .
aavr) = 207 £(,) faart) L G
jout) = fanywfra) )
|raa) & |ret) - |aav) - Z ' (5.") | raat) . | (a,zz).

Heisenberg'Dﬁ]has introduced an operator S called the scattering operator

which is defined by the equation
|out> = S ’in> ’ for all packets. ' - (Ls23)

In the limit of a very broad packet (which is equivalent to a very peaked

function f(§,') ) one has 1in>-—§-'So°> s ‘irad>'“>"radi> , and evidently
EECA IO RREICUE O A E DI e

In its matrix forﬁ the scattering operator is known as the S-matrixo
The S-mgﬁrix is determined completeiy by the asymptotic behavior of the
time independent Heisenberg eigenfunctions of the Hamiltonian operator .Ho -
A knowledge of the S-matrix compleéely.solves the scattering problem.

The S-matrix may be related to the transformation operatof in the
interacﬁion representation, through which its explicit cdnstruction may be

achieved., Here it is necessary to assume

Ho! = H', » - (L.25)
i.e, that the enérgy levels undergo no shift in the passagé from Hy to
H. Eq. (4.25) is automatically satisfied fof the simple scattering problems
with confined forces presently under consideration; the énergy being simply

. the kinetic energy of the particle at large distances from the scattering
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region and being therefore common to beth systems H and AHO‘, For other

systems to be considered later, however, it will be necessary to take care

in making this assumption. - |
quh(l°39) gives the transformation to the interaction represéniatidn,

Applying it to Egs. (4.17, 18) and using (L.25), one gets

Peoy = 7o)

By = 2005y (5,)) + raary 3 2 few)

"

. Evidently

| S = U(oo, -00) o . (4.28)
"Thus the transformaiioh operator in the inte.raction Arepresentation contains |
'full informatiéh on the behavior of the free-state eigenfunctions of‘ H in
the asympt‘otic region, It also contains cdrﬁplete'information on their
Behavior everywhere else -as weii, For, remembering that all-répf’ese'ntatioﬁs |

coalesce at t = O (Eq. (1.43)), one may write

|}E> = U0, —oo)lﬂ‘p("oo)>' = 'U(o, -50)‘ in> lo | (Luo29).' '

. ? -
In the limit of a.very broad packet one has \\in>—-> |30> and

I1> - ‘S+'> o Hence

s

)y Tew [5) . o

10 S PEO T 26y

.27}

e
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5. LIMITING FROCEDURES

Adiabatlc sw1t.ch1ng°

| Eq. (4.30) expresses the free-state elgenvectors of the system H
dlrectly in terms of those of the reference ‘system H and p01nts the way
toward their explicit construction. However; the problem is 1mmed1ately
encountered of how to give a proper definition to expressione of the form
U(0, ¥ ) and U(+oo, #oo),: whicﬁ is certainly not clear from Eq. (2.20).
. A key to this problem is supplied by Eqs. (4.17, 18) which state that for
large values of ]tl the wave packet satisfies the Schrodlnger equatien

of the unperturbed reference system. (Remember the \rad9> are eigenvectors

of Hé by Eq. (4.16).) As long as the packet is at a large distance from

il

the scattering region it matters very little whether the perturbation Hy ‘
is preeent or not, This suggests the uSe‘of the widely employed
mathematical device_of switching the perturbation on a¥ the packet approaches'
the scattering region and off again after it has been scattered, in.ofder
to give a precise definition to the limiting procedure implied_by the
symbols t —» too.
In order to accommodate the widest variety of paeket sizes and
shapes the.switching process should be ver& gradval; i.e. adiabatic.
There are an infinity of modes ofvaccomplishing adiabatic switching, but

the one which is probably the simplest analytically is that which replaces

ad -elt\ :
HPNE) = e Hy € —» +0. (5.1)

The time of duration of the perturbation under the adiabatic switching

procedure may be defined as



UCRL-288L

=39~

u{:?hlad(£) /iy = 2/€ . S '14'(502)-,' 

3

Passing to the intergétion represenﬁatioh (Eq. (1;38));_one gets

. 1H_t -1 Ht - €[t . - _ .
Hlad(t) = € ov Hl € ° 0 . (503) )

This equation may be substituted directly into Egs. (1.3la), (1.32a) .
to get explicit expressions for the interaction transformation operétor'

ﬁad(t", t') under the adiabatic prdcess (5.1). It is convenient to make

the following transformation of variables:

tl = tl,s ' o t’l = tl » o
1] §
' = oty -ty b, T by +ty o
(5.4)
v oz b -t b= .4t ¢
‘n T Yn T Vpe1 s n - ‘1"+ 2 soe T Ly

____Then one gets for the operators. ﬁad(t, Foo ), vhere t is positive or

negative according as the oo carries a + or - sign, [#0]



AR | ~ UCRL-2884

=4O~

o0 .
—ad n-’ ad C | ’ g
P, 5e0) - 142 F1) S dtl'm([; dt_ 0z(ty =) B(t,")...0:(ty")
’ n=1 _ '

i - i :
i Hoty' £ nety PHE et S H (b ceowty))

e Hloooe. - 'Hl e

. o e . L
y Foo Foo -1(E' - H % i ne)ty
1+ 2 2o/ dty ... at, ' e ° Hy oo @

d

S(E' - H i€ )b, | N
coo € Hllao >'<O('o,

i Hb ;&
ot _
e 1+ 22 1 ) L.
n:l E'~Hot.in€

ICH

-1 Hgt
e b

o0 0 ) l Hlad(t)
E'- Hoz i€ .

- (5.5)

where E' = 'Ho

. The second form is obtained through' multiplication on
- the right by the equation

1= > e ), | | S (5.6)

which expresses the completeness condition for the basic vectors of the
reference system,

Scattering will be properly described if we now define

U(t,Fo0) = >0 PP, Fwo) , | | (5.7)
.A l-I(i:.oo,fbo ) = »ﬁ(o,;oo)* (0, Fo0), (5.8)

whenever the 1limit (5.7) exists.
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Convergence of the series (5. ))

Postponlng the quest:on of the ex1steqre of the llmlt (5 7), we
‘shall first say something about the ﬂonvergence of the series (5.5). thtle

generality is lost if t is set equal to zero so that

Bad(os F oo ) = Z:I ut(aoi) 3 1 ‘ | (5»9)
u*( “01) ': Z: unt(dog)' ) - (5..10)

' n=0 ' : o
l”""‘Ot:(O(o?): l‘xov><‘xo’l? | o (5.11)
a (o) 2w (B d g, (6, a1, (5.2

r (E) = (B -Hoxine)lH . o (5.13)

Since Ho is an Hermitian operator the following inequality holds:

E'-H. % in€ ne .- (5.14)

A\

Therefore, by the ratio test of analysis one can assert that the series.
(5.10) is absolutely convergent as long as € remains finite. For; the
"ratio" of successive terms is given by expression (5.13), and

lim ‘ .

rp, (E) = 0. - (5As)

n —oco
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Strictly séeakingj'more rigor is required here. Eq. (5.15) is vaiid.
only if, for finite n .and‘le . rni(Eﬂ) is a bounded operatcr, i.e. if
all-its eigenvalues are finite:*‘ In bounﬁ=state problems, and in simple
scattering problems with forces of finite range; this is generally the case}v .
However, in so-called "local" fieid theories rnt(Ef) is unboﬁnded, the
ﬁrouble'arising from the high energy matrix elements of Hi& Conventionai
practice has therefore been to impose an artificial high energy "cut-off" od _
the mgtrix,elements, then to zarry out certain "renormalization" procedureé
(see section 10), and finally -to allow the cut-off to become infiniteo’

(Even when the cut-off is never explicitly mentioned this is whaé present
renormalization4techniqués amount tc.) With the understanding'that such
procedures are to be adopted if necessary, one may regard ﬁad(OS=F oo )

" as well defined by expansion (5.10).

Passage to the limit € —» 0,

-Difficulties now arise, however, in the passage to the 1limit € =0,
Aithough the operators ﬁad(t54=oo ) are well-defined for finite € their
matrix eleﬁents may nevertheless not have weil defined limits, For exémple,
these'iimits will later be seen generally not to exist for bound state matrix
elemeqts‘or,‘in the case of complex‘systems; mixed state matrix elements.
ﬁoredﬁer,.these limits may rot even exist for all the free state matrii elements

of simple systems, with which we are primarily concerned at the moment. We

shall attempt to deal with these difficulties in the remainder of this

¥ If the eigenvectdrs of rné:(E‘) do not form a complete set, r,,(E') is

said to be bounded if its norm is finite. (For the'definition of "norm"
see section 9.) Notice_that we do not say that H; by itself must be e

bounded. For example, any potential which has even thé weakest kind of

singularity is unbounded, although (E*) may remain bounded.

Th+



. UCRL~-2884 .
43 o

sectlop and 1n the next secnlon but itlls hefe that‘the formal theory éuffers
'Amost from lack of rigor. ' ‘ . | [ i _

- In the 11m1t of vanlshlng € the mathematlcal role played by the
imaglnary parts of the denomlnators . Q‘ - H, % ltn€ -(m - l zoo,n) in
expansion (5 5) reduces solely to one %f determinlng the contour for lntegraglons’
(if any occur) around the pole at E'I In this 1limit therefore the. ratlos .

v

r4(Ef) may all be replaced by
o ri(E') = Gou(E')H, : L (5.16)
and one’ Iﬁay write

i Ht | -1 Hyt T _
e U(O *oo)e s (54

Fan

g
.

]

where . : .

-E(.o,mo) ; Z Z [Goa-_(E')Hl] !0( ><0(0'
(5 18)"

Analytic continuation.

The series (5.18) may'be regarded as an expansion in powers of a
"coupling constant®™ g +to which the perturbation Hl is imagined as‘being
proportionals ) . |

Hy = gV = g(9Hy/9g) . - . . (519
The free state matrix elements of series (5.18) are acdtually known [44.) |
to possess finite radii of convergence in the complex g-plane for mahyh
simple scattering'problems, Inside these radii, which generaliy‘vary from
one matrix element to another, (5.18) defines operators U(0, ¥00 ) which

are analytic in g. For these same problems; however, the transformation
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operators from the eigenvectors of Hj, ’s.o the eigenvector's of H are‘known t{-&é]
to Se'a‘nalytic everywhere except at discrete sets of poles. Therefore (5.18) . |
may be used to define u(o, "=Foo ) everywhere in the g-plane by analﬁié o
continsationo We may advermse thls possn.buity by replac:.ng (5 18) by its
formal equivalent

| -I—J(O~¥.oo) - Zl[l-(} (E')H]-’I\o( Mo '] e

O e B °-._(5°20)

‘It will become apparent that this closed expression qulte generally has |
.meaning for all systems even when its expansion does not

' Alternative llmiting procedure.

Owing to the replacement (5 16), Egs. (5. 18) and (5. 20) a.re not
obtainable from an adlabatic switchmg of the perturbation as (5. 5) 1s., -
They derive mstead from a somewhat dlfferent limiting procedureo Usmg

Egs. (2,163.), _(2é13), (2,,11) and (2.20), one may write -
. ' - %
216 Lo lag) (ay]

U(0, F oo )
' iHt
cie S 7 Gy (t, o) ° at

€ f_,f’ o (te (0, t1)arr (s.21)

where t' = -t. Egs. (5.18, 20, 21) therefore result from a conventlon
which takes as the value of any bounded fuhction f(t) at t = +eo0 the

expression *[30]

. im g Fet oo .
f(xe) =z 1 € f.,o 0y (tle. flt)at . - (5.22)

~

¥ : ' : A o
- In some field theories there is evidence that the expansion is nowhere:

convergent , [is to 122]
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If f(t) approaches a well defined limit as ¢ becomes‘iafinite tﬁen'(Sozé).
ivesthat llmlt, as may be readlly seen by a simple partial integratlon
However, (5.22) elimlnates any part of .. f(t) whlch oscillates like |
elwt (Ws# 0) as t-»roo, It will be seen in the ,next section ‘that‘.‘t_.‘h'e
operator E(O, t) freQuentlY4has such oscillating coﬁponents. 'These‘ v
components will therefore be eliminated by the &efinition'(5320; 21).

‘I; is possible here to anticipate the fact;thatfthe‘operators
U(0,F00 ) are often non—-uriit.ary.., ‘Although the cperators ﬁad(O 4= ao) | a"re‘
necessarily unitary by their constructlon, the operators U(O,=Fco) are,
by (5. 21), expre551b1e only as weighted sums (not products) of unltary |
‘ Operators, whlch certalnly does not guarantee their unitarity,

Conventlons to be adopted

The convention ( 5,22) is, for the remainder of this article, to
. be applied to the definition of the operators U(t,Foo ) and vﬁ;(ﬁoa, t)

as well as U(O,Foo). Evidently then

ﬁ(t,"FOO) - ‘ﬁ(t, O) ﬁ(o,Foo) . ' | “ . : (5°23) .
- i ‘ .

= Utreo, 1)° & (5.24)

) = G, 200" e

From now on whenever expressions like (5.18, 20ﬂ, 21) are ivritt'en, :
invol\_ring the Green's functions. Goge or- Gz , it will always be under-
stood that the 1imit €-— 0 4s finally to be taken even though not

explicitly indicated. With this understanding it is customary to write
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E_ = pl, . ‘ (5.26).
Zee2 Ok
TE2+e? - L | R
Gos(E') =@ 1/(E' - Hy) * TiS(E' - K) , (5.28)

i
\

where the 'sylmbol. (P indicates that the pr;incipal vaiue of' ’af;'xy integfal' '-; '
in which i£ appears is_ to be taken. Eq. (5,28)., whic;h s‘epar_ate§ the ‘Grgen’s
funiction into its real and imag'inary parts-, makes explicit the effect of

the contour integration around E! . | |

. Eq. (5.27) may also be written in the form

4 1 Bt - €ltl 4 1 pe i Bt
SE) = (am) S e dt ——> (2m) ,[“ e dt .
| | o (5.29)
This leads to the purely formal equation
5 (E' ~ E') — (27 )fl./_‘woodt o o (5.30)

which we shall have occasion to commevit on later.
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6. LEVEL SHIFTS

Construction of the eigeﬁveétors of . H.

The operators U(0,¥00) have now been given a clear definition, .

and we may proceed to write Eq. (4.30) in the form ‘ S o

I527) = BO,Fe) %) = _ie s
S E' ~Hzi€ Co
: (6.1)

which followsbfrom {5.21) and (2;13). Here, in addition to the VeC£ors .

‘Sf/> répreséﬁting retarded-wave solutions of the.scahtefing broﬁlém,~‘
we.have also introduced the advanced-wave solutions lK-')' . Multiplic;tion  ;
of Eq. (6.1) by E!' - H% i€ yields (E' - )34 = O in the 15_un‘i;t_i
€ — 0, showing that the IIt’> are indeed eigenvectors of ’ﬁ; -

This conétruction of eigenvectors of H evidently worké'only if

E' is an eigenvalue of H as wel]l as of Hy, i.e. if there ié no level
shift. This condition is of course satisfiéd for the free states in-éimplé
| scattering problemé (Eq. (L.25)), but it is not generally satisfied for
bound states, nor even for the free states of some complex systems, e.g.
interacting fields. For bound states the construction (6.i) gives § vaniShing
" result in the limit .E:ﬁ> 0 since E' 4is then generally not>1ncluded4in

ga——

the spectrum of H and the denominator E' - H+ 1€ remains finite. Thus '

]

U(0,F00) | 3') = 0. \ - ("6‘,2)

" Construction (6,1)'may, however, be salvaged for general use through
) - \ ' - level =
a simple reselection of the unperturbed Hamiltonian operator. Let thejpshift

(if any) of the state -]0(°’> be denoted by A E' so that
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H' = H,'+ AE' . T | L .v.._;'(‘6e3)_h

The AE' are of course unknown in advance and must be computed i.n the
course of solution of the problem. In sectlons 9 and 10 it will be shown
how these level shifts may be determined; but for the_present thls,questlon '

will be set asida, Introduce the operators

AH, = "oy aw A T (V) B
FE, = Ho+AHy , | R o (6.5)
¥, = B -AH, . | T (68)

L)

A H, - commutes with " H,, and the: ' o’y are ‘eigenvectors .of ,’jﬁ; ag
well as of Hy. If F{, is taken instead of H, as the unperturbed.
 Hamiltonian, and if J, is regarded as the perturbation, then no levei.'

shift oceurs, and
e | (67

"~ Construction (6,1)' may therefore be used for all eigenstates of H whi(ﬁh'

have counterparts in Hy, if one writes

oy = Uormlas) = _xie ;d;» |

where u(t" t') is t.he modified transformation operator in the inter-
action representation defined by the new operators 'JC H, i’y and Z % is'"
a positlve real normalizmg fact,or, th.e necess,:.ty foAr whic_h mll present_.ly -

become apparent. It is to be remembered that E' in (6.8) is now an

eigenvalue of the total Hamiltonian operator H.
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The normalization constant.

The normalization constant Z' has a 31mple physical 51gn1ficance
which may easily be seen by multiplying the vector ]a(,’ ) by the Hermtian

adjoint of Eq. (6.8) and observing that:

ED_H-FiG \(x*‘> lt) ‘ R

in the limit € —>0. This relation together with the requirement

(0(:’}) 0(3, > ‘=,l leads to“

-

(o(’\O(r> : R (R T

Z' is the probability of flndlng the unperturbed state |o{ o’f) in the} '
perturbed state |4’ > Therefore: ' | |

0<z' < 1, . C(6.11)

In the next section we shall see that Z' = 1 for the free states in é‘}mple
scattering problems, so that Eq. (6.1) is. still valid as it staéndsé Z' is
genérally different from unity, however, for problems involving bbun&,’ states .
or interacting _fields. | |

The case of bound states,

In the case of bound states there is a high degree of . arbitrarmess
in the construction (6.8). It is apparent that = iE(E' - H)/(E* - Ht i€)->0, ',
so that the expression + i€(E' - H = :‘Le)"l l‘\P) is, in the limit, an

eigenvector of H corresponding to the eigenvalue E' regardless of the choice

That Z' is independent of the % signs may be inferred by taking
the scalar product of (6.8) with itself.



UCRL-2884.

=50= L

of the vector ]1P> ‘Therefore fhe tound states of the two systems H
and H can be paired off in any manner desired, the,level shlfts ASE‘,#‘
being_adjusted accordingly. - | | L
Thls arbltrarlness does not exist in simple scatterlng problems‘e
ror in quantized field problems, For these problems there is a "natural™
‘pairing of stafes between Hj and H ‘which is detennined flrst of ali by
a "natural® choice of H, and, secondly, by the phys;cally motlvated -
procedure of adiabatic switching. We have seen that the validity of
adiabatic switching for these problems denends on wave packet arguments;
No such arguments exist in the case of bound states However, there exlsté
a celebrated ‘theorem, which will be proved in section 9,-whieh permits the
extension of the adiabatic pairing process to bound systems as we‘l as to

all others. This adiabatic theorem states-that a bound—state elgenvector of

HO is dynamically transformed into a bound-state eigenvector of H when the.
ﬁerturbation is-switched on gradually, provided the vector is subject»ie'
certain well known restrictions (see end of this section) if Hy poesesses,-
degeneracy which is removed by the pértureation.

In the limit of vanishing € ', therefore, ld,J) may for bound
states as well as free‘(witﬁxhpprepriate restrictions when degenefacy is’
removed) be defined as U° (O F00) ]‘O(°-'> ' apart from a phase fa.ctor'c |
Unfortunately, as we shall presently see, Qhen a nonvanlshing level shlft

cccurs the phase factor oscillates infinitely fast as € goes to Zero.,

This prevents ﬁad(osaféo) “from being well defined in the 1limit. However,
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the difficuity can be avoided by writing [34]

s

-.z'-%'{()(t’> 7‘ : | eiincl) -I’Jac,ll(O,:!:oO) | &’ S (612) '
| - (%) 50, 700) |0,y |

The numerator and denominator of this expression have the same oscillating

© phase, so the ratio is well defined. It is evident that the normalizihg;"'
‘ %* T B . s
- factor has been correctly chosen. S - i

-

i
4
!
!

Remaining arbitrariness.

. i .
Actually, the construction (6.12) still does not remove all the

‘arbitrariness in the pairingiof bound states. The pairing still depends

on the operator H,, and an eigenstate of H, which passes'ove£ into a
certain eigenstate of H can.be made to pass over into guite a different
eigenstate of H if Ho is redefined. This‘may be illustrated bﬁ the‘éimple |

system

&

which has a discrete spectrum of only two levels, O:and 2. A choice-of H°

‘.according to.

1 0 0. 1.
H - . , C H - i » ] R )
° 0 -1 : 17 2
. {6.14)
‘§ . . o . ) ‘ ! ." ' ' < .A
*  Evidently also, W (0,Fc0) = mo -Uad(o,xbo)[Ua'd(*oo,'O)]‘d 5

where [.ﬁad('-roo, O)]d denotes the diagonal part of . ﬁad(‘-;oc, O}A,-'

(For definition section 11.)
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leads to‘the adiabatic paring*. \ '
FER G VA AN -~ {o 1/
0 ' 1/‘1—2— H . ) 1_ ”l/vré- ) : (6o15)
. . . s X § .

i

i

while the choice

o (6.16)

leads tq'the opposite pairing. 'The two choices correspond fespectivély'to‘
| -~ [2 o) | - 0 0
.J%C> - o o . and | , :}ﬁo ‘= 0 ) I
(6.17) -
\ s

It is not possible to tamper with H, in this ﬁanner.invsimﬁlé :_'
scattering aﬁd quantized field }f);'oblems° In the simple'scatteriﬁg_casé
it is pOssible‘to prove that Z' = 1 only if Hj 1is chosenﬁin the'dSuai‘;
manner, in;which the remaining~§erturbation Hy describes é forc;.ﬁhich
is confined to a limited region of space. This last ﬁoint is e§Sentiél,
-~ as will be seen in the next section; and ﬁhe proof would no longéf ﬁol&‘if}
Hy . were redefined as in (606), since the arbitrary level shifts 2& ﬁi )
would not corrgspondvto a confined force. In fact; ever&thihgﬁw&ﬁl&ibfeak '
down, ;s one would consistently get _Zi~4> 0, o
Con£ras£ingly, in the case of quéht;zed fields airedefinitidnAof

the type (6.4, 5, 6) is carried out precisely'id order to cancel that‘paft_«

*; ' - : V ' . . N . . B -
Here it is sufficient-to muitiply H; in (6.14) by a variable %, then
to regard H as a function of X and observe the continuous change of

its eigenvectors as X passes from O to 1.
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| | :
i
of nhe intera~t¢on between field quanta which is unconfined (i eo, which

ex1sts no matter vhere a given quantum is located)g the 80 called self-

interactlonsa However, ﬁo must be chosen in a deflnlte way, and there ia
no arbitrariness in tﬁe level shifts. (See section 10.) |

In pracfice, of course, there is usually a "natural® choicejfor Hy
even in bound state problems, Therefore the remarks about erbitrarinesskare
largely academic,; and we shall continue to_aseume that the,corresponaence
between the eigenstates of the actual system H -and tﬁosé of the reference -

system is unique and well defined in all cases.

Oscillating_factors

The effect of the level shifts on the time behavior of the unmodlfied
transformation operator U(t", t*) may be readlly seen, From Eq. (2.20)
and the commtativity of AH, with H, ene gets | E
- -1 AHy t" _ iAH g
U, t1) = e QL(t", t') e s o (6as)y

or, in matrix form,

<0(°”'ﬁ(tn, t')’o(o/> | = eﬁi GEnT AR <O( ”,U(t" tﬂ)l()(°/>

. (6.19)

When AE' or AE" is different frem zero the corresponding matrix
elements of a(t", t') have oscillating factors. Because oflehese;fectors
the matrix elements are forced, by the limiting conveetien (5;22)5 to" |
vanish for t!, t" = oo , and results like (6.2) follow. o

The fact that Z' is generally 1essﬂthan‘unitj implies that -
‘ ﬁ].(t", t') itself possesses additional osciilating parts which afe

eliminated by (5.22). Otherwise the unitarity of U (t", t!') would



UCRL-2884

<5l

‘ guarantee the nomahzatlon of the vectors ]O(,:’> w:.t.hout the’ factor Z'%
- The simple exa.mple (6 13) readllj shows these extra osullatlonsc -Us:mg S

the first ch01ce in (6, 1’7) for 2}60 , one has

| | 1, Rt
— L Ht -iF6et s*e
’u-.(os t) - & e ' = 3 B

' 1 - -2it ,

(6.20)
yielding the non-unitary result " | |
' 1 -1 s
U0, Fo0) = % _ o : (6.21)

whic.h leads to Z' = 4 for both eigené)tates of FC, . The oscillations
of U (t"', t7) ;genef‘ally do not . occur multiplicatively.

The fact that the level shift oscillations in I—J(,t", t7) - do :o,cc‘:u“r"-'

. multiplicatively,allows one to determine the form in which the oscillating““,"'

pﬁase 'appears in ﬁad‘(o-’?—oo‘) Regard the adiabatic smtch:mg (5. 1) as due ‘

to a t:une variation in the coupling constant of the form
’ ' B ‘ ‘ .
dg/dt =+ €g . L (622).

“The -1evel shifts AE! at.any instant oi‘ time will be“fu.i’ict{ions of g
. The operators Ua (0, F00) .may be expressed as 1nf1n1te products of 7
fac_:t'ors ? (t t + dt), each factor contmbutlng ‘an a.mount AE'(g)dt
, fté the -level sh;f’c phase for: the state IO(°f> . The-total phase change

"between 0 ~and F 00 is evidently -

A

S : i - i ) . o
Jo BAE(R)t = F€ % AE(g)e™ ag . (6.23)
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The matrix element <0( and(O Foo ) ID(0’> will t,herefore have as a factor

exXp [(z €) / AN E?(g)g -1 dg] Its other factors will depend on € m

a much less sn.ngular way. Hence one may write.

1im )
AE - € o iiegac’m<0(o’

T S

Rigorous derivation of Eq. (6.24).

Eq. (6.24) is useful theoretically although it is not to be regarded

as providing a practical method for the calculation of level shifts, | It,' -

may be derived in a more rigorous fashion by using the ‘time-ordered expansions
N ) : S

) i ,

(1.31b) and (1.32b) of the interaction transformation operator; and the -

equation of motion (1.26) for operators in the interaction representation.
: - .

One writes [3 47

(Ho'v 'Ho)ﬁad(oy;w) lo(,;') ‘_= [ﬁ_ad(o’ 4:‘00)‘3 HO] ]0(°/>

[[exp(ivéwm ﬁlad(t)dt)‘}i 5 Ho ] iO( o/.>

& +1

> G Y [ ey Ty o
0 0]

n=1

:ee(tl-h °'°+.,tn) o

113

&
n

D) [ﬁl(tl)m ﬁl(tn)]t /3ty fos)
m=1 - , . .

it

2 | . (b4 ooottp)
Z_—:[ Y(a- 1)]/ m{*“’dtn A * nj

| _’a['ﬁlh) oo ﬁl(%‘n)]:t;/'a R

t

L 6uan)

«ad :
(¥ 1€/ )T (0,70 ) Ja') . - (6.25)
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Advantageous use of the time—ordering brackets is made hereo The flnal

form is obtained by a partial integratlon and the observation that the

reault is equivalent ’co an appllcatlon of the operator H; ¥ ie g?/a g

" in the manner indlcat.ed, The'operat:or Hy = Hl(O) comes from an’ evaluation

at the_“ lower limit of integration; the time-ordering brackets mnsuring‘ that

it stands to the left. Eq. (6, 25) may also be derived by worklng dirently
\ . :
with the expansion (5 5) [_LH]

Using (6.12) and (6.25), and letting the limit € >0 be understood -

£

one may now write

To<Fiegd |oa’) /e

= x-.ie z“% g a‘ﬁad(o,#oo) |°(o'> /g
(o' |50, %o0) |t

4 ]

’a<o(’lu (0, 4=oo)|‘>< >/9g i (O,’toa)lfxo’} |
<°< 172900, ®eo) | 4o’ P R

- '[Hof 4 iega%<o(°’fﬁad(d,¥w)ldo"> /o8 - H]’Wa:’) i ,
5 . T (6.26)

‘which leads to the identification (6.24) for the level shifts. The vanishing
limit éxpressed by the first line of (6.26) occurs because |ox’) ~, unlike
U24(0,F 00 ) \o(,,’) ,~does not depend on € in a singular way.\'

Eq. (6.24) may actually be generallzed to

<//

7240, Foo) las’) A B =+ i€e 9 {ot "\Uad(o %o)lo( }/Bg |
(6.27)

N
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for arbitrary = (¥o”| (the limtt € ~>0 bfeingr’ufn‘efs’tooci*)lsiinée the . . -
-osclllatmg phase factor is independent. of (o(.,"/] " Multiplving (6 27)
~on the left by U (?00, O) Io(°//> and on “the" I‘lght by <Df /. ,’ and - - .

summing over &,/ and. o('o” , one get.s_
AH, =2 1€g U (Foo, 0) 3 T (0,%c0)/Bg ,  ~ (6:28)
which, together with (6.25), gives the concise statement . I 4

H+ AH, = P, O 12%(0,%00) . U (6.29)

Some remarks.

Several final remarks -should. be make. The first is that those
eigenstates of H which have no count.erparts in “Hy (if any) cannot. be
censtructed by schémes based on (6.8) or (6 12).  They must be'fonnd.,bx. .
independent and generally more difﬁcult means. The second is-(that‘ if an‘y‘ o
ef the states |o(°/> has no counterpart m H,. because JJ; undergoes decay
for example, then the normalization constant z' vanishes for that stat.e

%
and the symbol |0{4’) is meaningless.

The third remark is that. the \i"edeflnition (6. 1+, 5, 6) is not t.he
only possible one which eliminates the level shifts. . In relatlv:Lstic .
field theories AH, generally does not commute with H» but. is chosen

in such a way as to maintain the manifest covariance of a rela‘twistie _

¥ Inthis case Z' is rigorously zero. In divergent fie,‘]:d' t‘h‘enri.es ‘e'né "
sometimes encounters the equation Zf -' 0, but what is-meant i"s-‘ only“ 8
that Z!' becomes vanishlngly small as the high energy cut-off is allowed
to become infinite, As long as the cut-of f remains f1n1te Z' is_ finite
and the state vector . |0g{) can be normalized. The $ymbol }D(,J}

then retains meaning even in the limit.
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formalism, However, the theice (6.4) is sufficientiy‘typical and:iiinstrates‘
~all the:feetures of the process; In fact it differs from the relat1v1st1c‘
choice only in that it may be described as a renormallzatlon of ener |
which is not a relativistic invariani; while the relativ1stlc ch01ce is’ a;f
renormalization of rest mass, which is invariant.. The one is generally Qniﬁcfr
a slight modification of the ether: | o
The last remark ccncerns degeneracy. If there is degeneracy-whiien- ie
removed, at least in part, by the switching on of the perturbation then the
construcpiqp (6.12) will werk only if the vectors 11X0p> are suitebly
chosen, viz: they must be the limiting forms of the eigenvectors qf H as
ihe perturbation is switched off. This requirement evidently leads,to_a

vicious circle as far as practical applications are concerned, since the'eigen~‘.
vedtors of H are generally not known in advance. Therefore, in the presence.
of degeneracy, Eq. (6.12) must be understood as having theoretlcal utility onlyn

- The situation arises mainly in bound state perturbation theoryf and
~ there one has several methods of dealing with it practically. ‘Twe ofithese
: methddé.wiil be outlined in section 9, one.which deals directly.with}the
projection operators arising from the degenerate levels, and the.etner which
systematically redefines H, &o that all the removable degeneracy is removed
" in advance, | ‘ 4 '

It will also be seen in sectien 9 that it does noﬁ matter whether

the Eound~state eigenvectors of the system H are obtained by adiabatic switching
from.the’remote past or the remote future; the result will be the same in
either case. ?hef is to say, ’q+j> = la_/} ; and the symbols + become
siperfluous. This is true even in the presence of unremoved degeneracy, for
which construction (6.12) is valid without restriction. It is not, however,
generally true for free states, for which unremoved degéneracy is thie rule
rather than the exception. Thus, in scattering problems, . the « signs are

not superfluous In passing all the way from - oco to + oo , the perturbation

being switched on and then off again, the \“ >'w1ll become shuffled around
winding up in new isc-energetic combinations.

r—
The situation may also arise in field theories for which the coupllng is
asymmetric (see section 10). The proper choice of unperturbed vectors is
then usually obvious, however,
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7. SCATTERING CONTINUED

The o*nhonormality of the vectors Y3t'>

The first task of this section will be to prOVe the orthonormality '
of the free-state vectors \Tg ’) as defined by (6.1}, For t"us and ‘many .
other s'ub:,sequent purposes it will be conyen‘ient"‘t.o Ent.reduce hhe_ following‘-,_, ‘
auxi;liary‘operatorss* ' o o

Hy U(0, Foo)

Rﬂ': =
= Z:'Rh(Eg)lo(o»(‘x‘o/\ ] 9 .‘ ‘ ‘ (7.1)
where : _i | g ' o
Ry (E') = H; Il ~ Ggy(E7) Hl] ‘ o . (7.2a)
- {1 - H %L.(E')]“l Hy - | ~ "("-‘70&213)
- Hy+ Hy _Gt(E*)' Hy o s (7.3)
= K [14— Gog(E1) Ré(EV)] S | (’7..43)
- [itrEdeeEn]n . o )

Eq. (7.2a) follows from (5.20)., The remaining forms may be obtained either - |
by expanding and comparing terms or by using-Egs. (2.14) and “(2,16) 'judici:oﬁsly._ .

By similar algebraic manipulation one may also write Eq. (6.1) in the forms

]L:'>. = [1 - Gou(E°) };1]‘“11on> o .- = '.(-7"5){ |
- [1+ G(E') H ]l?o’) | :   .{(7 6)
= 1%+ e BN S - Cam
- [1-0— GOt(E’) R,_(E')]] ) -. (7.8)

The operator Ry 1is often denoted in -the literature’ bv T(*) Frequent
use is also made of a symbol _Q_(*)(E) = [1 = G ir(E)Hl:, such that

T0,700) = 2 QP @0l Net'|
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The proof of thé orthonormality of the |S+’> depends on careful:’
‘ : ‘ . R
handling of limits. One must not allow & to vanish too soon. Thus,

from (6.1),
B - B s.) = xie(|5/) - [3e9) . (7.9)

This equation and its conjugate yield the identity

s ) (E'-- w5y - (| [E -1+ (e - -s]ls)

-(E' - Et+2 ie)(st”\3t> + 16((3;”\‘3 >+<‘S”\S¢>>
’ (7 10)

which in turn, with the aid of (7.8), gives

e o b e L

Gat sy

+ ie¢ . '[2 5(30111 So,) + <§°”lR-‘F(E"')GO:.‘(AE"),.‘3.*0/‘>
" E' - E" + 2i¢ '

S +<5” )R,(E)L)]

1]

S(gai/s )TF- » o€ ) : <4//]I’nRﬂ:\S >
(EV=E"£2i€ )(E'- E":i.e) .

C 0, En # holi ,
—> . T (ra)
.8(30”) o’) + €-|<s°/1l Im Ri‘§°/> , ‘ E" - E‘;- . ',

where the obvious relations

\

Cos(B') = GowE') ,  RyED® & RgE) , (7.12)

have Been used, and ImR, is <~i times the skew-Hermltlan (1mag1nary)

part of Ra . The orthonormality of the 'St’> will follow from (7.11) if
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€ >0

Proof of Eq, (7. 13) in the case. of 51mp1e scatterlng

It will now be shown that (7. 13) is a correct equatlon For simplef“
scattering problems, but only as the result of 2 certain necessary doublei
limiting process. ‘ | ) ’

In order that the normalization condition (1,35) be ‘imposable on |
~ the free-state-basic vectors 13.7) it 'is oecesssry-thet'the'systemise_
placed in a box, which is convenlently taken as rectangular with' side L.
If the coordinates q'  of the system are-introduced, the_free—stste.
eigenfunctions <q']$°'> will be oroportionsl to (L-N‘qu’)%fQWhere
quﬂ is toe volume element in coordinate>soace'and: N "is the huﬁser,af';

¥

degrees of freedom. Consider the matrix element

_ Y
Golmlsy = L (3 <q"1H1\q><qv|s> |
| ’ | 715)
of the perturbation operator 4Hl, Its coordlnate matrlx elements
3

<_q"’Hl j, q' are proportional to (.qu'" 'qu*). so-that the right-hand

side of (7 14) becomes a double integral. Now, one of the requ1rements o

l’m‘e‘l' <‘\I’“R*\ 3> son i e

on the scatterlng force is that it be conflned to a limlted reglon of space ”;‘-

(see section 4). "This means that the matrixielement <gﬁ1_§ligqt> -
must vanish when q' or q" -is outside of this region. ‘Tne integratioﬁjyv‘

R ' .o A ) . - \’.‘N
in (7.14) is therefore convergent, . and the result is of order fL S

The inclusion of spin or other varlables is irrelevant. for the present .
argunent . ;

s

This also assumes the forces are not too singuiar.at the origin;'
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By similar reasoning it is evident.that the corresponding matrix‘élement_>

: “N.. . L
of each term of the expansion of (7.2a) is of order L ~ , and hence that

oo™, gae.

{34

the expansion being evaluated by analytic continuationiif.necessarya ‘|

Eq. (7.16) must hold separately for both the real and 1mag1nary parts of

Ry ; and therefore

Gomrdsy = oM ean

Eq. (7.13) can follow from (7.17) only if, as € vanishes, L
- N : n

becémes infinite rapidly enough to make 6-4'17 infinitesimal. The

necessity for this, howéver, can be shown by two arguments. The first is"

a physical argument and is based on the wavé packétspictures If v 4is the

group velocity of a packet then p/v is the length of time it takes for

the packet to traverse the enélosing box. This time must-alwayé be much

greater than the time 2/€ of duration of. the pérturbation, if the

3*

Egs. . (7.15) and (7.16) are actually satisfied by a .much wider class of
potentials than those which are<strictly confined to a limited region of -
space. The confinement restriction can be replaced by weaker conditions .
concerning the rapidity with which:the potential wvanishes at large dlstance

Eq. (7.15) by itself, however, is not sufficient to express these . .
conditions, as is shown by the well known example of the Coulomb potential,
for which (7.15) holdsalthough <3.”| R[3.) is divergent. There is
strong evidence that the Coulomb case can nevertheless be analyzed by

the formalistic techniques of the present article in terms not only of

the well known infinite phase shift but also of a simultaneous state
vector renormalization, although such an analysis has never been carried

cut; to the author's knowledge.
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adiabatic switching procedure is to provide an adeqaate mathematical
substitute for the actual scattering process ‘in which the packet moves

unperturbed both before and after scattering. Therefore ’
e-lil >0 . o (7.a8)

which leads to (7.13) for all N,
The seconr argument is more mathematicals When the system is |

. placed in the box the energy levels necessarlly become dlecrete, the le§e1
spacing belng of order L 1.,_ In order that the imaginary parts &:ie of |
 the "energy denominators" of the Green's furictione Go-_r_(E) _giye the -correct.‘ ,
causal de.scription of 'l;he scattering process (i.e., be able to diet.;‘:,nguisﬁ ’
between retarded and advanced wave ‘solution.s), 6 must be fmuch 1_argerv h .
than the level spa.cing so that the sumnation‘OVer intemediete ‘ste.tes will

take on a fine-grained aspect with respect to € and beg’repres‘ehtable"a's

an integral over a contour which passes definitely to one side or the other
of the energy pole, This argument again gives (7.18), and the orthonormallty
of the ]3*'> is therefore proved, |

The case Z'< 1,

In those cases in which the normalization constant Z' of Eq. (6.8)
is different from unity, Eq. (7:11) may be used to determine its value, .

Here we work with the operators

U{lﬂ(osxw) | ) a (7°19) |

Sing Ra+ Ry . (7.20)

R.

1]

<

The notation "Sing" separates out that part of &,_. which has matrix elements
independent of L, i.e, the"eingular" part of (R,*., For buund states (R:g

has no nonsingular part R, . For the free states in
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‘  quantiZed field theorieS*thg matrix elements of R, are of order L’N}ithe ‘

" - exponent N depending on the number of field quanta involved. . Therefére;'
while R4 is all important as far asvscattering is'conéerhed, it AOeé.hoi‘ ’
affect the normalizatdion and mayvge néglected'in tﬁe presént d15cué$;qn,.

| For orthonormality c;f the vé'ctbr’s IO(,;'> one niust'fii;st 'bé "able'-"'-

to Shgw that
i
<

where the /\' are positive real numbers independeﬂi of € and L, and then-

n stng Ra |®,') = = e A\ 8@, B = B 7.21)
. : ’ 3 ¢ 1

one must choose

z! = ‘1 ',-'/\' . ' S (7°22)

InAbound state problems_Eq° (7.21) folloys'aé a consequence df thdse Q&m@eﬁrieeu
of the perturbation which leave degeneracies in the systeﬁ, in sec;.lé it will-_'
also be seen to hold in quantized field theories. ' “

" The symboi Im in‘(7;2l).is actually unnecessary. It will be Seeﬁ; -
in section'9 that in the case of bound states, if there is any gnremo?é&
degeneracy, - .4 -

(|ae'y = Z'TE@S0),  mem . (B

This, combined with the obvious generalization of Eq;-(7,8), gives

1

Z' S Mo, 0le') = S@o",0l") + (% te) ot | sing Ry |t o oo E L
or . ) ’ . R v
<0‘o”]Si‘“g'(Rt\o(°l>l = ::'Le/\'g(o("llja?l)) - ' E':= E' . 4
| f""l((7.25{~-“

This result will also hold in the case of quantized fields.

-
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Use of these equations may be readily illustrated with the simple'

system (6.13). One gets, with the first choice in (4.17), =

Ryl = }cl i€ '\“;/)'

E' - Ht i€
-1 1 ix i€ 1 1 o
> i€ ’ | Eiw 2
PR : | =
£2i€-€ 11 1 1xie/ \o
-1 1) [-1xie 1 0 o
x+xi€ B = 0
- 5 . | >
T 2i€-€ 11 1 -lxie/ \1 ,

yieiding the previously inferred result N = A :T% for bothzstateg;
The illustration with quantized fields will be given.in séétion 16,

" Orthogonality of ,VS:') and lJ') .

Returning now to simple.-vscattering problems,‘we'noté that since the
,It'> are free-~state vectors of the system H, they are ortﬁqgonal to any

bound-state eigenvectors lJ'> which H- may haves

, Gy =0 . e
This follows immediately from Eq. (6.1) multiplied by J'| @ It also
follows indirectly from the cbservation that the expfeséion eivHOt.e?i it
may be interpreted not only (by (2.20)) as the:tréﬁsformation cperétér_ ,"'
ﬁ(t, 0) from time O to time t in the interaction represénéétién_of»'
system H, with H, as the reference system, but-also as ﬁhé tréﬁsformatioﬁ
operator from time t to time O 1in the intgractién representation of |

system H,, with H as the reference system. Therefore by reasoning
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ideﬁticaltwith that leading to Eq. (6.2) one gets
U(woo, 0) |dt) = __ sie’ ]-J’> -0 L, ‘('_7_,27‘)'5‘, :

H' -~ Hy & i€ . ) - - s
the roles of the two systems now being inverted. Expression (/ 27) vanlshes
in the 1limit since H' is not generally" included in the Spectrum of Ho°
This equatlon can be obtained directly through use cf the llmltlng conventlon

(5.22). Multlpli"atlon on the left by {3, "] gives (7.26),

Question ui unitarity.

It is now possible to discuss the unitarity of the opera ors U(O 4-90)

and Ufzpo,F00 ). Eqs,_(éql), (6,2) and (7 27) evidently allow one to write

L2

ﬁ(ojxoo) - Z/ 'S*‘><:e,‘° . | | ; (7a28)

Therefore; owing to the orthonormality of the l3¢'> and of the‘firolk ;

5(0,700)" T(0,700) = /153 - Py (7.298)
| - 1-P, , . (7.29%)

= 1~ B o (729 )-

T(0,700) (0, %00)” = 3/ |8/3¢3./] = Pr | (7.308)
= 1-P; . © (7.30p)

where P:; and Py are the free-state projection operators for the systems
'Ho and H respectively, and 'PJO and Pj " are the boﬁndwstate projection
':bpgrators

P

- 2 \J <J\ \J'><J'

(a1

- \. _ . I 5
For simplicity in this dis@tssion of bound states we éxclude cases in

P

which some of the bound levels of H and H, coincide.
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.The equations Pg, + ?Jo = Pe+ Py = ‘1 express the com‘pieténeésA condition

for the ei_genvectorsl of the two systems. It is seen that if‘eithéfr'kof;t.‘he‘. o

systems has bound states the operators U(0,F00) “are not: st;r"i'ctly: unitary
From Eqs. (5.8), (5.24), (5.25), (7.27), (7.29), (7,30),f¢ng getg;g;oj “

— 3 -
U(too; Foo) Ulroo, Foo)

- T(%0, 0) (0, 00) Tloo, 0) T(0,Fo0)

U(Foo0, 0)(1 - Py) G(0,%00) :: Py s | | :"(70’32) N

or ‘ o
S* S = 8§ ‘S* = PS ° “ o (7033)
. & . o LT
Therefore the unitarity of the scattering operator, unlike that 'of‘ the
operators 6(0,=Foo), dépends ohly on the comparison éystem Hy ; if, as -

is so often the case in practice, H, -has no bound states, then the

0
scattering operator is strictly unitary regardless of whether or not thé
system H has bound states. | |

For systems involving quantized fields analagous:quasi-unitary
operatoi-s may be obtained by "renormaliziﬁg" the operators ﬂ—i(0,$00).l
~Denote by K ) the states of H, which undergo decay bo?'btherwi_sév
~have no counterparts in H., Denote the remaining. states by I8 °I>. .,. Then

the "renormalized® or "corrected" operatofs are defined be. ‘
To,m) = TV jpupa’l = Do) T e o)
‘ (7.34)

Se¢ = ilc(oa,.o)ﬁle(o, -0) . : _ (7,35)
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Evidently ‘ , ‘
S¢ S¢ = 8o 5. = Pg = L=Py , L (7.36)

Pbo . ‘and 'Pm, being the projection operators on the states o’} and
‘the stateq ' |73’> respectlvely, ;‘ ; |
‘The scattering operator for other _mportant complex systems will befA

deflned in section 12

Structure of the S—matrix

. We shall now carry out an expllcit construction of the scatterlng S
: oﬁeratop. For thlsvpurpose three simple identities will be needed . Flrst,f,

from Egs. (2.16) and (7.2),

CGEH T GouEORE) ,  H GE) = RUED G &) . (@3

LA

Second, from Egs. (2,13):and (7.3),

L

Ry(E") - Re(E') = (BE' - EM)Hy Gu(E") Gu(E')H; .~ - (7.38)
The third identity results. from taking the limit E" —» E' in (7.38)s
ar (/28 = - [om] n o (7.39)

_ .U31ng these identities together with Eq. (7.8), one may wrlte the elements .

of the S-matrlx and its Hermitian -adjoint 1n ‘the form
(L]0, mell 8 = (3.7 3,0
= <3°” ‘[1+ R;.:'(E")GO;:(E{')—_I [1+ Got(E’).R‘;(E')]['S,,? o
- 805.5,) + __L_<s 4| [Ruten) PRy (E) (5 - E'")Hle_;{z">c;(£f}aﬂ | 5/ >..
| .___%___ <§ \[RJE" # Ry(E')+ (B"- E’)Hng(E")Gt(E’)Hl—_HS 5y

E'-EWg
+<3 " lHl G*(E") GJE’) Hl‘: />

For bound systems the scattering operator reduces to the triviality S.=1.
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csts) s e (5o [Ree el
(E“~E°) + € . s

3 762 ‘ v | H. (} (E") G(E") Hm-‘:o"
v (E"-E')2+€% '<\S° ‘ e *l > B

—>= §(3,1%,) ¥ 2Wi§(E" - E') [(ro" R3S ® "gm(g;ﬂ‘bgi.@{)/‘a‘Eﬂ_Ifx-;)]'

| | - f__i'(_j?@hzo) .
The S-matrix is seen to have nonvanishing éléments only'fbr stétés'{

with equal energies, This is a statement of the fact ihat théienerg?ﬂdﬁ ﬁhe '

unperturbed system is conserved under a collision. It is usefui“€§ {ndicate
shperaurbed A

here several other ways of obtaining the same result. First, sinéé le = o
H' = E' for the states lj:);v|3*’> , use of Eq. (7.28) ensbles.one to..

#* - i '
write

HU(0,F00) = U(0,Foo0)H, R {701

This edquation together with its Hermitian adjoint and Eq. (578)fyields
(s, 8] =0, R T
‘which is the operator statement of conservation of enefgyo_ Eq:3(7°&2}_é1s0_

1

follows from (1.26) and the speciai cases of Egs. (1.31b ), (1.32b), vizeg'V“

U(zroo, ¥ ) = [exP(-*o-‘ i‘/_; Hl(t)d,t)]«t Py o (7.43)

The displacement in time. effected by taking the commutator with Ho~ 1ea#és ‘

" ‘ - o e
" A related equation, namely §, = CT(0,¥oe) §, U(Foo, 0)j gives an .
explicit definition to the cperators T, which, up toﬂnowa”haVefbeéﬁ;* :

largely undetermined, their role having been confined merely'tﬁfonégéﬁ" .

providing suitable labels for the eigenvectors of H,
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o S unchanged 31nce the 1ntegrat10ns in (7. h3) run from t- --‘u: to t $_+-aob. '
Flnally, Eq (7. hl) may be comb:med with Egs. (5.23) and (2 20) to yield |
once agaln Eq. (5. 17), which when combined w1th the integral eouat1on 7~

{1.30a) and the integral representatlon ‘of the delta functlon (Eq (5 30)),‘

gives

[1: 1/ Hl(t) U(t, 1=oo)dt] Py

_ E»(ii:co, F 0o ) ]

‘e0 i(H -E')t | |
= P ¥ 'i :/ ° Hy U(O ?oo)dt,ll )(So |

where | _ - - _: co
Re 2“"2 5@ -Ho> H:IS«’XS° sy
C G0 mse i qaw
satisfying | B |
Be. = Ee - o (TaE)

In»Eqs. (7;&35 LL) we have been careful to multiply b& the p}ojectioh 
operator PS ; Since the removal of the oscillating comporehts of‘thé g
interactlon transformation operator, which is implied by the 1imit1ng 2
conventlonr(s 22), is not 1mp11ed by the integral equatlons (l 30)

Eq. (7.44) is the operator form of (7. AO), except that the term
involving the derivative of R*KE') in the latter equation is. mlosing |
in simple scattering problems the magnitude of this third term is of. order -
€ times that of the second and vanishes in the limit e -ep-O I_ ‘. )
éuantlzed field problems, however, this term remains lmportant and is

related to the state-vector normallzation questlon It will be treated

further in section 10, Por the present we shall drop it from the formalism..
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The reactance operatorc

A very useful development of the opnrator formalism in connection

with the S-matrix is the introduction of the reactance Qperator.- One uses
L 2

Eq. (5. 28) to split up the terms of Egs. (7 A) in the follow1ng fashlon

E' - H, |

Hy [1 Frid (B - H) Rt(E_‘)]- ,  | -(7- 478)”

oy

[1#«1 Ry(E') § (E' - H )]Hl,

Ry (Et) |1 ~ "1y .
* ¢ ; l} (7 wb)

E' - H,

These equations then give Ry = K(1F %1 R,) = k¥ %11 Ry K , or

Ry = K(1=x32 iK) , | -J‘immw
» ‘. 1 ‘ L |
K = R(1% 2 3.5\,) » N o * (7.49)
where ‘ B L
K o= 2. KED|5 N ; ST (1.50)
: 4 _
K(Eﬁ) = 1- Hl 1 ] 1 H}. = Hl - "1
i mHJ ezt
. ‘ o (7,51)
= Hl 1l + @ K(E') 1 + K(E‘)@ Hl 5.
" E' - H, | : ‘_ Hof o

~ (7~52),'
and where K is related to K 1in the same way that the operatorc ;£11='::
are related to Ry It is a prevalent figure of. speech to refer to the .
construction of the operators 3&*= s 33"fr°m lRt , K as "taklng the

matrix elements on the energy shell." Taking'the}matrix elements of
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Eas. (7148, 1;9) c_on' the eneréy shell, one obtla.ihs*"

Ry = & -7, o s
-~ 1z 314K ' : - ”

3& _is'keewh.as the feactance operatpr.‘.It is ; rea¥.(Hetmi§%an)vee
operator siﬂce the_‘operatfors K(E'), by (7.51), are real, arid,is the‘refiforé;“.
ofﬁen easier to‘\:censtru.c':_t*% i’n‘pra_e-ti’cal ca'se‘s then the opexj:‘ators ”XE * o
The latter operaio:;'s (and hence t.he S-matrix) ‘can be constructed f;-§m.‘» K
by'solving ihe,inteérei equetion -

R, = KF4iKRs - ‘('7'.5-5)

N
[&5 to 80] :
whlch is known as the Heltler :mtegral equatlon AThlS equatlon was first.

1ntroduced in order to desc‘rlbe the.effects of »radiatlon damping 1n_‘f1e‘ld~.
theoretical scattering problems. How this description c.om,es‘: about can

easily be seen by expressing the scattering operator 'in-bterms of 3('_

Eqs. (7.44) and (7;53).give . ¢
1-%41K | o
S = éim Py .. S _ - (7.56)
1+3ik -

The matrix elements of K are computed up to a certaln order in a
perturbation expans].on (according to Heltler s, orlglnal plan, the hlghest

_ nondlverglng order) and then 1nserted into Eq (7 56). The. presence of - K

* K - ' .
Here one uses the identity &(E"-E')S(E'''-E') = S(E"-E'"")&(E"''- E').

The ease of construction shows up particulérly when variational teehni'quesl

are used.
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in the denominator insures that many higher terms in the expansion of § -

are ectually~ihcluded - These higher terms account for Ehe-rédiatibnlb.

damping and produce a reductlon in computed scattering cros= sections., S

The unitarity of S with respect to the free-—state euoopaf-é Pgl |
follows dlrectly from Eq. (7 56) and the real:.ty ef K Practical use of.
Eq. (7. 56) has the advantage that S remains umtary even though only a.n
approximation to K is inserted on the rlght-kana side, |

The phase-shift operator.

Another expression for S which makes 1ts unitarity manlfeet is
the follow:mg: ' "

s 2im S e

S = e P ' IR (7.57)

Here 7 1is a real operator known as *he Rhase-shlft operator, which is

defined only W1th respect to the subspace Pso and which may be taken to”

vanishoutside it  In terms of ~ 7 - the operetors /ﬁt and K have the . R

J.ers - -
' tin L S IR
Ri z -2e  sinm .. e (758) o

‘K = - 2tanq . ' (.7.,'59.) ._
From Eq. (7.58) one gets
% * ) )

Bs By =B+ R, = Lsiny | (7.60)

= F2In Ry . (7.61)

Integral forms.

It 'is sometimes convenient .to"intr"odu".ce integre}; 'fems :i“or.thie .‘
operators Ry , X s Ras z(‘ . This may be done by u’si:xeg Eqs;‘ (5.&7),
(7.8), (7.28) and (2.12), and writing | ‘
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| | T g o
_ T _ T . ' oy 3
B, me) = by w5 o TEVY 6wy Ry(m) u, s

(-]

et <~/ ~t i(H —‘E;:{’e)t' | L
= P -1ie Z/ e O _ Ry dt! |30’><S°’| .

- 3o . .o g F oo
———>- Py -1 /;qo R*(t‘)dt,' o o ,(7'62),
where
- o i Ht i Hgt ' -
R *(t) - € . Rte (7.63)
Eviaently ‘ . :
R, = [: -ﬁt(t)dt-- ' - | .1 -. - {7.64)
Using de}init;on (7;63); one gets from Egs. (5.17) and (7.1)
By (8) = HI() U(t,% o)
_ 6 _ S |
= Hl(t) Py, -1 ‘/-F'oo Rg(t')dt_'_ s : : - (7.65)

a result which could also be inferred by substituting (7.62) into the
differential equation i U(t,Feo)/dt = ﬁl(t) U(t,Foo ).
In a similar manner one may introduce the operator

i HE  -i Ht

| “K(t) -_- e . Ke S i ‘ (7.66)
and use Eq (7.52) to obtain ‘ | . ,
N , i(H - BNt . ] |
K(t) = H,t)|Pe + 2_ ° 1 K(E") |33,
ch st Loe Gom- l :><S .

- .

—

i(Ho- E')t'; €t .—t") _

—

—> El(f}) Py -3 i‘[”éa (t - t1) E('t")dt:'l ' (‘7,67‘)‘ |

Hy(t) Ps. -»%iZ'L/_\:’d‘(t-t,t)e | B - TAN D X5 &

J

B
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swhere _ ‘
Gty = &l =z e (s) -o.(t) = 26,()-3. . (7.68)"

‘Here we havelmade.use‘of the integral representation

: i Et,~ € 1tl - : _ %
63 (l/E) - -31 / t at . ’ - (7.69)

"._The relat101 between the operators’ R (t) and K(t) is determined by

© Eq. (7. 19) to be

Ry ) - E(t)[l: i f_: -'ﬁ,:(tﬂdt‘] ) (7.70)

which can also be obtained by ite?éting the split form of Eq. (7,65), namely -

e

’ﬁ;(t)- = El'(t)[Psozp 3 i/ (t?)dt‘ - % / G‘(t t ) Rt(t‘)dt?] ;
S -~ , (7.71)

ana maklng a termwise comparison with’ the 1terated form of (7 67).

Integratlon of (7.70) from -oo to oo leads to the_Heltler.lntegfal<

equation (7.55), the reactance operator being now expressible as

ko= SR . ©(7.72)

-Recurrence formulae for K and S.

When the perturbation H; is small encugh so that it becomes

- practicable in actual caléulatipns to compute the'operators S and 3; by

means of series expansiohsé it>is so@etime; usefgx to have available

rélations betweeh the terms of the tﬁo series, fﬁe terms themselves may -be
obtained either by oerformlng a blnqmlal expan51on on Egs. (rou) and (74 1?
or by iteratirng Egs. (7.65) and (7. 67), and u51ng (7.39). In the latter ‘

case one gets
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: oo . . Ca
S = Py + 2 5, , N ()
e n=l . o S : y
K = 2 K . R (A
‘with o : 7 : ‘ _ _
N n 00 -. 00 T =, = '
S8, = (=-4) \/:” dtye.. [w dt, 8,.(t1- t,) ;..,e,_'(th:l- bty (V) oo LHy (8)F

S (7.75)

T
o
|

_f'v,n-l: o p oo - . - L,
(-% 1) ce by /_” dt, 0(ty- ty)... (b 97 tn)Hl(tl)“?Hl(tn)on .

| | (7.76)

Eq. (7.75) may also be obtaine& directly from (1.31a), takiifxg ‘t." = oo R

' = -0 . o | - |
If::the function & (t) in (7.76) is replaced ny its expression in " -

‘terms of . e_,;(t) (Eq. (7.63)) and comparison is made with '(7.,75), of}‘eAAis‘l__e'd'

o the relations [75',:\

-1 Kp

DUJ
>
Ay

S MRS o S S S = ...
- n- — ) o
CrepPpt R & & P teate

(7:77)
= 5, 3 i Z Sn-p. Lp - (7-783)_‘..,_'\

on=1 ] ' . '
S+ 3 i Z{ K Snp - | _ (7.78b)

Eags. (7.75 to 78) are_cépec_ially useful in relativistic field theories,; for
which covariant calculations are demanded. The first few':terms (7,75) of the
scattering ope'ratpr are easily evaluated by standard ruleé,, The

corresponding terms of the reactance operator can then be calculated by
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» means of the recurrence formulae (7.78) and f;nally substltuted back into

(7.56) to obtaln a unitary S~matr1xe

Egs. (7.78) together_with their Hermitian adjoints imply
1; g:} . 4 N
In Sp + 1 (Re Sp.plkp 5 9y

[H

- Xn
5

T el ‘ . ; s ¢
Re S, - & 21 (Im S n-p )K ) o (7.80)
' p= oL . B ’

(@]
]

since K- is real. Therefore one also has the still more compact formula,
. o . . . o

K ;i = -ImS,-% -f :E:: (Im Sn-P“ ) X ' '
mi” p+ qen-1 >% ! p ,,,,q
, (7.81)

Alternativé definition of;, K -
' - [6%,69]: - » :
Heitler 4\ has 1nvented another method of apnroach to the reactance

éperatér, He introduces a unitary operator W(t)vand a transformatiqn

|P6) - ﬁ?lm [Ty (7.9_#)'

of sunh a nature that the transformed state-vector satlsfles

‘49(9) - Kl‘cﬁ(t)> . (7.83).....

where Kl is a constant Hermitian operator which is diagonal in energy. .

T

Evidently- . :
Ky T W) ) W) <1 W) W) . (7.84)

™

Eq. (7,83).describes only realftransitiphs which conserve enerqu
If the boundary condition

o) = 1 (7.85)
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Lot

is.imposed then Eq. (7.84) may be integrated to givé»
_ v. - t -. _ . . 4—. - : . <.
oW(t) = 1= 4 ,/_ao [Hl(t') W(tt) - W(t:')Kl]ndt' . (7.86)

‘The interesting solution of this equation is the onie for which W(t) becomes
a constant W 1in the Schfﬁdinger representation;'i,e.

_ 1 Hpt: ~i Hot .
Wwit) = e We . L (7.87)

o [w, Ho] = th-wxl - - | (7,éé)

_ and

‘ 0 i - ENt ;
Wh oz B, i ZI‘/—"oo el(Ho " ,)t (1 - 1) at" 5, )¢s/ |

"=— Z:IW(E')Jto’)(So’I E s - ('-7'.,89) 
where _ | ” _ | | | |
WE') = 14 Gyl(EY) [Hl W(E') - 'w(Ev-,)K_l]
P e
= [1 - Go4(E")Hy '.[ 1 - W(Ea)K1] o (7.90)

Now, thé_matrix elements of (7.88) which are diagonal in energy
vanish. Therefore, by (7.86),
_ 7t poe L(H-ENL R |
W(Oo) = 1-1i Z /:an ‘e ' (Hl W-W Kl?dt ‘So/><_§0,‘ = l )
| | ‘ T (7.91) -
and hence, with (7.85),

]@(rw)} = l‘&(rw))_ B Cj7,92)'_

N
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" This means that the scattering opg}ator may be constructed from Kli in

“exactly the same manner as it is'constructed from H;. That is,

. _4-. A ' l ’ - 1 .
Ulsoo,700) = Py ¥ 23 > 5B - Ho) Ky [1, - GOtﬁ(‘EfA)Klj A‘!?J)Qo’\

S . 1 _
= Py F 1Ky [lj}?l/(:t ie )] . - _A (7393)

_ But since. Kl is-diagonal in energy

osopl2e K

‘ (2 Ky/€ )Py,
(E' - H)?+ € -

33

(7.94)
" so that (7;93) becomes
o . . , o )
Ulsoo, Foo) = Py F 1K1 51 Ky) (7.95)

. ‘ - . * . s
"which leads to the identificaticn: : , =

~~
~J

~
ON

LS|
'Z‘The.operator W Py may now be constructed by itefationAof (7090)23
o , . ! : n ~(n+1) Lon "

WPy =20 2 (1) [1 - GO+(E°)H1] Gex 153

n:O
; - (7.97)

% S ‘
' The same result is ob@ained by writing o

Koz oam e - Ho)Kl[l - Prt ]

ot

¢

‘and remembering that (P 1/(E' - E") vanishes for EY - E' .
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Heitler bases his construction of the operators W ‘and K, (and
hence of Js) directly on Eq. (7.88) pius the condifioﬁé tﬁat ‘W’ be unitary
and that K, be diagonalvin énergy, As this construction is rather COmplicaied,

however, we omit it here and refer the reader to the reference cited earliery
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8. CROSS SECTIONS:

--Return. to_the wave p§pket picture,

; Iﬁ'the preceding three seeﬁions emphasis has been‘place& on the

* cperators U(O ¥<>o ), U(-:oo,:Foo), etc, as abstraet fc;rme.i entities more or

. ’less 1ndependent of any iméediate pny31cal processes It is to be remembered,
howeverq that the limiting procedure of adlabatlc sw1tehingiand the related

‘llmltlng convention (5.22), whlch were adopted in order to give prec1se
:;deflnltlons to these onerators, were . motlvated by phy51ca1 conelderatrons !

',-In ract, aniﬁqperatlonal" deflnltlon pf,these operators W1th1n the context
~of a given physieai“situation is alwaye‘possible and sometimes preferable°

‘Thuf, if the scattering of wave packets is under consideration'one may

~validly write - S
T © lim _
O(t, ~o0) |in) = . Tlt, t') |in) - (8.1)
R tt '-> - OO . .
where [in) spe01f1es the 1ncom1ng wave packet of (h 5) and the 11m;t

t* - - 00 is to be taken perfectly stralghtforwardlys although the equatlon
is meaningless if the vector. \1q> . is omitted. The presence of the
vector ]in> provides.the physical context, and the equation:says simbly'

that U(t; - 00) ]in) Imxyibe regarded by definition as the result of bringing

the wave packet into the picture et"ah unspecified time in the‘eufficiently
remote past. |
In the derivatioﬁ-of the basic'cross section formﬁlae in'the theory‘
'.of scattering the use of operatlonal definitions 1nvolv1ng wave packets is
particularly approprlateo' To be~sure3 several derlvatlons of these formulae
[30,42, 160] :

exist A which proceed dlrectly from expre531ons for the abstract entrtles

. U(t, ;w )s U(;t-oo , Foo ) themselves, via more or less obscure arg’umeb.‘hs°

-
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Way ve packet derlvatlons, hoﬁever, SUay closer te exéerxmenta’ reality and
;iﬂgf i;,:are therefore ‘both more phy51bally satisfactory and more co rect These
' » Lapter are the derlvatlons whlch will be presenued'ln this ar'ticle° B
Before turnlng to the cross section formulae it 1s'1nstructJve to
? 'i 2 verify dlrectly the ex1stence of the 1limit in (&.1). In so d01ng one will
if- ;;-‘ be led to a more concise if not more rigorous proof of-Eq; (A.éO),'the‘
. derivgfiog of ﬁhich in section 4 depended upon picturesque bﬁt somewhat
,:loose argumenﬁs inﬁolving thetqualitative-behavior of rétarded and advanced;
‘@aves;‘%The foilowing formal ;dentity will be needéde
 1lim i Et

@(e /E) = =wiS(E) . | | (8.2)

t - % 0O

This is to be understood, as usual, as an abbreviation for a class of

‘integral identities. Its derivation is brief:

(e /) £(x/t)ax

it

t—>iw t~» o0 Foo

;;{ ’”1 : : | y | 3
@/ [REEE = 4 @S

= & Wi f(0): - - (8.3)
'where“ x - Et . g . ‘ : . .
- | . o 3 i(H-E")t
Now consider the vector U(O, t)13.7> = e }3}’} '
Expand :IK°/>V in-terms of the eigenvectors of thé operator H and

USe'Eqs:‘(7o7) and (5528),vgetting 3]

)

i(E"-E* )t

1}

(o, -

Qa2 3. ”> (3. ”\fh ch@" 1 )
S 1(H - E")t

"J“‘)<T”;"§ >

" (continued on next page)
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‘Xi’j)’ + wrgL-Z,\'" SE -E) |, ”>’<§t”:.) HJSO’;}

L1 I

i n

3{(E - E')t

+c>z”e 5 |w<s-:,|’ul1.s‘;>

(Hﬂ : 7

+ Z - J"><J"|H { 2

(8.4)

In the 1ast llne the identlty

<] Hll_so’) | <J"\<H - Ho>\3o> )

(8. 5)

- has been used. Next, sum Eq. (8.4) over the wave packet amplitudes of
Eq. (4.5) and theipass to the limit. t—= -so obtaining, with the use of

(802.),? . . . ) i

t:i:nloo 6(09'- t) lin>

= 20 105D —miaEn 2 2 () 8 B - ) 15 )43, 5

i BT ey st 8 1) () g |5
RS (8.6)
The last term vanlshes since the boand suate spec+“um ‘does not overlap
-cont;nuous spectrum It is to te noted that the use of (8. 4) in obtaining |
the factor SKH" - E') in thls term is Justlfled only égggg the packet
.summation is performed for only then doés the rapldly varying expoqenblal
appear in an integral, viz. the summatlon over the continucus range of

energies E' contained in the packet. On the sther hand, the use of (8.2)
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“to obtain the factor'ig (B" - E') in the second tern is permitteéd before

= the-packet sunmatich : This ﬁeaﬁe that if H has no bbﬁnd states the use

. .of a wave packet is not artually mandatory in deflnlng uhe matrlx elements
of U(0, =02 ). The llmlt as t-e> - 60 of U(O t) \3°’> W1ll 1n this
special case ex1st 1naependently in 1ts own right and’ ‘be ldentlcal with the
resqlt of the limiting eonventlon (5.22). |

If the )]_+’>‘_ are:chosen as basic.veciors in Eq°t(é?6) then.the

second term on the right also vanishes, leaving nothipg but theifirsf term
which is simply the vector J:k) defined b& (L.B), 'Iﬁ the limit of a’
very broad packet therefore one is led to Eq. (A.BQ) as predieted° The
choice of the -‘S_’} aetbasic vectors, on the other ﬁeﬁa,‘yiélds‘together

with (4.30) the result

)5,y = |5./) - 2mi ZUSE-E) 5y (5] RL]3.)
L | B (8.7)

which, when multiplied on the left by v<§_”\ , leads to expreeeiope(7.b0)

for the S—matrix (witﬁ:the derivative term omitted). T

*

‘When t in Eq. (8.1) is not restricted to the value zero, one has

-
S

the more general result
v . N X

u(t, foo) ‘in> - e e

Multiplication of this equation on the left by . (go”ra and use of (4.3),

(7.7) and (5.28) gives
N <S-u

= £(3.") - mwi 2 (5, )8 (E" - B {3, Hy | ‘s+f> -

_ : i(E" -~ Ef )t
U(t, o0 | in) = 2 £(3,")e (x;’ls ’>

(g" -~ Et )%

i : ;
MDA Gsolm sy

CEM . ES (8.9)
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;:Allowing t to become-infinite, using (8.2), and then allowing thé.packet

) to beéome»very broad,% one obtains again expression (7040) fdr the S»-mat,rix°
This is sometime§ regarded as an alternative demonstration of thé equivalehcé.
of the time-dependent and:time_independenﬂ'definitions of tﬁe S-matrix

- (Eq. (4.28)). ‘

Transition rates and the angular cross .section.

The cross sectipn f&rmulae can be derived by two independent
arguments, one béééd bﬁ the cpmbutation of transition fgtes and the other
based directly on the S-matrix. Wé present the transition-rate argument
firsf,° | |

If the system H is known to be in the 1ncom1ng packet state which,
in the remote past, is descrlbed by the interaction state vector \1n>
the probability»of.finding it in the state \S°”> at th¢ time t is

given (see Eq°(1.42))_by

\<\S°1/ ‘ﬁ(t’f '."oo:) I'in‘>4 2

‘,i.HOt th,m>‘

| , e

The rate of transition to the state \§°”> is the time derivative of

P(Y." t‘lin;'=’0o ).

(8.10)

this quan@ity:‘

* .
) It should be clear that the procedure of pass1ng te the 1imit € » 0 at

the end of a derivation played the same analytlc role in previous sectlons
as the final passage to a very broad packet plays in the derivations of

: the present éection Use of a finite € av01da the necessity for

dea;ing with finite wave packet.s9 and v1ue versa The two methods are
'not however, equlvalent in phy51cal detall as some authoro 2o, léo] have

assumed.- "zgp
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- where p' = } p'! . The state vector |

; to a pafticle flux density of ~v'L™

.
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RO, | in) = L PC S, b [ dn, - ) o
at |
1ot i Hot Hot -1 Ht
= -21Inm [:<'\y fe _ hle o ‘So//\ <:§°1/‘ o . ¢ '};j>]'

InﬁtheAlimiﬂ of a very broad packet this expreésion reduces to,

Ceem [ mbOrinn]

oy

s

2 (s RED 3 (865, 304 G| G, EDR,EN]S))

2865 ) In {3 RaISSD + .27\9 S &= 85 R 500 | 2
' B (8.12)

which is independént of the time.

* Now suppose that the unpérturbed Hamiltonian HO  is a function

b4

only of the absolute value of the N-dimensional momentum vector *p of the
. R ) . ..; ™Y .

scattered pérticle;* Thislbector'will then be a constant of the motion of
the comparison. system, permiﬁting'the labéls: Saﬁf to,be'éhosen as p', (7',
where @' describes any internal or nonclassical degrees of freedom which

fhe particle or scattcrer;méy have, The velocity of "the partiple in the

. ‘state .6t
state |t 15 D

. will be given by " ) vf = dE'/dp .‘,f : ©(8.13)

p', ') evidently corresponds -
LAl ¢ . '

N ,-and,thereforelthéjangulaf cross

» séctioﬁ 0} ({} L}I” } p'; G ) describing scattering from an initial very

The method of handling the more general'caée will be indicated in

‘section 12 where scattering by two or more potentials is discussed.
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broad backet, which has '.'; oy > as its llmitlng fo*m, 1nto a final
. ) ~
state with’momentum‘directed along a unlt vector J). and, with nonclassical
degrees of freedom as 1nd1cated is deflned by
_v'L"’NG<-,g196‘f’)p“;~6'_)dellL s Z R, 0% pt, 00 ).

o~ n e Nelp M
1 i d _Q
LR (8.14)

Here dM~ l;fl isithe (N~1)~dimen51onal element of solid angle in the
directionl_fl (If N = l then d°!1 1 and integration over "solid
angle reduces to a summatlon over the two p0351ble values of 17, s ¥1
“and -1.) . l |
When the system is placed in the rectangular box of side L the
eleuent of momentum space becomes 4 . A : .
B e N (R 1))
’end'the suﬁuetion i :E:p" in (8.14) may be replaced by (L/2'1r)N v/'dN "
-One may’ further wrlte

Ay o w3/ E, Q) - (819)

L

where

¢

2]

3 (/3 (E", Q") \ap"/dE">a /36, N

N-1 | "
= p" N . (8a7)
Consider now the case in which p' does not lie in d¥-10 . Then,
introducing the operator ‘
” L ~ LNR-M o "'(818)
I T

in order tb work with finite quantltles, one may 1nsert (8 12) into (8 lh)

and use (8. 16 17), obtalnlng
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' “

0—(4-52- , 6 1.pgs O'/ )

81

2w @) /em) 1A S dE"(p"Nfl/'e"')’ §(&" - E)

G iR o)

(2r) (- l)( =L

v1?) )(p_o. s*|R,| p ,a>|

(8.19)

Derivation based on the S-matrix.

Here it isfcohvenient to specify the wave packet in.Slightiy gfeater

detail. We shall use an incoming packet whlch has the form of a plane slab

of area L

N~l ®

*

. Here we assume the enclosing box to be oriented so that one of its

axes is paraliel to p'

‘The generallzatlon ‘to the case of a packet of smalLer area is easy. The

packet must however, always be broader than and almed at the scabterlng

region. Typically in an.actual experiment the lateral breadth A x, .

ie‘given bj the aperture diameter of the beam collimator. This implies

. an unﬂertainty in. lateral momentum of amount = ]./43xt\ and hence a

Lateral velocity spread roughly ‘equal to '/(p‘zsxi ). In order that

the results of the present sectlon be applicable to experlment the

'lateral spreading of the packet must be negligible ( « z@x,) during
;the-ﬁransit time 1./9?, where ] is the distaﬁce;from the€collimator
-eozﬁhe,detecter'of‘the‘ecatteredtbeam, The following iﬁeqpality must
'pherefdre be satisfied: p' ;gﬁl 1 /(43x1)2} It is easily'ferified,

.by thelinSertiEn of actual numbers, that with typical laboratory

dimensions, energies and accuracies this inequality is satisfied for

all molecules and atoms and ali elementary :particles except very soft

pHotonSjaﬁd neutrinos ‘(KleV.).
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) - [Fem) - Sre]ergn e e,

| | - (8.20)
Here f£(p''') is a function which is peaked arocund the value p? with a
spread which will be denoted by A;p It le1 he assumed that rhé experl—
mental apparatus.has provided a sufficiently monoenergetlc particle beam
so that f(p'°°) varies much more rapidly with p " than do thé elements
of the S--matrlxo That is, Ap 1s so small that - ]1(p°““)\ ié\virtuélly
a delta function as far as integration over these_matr;xvelementévis_ébncerned.

The vector ‘in) is convenientiy normalized to unit probability l H

per unit area of the inGOming slab, This’méans.

Mt o anlan)

in which the relation dp'‘' - 2T /L has béen used. With this normalization

H

(2'rr/L)(/'|f(*“"_‘ "dpﬁ.“«f, (8;"21)':

the scatterlng cToss sectlon is given directly by the amount of "probability"

scattered out of the slab The components of the écattered state vector are

<~?"9 G out> <p" c” lﬂ‘b(oo )> p" " )’S \ 1n>

m2ﬂfl/f(p'"°)8(E" B pr, o"] R ‘p‘”_()_ c'y dp'

W

a1/ 260 (51,00 R, | 00D

(8.22)
wﬁen p" 1is not parailel to £}' . and henhce the angular cross section is
given by
‘ ' Nel E ‘ ‘ 2

c(Q, o' p,e')d o = e, a” out
(o aad ’ Fs Y

p" in dN-‘ l_Q

- (e A I RVAIC N If(p"\ KJ‘ | R, ]pm <r>! @"
(8 2«)
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. leading; in virtue of (8.21) and the delta function character of ;!f(p")‘ 5

to Eq. (8.19).

The connection between transition rates and the S-matrix.

The éxistence of the prgpeding two'indépendent<derivations_of ﬁhe'

E. aﬁgular crosé section formﬁla'(8,195 implﬁes a'direct connectién betwéen

the transition rate (8.12) and the.S—matrixn This connection }dilows;gip
"factg from the time independence o%'the transition rate in the'limit gf a

- very broad incident packet?_which allows the total prgbabili#ylof transi£ibn'
~ from the state \S°’> at t = -~ po to the state “30”> Tat. t ; ;;

to be expressed in the form
. ) ’ : e - ‘
POS 500 ] 5./ —00) = 8(5.,5,0 + /0 ROse” |55/ )at

= 86 s)lie am G RaRD) ¢ avrsE - e [l RIND ]

| ' (8.24)
where T' is a purely formal symbol which is used to replace the expression
/oo dt. Now, setting t = po and ;‘iny_ - |$°’> . in:(8.10), one

may also write

PO 5 00| Sols ~00) = : \<S°”\‘s \ Ko/>\ 2 . : % (3;25)

~ Egs. (8.24) and (8.25) agree with expression (7.40) for the S-matrix provided

a convention is adopted which is expressed in the formal equation

" - ] _ f ] . .
SE" -B') = | (1/27)§_ (8.26)
which may be compared with EQQ (5.30). This convention is sometimes used

~without refinement to "derive" the transition rate, and hence the cross

sections, directly from the S-matrix. One simply divides Eq. (8.25) by T
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A quectlon naturally arises as to the eitent of the applicability of>

'the formal eouation (8. 26) as’'an ordinary atgeuraic eouatlon This*éUestibn

becomes especially perulnent whén it is remembered that the delta function,

in the formalism of all preceding sections, is. regarded as the ] Limiting

form of a-function (5.27) which hag a finite halfiwidth~-€ . Since condition

" (7.18) must aiways hold, the distribution of states gr N ié always

finemgrained with 7'espect to this width. Hence the llnltlng eha"ior ﬂf
S CE" - Ef ) is not as 1nd1cated by (8. 26) in Whl”h it sfanlsheq u“lesa the
levels E" and E' are *dentlcal The "energy bhell“ embraced bv
S(E" - E’) contains, in the llmlt an Lnflnlte31maLly thln but 1nf1n1te
group ef levelS‘rather then merely a 31ng1e level. The replacement of the
delﬁa function by a weight factor iimes tﬁe Kronecker delta.can therefore
be perﬁitted only if the factors which mul@iply‘ii in aﬁy sﬁmmand of
integrand very_slowly*across the energy sﬁell while €  is stili-finiteu
That this condition wsu2idy holds mey be eeen.by examining‘one or
two special cases. An example which a*forﬁo a cer tain amoant of insight
is provided by the wave peeket integration of Eq. (8 24) Ir the delta

function in this equation is replaced by & function With-a finite half

‘width € it is necessary to remember that this replacement corresponds

-tc a physical complication of the scattering process consisting of an

adiabatic switching procédure gaving a éime duration of 2/§‘.o In order
that the actuzl scattering picture remaih.unchanged ﬁheveave'packet must
pass coﬁpletely through the scattering region while fhe pe?turbation ﬁl
is-essentially aé full strengteo Assuminglthe‘dimensions?of tbetscattering
region to be much smaller than those of the paﬂket this® requlre‘e that

Ax/vt &K </€ ; where Ax :is the t.nlcknees of the packet. But
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since Ax 2‘ 1/Ap .this means A.E o v’A p >>¢€/2. That ie, the
energy:spreadiof tﬂe packef musf be much broader ﬁhan the.functioe having;'
the half width € '5 so thet the latter is still an effective del@affunctiona
in the equatlona ~Said in=aﬁothervway; f(p"’)vmﬁst haﬁe eegligiﬁle |
varlatlon across the energy shell, | f | i | '

' Slmllar conclusions hold for the factors multlplylng é;(E"'~ EV) .

in. expre551ons of. the form

Pla o2 2 z“sw"-E) 3, "><3”)F\S ><So\

M~ : "
wﬁefe F = R, K. Here; although' R and K depend on e 4,; they approach
thelr llmlts smoothly as &€ = Og ‘Furthermore, the_matrix elements of
these llmlts generally vary smoothly., allowing €& . to be chosen smell enoﬁéh
SO that this’ varlatlon beeomes negligible across the energ{ shell. Eq. (8. 26)
| may therefore be validly applied to the process of taklng matrxx elemento |

of glven operators on the energy shell, and one may convenlently write:-

(tso”\F)so’) = '8, (30"|F:;|3°’> Lo (82
An ex,eptlon to the rule (8.27) is provided by the ope rator - Kl
.introduced at the end of section 7. It would not be correct'to ;n;er from
Egs. (7.94) and (8,27)ethe jidentity T'= 2/¢ . Eq. (8,27) cannot Sef
appliedmin'this case simply because Kj 1is already diagonal;iﬁ energy, -
and hence ite matrix elements always vary abruptly across thé'eneréyeshelln
That I' # 2/¢ ean"be seen from the formal idenﬁity‘ |

SEQ,E'. = S -E)E = SE-E)viay . (8.28)

¢

Combining this with (8.26) and using the equation dp' = 27 /L, one obtains

the formal relation

Tz LN, :( . . (8.29)
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.That 1s, T‘may be regafded as the 1°ngth of time rncﬁiféd for the'incideqt
part 1cle to traverse the enclosing box. and in v1rtue of bondltion (7 18)
thls.lmplles T >> 2/€ | | »

| In the futire we shall not hesitate; if con&eﬁieﬁt, to use the
T-symbol as an qrdihary algebraic quantity; It'ﬁs_alway; to be remembered.
however,-éhat it is a purely fommal Qeight,factcr wﬁicﬁ yill.ganﬁeiﬂ
out in the final ex%ression for any:physicaliy observable quantitf.

The total Cross sectlon

It is customary to define the angula; Cross aectlon by Eq. (8 19)
even when 'g" 1; parallel to.é}_._ However, thg true,§egletlo§ in the h
forward direction of a beam of incoming particles (or packets) is described

not by this quantity but by the total scattering cross section, which, in

the transition rate afguhents is defined by

»

G{p', ') = -(L /V’) Z\ R(p"ﬂl ! ' pf','c")

-=(2/v*) Im<p io' R, et s’

WOV (e e )

where use has beenfmade .of the felat%on E:YJ,F (p' ) IS (E" —.E') g

. #

S (L/2mvi) Fp'). In the argument based dlrectly on the Smmatrlx, using
a finite slab for a packet the ferward depletlon is deflned b}

G(pi’G' ) = <in}§_n> - " <pnﬂ G”out>l

- e/ g lg<p"?l2[l+z<f““ D (el f% I mase0

+(L Nl)/ ) l<pm o }’R }pm c>) ]
. . L (e3)

"Here again we assume p' 1is parallel tc one of the box axes.
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which also yields the same result In nassing from the first»to the second

line of Eq. (8.31) it is neuessary to use the generallzatlon of Eq (8, 22

whlch takes into account diagonal elemerts of the S—matr*x

<pn£}'; 6| out)

LK

/f “‘)(p“ﬂ G’ )slp“”_(), 6‘>d““»

g2

£(pn) [(mr/r,) - 172w 14m) {pr Q) a'e }{”QJ p".Q.'J>]
C(8.32)

A distinction is immediately apparent between the casee:N =z 1 and

VAR

N2 2. In the latter case the last term of Eq. (8.30) vanishés in the
limit L 00 , and the total cross section is seen to be detefmined:completély
by the imaginary part of the amplitude {or forward scatteriné with no change
in the variables C ' “

For’' N2 2 the relatlen between the total and angular cross sectlons
may be readily obta;ned by using Eq {7.61) of the last section. Taklng the »

diagonal elements of this Equation, using (8.26), and rem&ving a faq{er

'Y from both sides, one.gets

(20" | Ro\plen)

(8.33)

-2 Im<p*,0"v|{R*]p9,6"> >; 2L Y ZNS(E?_"-»E")

* which implies.

6-(37_; O'" ) ;" "“ZO'N ./'6.(,{)_ 96.41 \E?y | q./ ‘)dN“l-Q .
- | oL (8. BL)

: Eqso (8,33, 34) are consequences of the unltarlty of the bcatterlng operator

- with respect to the free states | i, T > , and are simple exprecsmnc X

LR

-~ of the conservation of probability=

The case N = le Transmission and reflection coefficients.

In the onemdlmenelonal case the Cross eectlons become dlmen51onless

vprobabllltlec and are convenlently repiaced by the so-called transm1551on
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and reflection coefficients, Tcuc' and Rgugr respectlvely The diagonal

transmission coeff1c1ent Tsucu is defined as unlty minus the forward

depletion:

cror (p) = 1+<2/v">-im<§,'sv'm 53

rrh [(e R e N
' (8.35)
The other coefficients have the definitions
Tougt (p') = o (Q',6"|p,6!), o”# o', - (8.36)
Rc‘”d' (pv) = ¢ ("'ﬂ' ) c" ) p's, c' )°  - . ' (837)
Consefvaticn cf”probability has in.ﬁhis case the expression
"\ ' ,'. . ' . . ' I}
) Zd‘“ Tto-llgl (R ) + Ro-no,,(g )] : = 1 for all ’B‘,G
" | | | (8.38)

The transmission and reflection coeff1c1ents may be dlrectly
related to the total transition probabllltles from t =-00 to 'tz o0

Using'(8018), (8.26) and (8.29) in Eq. (8 2&), one readlly sees that

Td-llanl(g') P(pvi, GH s OO ]}')', .O'":,. - DOA)) ’ ’ :. (8'39)

R gug (p') P(-p', 6" ,00.] D', 0!, ~00). | (8.40)
. o~ " Loaal . B

Phase shift formulae.

. In many practical applications itfis usefci.to HiscuSS scattefing
in terms'cfgthe.phase shift operator ”i., | n is:en‘Hermitian operator
ana hence can always be diagonalized in principle. Tt is already diagcnal
with respect to energy. Denote by xl the remalnlng ‘labels necessary to .

complete the diagonalization process
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<E"? }\ut n ‘ E;’._N> - SEHE? 5)-”)\' ,y(/' CRR | (8.41)

The expansion of the vectors l
. . - . LY

', o”> in terms of ‘E' R >\’>  will be'
néededg , : _ “ | '
o at Vwr NV  at oy " " D e s

<B sl o ) 2 5 >\ > ~ c EHE@ Jf)\'( :Q' c -)° . (8',&2)',

_Here the ,ldk' are functlons normalized on the unlt N—dimen51onal sphere

Fao s TN

- v(s‘,ta)

z;h/“yx,. JY'G”)yy@“ 0 @wjﬂiﬂﬁ:Swyo

\Thenormalization constant C* 1is chosen so that -

) oo ' T
‘ et ] N SRR 1 LRI m_y. ‘ /> B
Z <E 4 A l E ’ O- > < g .50 \ Eﬁ”‘,/\ - SE"E? 5/\”)\
' ‘ : ' (8.44)
Inserting (81+2) into the left side of this equation, and usi'i'ig Egs. (8.15),
(8.26) and (8.43), one finds

3

] . . ' N/,2 . N-h . . A' ,
cr = (1%2w) -(2mj/L} ._('v'/p' l) . : | (8.45)

Njr-

If now 2T S(E" - E') 1is replaced by T'SE"E? in Eq. (7.45)
which defines the operater R R 4, and if Eq. (7.58) which 'e,xpresses this
operator in terms-of M is uced then the cross section formula (8.19)
becomes
o(Q,s"|p,00 )

(om N1 (prtd g 2ype o 2

i | 2
Z/\., <pg-/~(~1 s Ga)EI s >\/ > (‘23172 Sin"l')@‘ s }\,J E? 90'5‘

2

, N1 im’ "
W2mp) |2y sin Hx"w o .Y, *E, 0l o) -.
| (8.46)
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The total cress section forf N2 2 can be obtalned either dlrectly from (8. 30)

or- by lntegratlon of (8.46) with use of (8 43) . The result is
) | « 5 . - .
O‘(p’ Y = A(Z’Tr/p ) Z hx (B, 0/, o )) sin“m/. - (8.47)

The case of spherlcal symmetry

In practlcal cases the functlons qﬁx'“ are often completely

' determlned by the symmetry properules of uhe system H. Thuo, for example,
-flf the perturbatlon Hl is a potentlal V(r) whlch 1s a functlon oan of |
the absolute value of the p051t10n vector r of the partlcle, the QdA

are the N—dlmen51onal spherlcal harmonlcs and are therefore 1ndependent of
the energy and of the.labels 6! . In this case'the significance of the
operator M will be:eeen by passing to the coor&iﬁate representatien.

Use of (8.15) and the equation

i p‘i&_

{r ig‘) = (ng/LN)% e - (8.18)
gives A_
(zle,N\) Z”<m\¥°"><P"lE' >\>
- (@ o 1’( VL P A Y ;(.Q”)d ,,,,"

(8.49)
Here the labels O’ have been dropped.

Phase shifts in one dimension.

In the one-dimensional problem A\' is simply a parity label, the

functions qu' beéing given by

Yy (£1) = (& 1))"/’(2' 3 - N =0, i1' 5 (8,5_0)
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' yieiding | | |
<;:|E'Q>\/> = (d];f'/vT‘)% [e (' ) ]HA’(‘O' ) .

(8.51)
Now, in section 4 we dlscussed the asymptotlc behavior of the
scattering wave functlpns in terms of a set of yectors }ret' \adv/>
. andltheir di?ferépceslf \fad'> . Comparison:of Eqso'(h.Zh) and (7°bh) showsf
that | : | e
| | raaty - -"mi’vl};lp?_ | - - (8.52)

. im | : :
2ie | 51n~llp . : - (8.53)

AR

Taklng the coordlnate representatlon of Eq (8 53), using Eqs. (S,Aé) and‘
- (8. 51), and rememberlng that the vectors \ret"> and \adv > .are made
N unlque by the boundary condltlons (h 12, lh) and the requlrpment that they
iAuatlsfy the Schrodlnger equatlon of the qystem H everywhere except at th§
origln, one ea51ly makes the identification | |

| - ! (prrem’) '
<~r_"'\ ré_t'>" = Zi.(dlmr/L)~ Z,\: e sin %’/ gx,(n )’\d,\. (D. ) .

(8.54)

~fhe eigenvector_ "IL+’> of H therefore hasﬁthe asyﬁptotic behavior

(g~ (zlp) + (x)eee
B : 1(p rea') a ~1(p r+m/ )
= é(dlf/L)%_ZA;elq{' [e | o+ (-1) e 11 -0 ) s
T | (8.55)
which shows expllcitly the 1nterpretatlon of the elgenvalues of i as

,phase shlfts 1nduced by the perturbatlon Hl in the“so-called "partial waves"

out of which the plane wave <' \p > may be constructed
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‘The transmission and reflection coefficients are readily expressed
in terms of the phase shifts:

/ ..2

Rp') = (-9'|p) = ]ZX DY & s’
= sin? [ @) - e, | (8.56)
T(E')‘ = qos2>[°z°(E‘) - 4[1(E')] , ' (8.57)

‘where /o (E*) for Xf; 0, 1.
M 0?031 : ’
In"practice the“phase'shifts can be computed either'by numerical

' 1ntegration of a radial wave functlon or by solv1ng an 1ntegral equation

. dre
,The pertinent relatlons in the latter caseAdetermlned by Egs. (7. 52) and

"(7659) together with the conveniently introduced functions_
. ; . . . . -

Ky (b"l'b")" . %-i'v"F-“y'T")"é" | K(E')‘ B >\> o (8.58)

VX (.p:" | pq) ‘.

v "T wT‘) <E" N l Hy ; £ >\’>

Y

B O R .. A ”v |
, (8.59)
. poo : ; ‘ :
V- 2 f . sin-pv'r V(I‘) sin p‘r s , >\/ - l‘? -
A “ o ' ‘ X " . . .
‘Use’of the formal relation 2 -2\/f(7”"/2v>dE"7 puts Eq. (7.52)

Erte

: in the form
‘ ) ':. . co 00 V>‘, (pn p'li) o i . .
K)\'(p"_l p') = V}\, (.pnl p|)+_1;_@[ T } g K,\’ (piml pi)dpv”
B T S

it

| (8..60),'
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The solution of this integral equation yields the phase shifts in the form

tan M/ . vt K,\,(pf\ pi) . o (1:8,61)

Two dimensions.
The two-dimensional scattering oroblem has considerable interest
in acoustics and optics, but is of no importance in quantum mechanics and

will not be discussed here. .

D . Three dimensions,
In the case of three dimensions the Qdk, become the érdinary

“spherical harmonics

_ o n '
451\,(79-)%"1’1 ()5 w=-1,...7 35  1=0,1,2, .05
: - o - : (8.62)
. which, when substituted intb (8.49), give

(r)EL 1, m) = @of em) et d 5 eyt

r

(8.63)
ﬁhefe the' jz are. the éﬁheriéal Beéssel functions: ‘
3 o | . - “
i, (p'r) = (m'/? p'r) ey P f) _ IR (8.64)
2 AT 4 pir B
~ (-1) (2ip'r) [el,P‘rL_ (al)z SR (8.65)

The eigenvalueslof Q{l are independent of the label m and may be
written

AEMEY . (8.66)

iThéréfbre'the theorem

Z Y, () Y ’?‘*(:u) _ <m'r)”lizz+ 1) P, (ﬂ Q)
—m - hew T S v = (8.67)
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may be used to put the "retarded weve" in the form

| ' TN Y. My ' () :
<£] ret~°> = 2i(d3”§,"L%)2 Z\’L% P(zl+u)s a-n’Q,L ng  (p'r) P,L'_(_AQ_-".Q.' ).
' (8.68)
. i .
Here the P, are the Legendre polynomiales. and the hzsL_‘ are the spherical
Hankel functions' gatisfying
(1) o -1 doptr : v S
g )(p“r) ~ (=2) ({opir) et P, L (8.69)
©(1) (1)* |
M LT R I . (8.70)

The eigenvector jI pA_’> now has the asymptotic form

2 a2l , U i”h[ Hpir4ny) o --»i(p‘r‘f"'lz)]
A ' B < : o = ' e

e Y

© R Pg (f}-”jl') ;.

- e
(8.71)
showing again the interpretaiicn of the ”li asvphase shifts.
The angular and total cross sections have the familiar forms
SN ) ] 1M S 2
c(alrp) = p l 2., {21+ 1) e 2nm, P (L -Q') .
o | ' SR (8.72)
o a L ‘2 . :
’ {I' -. ~ - -‘\ - ‘_’ ; ”
G (p) = 4w P Zz(z.?,-# 1) sin (B c (8.73
The tangent of the phase shift may be ccmputed from
(7)) S S T )
- tan IY(l {(BE') - «vi T+ K,L(p l v ) :’ (8'714,)

s

For definitions see, for exampleé, L. I. Schiff, Quantum Mechanics

(New York, McGraw-Hill, 19497 p.77.
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where

4.

.'Kz(p"']-pﬁ) v (p"! o )+ 1 (Pf V,L(pnl p‘”), 41( (vav’ p') dp"'

- Et7

~

- (8.75)

. o ) " . , - ‘ C
v, (p"| p') = 2 p" p 3, (pr) V(r) §,(p'r) < dr . -
-t ', . Ué/7 ’ R (8.76)

‘The ‘reverse scattering theorem.

«*
s

. Even when the scattering force is not:spheriCally Symmetric certain

relaﬁions'cohtinue_po exist, which may be quickly demonstrated with the aid

of the operator formalism. For instance

5" p) = cCallem,  mew o, @

regardless of the spatial dependence of the}forcé, provided that if ihe

force has any momentum dependence, this dependenceABe 6n1y on the absolute

value of the momentum, Hy then has the general  form

and its métrix elements are

<’,ﬁ" [ | ,-E’q>. = Zi_ [£3 ) + f.i(P‘)}‘i’i(ﬂlj" - p')

(8.79)

where

_ -i pe T o __
vip) = Ve~ Tu) d | (8.80)
e o ~ .

<_—’é" lHl\ .'.fv> - <E| , Hy \ B"> y v - ’ (8.81)

T
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and it isieasily verified, by expanding Eq, (7.2) and fémeﬁbering that B~

'dependstonly on -p'; that

(|l - <2‘"\Rz\;§">¥' Bl e

‘which leads,’via'(Bulé)s to (8.77). Thu§vthé-cross sectiQﬁ,fo? scattering

along a given angﬁlar path is egual to that for the'reverse path. :In the
ohe~dimensibnal case this‘feduces*to the well known theorem that the
transmission (or reflection) coefficients from the right'ahd left are

identical regérdless of the shape of the:potential° -

The one-dimensional delta-function potential, [21,4%7 .
An example which iliustrates:many of the features of perturbation
‘ %heory considered in this'aftiéle,,but which is nevertheless so simple that

it is completely solvable‘inuall'respectsgvis afforded by the system - ;-

H = Hy+ Hy with
2 - : —. . ‘.‘ .. .
Ho = 3 p° | | Hy =~ g §(r), S (8.83)

where r 1s a one-dimensional coordinate. Use of the relations

dr/d'g = N};/r , dzr/d';;2 - '28(}:) y - (8.8L)

leads readily to the coordinate representation of thé'éigénvectors of H:

N

' ml l % i p? T . q .ml ti pVI‘] - . e a ',_‘l
<£|3:&> = (L d'j‘) [e ~ o~ g(g:{:l—p') e : A (3\_.89)

with A' | | | N
Ev - %T‘P“z ,v. vt = pt _,[ (8.86)

If g> 0 there is also one bound state \J‘> - given by
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' S S o .
<r lJ9>‘ = (g dlr)ﬁ e*-:,gr s . (8.87)
-m Y . . .
with |
‘Bz -} g‘2 . . : h B (8.88)

The orthonorma‘iity of the wvectors fp;__“I> 5 lJ'> is rgadiiy. demonstrated

from Eqs. (8.85), (8.87). __()f.interest is also the demonstration of their

co‘mplet.envessol After a -littie reduction one easily obtains
M ,m\ ; 0] LN
Z' <~{ §t><3t]\3,>'
l . ‘ “"1 3 00 ., '., "l ii p](trll‘_*_rv?q-) '
- d'r [g(;:y” -=”2:") = (2m) ;_/oo glgxi p)7" € N ~dp' |

8 R -n“;elt(g) <£s iy , Jn) <‘Ju ‘N{.;n>3_’l o (8.89)

lo o T

it

showing that the vectors l pi__9> are complete when g < 0 and incomplete
by Jjust the amount of the bound state vector ]J'.> when g > O,
-The S-matrix can be determined by inspection from 1(8_,85) . Evidently

<£ \ f-et">_.. |

1

' =1 1 .3 \ -1 i-pfr - ) .
= - dar)gle+ip) e P, C L (8.90)
o -1 01 4 -1 efoptr e
£|ad‘”>'.= (le,};)z glg+ip) e PT (8.91)
x N =1,1 % -1 ‘5 an
<N1:] radﬁ> = ‘e=2(L a"r)° glg+ ip') ecosp'r . (8.92)
so that -
) ' : ; _. w | f
FUoE) = S (|
: le -1 ': ' ’ ‘ . ' q
=8 e glg +1ip') (Sp“p, + gmpnny) . - (8.93
N ' ~ : MA:V*, !
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-The unitarity of the S-matrix may be ver*fied’directly frbm (8.93).
The S-matrix may readlxy be dlagonailzed leh +he aid of \8 42) and

(8. SO)ﬁ -the. result g1v1ng for'the phase shifts

it

Wz (Ev) an_l(g/p“) 5 'J. ‘i- _ . (Siéh)
vzi(me>. =0 , . - N (8.95)

_and for the reactance matrix

g <'E"‘N}$\£s> ; @(O’/F) )\5 " q-f (S_pii:p;j . o ' | " l. (896)

jelysh
e
The transmission and reflection coefficients are
T(p') = p'2/(g%+ v'2) ., T (897)
i - T : . T -

R(p*) 2/\g +p‘2 . L. (8.98)

N

Of interest also are the momentum reﬁresennatlons of the eigervec\orb'
l £=:\> IJ > whl”h can be obtalned by carrying eut the unitary

transformation (8.48) on Eqs. (8.85) and (8:87):

len ,,',Bte >

550"09’ ? g(gil P) ( S S~ 1

- P"i:ﬂ‘*ie' ' p' - i€/
. e

= 8§ 4 F il 1 . g < (8.99)
| PP E' - E"s 1€ gixipt
<p_"| Iz (g L'l)% /(g% + o) . (8.100)

An’ infinitesimal 'dam'ping 'éoefficient.. é " =€ /p', has been introduced
'¢n the integrals whlch evaluate (8 99).

. (7. 8) and (8 9G) allow one to 1nfer ,
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< p" Rg-_(E')I P'> T A Y U 1) (8.101)
ren " ' .

This result may be verified directly by expanding (7.2). One needs for
‘this purpose $he. momentum matrix elements of Hy,

,R" ( Hl‘ p?> = - g L_l . : - - (8.102)

which give, with the aid of the integral

[',:"(p“2 - pPE i) 1 dp = F mi(pPx iot) Tz x>0, (8.103)

the series
-3 ‘ .n
<p") R:E_(EV)\ ‘ps> s oogt 20 (wigen)t o (8.108)
~ . '-. : =0 v - :

'in ‘the llmlt € -~ 0., Expansion (8.,104) convérges to (8. 101) when p'> g.
In a similar manner the reactance matrlx (8.96) may be obtained by

;expanding (7 51) In this case only the first term of the;ser;es is non—-'

o

__vanlshlng since.
@ ‘wa(p'z - p.;z)j."l dp = 0 ». : . (8;105)

‘Therefore
Q"l.;‘f’}}'>f = —.2'TT'V‘g_L—};<lS (E" - B') , |  : ('8,106)'
,. .‘which is equivalent to (8.96) irg ;rirtge, of.'rthe fact that | | |

S npv f 5,p17p8 = SE"E'_' .:= (:2,“/1”\'3\(.}3" " Ei‘)

P

(2mpi/L) § (8 - ,E’év) . (8.107)

where (8.86) and the relation L = veT! have been used.
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~ 9. BOUND STATE PERTURBATION THEORY

k)

The use of coﬁtour ingégration
| The.theory ofzﬁerturbaiioné for béund system; differs in‘many'respécts 
from scattering theory because of the discreteness‘éf £he bodndmsﬁéte energy
levels. This discreteheés enabl;s oné to.usevé nﬁmbef éfAénalytical devices
- which are unavailable in the continuum caée, For éiémple;ithévsi£gularities
of the opqrators GOiﬁE), G4(E) are separate sihp%e poles:ﬁn thefcomple%
Ewpléne; and clqsedvcontours may be drawn which isolate zero, one, or a
small finite number of them. We shall make use offintegratibﬁs over such
.cdhtours,vfoilowingég method due to Kato.[?@] |
| .In performihg:thgseuintegrations it will be~notea4£ha€fﬁhe bresencea
of thelimaginary terms + i€ is:immaterial, and therefore we shall

introduce at once the operators

GoE) .= _1 ", R 25 S
s “ ‘ _, .
GE) = 1 = e®l1-ome@mlT - (9.2)
Dt gty o.«[ 160 —) | -

. Let each singﬁlarity Ho"‘of GO(E) bg surréundgd by a separate contour C!
in such a way that the régions“enélosed by the contours dp.not-overlap one
another. Then

(2w1Y4<F(

C'

GO(E) 4E - (27?»1)—1"%0‘_‘2// "JO"> (E - ‘I:{on)“ll<Jo" i | .

¥ ’ ’ - ": ' .
where Pé ) is the projection-operator on the eigenstates of H, which

have the eigenvalue H,':
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>6(HO,H )<

The elgenvectors and elgenvalues of H will generally depend 1n a

NON
o]

(9.4)

continuous fashlon on the coupling constant g of (5.19) 1n the nelghborhood

#*
of g = 0. . The prOJectlon operator P ) cwill therefore pass continuously
into an 1dempotent operator -ﬁ? as g ‘departs from‘zero° In order to
i
“account for a possible level spllttlng in’ casé the original level Hy, is

degenerate, one may write

(/) | "o "o
| Z S(Ho L HY) ( ) (9.5)
(")
where P 7  1is the projection operator on the elgenstates of H which
have the-eigenvalue H = o

Z"" ><SE"E”’< ',:_9\ :2. | (9.6)

and where the summatlon in Eq. (9 5) counts each P( ) only once. Here
- our notation assumes the existence of a one-to-one correspondence between

the eigenvectors of H and an appropriate set of eigenvectors of Hge
" " ﬁ n
J, ), H, > ,J , B . . (9.7)

It is not necessary to know here how such a corredpondence will finally be
set up, because for the time being we may work directly with the operators

1 Q) ' .
Po( ), 122 . It is only necessary to know that the subspaces defined
(M

~

. : 0 ' . . e
by P, and {B have the same dlmen51onallty__

ry .
This is true even for field theories as long as the high energy cut-off

is kept finite. The cut-off may.be allowed to become infinite only

after all formal calculations have been carried out.
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:‘-ldg": Ty Po(g)' - Tr {B(z) . Zug<ﬂe‘,7m;,)'rr P"(ﬁ)

f (9.8)

_ measufing the degree of degeneracy of thef;evel Hoﬁ% T
' s If g ié'gmall enough' so thatfthejlevels E*" into Qﬁicp the iévéls

" Hg' split (or shifﬁ) all remain inside their respeciive contours C' then
. vﬂj ,.:' ' .‘ ‘ . I‘ '
R L (ara) *}%5 GE)AE . - T (9.9)

It is useful also to define the related operator

BT

AP (2frri)-lj°;? (E - ﬁo,")' G(g)‘%érz | (9.10)
In vi:tue of the identi§y
| (E~Hy') G(E) = 1+ (H~H") d(E)' N - (901'1)
it is. evident thé‘f;'
AD o owen )R o z'IS(HJ,H;’A'E" 0 (9.12)

- ) ' n o 4
where the AE" are the level shifts. The operators £?< and ZXU)~

-

‘play the basic roies‘in bound. state perturbation theory.

Series expansions.
. For practical compubtations it is necessary tc have series expansions

. . / . . * - .
of the operators. fp” and AY) Evidently, from:(9.2),
fp(/)

(”. o (t) .. : - :
A = 22N, . (9.14a)

. 97 : .
2. Pn( ) . ' : (9.13a)

_1’}.20

where
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e

; ey .' l- ) n - , : . ‘
(2m 1)' f; GOQE) [Hl GO(E)]. ., €9“13b)__

[1}

—

-~ >
N’
§

] o _ , ; n. ¢ .
(2w )77 o (B - Hs') Go(E) [Hl- Go(E) :] dE . (9.1lkb)

The integrals (9013b} and'(9°lLb)_gay be evaluated by sepaféting out the

singularity of Go(E) at Hd',‘Writing '

(s v (1)
Go®) = Pl 1-Fl)
E~H' B~ Hy
g ¢ g -1
I R A 1+E"H0"-\ (9.15)
: -
E - H, H,” 7 Hg c? ~ Ho /
and then expanding the brackefed inverse by the ruqu
(1-3x)"F 2 1ax+ ... +x1 + x%1 ~ x),ml (9.16)
Qﬁe gets . ‘ .
() E o ()L (?')
PY/ = = - ; H ) _
n .. = o ks 2 0 %‘_: . 1 9-’(2' (jkm-l , k
' Kt oot kn{lz:n_ ) ' | | ( °JBc)

SEOEEER & SORE R i —
y . (9. 14c)
where -
' (1) ; '
Y, = - o( b (9.17)
' DIEEE N S : S IR
-C_;k(_ = 0 k21 0 - (9.18)
(H“-H)’k’ T
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: A , | o . '
It may be verified by direct computation, 'and use of Po(’)2 = PO( ) 5

that expansions (9.13, 14) satisfy the identities
Stz ey (9.19)
. ip(i) A(g) - A('){‘D(") = A(‘) . _ (9020)
On the other hand, the fufther necesséry'idenﬁitieSZ '
BB o (9.21)
’ 1 | " ‘ " ;v ‘ "
BOIAC) L AP Lo, s, Ga2)

cannot bé derived from the expansions.  They will, however, be satisfied
by the expansions as long as;theysmallﬁess of g E%eps the perturbed

levels within their respective contours.

‘Computation of the |J*) .énd ZSEU.
The level shifté A E? aré deteféined by diagonalizing thé operatoré

Zig?) in their respective subspaces 312>Sa)° In order to do thi§ it is
;first necessary to cénstruct an brthonormai'basis in each subspace, This .
is most. easily accompliéﬁed by diagonalizing the Hen@itian ;perators
Bo(f)‘{lg(c) Pogf)o With respect to an eigenbasis of Hy - these operators' 
a}e genefally finite matrices; andjﬂence tﬁéir diaggnalizétion is usuvally |
.a ménageable mgthématiCal p;'oblem° In practice oné'computés these matrices
approximately Q& carrying out exp;nsion?(9013) up to a qertain orde} in g,
aéd then one solves theicorrespondihg sécular deterﬁinaﬁt by ény one of

a variety'of ﬁechniquesQ Since these tecﬁniqgeé are nét of,gérticular
interest in this article we shall simply aésﬁme ﬁhat ;héAdiagonalization

has alréady been'carriedvout and write
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| 5 (Ho.t)tHO?) <J;)/ l {p(,)']& /> — ,'}r/gg‘j;///:;% ’)) ) (9.23)

the léﬁf} ?being abpropriate eigenvectors of Hy which effect the
diagonalization, apd the ’3' being the corresponding eigenvalues. An
orthonormal basis which is congruent to the subspaces ﬂp(l) is now

provided By the vectors
7y = B TERECL). BECEN

The remaining task is the-diagonalization of .the matrices -

@AY = s y) I AT o)

. These are again finite Hermitian matrices, and the.séme standard - :
méthematical techniques as before can'bekused} The éigenvéctors "i\J'>

of H are defined by the ﬁnitary'fransformapion <£7”\ J;> “which performs
the diagonalization: '

<J" | A(") } J'>_ = 8

- ”J"J|»AE' - | (9.26)

If, in the approxima£e evalﬁation of. Z&(');zexpénéiond(Q;lh) is cgrried‘
out to a given order inﬁg, ﬁhis order of accﬁraqy wiil~be reflected in the
computed level shifts AE!' provided oniyvtﬁat thé'accbmpaﬂying expansior
Qf izz “) is carried oﬁt to-an order of*acéﬁraéy less b§-one,. |

Once the eigenvectors‘ 1dty  of H have been deterhined.thé
one-to-one correspondence (967)‘with_thé eigeﬁvectors of Ho.éan be seﬁ
vupi‘bydefiriing‘ | oL S o
tJ;> =y | B 9.2 |
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; o . . i e '
" Howewer, in the abcove computation of the \J > ard A E' the vectors
g 8 . . : . s
H{Jo >_ never ccme into the picture. It is to be noted that the vectors -
|7, are generally not identical with the |J,')

Progressive removal of degeneracy.

If the eigenvalues of the .operator PO )AS ) O(g) :,P~(fva ‘Pa(q)
. . 0 1°0

“are all distinct in the suespace PO(S> then it is easy tc ses that theA‘x
i JO";> with HQ" :__HOg ere simply the eigenvectors of Hy whieha
A diegonalize this operatofc To lowest order in g the level shifte areithe
eiéenﬁaluee in question“ If these eigenvalﬁes are no£ all distiﬂeﬁ theV

‘ ch>- are not completely‘determiﬁed by this prescfipeion,‘end a mere‘
ompllcated study is necessary, involving the oeerators Pl(q) and A, ( )o
However, the observatlon serves as 1n1tﬂal motlvatlon for a nrocedure of
prcgr3331ve removal of aﬂy degeneracy which may happen o be‘present in. the
system H, and the development of a peruurbatlon theory in Whlch the.

vectors \J >- plav d more alrect rcle..

4 Instead of expdndlng the operators QQ ( ), ZS( ) and nﬁen

. ')
dlagenallzlng, one beglns by Slmplj diagonalizing P ( ) ZX ( ) PO\

“and then making the replacements

e et (1) (¢) (%) o
i 5 ‘ :
Hy —> Hy §: Pl AL e O .
] _ z‘, 0 o
. e . , . .
(Here the summation > counts se¢ distinct elbenvaluw ‘of dg oniy
ence, ) If some of ihe PO - LSL P, | Thave eigenvalues:which are not
all identical (in their respective subs; =~ =} then the replacement {9.283)

_removes some of the degeneracy. If the :.-. -ystem H, possesses any
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remaining degeneracy this degeneracy will nct be remcved to first order by
the new perturbation' Hy.  To carry out a fLrther reﬁoﬁal of the degeneracy

() ) p (')

Civ is necessary to dlagonalee the Operatore : 139 (defined

w1tnarespect to the new operators’ Hj,

By = Hy *i :E:"PO )132 ‘PO( )

H'i} and ma.ke uhe renlar*emenf

S

‘."(9,28b)

Hl~>Hq-- ZP()A,‘ 'm,’

If the degneracv is still not coﬁpLetely removed oﬁe ma} go on,
this time rep&aﬂlng ZS () by zﬁ . ‘. and so on. ,Even?,uaJ_ly.S either ail
the degenerecy will be'removed or else a degeneracy?will femain which'is |
noeremovebleo* The origin of nonremovabie deéeneracy lies in special
symmetry ﬁropeytiee pessessed by the pertﬁrbationf Hl; whiich leave'iﬁ“
diagonal in soﬁe of the labels Jog' with th¢ Valuesfof its nonvanishing
matrix eiemente depending only on the remaining‘labels; The former labels
zimply enumerate the states within ehe various degEneréte levels, Non-
‘removable degereracy is generally very easy to spot;~e

When removable degeﬁeracy is abseﬁt aﬁy set of eigenvectofe.of Hy
may be used.iq seﬂtihg ub tge one~to-one correspondence (907)0 The operators ..

-( )ﬂg (") Po(g> ére‘then simply multiples of theﬁeperators PO(')P the

facters of proportiohelity being the normalization constants z' of Eq. (6.8):

P?‘f):z?(?) Po(i) - z' PO(?) . .;' - | (9.29)

All degeneracy could, of course, be removed at the very beginning by an’
arbitrary redefinition of H,. The present systematic method, however,.
generally insures. the most rapid convergence of the perturbation

calculations remaining ‘after the removal,
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The eiéen#ectors of H; are given by “' . ,"1}‘ C L
; et l > RO
, o , _ _— o A
\? ) =2 £¥3 S RS - L 930
' ratane ALY , SV e - (t)
Furthermore the operators /A" ° are simple muL@;pLes‘of.the;operauors iI? M
AN L 2 AE QQ( ) S o o (9.31)
so that the level shiftsﬁmay be. computed from therimple formula

"1. oA (1 o . . . o
AE @ ‘TT%I().'. T

The Raylelgh—Schrodlnger perturba*lon formula..

CIr expan51on (9 1&) is 1nserted into Eq \9 32) then, ow1ng to uh° )
¢yclic invariance of the trace, the follow1ng equatlon resalts°

.k-Z.O

,_;_..__/ N -/» 1

n=1 k1+ - Kp=r-1

AE "LY;_W o '(kne-i)mr}ﬁ akl“),aaﬂlgkn“) :
B (9.33)
This equ;tion may be further simplified fhrough the observation that the
factors occurring in ﬁhe summandlcan be cyclicglly re#rranged in n different
orders, each g1v1ng the same trace | One of thebe orders may be chosen dq
standard. If only the standard order is allowed in the summatlon then the
numerica} factor (kn - 1) in fropt‘of tné trace'mpst be'replaced by

;E:i(ki - 1) = —i, Suppose the‘séandard order is cne in which k= O.
This does not uniguely specify the standard order, for #ﬁeré are Np other
-orders which meet this specification? N, being the number of remaining

1

indices k3, i< n, which-are equal to zero. However, each of these orders
may be regarded as equally standard if a factor. (Nk-+ l) Lé inserted.
Therefore

22 - .: ' :' -1 o ( ("),
AE - E ji_,.kii,o N+ 1) __<g0 \ngjkl )H1==$3Knm1 Hy

n:l kl+ LY c+krl_,_1'::?n - ]_
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1;Here thefactor dfnl and §he tpéce éymbol Héve beéﬁAeliﬁinaﬁed‘thrdugh uée
5 §£ the fact, imp}iéd”by the non~remo§aﬁiliﬂy of the degenéracy, thaﬁ“ Hy is
'; @iagohal wﬁthin'each §ubspace.PO(Il;. V L B

| Eq: (9.34) is knowg'as the Rayleigh;ScHT3diﬁger ﬁeftﬁfbétion'fonnuld.
":Its ponSlstency with expansionb (0 13, 14) may be checked dlrectLy by

qub tltutlng it, together with the dlagona] elements of these expan51oné

J'> - AE'< 23() > g.nd'..

‘ maxlng a term by term compar1son on either 51de

into the equation <J

Connection with the adiatatic switching formalism,

“The formalae ‘obtained thus far have been based on a geéhhigg'é of -
éontour iﬁtegration-which has littlé gpparent connection wiﬁh-thé £heoretical
treapment'of the perturbation probiem-given in section 6, Baé¢a 9; the
adiabaticaswitching methed. :That-theiconnectionvis cloéef than first appears;
however, may be shown by constructing the operators {13( )'aand 43( ) in
the adiabatic formalism and thenfaéplying:expansiqn'(505)0 | |

The operatorj‘qg(i) is giﬁen simply by |

R ) oo)P() w0, 0) o (9.39)
The operator ﬁad(O,JZOO) and its inverse are both‘présent iﬁ this expression,
éo the oscillating phase factors cancél Tne form of the opejator ZS(Y}
follows from Egs. (6.28), (9.12) and (9. 35) |

A(') (v)

d - a, : -
a (0,F00 ) AH, PO ffa (F o0, O)

+ i€ L [’aU (O =r=oo)/a g:l (! ) U (:oo, O) (9.36)

Insertion of .expansicn (5.5) into Eqs (9 35 36) leads to poweL series

~ expansions cf {Ig( ) and - Zk( )o of which the nth order +erms are glven



UCRL-288/,

s iy 2
s ¥
respectively by-
. (?) oL : - . : (b) i
Pn - : 7 1 . Hlooo 'L ' Hl PO Hl R . 1
' m=0 HOL-HQtime HOL{HO:ie . . Hyl= HoF i€
o ° Hl— 1
H H #i(n - m)e
| (9.37)
AL D sine . Hy:eoo & HPO(')Hlml ,
'n ,‘;ﬂ, nl:'l HOG'N' Ho*irne ‘ ~'.: Hoa"" Hoi 2°L€ Hba“ Ho4=i€ ‘
a1
o oo Hl - .
Ho'=Ho® ((n-m)€

(9.38)

Expressions (9.37, 38) can be replaced by contour integrals:

Pn(ﬂ)< _ (2,“ 1) lf ___-.-— Hy Mé 1 Hl . &
E - H:t). ne E-H, £ 1€ E - Hg
| .39)
Av t 2 - eml- . . | . . . \ |
. Avn( ) - (2'Tr i) fcg' (E HO ‘+ 1 HG) .L Hl‘”a , 1 N Hl __’:_L__" o
: ' oo E Hotme E-H,+ ic E-H,
{9.40)

Here each contour C' consists of a pair of lines paralleling the imaginary

axis and straddling the seqﬁence'of poles;at' HO?, Ho'x se 5 HQ'i:ZiG s ous

# It ié-to be noted- that the E* in Eq. (5.5) are thé levels of the referencs

system H; and should'be‘replaced by Hg! here.

T

The occurrence, bf such infinite oeduences of - pOieS along -the lines
Re E = Hy? is charabterlstlc c¢f adiabatic sw1ucn1ng The even spa01np .
of the poleso however, is not a general feature, being mcrely a pecullarlty

of the exponential damping factor e €lt\
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In the limit €-»0 Egs. (9.39. 40) reduce to (9.13b, 14b), g.e.d. The

identity of \O(...') and. lO(,"> in the bound state case becomes thereby
incidentally evident,
A direct expansion of the level shifts themselves may be obtained

from_Efqu (6.28), It is easy to show that [hl]

(o ang |3,

(%2

i

nzl. Hy - Hg +ine€

(9.41)

where the ncta;bicn [ ] picks out the nth order term of a givén guantity,
, : n
and herce that -

s" . -='l. 1 —-ad - A‘—a.d y Coa\

A;En = N (Jg U (*foo, O)Hl U (0,700 )~ i, Je /)
B (9.42)
~ This equation implies
g QAE/Jeg = <J’l H | L L (9.3)

One may verify by direct computation that the Rayleigﬁ--Schr‘ddinger formula

is obtafnable,— when no degeneracy is removed,; by writing

(9.44)

- expanding and inserting this into (9,L2)$ and discarding terms of orders
2 S ' | -
€ € , ... etc,

3 K]

E +1€ <Jo"} [ﬁad(¥o§9 6)Hl ﬁad(o,w)]
. . _ . n

Y
30
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Convergence cf the series'expahsicns.
If, for a given unberturbedllevel Hoiﬁ the expanéions (9.13), (9.14)
“and (9.34) converge at all, they defineAfunctions of g which:éré'not only
continucus along the real axis but also analytic in the complek'plane iﬁ the
neighbtorhocd cf‘:g'; G, Thus fariWe have tacitly assumed that thése expansions
converge for real values of g small enough so that no perturbed levels

cross over a suitable c§ntour iCﬂ.surréunding Howc It is\easy-tb see that
this condition, when generalizédlto include complex valuQS of g, does,

‘in fact,hdeiermine a lower bounc tc the rédius of convergence ofrthe expansions,
and that thé'possibility.éf a con?ergeﬁcé-fai;ure occurs sihult;neously with

a failure'cf:thé binomiai'expansioh ofv(9.2):to converge everywhere onxthe
contour in guestion. }

For g = O the energy levels lie on the real axis ig.the complex

E-plare. For finite |g| .the positions cf the 1e€e13.§illldescribe closed
curves intersecting the real axis as the phase of g 'changes from O to 2T,
& plot of ihe level structure iﬁ (Ey -3 )}:spacé therefore coééists of cones
having their fertices ir the plane kg{ Z 0 at the eigénvalﬁes of Héo
Consider cﬁe cone emménating from the_poinﬁ_(ﬂoy; C),s together with iﬁs
aéjacent néighbér.ﬂ Intersgct these éones_ﬁy a planeﬂ ‘1g\ = r>0 and
p}oject the portions éf thé cones lyiﬁg below £his’plan¢ onto thé.plane '

‘g\ = 0. ‘A lower bound to the radius 6f conyergenceléf pﬁe éxpansioné
‘corresponding to the level 'HOG is then given by the la£gest vglue of r

fof which these projections do ot overlép cne another, This may be seen
--By ;hoosing the contour C? sé as to.surround-the maximum projection
cgﬁtéiniﬁg Hy' without_intgrsecting'the,adjaceé? maximum projectiqﬁé more
than‘tangentiallyd (C* may, if desired; be left open in the imaginary

directicn so as to accommodate the situation arising in Egs. (9.39, 40).)"
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If now ‘g[ is increasgd beyond the value ‘rmax at whicﬁ overlépAoccurs,'
the integrals (9.9, lO)‘Qill, fof some complex phase-of g, suffer abrupt
“changes of value.ariéing from the féct thét one of the levelé héé croséed
over C'. At the value of g..for.which ihe‘prossdver»occurs theibperétor
function’ G(E) has a singularity on C!. This‘singularity must reflect
~itself in a convergence failﬁre éf the bihqmial expansion éf (9.2).

For |g| < Tpays the functions R, A0 AR have no
singularities or other pecﬁiia;itie;, Therefore if tﬁeir eiﬁéhsions converge
at aillthEy hust converge.in this'region° The actﬁal radius of convergence

max -itseyf, although this is not necessarily so, since

is freqﬁently

Tmax 1S only a lower bound for it. A trivial example for which Tmex is

not, thé convergence radius is afforded by.the case in which Hj commutes’
with Ho; The level shifts in this case depend linearly on. g and the
fadiuslbf convérgence is infinite regardless of how much the perturbed ievels
cross one anéthefe Tﬁus although the binomial expansion of (9.2), and hence
the method of deriving tﬁe expansion formulae (9.13, lb) etc., breaks

" down at ]g]{-=’rmax, the formulae themselves.méy‘occ;sionally have a

widéf ranée of vaiiéity. |

Kato [se] has derived a simple theorem which provides a lower bound

to rﬁéx" when none of the properties of the perturbétion Hl are known
except its norm. The norm ‘F‘ of an operator F is defined by

1P| = max <1PIF* F| Y ) 2 for all normalized vectors |¥) .
' (9.45)
If F is ﬁermitian its norm is the magnitude of its largest eigenvalue.

Norms satisfy the'inequalities

Feol & lel+ lol . lrel < lellol.
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" Now let the contour C’ consist of two lines parallel to the imaginary '
laxisi-ét?addling the point H,' at a distance 3 W', where w' is the

. distance of Ho“ from the nearest adjacent level. .Then A

Go(E)| ¢ 2/w’ " for E onCl, (9.47)
and c;nvsrgeﬁce bf.thé'bihomiél expansion of (9.2) is’assured if

P X | N O

where Hj = gV, so that ‘ : o ; ; |

o) < g vl o) < 10 (9:49)

The quantity"%cu’/]Vl 1s the lower bound t6. rmak,band condition (9.48)"
fquarantees'the-convergehbe of the Rayleigh-SghrSdinger perturbation formula.

Alternative formulations

Because the Ra&leigh»SchrBdinéer formul§ is'g dirépt and unsophisticated
expansion in powers of - g :it has the poorest rave of con&érgech possible,
It is therefore desiraﬁle to seek other computational téchniqués, Eg. (6.8)
_ . s - A
.prcvides as good a staftihg point as any. We first pdte'that this equation .

‘can be written in the form

N FE TN
L A IV . Jcl]J> o

which is the generalization of Eq. (7.7). Multiplying (9.50) on the left

by <JOSI . and taking note of the limit € — O.y one infers

'<JO“_

3_‘51]‘1'> = £1€7 7F (2 1) —> o (9.51)
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witich implies

4&E?‘1: zgw% <Jf

We now assame that removable degeneravy is absent. ~The opefatofs p
Py ( );33( ) Py () are then dlagonal in Lhe IJ > , and Eq;'(9;51)Amay be

generalized to

>"*1€Z E (z - 1) |4, > L __;'.'(9;53)

Py JG

so that Eq° (9. 50) may be rewritten Ln “the form ‘

R g\ % 1- p.l') |
Z IJ >. \ J ‘> + 2z = mi}cﬂ ‘:HE.

The factor 1 - PO(') in the second term on the right allcws the limit
€ >0 to be taken at once the superfluoq,ness of the d signé'becdming

agaln ev1denta A more useful form of Eq. (9 SL) may be obtalned by ob"erv1ng

vthat () () .
1-p ' 1.p M T
TRV mxo - EI - HC E? - }c@ B

which yields’

24 |y

#
P
}.—J
1
[0
=
~~
N
—
[
=
[
[e]
~

(9°56)
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where . _
M(f).:: ;} ”QPO(.) v S | ‘ '(9,57)
' E'- H, .

Substitution of (9.56) intov(9:52).then gives an_eq@ation for ihe shifted

levelss”

, _ ) -1 C

By [1-1-F My Jo’> L (9.58)

T R ettell M - |
'Ho S S ‘

[ i

E* = H,' + {J,

gt -

Still another formulation can te 6btained'throqgh use of the relation

i - PO(Q)‘

~p. (M) ' -
. 1- P 1 -  OE (9.59)
N § '
E¢ - HO HO - HO E.S - Ho ’
in Eq. (9.56). This yields
Ly . ‘ ' . S ?
A FI \Jo“> y o2~ Hy }J2>
' . Hy' ~ Ho
§ i, .
S R T SN DS
H,' -~ Hy , A
) 1y -1 o ,
- a-ent’) 'fJo§> B (9.60)
where } v
' o1 e (1) SR
R MM ¢ RS L) B R (9.61)
Hy' - H
The level shift equation is
/ " __. (“} ‘ o ..;l .;\ .-
<%?(%—AEU 1~-1-PFg (Hy - A E?) (%)-; 0.
oo Ho' - H, : :
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Any attempt to solve Egs. (9 58) or-(9.62) for the level shifts in .

. : fpowers of g wnll lead to the Rayleigh- Sohrodlnger formula. However,

there is no need to solve them,in this way, for the p0351bility“is now_open

of obtaining iterative solutions which have a betier rate of ¢ nvercencw

For example, Ea. (9¢58) is comprehended in the iterative scheme

. 1im 1 §
E' - R SR By = Hy
n—»00 . .
; . , (9.63)
E Z -1- "..P (i) ™ i T ! .
b o= ' <Joul Hy . ;ﬁlml. Hl Yo - :
E.i" - Hy

An_lmproved version of this scheme, whichfconsists of a regrouping of terms

in such a manner that a given matrlx elemen+ of Hl appears only: once in
a given term of the sum in (9;53); has been given by reenberg[53 t°~55]

A’though.vhese 1terat1ve schemes ﬂenerally nrov1de a more‘rapld

rate'of convergence than the Hayleigh»SchrSdinger formula, the actual

v'n3>? . convergence is still limitedu' preVer, the’ 1lm131ng f&ctor is now the
radius of convergence of the binomial expansion‘of (9c58) and (9.62), and
as will presently become apparent, this can often be larger than '?maX‘
Qe shall restrict the diecussion tc Ea. (éﬁSS) and the operator M(?J,_aé
=- 4 1o . (9. ‘ or w1

S ,vdenticalhremarks may be appl:ed to g, (9062) and the operator

The radius of. convergence of the blnomxaL expansion of {9.58). 1is
g ] ' N s Coaae) .
the absolute value of the smallest g for wh1c the operator ghil has

unity as one of its elcenvaluou Or, sajd in dnother way, it is the

-,‘ ' ' . » y g . ) » F 1 'b. . e-:.:
S reciprocal of the magnitude of the largest eigenvalue of M( ); Denote this
‘-‘ b} . . 1 i -1 ‘ y . 32 o ¢ - ) A {
: largest eigenvalue by g and the corresponding eligenvector by lq; >
E , Then

S O B T S L S X0}
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or , _ : e ‘ ,

: . : y S

B - ) Wy = a-rShu ) (9.6
where H, = g'V, It is evident that | [/} is orthogonal to the subspace

Po(g)o Such a vector arises naturally when g tékes'on:a vg1ue for which
an accidental degenerac&_occufsldue to a;crbssovgr of-theilevel.‘E" with
sriother level which came originally (at g = 0) from a,diffefgnt position Ho"
HO" * Hci° Denote by IJ"> .thé vector from the sugspac? ‘Qg(") which
corresponds to 'J§> in 'ﬂ?(ﬁjc Both \J"> and {J') A:will generally
centain the vectbf '~iJO°> as a component. However, a;suitable linear
combination of YJf> and. )Jf> can be found whichlhasjgo,components.
- from PO(?) and thcﬁ is an ;igénVector of H whén the grosséyer iﬁ question
occurs. This is the vector ]1P/> o

The reciprocai-eigenvalue g} ié tﬁérefore generally fhe smallest
value of g for which a cross§ver takesiplace between -E}- and another,
originally_diétinci; level}_‘Ii is.ciear fhat such.an acuéal:goalescing of
ievels may possibly-not‘ogcur until a much iargerﬁ&alué of |g| is
reached thén that for.wﬁich a mere o?eflaﬁ of'thé cone grojecfions previously
considered occurs. - Thusr IgF‘ will frequenfly be larger'£h§nx Tnaxs
but never smaller, It is to;be noted that g° may‘bé cbmﬁlex since the

M(') . . 4 .

operator is not generally Hermitian.

The Fredholm method,

1) =1
( ))

The expression (1 - g M

(1)

has singularities at all the
reciprocal eigenvalues of M . An analytic continuation which byvpasses
these singularities and therefore eliminates all restrictions on convergence

is previded by the Fredholm method, We shall conteht“oursélves here with
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a mere statement of the Fredholm formula and .refer the reader to sgendard

~ works foridetails (e.g. reference[]b], p. 1018 ff.). A %

~ One rewrltes Eq. (9. 58) in the form

B = J’_<J ’\HlQ( )/D( )\J y> | ,('i9,66)"
o where - 1 | - ) - .._
) e { /Og e g u(n (1 gy ag] e
‘ = eXP;/;g ;Eji (g/gi)?ml (g ~'gi)i; dg- :(9.67b)§
R .v ' ; | ) k
J?;ﬂ_i_ o Q) D({>-(l‘— gt S (9.68)

Here the 8 are"the'reciprocal eigenvalues of M( ) and n is the

'smallest exponent for whlch Tr M(')n is finite.
‘ D( ) is an entire function of g hav1ng zeros at the poles of
4( - g M( )) .. The operator Q( ) is therefore also an entlre functlon
" -. © of g, and one may carry out.an expan51on of (9. 67a) in powers of g,ﬂ’
insert this into (9. 68), and carry ‘out:the expan51on of Q( ) know1ng
that both expan31ons w1ll'conVerge no matter how large g-ls.%‘ The ratio
of the two expansions is‘then used dlrectly in (9. 66) «

| Eq (9 66) has still to be solved for the shifted energy level E'o'
For thls purpose 1terat1ve technlques may be used as before :If other
'methods (graphlcalenes, for example) are used then care;musp be taken, .

since (9.66) may have many different solutions. It is necessary to choose

that solution which passes continuously to the value H,' as g goes to zero.

.Closed expressions for the coefficients involved are given in reference qu
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The .adiabatic theorem..

The édiabaﬁﬁc'theoremzmay be fegardéd‘as hgving been in a éensenf
pfcveé by the-demoﬁspfa£ioﬁ in the present seétion,of ?he equivaiénce of
the adiapéﬁic'éqnstruCtidhs of "section 6 t0~other‘mdre,stféightférWard
.perturbétidn ﬁeéhﬁiqnes; It {s useful howevef, tb hévefa prqof»éf_this -
thecrem in its most general form, aé stated in section 6; in whibh:the':
adiabapic sﬁiﬁchiﬂg is not restricﬁed to thg’vefy special tyﬁe eXprass;ai
by Ea. (5.1). _ E
v The p&ttefn of procf is classic°[£3} Oné intrbduces a tim;

‘dependent Hamiltonian operator H(t) and a seﬁ of correspondirig eigen-

yeétgrsf LJf(t)> 21. ] - | ,': : . ) L
s | rw) - rwlowy (9:69)
R S R X

Setting J" = J' - in (9.70) and differentiating with respect to the time

one sees that <<J‘(t) )(d lJﬂ(t)> /dt) is pure imaginar§a Evidéhtly

the phases of the eigenvectors can be adjusted so that

o <J‘{ti

- ‘and we shall assume this has been done.

@@y /ey = o, | (e

Consider now a Schrodinger state vector of the form.

' ’ st -
. : i =if Ei(ti)at? _ _
b)) = 2 e T e e (9.72)
‘Substitution of this into the Schridinger equation (1.18)*and multiplication
of the result by <ﬂﬁ(t)| gives the follewing differential equation for

the amplitudes A*{t):
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On the other hand, multiplication cf the time derivative of Ea. {(9.69) by
n . pl , “of Ea. (9.69

I -
gives

o Q)

| <€“rn'(.tl)

(1]

?{(t)lJ'(t)>+[E"(t,j - E{(tﬂ {-J"U:-) ﬁ(di]u?(t-)> /av) = § L), |

. JIYJS
(S.74h)
“ and hence, in virtue of (9.71),
T. " -
R Coaf U [Er(e) - B3 (e) | ate e
M) s £ 0 T a(e) Comge) LRy Lore))
. Js.#Jn : ' “E(t) ‘,-E.‘-'(t')
(9.75)

If H(%) varies slowly with time then its eigenvalues E(t) vary

slowly, and an integral of the form

N ij;O [En(t7) - me(er)] aes

Jf f(t) e ds

O . .
where‘ £{t) is also:élowly varying, is of crder f/& Ain>magnitude,_55
being some average ?ﬁlue 5f the level separaticn 'E"(t)ﬂn Et(t) in the
interval 0 to t,-dnd f-'a corresponding average value of £(t).
Therefofe,fﬁf only one of the amplitudes, say. A'(t), is excited af tw Gy
integgation“of (9.475) for the other amplitudes gives

s

If the time variation of H{iL) is regarded as due 1o a variation in the

coupling constant g, Eq. {(9.74) reduces, in the case J" = J¥, to

Eq. (9.43),
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.(wﬁere' € is nke Lec;prOﬂal cf length of.timé over which H(t)( undergces
significant cbanges and <H> is a 1yp1 &L_qﬁmdiagonalrmatﬁix elément of'
H(t). _The adiabatic limit. is exp;esseu by € —» 0O,

,Eqi é?,?é) contaiﬁs the statement of the adiabatic thecrem. It shows
thaﬁ ifxtﬁere is no initiaX degénefacy in the System, so that 81l the level
separations occurring in the sum (9.75) are fihitey néné of the cther amplitude

~ gets excited'in-thg adiabatic limit, and the vecﬁor iﬂp(b}> remaing a purel
.f}_g o 7 eigenvector of H(t)? On the other narnd, if initial deg;aneracy‘is-presentﬁ

o théf: w —>;bg then the amplitudes canﬁbeccm ail 1 mixed up, ﬁnless the
degener Cy rema¢ns unremoved, in which case the operét@r »ﬁ{t} uevef has

E . .‘noﬂvanishing cffudiagohal element§~conne&ting states of*equal energy and the
';5;' "..adiabétic theorem will hold;iﬁsspite ;f the dégeneracy; Even if the a,nene‘;cy

[ y . . -~ : . . “ r

is removed by the’po“numbatlon, nowevag the amplitudes can still be prevente&

from becomi ng mixed up 1f the JE”tOT” . }J {t)>= are choegen in such a way

. Tl i g : L . . N
that @ |J (t)> /dt remains ¢f ordsr € -az t —> U3 for ths integral of

. Eq. (9.73) then becomes of ordér

. +
L BRI VAR YR

]

at - o-{e*,f'g")5 -

g i s :for J”H¢&7Jg‘ﬁ‘the Tevel separation E"(+) ‘ "{ﬁ) peing exvress ible fo;}
| % 55141/6 - simply as g*é t where §; is sgmé finite constant. 'This
S ' reéiiremeﬁt, when applied to the adiab atic cén-tru;tion (6.12)., determines
. the apprup iéte cﬁcice for the ‘eﬂtorb \o( and zan evidently be
*‘; . "”a+1sfied 1f The eigenv t@fs \(X > are analytic furictions of the
) _coupllng constant‘ g in thé nelgnbarhoca oi £ = 0.
- "& - -

Toc be completely ‘rigorous ane “shoald alsc show fhdu; for rea Sn“abg‘ cperators .
‘H{t), the sum (90"5) c01vergef for a any set.of amplitudes s isfy1ﬁ~
’lA (. ‘ = 1. (Ses reference [631.

o
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The adiabatic construction of eigsnvectors can also be carried past any

.

N pnini at which an accidental degensracy occurs, provided again that the \J*(tl)
can be chosen in such a way that & JJ*(t)/ /4t ‘remains of order -€ right

through th +ime of degeneracy. This cbndition‘evidentiy:imposes certain

restrictions on the temporal behavior of the operator H(t), but these are of
' 3t ’ :
. the mildest scrt and may usually be ignored. '
The fact that any stage in the'switching process the vecto“ |1p(t)>

18 an eigenvecto; of the tetai Hamiitoniapn rpnrator fr“ that stage is

P . ]

) ‘ corisistent with Eq. {5.5) whizch shows that if + and € are aliowed to
tend respectively toc F oo and 0. in such aAway that € |t remains equal
' ' : i Hot _ad .

te -fux, 0<'x< 1, the result o7 applying e U (tﬁ-'oe)" to  Jets )
is to obtain an eigenvect.r of the cperater ‘H. 4-xH-

S

The creation of bound states from {res states. -

An interesting supplement %o the adiabaiic switching prccedure is .

3 4 o -

suggested by the situation occurring in systems which possess both bound

‘4

and free states, and typically by the zitueticn . depicted

[N

n Fi

[£1¢]

[ .7, in

e - — - : . . ,
The type of behavior which is pot allewed is i1l LStFaueu by the simple

“example

o+
A
¢t

o 2

Here although H(t) is a contimuous si

awiy varying functicn of 4, its

o+
<

eigenvectors change abrupily at the time cof degeneracy T =

e
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which system H thas quﬁd stétes whiich have no counterparté in Hg.

Although it'ﬁas Eeen previously remarked that perturbation theory éanﬁot

Vbe applled dlrectly 0 the constructlon of the elcenvectors for the “extraW
states, and uhat 1ndependent and generally more dlfflbuﬁt means of const truction
must be found,,one;nevertheless suspects that these states oaght to be obtain-
‘able by some ;drtlbf;adiabatie précess of @ pGFLJE uhem off the bottom of the
deck" of highei lying,ébntinuum states. It is acnually po;sible to test this
conjecture in a simple case. . |
Before beromlnc spec;f*c let us first consider some cf the general
,.featurea which we should expect to characterize uhe *esuitb of such a

<’

procedure, Let‘the-zero_pdint of energy be taken at the bottom of the

continuous part of the ‘spectrum, "The lowest lyiﬁg continuum state of the
system H, will générally,be nondegenerate (igncring nonclaseical degrees
of freedom), and we shall denote it -by U> O"ié'é function'only,

of the absolute value of a momantan p, this state w1_1 ﬂorrespcnd to ,ﬁ = 0O,
CHO) oo . T T (9.TT)

In case the lower bound of the continuum is itself not included in the

spectrum it is necessary to regard ¢ as a superposition of states
I : ) r ,

fromian infinitesimally thin shell of levels at,the"bottqmﬁ'but this does

not .alter the fcllowing discussicn.
o L ‘ . . -ad, N

We wish to consider:the effect of applying the operator. U (0,F00)

to l0> . If our conjecture is correct then we should obtain a resuit of

the form .

c—a

7*%(0, ® 00 ) ]o} - \o} }:A \ N (9.78)



UCRL-288L
R R |
where the lJ9>v=iare the Textra gound'statés, Thé question arisés as to
the form and magdﬁtndeJOf the_amplitédes Aiyo | ‘
If the bertuqution,fﬂl is q_ﬁosition dependent.ﬁotentiald Vi{); '
£hen tﬁe coordinate°repré3entation éf a given \J‘} ) must;'éh“the region

cutside the range-of the potential, have the form

pl

- ; I ! -

<~1:!JB> ~ (dN“{')2 Ci%'e}*r 7(9979) .
where C' is a normalizing constanﬁ and

Ho(Am') = Et < 0 ' . (9.80)

E! being the energy of the state _'|J{> . In this state the cobrdiﬁape of -
the system (particle) is more or less certain to be found withih;a diétance

of order _}k'“l

+ d from’the origin, whe;el d 1is the fange of tﬁe pétential
(which is assumed to be qentefed on the orii_gin)° On ‘the othér'hané; in thé
:unpértufsed state \O> the coordinate has an equal ch;ncé'of being

-anywhere in'the fundamental box of side Lar The ;hance of catdhiné the

ﬁsystém iq'the boun& state (J'> by. switching on £he peéﬁufbation is

i -1

- ’ N - . o .
therefore of the order of (M + d) L N 5 and the amplitude 'A*i is

e ’ - N/2 -
expected to be proportional to (M 1, d) / L N/2

. Since a level shift
of ;amount .Ef .is also involved A,' should have as an additional factor

" a rapidly- oscillating phase. Summing up, we expect’

: A;P = fti(é)(/Al”l4' d)N/2 L_N/2 eXE [(tiié )-lfg E'(g) g dgi] ,

| | ' ° o (9.81)
where the’ r.'(e ) are weight'factors which depend on ﬁﬁe detailed.l

: sﬁructﬁre‘of the system and which may also be expected to depend on éhe

rapidity € with which the perturbation is switched on, though in a Tmuch
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less singular fashion than the oscillating phase.

Eq. (9:81) will now be verified for the casé of the one~dimeénsional |

-delta-function potential ¢onsidered at the end of the previous section.

Here @here-is dniy one bound state;, and d = O, JrS g, Ef = -4 g2; Hence
we expect . 1; , L ' L
' T 4 ‘
Ay = f¢(€f),(8L)_ €. Y ' RS (9-82)‘5.
Using Eqso;(Smﬁj? (80102)ﬂand (8.103), we first get
“ad, I x : i 2\
<pg U‘(d‘f";"‘?)lo> = 6 iy 28 | 1 1 tig)
o~ > : - - P - Py - i y
L o L n‘_O P'°F 3 2{n+1)e \JW z2e
06
. . ~ m
i - e <
= (S 7O'+ <8 EZ: 5 L - -/hi = \
» L n,"OA PPF £ 2(2m+1) A (Zm)! K 2€. /
RS m+%
3 [ 2
o L i n
PUE 1 2(2m42)e J(2m + 1)1 €
- (5.83)

For very small. € +the terms of the above series which give the most

impertant contributions are those for which m' is of order k'nge ‘

Hence the Stirling approximation for the factorial -may be used

8i.

ot

g 3 :
. . . X+ 5 0 =X
xi o~ \IZWT X < e 5

LA
0
<

giving
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\')I(‘zm)z“ o~ (2m )’% orE x’n-% mi — wt P ¥t

. o ’ S . : : : : (9.85)
: S 3
- Jam+ 1)1~ (2m) -+ mg* L mé ml — ’rr'%_zm_ éf_mz 3 e¥/e)* .
' | | o (9.86)

In the f:Lnal forms of Eqs (9. 85, 86) the extra factor m‘k% has been

replaced by its "peak value" (1’; g2/€ ) %, in recognltlon of the fact that

the fractlonal w1dth_of the group of significant terms of the series (9083)
"-becomes smaller;énd smalle;_as € tends to zero. Therefore, for very

small €

' q - e | . m
<p'- 0" (0,=F°o.')]0> = § +f,.(€) 28 5_\ 1 1 <tig2> ,
e , p'O _ + —

Lm =O: p'?% i Lm€ m! Le
:’ , ,> . 'A : N ’ “ ’ (9087)
where ' | | : |
: - Coxiwm/h o, & o
f,(e) = L+ e ) (2Te/e) . K (9.88)

If it were. not for the presence of the factor (p ?‘f‘htqe)-l 5 -
(9. 87) would be the serles for exp(i;i i g2/€ ) However, ‘this exponential
can be maintained as a'factor‘if we-expand (p' F£ihm )_l' in powers:

[y

of _p{-z and make use of the asymptotlc relation -

| élg/ | +ti Y
gz/lo"?)s e ‘ (tl Ae/p' - 63/36 )
s , _-':"V* n §
Z £i4me )+ 1 [#1 g2 "
' m- O p|2 ’ ‘m! he
- SR - (9.89)

o , o S 2 -1
When m 1is near-its "peak value" the expansion of (pP " i 4me) converges
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in the same region as éxpansion (8.104), namely for p' > g, and may be

analytically continued to smaller values of p'. ngce'we write
0o : m © = oy l s‘ ‘i. o \mo
Z' 1 1 [zig® :Z Z a,/::_i'zmie 1 £187
m=0 p'2=¥,i yme ™ e Lm0 s0 p2\ p*/ mt He /
” oo - . . E | : . . .
"’;EE:: p’mz(néz/b'z)é ét% rek = (g + p'z)mlféf% i g%/e ;.
- sz0 : - ’ ' _

(9.90)

which, in virtue of (8.100), leads to (9.82) with the function £, (€ )
given by (9.88). 1In deriving expression (9°90> we haﬁé, of course,xleft
many of the important maﬁheﬁatical steps unjustifiedy such as the‘recklessh
use of the asymptotic forms, ipterchange of orders of symmation, stc. The
derivation can, however, be made rigorous through the use of proper |
analytiéal techniques. | |

It may perhaps’ seem surprising that 'ﬁt(e ) turns out to be a
singular function of é; at the origin. The singularity is, howéver,;a

4

weak one . (~€ "), and, since condition (7.18) must_glways hold,

lim  , ‘ , . s
€0 : o
This means that even though the bound state can be adiabatically created
ffom the continuum it never has more than a transitory existence when

constructed in this way. This conclusion should hold generally for all

systems.
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10. SIMPLE FIELD THEORIES -

The 'honrelativistic extended source model.

?; The mpst striking of the speciéliproblems poséd by field theories,
_ namely the problem of the renormallzatlon of constants, can be illustrated
by relatlvely si mple examples° In tpls sectlon we shall con51der systems

- ' Lo *
. having,Hamiltonlan>operators of'the general form

/’4/ ‘de3r+ Z/{'h’wrrvﬂ) + Mg %A]dr-ﬁc
+gz /dr fdr@A p(r?—r)"x/ ‘Sfl

(10.1)

Heré we use the abbreviations

= .(P()E) 2 - ) #A = <QA(;S) e @A = pA(s’); etc.
- (10.2)
- The field 7P may have several components %Pﬁk 5 and the notatlon contained

in Eq. (LO 1) is then to be unde;stood as 1nv~lv1ng matrlxmvector multlnllcatlong

. : . . , ¥
If the baslc commutatlon relatlons are taken as

This form may be derlved from the Lagranglan den51tv

- 2,2 -
L= 11; (P 31,9 - 3 2, [ (op0)° - TN NI E W
j~zAffA? p:j(,{ - r)'gb T ¥ cr

" which yieids the équations of motion in the Heisenterg representaticn:

. {M +g ZjA[/qu PJ(r'F r)d rv)TA}w - u

P

'_,V'?g?a-ﬂ VN DY Jpse - ff;,m O

~n

¥ , . : -
The brackets { =§ denocte the anticommutator.
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Laems] = 188G -20, | w/:;%’*}? &uv $(x - x')

b, p = W w*t=0,

]

with the commutators of all other pairs of field quantltles Vdnl'hxnga ther:

TRM describe flxeq fermlon 8ources OL a set of real scalar (or pseudo-

scalér) boson fields Py Following custom we shall refer *o the fermlols

~

as nucleons and to the boscns as mesons.

~

The last term of (10.1) is generally called the ﬁCOupling tgrm,ﬁ'

g being the coupling constant. The Hamiltonian operater Hy of the "natural®
'feference system is obtairled by setting g = O, and involves,only the

guantities My, and Mg, the "bare" nuclecn and mesorn masses respect1Ve1y

The- constant Evaw is inserted merely for convenience to cancel ?he~va”uam

"

oscillation energy so that the vacuum state will definezthe_zero point of
eriergy. - In relativistic field theories the masseé of the real nucle on .and

_meson when g# C, call them M and K , will genera;iy d;ffer flom M,

.and./}xéq - The adjustable constant Evap must also vary with g in order

‘to keep the real vacuum at zero energy. In.the present noﬁrelativistiC'
v.—j:)ca'a,ranLe,q however;- only M',will depend on g. A g—dOpendence for: /AQ and

B o Tequires the possibili ty of nuclecn pair sreation; “and tﬂio 151 ‘be
prohibited by taking M, as a simple pcsitive real constant rather than-the;
‘more general matrix having both negative and positiﬁe_efgenvaluesn As

- . Y

‘partial compensatiori for this restriction the nucleons will be.allowed

-to‘have'a finite extension thrcugh the presence of the real functicns
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LQ}(T - w’\. Truse functions give to the mesen nucleon interaction a soe-
aa) e - . .
called nonlocal character. The remaining featurcs of the 1nter“c tion are

3

rdéscfibef by a set of Hermitian_maﬁriégs, the TjA'

" A cqmdénscd notation, ' : C ‘ -

For pracy 1cal Cd]CUlablOHS At is rnrvenlbnu 6 pass to the momentum

H3e
lwis

-representation.  The nrecedure is familiér.' One makes a Fourier analysis

of the meson field variables with réspect to an enclosing box of volume L

"

i

l' - - 2 p',_. o] e : . _ T_
Pap ” /‘Wr) e" " dr = fa,p 5 O (0.4)
torr ; M-

L3/ /w (r)e R dB}: T, L (10.5)

qTA)p

and then introduces the operators

a,A,p = "1(2\4)) A,p ‘» i(A)‘?A,B) .) ’ . - | (10.68-)
aﬁﬁ - ~i(2w) .(IT’JA’—]') 4 1u)<FA’_._£). - N _ ; - (Alooéb)r

Ciew (1eferunce [ﬁg) has consldered b/qtcmo of the extczded source type

from the point of view of renormallzatlon thCrx pﬂlelca*lv hie bas

cdhsmdered.the charge . synmetric pseudoscalar & theory with

y -1 : ~ / o
[o) ‘\;I" - :r" - }_Ako ! P (3: - ,I-“)/d k.j s l‘_ﬁ = \Xl,)’.z, 1(3) 3
/P(l‘)d T .~ l Cy . TjA = (S ’TA ,
the . 66 and 'TA being the. spin and *sotopic spin natrace respectively.

Yuch wor& has- b een done in the past-on systems of this type from thc polnt
of v1ew of strong Cohﬂllnb theoxy.L03 There, however, the spllttlug of.
H; 1nto a perturbutlon Hy and an unperturbed Hamiltonian H, is done-)
duite,differently, and the phenomena of renormalizatioﬁvéré forvzhe most
part'obsbufed. . - . |

3 .
Soe, for example, reference ({] , chap. 11,3 6.

r
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where ) 1is the energy of a mescu of mcmentum 'p ¢

w= %}AQ)% s o p o= {'p\ . C(10.7)

‘In order to concentrate on essential features we shall suppress
the indices A; p by introducing an oo—dimensionai Buclidean vector space.
: D . - et .
Let the members of a set of orthonormal real basis vectors in.this space be"

denoted by b ¢
v A,p

)

o Parpr T Omar Sppr s o 0 (10.8)

the dot indicating the scalar product. Then introduce the vectors -

.a = :E:A 5 5 _ B é* .:Z:A;p gé;p gA p:

#
sP aAsp A;p -
o ~ S . o~
(10 9)
These vectors satisfy the commutation relations :
[as a] = a*s a*] =0 . '1
: . (310.10)

1

¥ Z b, _ b -1
L—a’ al A,p AP Ap T D

where lb denotes the unit dyadic in the space of the bA p
5

It 1s also convenient to ‘introduce another vector space for the nucleon

field varlables, w1th~a"correspond1ng set of basic vectors 'fA r _;'5

S

£ of =

MsT o w,rt g/*v 5,{'1,:? ? (LO °'ll_)

3

‘and to definei _
‘ % | .
ﬂy Z @ %02 1h, () L. U= 2 (@) 1;), [
(10. 12)

. The iﬂ’?s‘ commute with the a's but, among themselves, satisfy the ant1~

ﬂommutatlon relations
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1]
—n

v * .

_ ‘é. .
%*

v

1

(@]

vl

; (10713)

2wt 1
oy :£ MK ﬂg}; - Mf ’

(v}

where “1p is the unit dyadic in the space of the £, _ .
cLo e - = MR
If now the meson field Variables in (10.1) are expanded, via
(10. A 5 6), in teérms of the ap p’ and if the vector notatlon her° introduced

is employed then the Hamlltonlan ooerator reduces to the sum of the two

condensed expressions

Hy o= u, W W a¥ewya , | . (10.143)
‘H = g (V4a + a”v, - ¥, (10.14b)
where

b);) = ZA’p bA’B w bA’ﬁ E , - a ) (lO.lS)

v - (.2 LB)-*% i Eog‘ _' )

= . ; , R w . b

° JsAspop,7, r Uj,p ¢ : /",r JA "sg A,}Z ?
| | " (10.16)
Vi~ _Pj,ﬁ‘e dr = Yy o 0.17)

In the passage from (10.1) to (10.14) the vacuum oscillation energy has

been removed by setting:
E., = $Trw . o " (10.18)

The_matrix—?ecpor multiplication in expression (10.l§b)'ihv61ves, in
~,én obvious fashion, the direct product of the vector space bf the bis with .

that of the f's. The quantity. Vo, is a vector in b-spaée'and,a dyadic in“
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{f-gpace, and it ‘is known as the simple vertex operaster for reasons which will.
? - )
presently become apparent. Its Hermitian adJcmty th-h is indicated by the

asterisk in (10.1i4b), is to be understood as involving a transposition in

‘{-space as well as a complex conjugation,

The operators a and a* resvectively annihilate and create a meson,

_ . o
‘and the operatcrs jB' and i@' de the same for a nucleonu -The vacuum:

(477

de "ined as the qnmﬂarticle state, -i.e.

the state from which no particles can be removed uv the annihilation operators:

T

state of the reference system HO i

a |vac) = O ;. 4 jﬁ:]vac> 5u 6. - (10.19)

It is evident from the form of the interastion (10.14b) that .- :\véc>' is

an eigenvector of the total Hamiltcnian cperator, having the eigenvaiue zero.

it

°o. - {10.20)

H \ﬁéc>

Thus 'Ivac> not only revresents the so-called "bare" vacuum of the

"

~system H_ but also the real vacuum of the system H., In theories which

ailow nucleon pair creation the real vacuum state vector is generally different
from the bare vacuum state vector.

: The bare one-particle states are cbtained by applying-the creation

- operatcers to the wacuunm:

O SR T SR T A A
' (10.21}"

The quantities .}WTO> and ]Nﬁ> are vectors not only Ln:mhte~vector
space but also respectively in b~ and f-zpace. The stat e~vactioy describing N

a singie bare meson of mcmentum in the state A, with no nucleons ores ent,

D

laaid .

is obtained by taking the scalar product of 'bA o with WT > Similariy.
. . 9 N

L



UCRL-2884

~141-
‘ -the scalér produCt of f r with {NO> describes a single bare nuclecn.at
. gw. 4 o ' . N .
the p01nt r in the state p
Since - commntes with a* it is ev1dent that 1;\q‘ o ;

aﬁd hende that ‘WT > is an eigenvector not only of H but also of the
total Hamlltonlan operator: . : ; . -

H, .‘qro> *':.H_.|&To> = ’"“'o>gg  0.22)

LT
i

Therefore the single real meson state, which may be describéd;by a;vector

eqwr> v ,'is;identieal with the singie bare meSOh state in the present theory:
ey =y S L (10.23)

On the other hand, the single real nucleon etate; which will: be denoted by
the vector |N) , 1is not identical with Ny .

The pav‘t;cte propagatlon functlons

of fundamental importance in quantum field theorles are the exnectation

values of the Green's functioﬂs GOt(E) and GdSE) in the’bare one—particle

states, These are knewn as the unmodified and modified one-particle

.

propagation functions respectively. In the present example the unmodlfled

~and modlfled meson propagation functlons are 1dent1ca1°

(ool vy = (volamlry - o

The two correspondlng functions for the nucleon are not 1dentlcal .however,
"and a principal task in what follows will be the constructlon of the modlfled
;nucleon propagation functlon°

Before enterlng into the detalls of this task it is welL to call

attention to the fact that the forms of the mathematical etructures which
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‘"7,,¢ppear in the development of a given quantum field theory depend very larnely

J'fg}on the form of the interaction between the fields. Thus, in the present

Wﬁgexample, the choice of mathemstical structures to be employed will be

'ﬁb"conditioned by . the fact that the interaction (lO 14b) is linear in the meson

"":f,‘field and bilinear in the nucleon field. Although interactions of this type E

?1,are currently attracting much greater interest than any other, it is to be

: n?fremembered that ‘other types can in prlnciple exist each giving rise to 1ts'

7’5515ifown special formalism,, How far the ideas of renormal zation (which we ShaLl

- discuss presently) can be applied in these other cases-is an.open ouestiono

:The only other 1nteraction which has been extensively studied a51de from the

) fgfﬂtrivial one which is linear in each field, is that which is billnear in both

- ;fields° [)Iol In this case, although the appropriate formalism has its own
l"peculiarities, the renormalization concepts can still be applied, »at 1east

if the interaction is nonlocal About interactions which are still more

- complicated, e.g. nonlinear metric interactions in gravitational‘theory,

: nothing is known.
In the present example the unmodified nmucleon propagation function

is‘given by

So-z(E), = <No lGOi—(E)\ NO> -: ”;L'f - o '(10025)..
. ' ' E~M°-s=ile'

"The modified nucleon propagation funCtion, which will.be denoted by S (E

‘may be expressed in a similar form by making use of, the following identity:

i

’Bothffields must then have the same statistics, i.e. both fermion or

' both boson. .
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ll

<N \w E > & ool 1)+ 1@l 17

{N 7] & - H&.ie)‘

t(E)(E - M, ie) - g<N0|G£(E)‘ o T oYV
| | (10.26)

e

Lk e
‘;‘where; \ Ngs s > is the one-nucleon-one-meson state vector obtained by

3
R applylng the operator a - to the vector )No> , and where the dot product

;771n the second term 1nvolves a summatlon in b-s pace as well as f»space Here

:: essentlal use has been made of the linearlty of the 1nteract10n (lOwlhb)}in

."in the riumber—of mesons present, tHe values of these elements being given

RS

N by:;é~;times the e@emenfs of the simple vertex operator. .One may now write

osm) o A - (1 - S0 =] s, @
SR - 2B e e | g (10.27)
;{where T A
Et(E) = VB S (E-w)v . (10.28a)
,*"'1-=,v',.v¢<E>. e EXO) e lo.® |1, w) [s )]
‘ © (10.29)

rilvf,>Interchange of the order of the factors G,(E) and (E - H +i€) in

- ;(10 26) also leadsvte the same result, but with

Zi(E) = g2V, 5 (B - w ) Ug(E) . (10.28b)

i}the meson fleld whlch restrlcts the nonvanishing offedlagonal matrix elements

1;”of-phe operatbr E-Hxi€ to those which connect states differing by one .

»



UCRL~288L

e

70Tt dsevident thetl‘s (E), s, (5) and Ejt(E) satisfy relations of ‘the °

"fDiagran' '

IV_Eforn'(7,l2) under- Hermitian congugation°
At first sight hqs (10.27 to 29) look somewhat unhelpful; - §:£(E)
:._seems to be a more complicated function than St(E) itself, inVOiv1ng, as

~ ;'it does, both S (E) and the matrix element N, |G (E) N Q'F
. = 0

L §OWever, these equations~canrbe given simple pictorial meanings° ‘Consider

'first'the.procedure of evaluating S.(E) by a straightforward'binoniel7

r_expé.ne:’Lon‘of-Eq-° (2 lé)fand nse'of (lO 14). The expansion:will consist of

-'.:an infinite number of terms, but it is ‘not difficuit to see that each term

'Wlll correspond uniquely to one of the p0531ble ways of putting together

j'the three ‘basic pictorial components 1llustrated in Fige lO, each component.

'”'Jbeing used repeatedly any number of times on in such a way that the resulting

:': diagr _consists of a 51ngle Solld verticalline plus any number of emergent
vand'thén reentrant dotted lines. The dotted lines ere allowed to cross each
other, and the order in which the vertices (Flge 10a, b) occur along the
solid line and the manner in which they are paired off is significant.- Ihe
sole restriction is that only one of the bare-solid-line components (Fig° 10c)
is allowed between each pair of vertices, and that the diagram must have
,’Just one of these components at the top and one at the bottomul

The value-of a given termvcan be read off directly from ite'corresoonding
diegram Each vertex contributes a slmple vertex operator multiplied by the
‘coupling const.ant “each solid line component GOntrlbutes an unmodified.
j;nucleon?propagatlon function, and all these contrihutions are multioplied
:togetherffrom left to right.in:the order in'which'their corresponding’

chmponents oceur from top to bottom in the diagram. A given diagram will
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'hcontain as many ‘gvofvertices:(Fig; 10a) as ngb*:vertices (Fig. 10b). The

- Yoo

i “i,:;"lenergy value4at whichva given' So&: is evaluated will depend on the number.

f“’:7:$ 'ofidotﬁedulineé inﬁersected by a horizontal line passing through the associated

";eolid line component The solld line is referred to as a bare nucleon llne,

!the dotted llnes are called meson lines, and the whole dlagram may be regarded

' .as portraylng a process of virtual emission and reabsorption of mesons. The

iﬁarguments of the unmodifled nucleon propagatlon functlons keep a tally of the
=iamount of energy 1nvolved in these virtaal processes, so that-a given S,
. w1ll be evaluated not at E but at E minus the sum of the energies of the
;"')wglmesons whose lines are 1ntersected by the horizontal line in question,
Slnce each dlagram has a definite value associated with it, one may
Vwﬁls.speak of "addlng dlagrams," meaning that one is adding the corresponding -

-»values._ The.dlagrams correspondlng to the terms of’the expansion of Su(E)

'l;may be called real nucleon diagrams° Their sum, i.e. Sy(E),; will be denoted

';7t;by 4 heavy solid line called a real nucleon line. A real nucléon diagram is

: Tisaid to’ he irreduclble if it cannot be separated into two (or more) parts

. conneceed onlfﬁby:a'single bare nucleon line and ne meson: lines. If the bare
;'nucleon lines are"remored:from'she'top and bottom of an irreducible real'

[E

"ifnucleon dlagram, the result is called a self«energy diagram.  The sum of all

:self-energy dlagrams will be’ denoted by a 01rcle enclosing the symbol 24 .

;It is easy ‘to see that the value of this sum is Just the lunctlon >+ (E),

l‘iwhich w1ll therefore be called the self-energy function; for a real nucleon
/fllne may eV1dently be constructed by - the iterative process indicsted ih
.Flg. ll, whlch is JUSt a plctoriallzation of the binomlal expansion of
Eq (10! 27) L
. Next consider the matrix element <rq Gt(E)l N, T > ‘It is not

difficult_to see that its value may be expressed as the sum of all possible
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F:!G.IO -THE BASIC COMPONENTS OF DIAGRAMS
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a:dﬁﬂways of insertlng an extra, vertex gV “into all possible real nucleon

"f-dlagrams, Consider one of these diagrams with the extra vertex 1nserted

”';It can generally be spllt 1nto three parts connected by single bare nucleon
' ;lines,g a real nucleon dlagram at ‘the top, another at the bottom, and an
fiirreducible oart contalnlng the extra vertex in the middle. ' The irreduclble

Cow

“"part is called a proper vertex dlagram° The sum of all proper vertex dragrams

8 tWill be denoted by a c1rcle enclosing the symbol Vs , together With an

Ck é-h": emergent dotted line poxnting downward, and will be called a modlfled vertex.,
»Ite reflection'in a horizontal line will be denoted by a circle enclosing

k;the symbol Vk s together with an emergent dotted line p01nt1n0 upward.

| Fig° 12 shows the structure of the matrix element <PJ th(E)l Ngs T >.
117The modifled nucleon propagation function corresponding to the real nucleon
| f. llne at theubottom of the diagram must evidentLy ‘be evaluated at. E -w
;ﬁ:rki:;:owing to the presence of the extra meson line, ' Fig. 12 is therefore a

“'7pictorialization of Eq. (10 29), and it is clear the value to be a55001ated

".fwith a modified vertex is th(E) or gEF(E) depending on whether the A

- fextra meson line points downward or unward ‘Vt(E)' is logically called the

‘modlfled vertex operator »
- There remain Egs.- (lO 28a b) which express further, malnly
t‘gﬁobological, properties of-diagrams° 'These equations, which are pictured‘in
":F'Flg, 13, state that the' sum of all’ self—energy dlagrame is obtainable: 31mply
riby connectlng a modlfled vertex and a 51mple vertex by a real nucleon line
-[,.and a meedn line, 'i'*“*; | |
| l Rithough'the"praCtical construction of the modified vertex and

“dnucleon propagation functlons and the dlscu551ons of renormallzation to

follow are convenlently carrled out in terms of diagrams, objections can be

raised against thls.procedure on the grounds that diagrams are inseparably
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baiconnected with a somewhat artificial expansion in powers of the coupllng

.,i

bkgconstant upon whlch it is unsatisfa”tory from a purely theoretical point Of
'dglfview to base a- theory, partlcularlv since practlcally nothlng is known about
~i"t,he convergence of the expansion or tne.valldxty of a deflnlng procedure in
e £é;ﬁa df analytic continuationn For this reason alternative techniqnes have
i been developed which 1nvolve only closed variational expressions and av01d‘use

" oof diagrams altogether° ~We shall here present one of these techniques which,

,‘in-addltion to having an abiiity independenﬁ of diagrammatic struectures to

o ﬂ.;snggestﬂiterative~methdds‘of computation, has also the special virtue of

‘7-»;K,rendering the subsequent discussion of renormalization'quite straightforward

k]

' ‘*3ﬂand natnralv.'It is worth emphasizing, however, that we do:not attach any
ti?'gspecial virtue to the avoidance .of .think ;ng in terms of dlagrams, since the
:::forms of the mathematical structures which will appear have, after all» an
4{¥unambaguous correlatlon w1th +he topologlcal properties of special diagramsq
r;aThus, 1n the later dlscus31on of the Sumatrix we shall not hesitate to speak

“Ain terms of diagrams when éonvenlent

s

¥

*
' A varlatlonal technique

- We begln with a further sllght 31mplification of notatlon It will

- be observed that the total.Hamlltonlan operator (10. Lh) is dlagonal in the

label o This is a reflection of the immobility of the nucleon in the present

-example. It"will be a convenience for the time being to omit practically all

* For”the'general ideéscontained inEthe following‘the author- is"indebted to |
‘, Profeseer»Julian Schwinger, (Unpublished lectures given at the Inst tute
for Advanced Study in December, 195A ) To avold misrepresen‘atxonu :
however, it. should be stated that Schwinger bases his varlaulcnal technique
;f directly on the action prin01ple, while ‘all traces of this approach o

dlsappear herea
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| reference to the nucleon, to replace the symbol Ar simply by 1, which is to
be understood as the um.t operator in the’ space of the matrlces TlA’ to

regard Vo and V v' as matrices in thls ;pace (thereby 1gnoring their. r

dependence), and to replace the symbols ]N> and [ No-,"TI' 0> ‘by lO)

k .-a'.pd ‘ l) respectlvely, the numbers - O and 1 1nd1cat1ng the number of

© mesons _pre"_s,ent in the states in question.

., <4

, _"‘We, next introduce the differential operator

B t = -i2E . 0 (10.30)
. satistying ‘ | :

[E ] =1 v - (10.31)

7 Thls operator, whlch has the effect of produ01ng dleplacements in energy; w1ll
“' be used in such a way as automatically to accompllsh the equlvalent of the

" tally kept by the bare nucleon propagation functions on the meson energies

: riﬂVOlved in the expansmn of Sg(E). Since a*.w-a| 0> = 0, we may write,

u)at ' ._1 -ia”® ‘@ at
(E - H< i) . O/

‘ S*: <O ' (E - H % 1€ ) <O

1 v ¢ -
A _—

Rt ' “i&;‘t 1wt & )1
: <Ol E - Mo - g(VO'e ‘a4 a¥.e -Vo ) + i€ _ ‘ O> :

(lQ.‘32:)

' ~-:'Irfe'rhe lS’t i's-t'o bé ~reg'arded'as an operator in the vector‘space of E and t,

: “and ‘hence t the argument E is omitted.

It Wlll now be convenlent to generallze the deflnltlon of the modlfled

) nucleon propagatlon function by replacing the- operators a and a* in (10.32)
~respect.1vely by a4+ ® and a¥ + o( , where (X is a variable vector in

b-space whose components O(A p are ordinary complex numbers. We introduce
s .

e

’ for brevity the symbols
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| ' 'Je'
”,j,sﬁkv (r, t). ZZ: (2 L’ ) (cx pe - + a;»p e . )
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ST gt it
' f}i:E - M, -g|Vs'e (a+at )+ (a +u¥) e Vo |tiE ,
S T (10.32)
e -1
Sf : J\* (10.34)
so that ¢

<°l9*\0> | B | S (10.39)

It is not. difflcult to show, though unnecessary for our purposes,

t.hat S,_, .s when defined in this way, represents the modlfled nuclaon pr0pagat10n

u.funcz;ion.when an external meson field

i(p'r - wt) "y -i(per - wt)

P~

| (10.36)

' ié“érésent in addition' to the quantized field ;. The purpose of intreducing

- thls external field is to exploit the relation

_<°‘|IA‘:\1> =’<0\[35»a*]\ ’a<omlo>/ao< ,

(10.37)

" where B is any operator which, like 9"’,; and 9: s depends cn K  only

o through the combination a+& , If ,<0 l:ﬁl 'O> is a quantity which, for

K = O, is népresentable as the sum of 2 «certain set of diagrams then its

I< different_iation with respect to X has the effect of inserting a
» simple vertex gV, in all possible ways into these diagrams, t.hé'reby
v‘p.ro:diié‘ing tﬁ_g quantity <O\ %\ l> . Althéugh we have written the righ‘f,
Side, of Eq‘,, (10,3';) as an ordinary derivative, it ié to Se remembered that
- 'tﬁe differ'ehtiati;)n is really a variational one since X is a vector in

. an 00~ dimensional space. The present technique is therefore called a
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JY'~yefiatichai techniqﬁe’o

3

Eq° (lO 29) takes on a very simple expression in var*ational form

iwt

Taking care to employ an exponentlal' e in such a way as to account for

%
the energy a55001ated w1th the extra meson line, one has

=1 1 _l iLDt
g Sy <o\%, >s

-8 (88* /Bm)e- . - (10.38)

f : '\;;. .'-:"‘. ’ ., . R X

fe .-

b The generalized forms of Egqs. (10.27, 28) are obtained essentially by

'i‘“fi< repeating the procedure of Eq. (10.26). Writing

<olam o> <0\91 o) 4o |Fal o) + < EABY m|>

"11:,4413 . _ . ) ) (lO 39)

v,a@d'meking'use of (10.33), (10.35) and (10.38), one gets

H .
i

‘ -1t iwt -1
=My - g(V e o+ xFee T V) - Xy ox i€ |

| : (10.40)
o lwith L, it i@t \
o 2Zyz 8 Ve Spre OV, (10.41a)
| it gt |
= g8V e T S,e WKL (10.41b)

An addltional eQﬁation méy be obtained by combining Eqs,v(lO.BB) and (10.40),
namely | | |
‘_ =Y it

‘ V*"e' ) = V e + g 1 'a Zt/a“ o (10-14’2)

-z ——— — o |
~Here the dots which indicate the scalar product in f-space have been

“omitted. -
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”7¥?;'Th{5'eqdat10n has an obvious topological interpretation in terms of diégrams;

o

f':flt states that a modlfled vertex is obtalned by addlng a 31mple vertex to the

ﬂij;?jf?5 7«result of 1nsert1ng a simple vertex in all possible ways into the sum of all

: thself=energy diagramso

. In the dlscu531on of renormalization a certain goal w1ll become

‘:‘”fb ‘ apparent nameLy, to rewrite all mathematlcal expressions in terms-of the

“; nmodified quantitles: Sy and V., In partlcular, it will be de51rab1e to
remove the hybrid character of Egs. (10. Lla b) in which both the modified
and unmodlfied vertex operators appeaw together This can be accompllbhed.

ﬂby the following theorem'

¢

< ;M;xo> {olF .o>< 1% o) + <|a\ yakd >
(o[ oyou a7 (o] o) " a(ol%‘i ) o
Ja- ¢ .\m¢>e<ziatl st ] ol

L e o ] o)) |

!.l-

1

(10.43)
iIf one ‘now applles this theorem to the result of taking the variational
i‘derivatlve of the Hermltian adjolnt of Eq. (10.39), and uses {10.38), one
l.»"”:getsw{' . - ‘ ' E
v 0 O.BO(' j'-'wo Fu '—”’
S -1 *Q) -i(/at
- gV, e S_,_;+g(l gvore S,0/0% Y(Vsce S.) s

1]

(10.44)

and hence
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, -3 -1 I
lb*‘g% (v el%t.s)]  (10.45)

~ -1t -lo 13?%0 3
9 (10.46a)
-t [ it T]-1 it
d #*
: . (10°h6b)

"'ﬁhérg the sﬁperssript' T in the second form denotes the transpose in b~space.!

N ~,'Ix’1"itE<_j”s,° (lOghéa, b):only the modified quantities appéaro*

vSymmetrlc theorles°
The discussion will now be restricted to field theories for which the

asimple vertex Qperator satlsfles the conditions

¥ s ch
Penn [j:Z:f(pl, p2p oo )~TT; V°Ai p1 VOAisp ] = multiple of unit-

operator, _
: : (10.47)
(” * . - .
* Perm ZZ\f(pl, P, °°°) J) °Aiﬁpi OAlspl | = multiple of V ,
| (10.48)
'“J;?Where'
o ;;aﬂ;f’ngzﬁ";" -y by oV, . | : (10.49

L s Qésp'.= sp o

% It is. interesting to note that Eq. (10.44) may also be solved in the form

gt s ~1@t -1 1wt
e VS, S (1-g Ve B, /) (v, et )

‘3wﬁiCh'enabiés one to express the seif—energy operator in terms. of simple
vertices oﬁlys

o2 -1 -1 ~iwt iwt o #
S, = e(l-g Ve s, 9 hct) (Ve Y 5,06 SRR A
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"The eummatlon in (10, h?) and (lO ae) is to be taken over all the 1naices Ai,pl,

- the symbol "Perm" denotes an arbitrary permutation of the matrlces T54

1iwhich are contalned in the Vo s, and f(pls p2 soo) 18 an arbitrary function

'fg'of the absolute valtee of the p*s. When these condltlons are satisfied it

;! MmN
o ie not dlfflcult to see (for example, by referrlng to diagrams; that each’

J.\internal‘nucleon state }L plays a role-ln the meson~nucleon interaction

o -which is symmetric with respect to the roles played by all the othe*so The

'W:‘}xtheory is therefore said to be symmetric. . -

The ﬂondltlons (10.47, 48) are, in pract1Ce not excessively restr;ctlve°

".All field theorles which have ‘been serlously considered; 1nvolving only two

-"basic field structures such as j@? and ~ay are without exception symmetricp
w"n'a'sjmmetric'theory the perturbation removes no degeheracy. The mass M

of a. real nueleon, llke the mass M

o -of the bare nucleonu is tbe same for

_:tiall internal states M . When the external meson field vanishes. (« O)S
"the self—energy Operator :E;g beﬂones an ord1nary funct;on of .E; tlmes the
llunit operatoro Moreovers the modifled vertex operator Qt becomes an ordinary
. funﬁtlon of two eomﬁuting variables, E and the energy 3 of the essociated

.meson, t1mes the simple vertex operator V,. It is sometimes convenient %o

Lndlcate‘thls explicitly by writing

) (V&)qgo = Vo° rﬂ: (E> E ""',.(i‘v.') ) b ‘ (10050)

(v ) = l; (E -, B)VS (10.51)
x=0 . |

T (E B - oz TeE-@, B | - (10.52)

The introduction of a third field (e.g. the eiectromagnetic field) can,

_howerer, lead to asymmetries.,



UCRL-2884
- ~155-

.:The'éiructure of‘the modified nucleon propegation functionf

Before proceedln° to the renormalization problem let us pause to

"'f‘con51der, on phy51cal grounds, what the form of the modified nucleon

Sgpropagatlon functlon should be when the external meson field vanlshes, Tt 1s

- useful to. make an eypan51on in terms of the elgenvectors Jod ) of the

- _{t,pt,al Hamilteniar‘x operators: [low]

s,,(E) <N |G ® | n > ZKA(K)(E K xie)t
- (20.53)

‘ﬁheree; ': C ‘
’ ACK) = > el &, <0(/‘N°>

. -the K; and . E' being the eigenvalues of H. The coefficients - A(K ) are

(10.54)

'-Hermitien dyadics in f-space having'pOSitive eigenvalues'and satisfying the

vrelations
2o0A(k) = 1 s | o (10.55)
ZKK ARY = <No]HlNo> = Myl . (10.56)

-+ 8ince pair creation is prohibited in the present example, only those

states IX’> in whlch exactly one riucleon is present are involved in the

: 7.';ekpansibh,(10 54). Of these states a certain set will correspond to the

: '10west eigenvalue K %occurring in the*sum. In a symmetric theory the

o “members of thls degenerate set may be taken as the components -\1W>°f

A:of'the.real nucleop state vector \Iﬂ> % . The eigenvalue in question is N,

the mees offthe real mucleon, ' The corresponding amplitude A(M)- is given by

" AQM) - <N ]N) <N > = 2,1 C(10.57)

A3
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.;:&whéfé~f22 is the probability of finding the real nucleon in a bare nucleon

-

Tistéheo* 1f the vector \N> is constructed from the vector $NO> via
;»WLqu (6 8),_ 22 will be the normalization constant Z' of that équa.tj;ion°

" We may now wrlte

- g»vf[figigt)- = 2y ot + 2 AR : (10.58)
L T E-M=%= i€ "KM E~ K £ 1€
”‘”Inffhe'fenopma;ization program&<£o'b; discussed presently, this expression
' ié‘multipliéd by Zznl so that the first term, which predominates in the
"_ﬁgigﬁboih§od of ‘E :lM;.Qill have exactly the same form as thg bare nucleon
’¥j?rq§égation fuhction (Eq. (10.25)) but with M, replaced by M. The result
H"¢ 1§léa1ied the "renormalized" or "corrected" nucleon propagaticn‘funcﬁion and
'“;fpgfus'ETwill be denoted by SeulE). |
| B If the coupllng constant g 1is not too large the energy levels of

s ;thé,one—nucleon eigenstates of H other than N>>°{}5? will generally come
vae ouemnue. . ‘ I

"!Lfrqm a continuum. These states correspond to the scattering of various

ﬂ:fﬁ,numbérs of mesons by. avreal‘nucleon° For sufficiently large g, however, it

4;may happen that addltlonal discrete levels exist correbpondinv to one or more

. stable nucleon isobars. The masses of these isobars must be less than

vnfwig¢+:)X9 forﬁisobgrs with greater mass will generally decay with the emission
'*ibﬁza:mssonc It is to be noted that the existence of stable isobars will be
'Jgiﬁfleéted‘in the presence of extra poles on the real axis in the function

w*st(E) ° :

Thg sﬁbécript” 2 on Z, has-no special significance and is merely an
f'hisgoribal accident. It distinguishes this re-normalization constant
- fiom»the renormalization constant Z1 which appears later.

N\
I
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Since ‘the A(K.) are positlve probabilities Eqs° (10 55, 56) allow .

h _one to infer ‘the rigorous inequallty

8 M < My . - , (10.59) -
éyﬁ"That is, the nucleon mass is depressed by the perturbation Another ‘inequality
i: d can also be obtained for the mass M* of the llghtest stable isobar (if any),
] . 4" mely | . | - '
: . J:. ; o> '.. . oer . " . ) . . . u_,l - )

'*uThese,results'hold only for scalar or pseudoscalr theories without nucleon:
"zpair creatlon, such as are embraced in the present example° For vector meson

”i:theorles or meson: pair theories an addltlonal term (which is divergent when '

”ogpe.lnteraotion'is;looal)‘appears on the right hand side of Eq. (10,56).

- o%“f;{?tfRenormaiizatioﬁ'”

From the results of experiment we know the value of M, the real . -
7wnue1eon mass; but~not,the bare mass M,. It 'isi therefore quite fortunate

fs‘f'?j:if}?ﬁaﬂ'the_perturbation formalism can be developed in such a way that ‘reference

TE}";ei‘rﬁeed7nevéribe made to ‘M,.. We shall now see how this comes about.

~-;g;.v** For generallty we con31der the case in which an external meson .field .

”_?igis present ‘and we. 'write down the first three terms of a double expansion -of

;\

he self~energy operator Zy in E-and X about the points

t
.:‘.‘E = M F ie and '0( =0 3.

i zt:" AM: S (E-M :ﬁ:ie)‘!‘ Slg(V °e °“+0( o€ ‘Vo‘)+Rem 2:,.
Do e e - . (10.61)
"elﬁﬁére e ‘ -

P i
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- AX »?(Zgo(,e(),n.mne , o -  (10.62)
S, = - (’a ;Z‘*/a E)« :e,Efiaei'e'_ L | (10065)
: SI -i:l ”S(eJo) ;o | | ©(20.64)
S ) |
3;'_‘(9;3:91.,%2‘,0* . g‘?‘('azg‘/au)d =o,§=M=ie (10-62)

and "wnere "Rem"- denotes the remainder after the constant term a.nd‘ the terms

':_ :linear in E - Mt ie‘ and (X have been separated out.

e 2._,_. s di_.fferentiated with respect to X , an extra factor Vo e

': 'j A word of explanation is necessary about . the coefficient 31‘, When
iwt

_ﬁhicn is not cancelled‘ out by another corresponding factor, remains embedded

; .=-'in each t.erm of an expansion of the resultlng expression, The siinp‘le vertex

ecmaa

: ; "-opegator Vo. can, by the symmetry condit.lon (10.48), be taken out im front

of'each tfe'rm provided certain numerical factors are inserted to take into

account the algebraic effect of all the other mire vertex operators in these

te_rn_xs. 'However, the result of similarly displacing the factor &

~iwt

L ithrouigh the various functions of E involved 1eaves an e:cpression'which is

fdependent on oJ as well as E; or on. w alone when E is set equal to

: M:t: ie a.nd (4 to 2ero. . For definit.eness one must evaluate the factor

~'-"S (w) multiplying V °® “let at some fixed meson energy u;)o, as in

;_;..Eq, (10 6&) ' The choice of w, is completely arbitrary, but once it has

been made a term of the form



UCRL~-2884. "

~159-

{ 5] - 5]

" (10.66)
must evidently be absorbed 1nﬁo Rem % 4 ;
'Jf“ﬁ,“fi';flff It is customary to make the choice
’ W, =0 . (10.67)

nrl;'{Tﬁéneffgct'of‘this choice‘may bé'expressed compactly by writing

31 1(32,/30() : , T (10.68)
e =0 Egnf':ie s Wy =0 - S

g

' tthé iﬁé%ructioﬁs’"ﬁﬂolfg'“ o lndicating that the energy cSSOCiaued w1th the

f{%ﬁiﬁ;;': external meson field is to be set equal to zero.

RN The assumed reality of the constants AM, 325 .Sl’ and their

‘ nou-dependence on the EE:-slgns can easily be checked By referring to the
- yalues<°f thg.various‘diagfags.éséociated_with Eqsoh(lOoéz -~ 65), Since E

o iéjSet'equal to M;:'ie the bare nucleon propagation functions invelved

a?egaii reai; haQihg £he,fbrm M - M, é_u))”l' where W > . Owing to
5;;_i£ﬂéTfnquAlity (10;59)'no prbblehs arise of integrqtihg_afound poles, and
Vx:‘therefore all the 1ntegrals 1nvolved in evalua uing ﬁﬁe diagrams are regl‘
and 1ndependent of the * signs. _
o If expre351on (10. 61) is substltuted into (10. AO) and comparison is .
. made with qu (lO 58)- for the case X = Ow and-in the neighborhcod of

jixaE M the foLlow1ng identlflcatlons are ‘immediate . .

‘ LMo :MofAM", T (20.69)
| (1+§) | _ -‘-.(1007'0:)

N
. N B
I

“The constant AM is eW1dently to be 1nterpreted as the nucleon gelf-mass.
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5 is necessarily positive since Z, < 1.

©4 L 'The constant I
” SR - If one now introduces the quantities

~
(W]
1

- ~1 . -
a+ 3y, (10.72)

-
[}

T CPEL S PO | (10.74)
N, = M+ ZRen S, , o (10.79)
it. is easy £Q see that one may rewrite Egs. (10.38), (10.40), (10.42) and
- (10 .46) respectively in the forms |

G Ve T g (RS /A e, - (078)

1yst it

L - R |
ex [E - Mos- g, (Vore A+ ee " ¥, )= ie] . o)

[}
"

g o igt
Vo + & (DI, / 2 )-e s (10.78)

*i%zt : ' ' 9 ~-iwt -1
‘ ° Sc:)jl

]
W
i

_ . 2 . o
M+ g~ Rem Vo, ve Sea'| Ab+ &

e S | | L (10.79)

: 1y The quantities Sc, and V. are the renormalized forms of the modified

-

+, nucleon propagation function and modified vertex operator respectively. For

o o :‘ 0 and ‘A)ext ='0 they have the property of reducing essentially

- to the corresponding unmodified quantities 864 (with M replacedAby M)

o e and V, -in-the neighborhood of E = M. The quantity 9T, is the so-called

masé46pe,ratqr;.which contains within it a description of all the complicated
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- v1rtual processes which go to make up the modlfled nucleon propagatlon functlon°

In the neighborhood of E M, w1tb o = 0, it is equal simply to the real

"ﬁnucleon masso ', ‘.

The constant . Be is called the renormallzed coupllng constant We

:;ffjgishall see later hcw its value may be experimental ly determined For the

‘ }»~fpresent e 31mply note the remarkable fact that its introduction into the

"—formalism allows the varlous renormalized modified fanﬂtlons to be calculated

;_solely in terms of the experlmentally observed constants Egs. (lO 77 - 79)

:“-‘.form together a closed system of eouatlone in terms of which thls calculatlon

. ci,can be carried out The phy51cally unobservable constants AM; 2o, 24

-never‘appea‘r° By usmng the variatlonal te hnique whl h led to these equations,

"therefore, one may be said to have develﬂped a premrenormallzed theoryo We

mey of course, at any time we please, evaluate le 22 and 27, (at least

: ‘approximately) in tenns of M, gc,‘}kg the 1A and the nucleon structure

—

”-_functions fjl(r) simply by examlnlng the terms in Eq. (lO 79) which are

x7.,_discarded by the symbol "Rem," and thereby determlne what the "bare" quantltles

l'ﬁMo and g actually were in the orlglnal Hamllnonlan ooerator But such

- ¥*
"‘an evaluatlon w1ll have theoretical lnuerest only°

Eqs° (10 77 - 79) being nonllnear varlational 1ntegro«dlfferentlal

A f_equations, generally cannet be solved in anything even approximating closed

"‘*jformc Becoursevmust be had to iterative methauds of computation, For example,

. , , _ .
For local interactions, in which the functions '/Oi(r) reduce to the delta
»function (or its derivatives), the self-mass /AM is generally divergent,
1:whlle Zl and Z, may vanish. In theories which permit pair creation

"fgadditional renormalization constants come into the picture. The one
’whichrls necessary in order to renormalize the modified meson propagation
‘function is generally 2alled Z3o In the present example 23 = 1.
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‘ u'_‘.'(‘)ne:mey begin by sett,‘irig GJT(,*_: M and Vci = V, and then calculate

o

'é?jclicany'e'xpressions'(10.,77) (10.79) and (10.78) in that order. No

analysis 1n terms of dlagrams is .ever neccssarv by this procedure; but the

- resulting expre551ons rapidly become excesulvely complicated. Moreover, the

- bracketed inverse‘in (10,79) must generally be éxpanded, and it is never

N ' N

practlcal to retain more than a term or two. For systems of the type we are

‘ '. con31der1ng Chew (reference [92] ) has used a purely integral iterative

technlque in which the effect of the varianlonal dlfferentlatlonw is analyzed

B

" 'in terms of infinite families of diagrams, the families becoming more all
) pizﬂxginelheive,the higher the level of approximation. Nothing is known about the

\’;ff'Ebnférgence of any of these iterative techniques nor about the accuracy of

any glven level of approx1mation when R is lergec

The S—matrix

" The samé mathematical structures appear in the expressions for the
bﬁatrix elements of.the'scattering operator as have appeared in the discussion
of the nucleon propagatlon functlon "In particzular the value of e given

matrlx element can be expressed as the sum of values associated with certain

.’J‘;_diagram.s° We shall now investigate some of the characteristics of these

1 " evaluations.

. We first deal with the operator @{*_of Eg. (7.19). In order to

‘ fcqnstrucﬂ this operator we must redefine the unperturbed Hamiltonian

'.yjandrthe berturbation operator in the manner of Egs. (6.4 - 6). Since the
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£ f_gg;}ﬁw‘?‘onéinucleon-level shift i§:-z3hh the operatof AH, is to be taken‘as*

- T 5 S . o

i L AH, = .AM@‘ QI’ - o ) -(10.80)
[ o T . . : . o ) E

'Let us suppose that thls redeflnltﬂon has already been carrled out,

L Tasko 0 L0 FromEgs. (2. 15) and (7.3) we have
; j -%‘f',: .' : Go*(E)‘R (E) (:.O*(E\ - i‘E) - Go't(E) s ' . (10.81)
f ' }fﬁ;fwhere now G{t(Et)‘q > GQ't ‘q > and Got(E) :>(E ~3ﬂ5 Lie )“lo

3Taking the expectatlon.value of this_expreséion in the bare nuclecn state

IN > WG-get

(E - M i€ ) <N \G{:t(E)I N > = 5.(B) - (E - Mfie)ml’}'f "

(10.82)

H£ .' :2j  - In v1rtue of (lO 58) this implles in the'neighborhood~df E -°M;

<N l(Ri(E) ] N > E (22 -1(E-Mxi€) L. - (10.83)
?YC;:;?i-i: ffrom which we may infer '
R 4""<No\({>\£|No>_=. <N01(R*(M)'NO> sFEie(l-2) 1,

B ST | L (10.84)
R <N'0 [8 R (E)/2 E] ]N'C> = (2,-1) 1 . : (10.85)

SN = “E=M. . ‘ .

i w . , | . e o

-« In the present example this‘choice is actually correct only for processes

- '7i:'involv1ng a single nucleone If N nuclecons are ‘present expression (10.80)

R has the value NZ&M but to this must be added the nucleon interaction
'energyc Scattering by such an array of N fixed nucleons in the present
‘vekample'W6uld correspond to the scattering by a bound system of N nucleons

ﬂin;those théories in which the nucleons are permitted to move.
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“Substitution of (10:84) into (7.25) Jeads again, via (7.22), tc the identity of
: Zé amd 1Z’» for the one-nucleon~no-meson state. | |
» "VWhen mesons are present in addition to the nucleon we shall see that
€; t;e renormélization constant is still Z25. This %5 because the intrinsic
prcpertles of the mesons are unaffected by the perturbation in t1e present
 p_exa.mp1e° For deflniteness we shall rcstrlct ourselves to the scattering of a
.:éingle_meson by a single nucleon, with no accompanying meson production (e.g.
 low enéréy meébn—nuclepn scattering). That is, we shall investigate the
. »ma}orixvelement <N09 To \@\,..___ \Nos w B A | |
The dlagrams whlch contribute to this matrix element can be divided

:rlnto classes which can be put intc one~to-one correspondence w1th the members

" of a certain set of'simple scattering diagrams (constructed out of bare nucleon

‘lines and simple vertlces) called irreducible. An irreducible scatterlng
© disgram 4s one which contains no seif-energy diagrams nor proper vertex
'-'diagrams other than simple vertices in any of its parts. If, in a given

'-irreducible scattering diagram; all the bare nucleon lines are replaced by

' -5.real nucleon 1ines ‘and all the simple vertices are replaced by modified

'vertices, the ¢esult 1s equal to the sum of all the dlagrams in the associated
-classo If all-the 1rredu01ble scatterlng diagrams are modlfled in this way

) and the resulte are ‘added together then every possible scattering dlagram is

. correctly accounted for,

-.In Fig. 14 are shown a few of the irreducible scattering classes. The

Vi“!} real nucleon lineé at the top and bottom of the diagrams have barred ends

: ”’QThls is to 1nd1cate the fact *hat scattering diagrams actually begln and end

‘w1th vertlces rather than bare nucleon llneso The value of a bharred real
» nucleon line is Sot -1 Sy . or S*SOi_l according as it is at the top or
bottom of the diagram, or Sg, (S, - S, LN ;"1‘ if it is barred at both

ends as in Fig. 1ia.
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‘ F1g° lha representa the "singular part" of the operator G{t, whicn
ﬂdetermines the normaTization oonstant of the mesonwnucleon state. In Figso
4”1Lb, ¢, @ the extra meson is. attacnea to the main body of. the dlagramﬂ belng

Zinvolved in’ absorptlon and emission proeesses, The two vertices of juncture

- ,in these cases each contribute a part containing a factor L ~3/2 (see Eq. (10 16))

which is not absorbed through a momentum 1ntegratlon. These diagrams are

’ ,- thereforeﬁof order' L'3 and contrlbute to the nonsingular part R4 which

-:ifﬁt hand is unattached and has the.value dﬁb indicating that the meson does not

' desc 1bes the actual scatterlng The meson iine in Fig. lha, on the othe;

S change its state° Thls value multiglier the value of the aceompanying nucleon

line, 30 that the corresponding matrix exement is given by .

vz:*:«-w'——v S -

. fWhen a 51ngle dlagram contaln< two or more anconnected parta the general
. rule is that the values attached to these parts are to be multlplled (not
' fadded) together to obtain the value of the total dlagram In theories in

 1which pair creatlon is allowed, every diagram can have dlsj01nt acoompanylng
}7;parts, namely those parts in which the vacuum "plays by itself " the
'so—called vaouum—to—vacuum diagrams. Since these parts are common to all

' d1agrams they are generally ignored, it being assumed that all state

f:veetors have already been multiplied by the vacuum rencrmalization constant.

‘One mavaohder at first sight why the operators in Eq. (10.86) are g
-evaluated at E M rather. than at E 3 M-+Co s o) being the.meson -
, z'ene;gyo It is s;mply necessary to refer back to the original. energy
'-f*fdenominators E - 3C + ie . In these denomlhators E is set equal to
;-:M:+éo ‘but the operator 3C row must also account for the meson ag

- Well as ‘the nucleon,'and the net result is as 1rdloated in (10.86).
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Nos “ﬁ:'o-ls.l.ns @%\'No’ '”o> = ‘[Sos: (82 = Sop)80, *1‘-‘] |
P 7.\:-."%..- S : ' X =0 E=M

- Fie(l-2) 1k - (10.86)

: ":The‘nofmalizetion constant 1s therefore again '229 the same as for the no-

"{meeén state.

- -y e - -

ot “

In general, when one nucleon 1s present the renormnlized transformation

operator ﬂi (O ¢=oo) is given (see Eq. (7. 3&)) by

. __V'. -1 —
(0, Fo0) = 2, - U0, Foo) (10.87)

o no- matter how many mesons are present (If N nucleons were present the factor

P /

j“ would be 22 .) The renormalized (and hence unitary) one-nucleon scattering

' 7 operator is therefore glven by

f?sc = ﬁﬁ;(aog o)iig(o; -00) = 22 S : (10088)

) * where‘ S is the opefator’whose matrix elements are obtained by direct

calculation from Eq (7. LO) - This operator we may immediately write down,

'

It 1s, however, now necessary to treat with care the contribution from the

; ;e81ngular part of the operator G{t , and to include the "derivative tern"

 '}ln (7 40). - The Value of this latter term follows just as in Eq. (10.85),

[Slng ’aa-}.(E)/a E] Noy,"_Tr 0> = (z2 - I)N}-f}b .o

<No g 'Tro | l
: I, E=M+39
| (10.89)
e(The non51ngular part does not contribite in the limit €->0.,) Siﬁce
,>S;ng GL*‘ is completely dlagonal in the \ og Wfo\> = representation.its
lﬁatrix elemerits’ vary abruptly across the energy shell, and use of the identity

(8.27) is forbidden. Instead, the factor & (E" - E') multiplying the
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© singular conti'iﬁuti_ons in (7.40) must be replaced by (e )—‘La Theref’ore,'v

g using (1036) and (10.89) we have"

s = [1 ~21e 16 ~ }1e)(z, - 1)]301 i, - iR,

2 Zy1.1 ~-4iR, | : - ~ (20.90)

_"w'herelﬂlz s 1s £he operator obtained by taking the matrix elements of the
" ‘nonsingular part R, on the energy shell,

£

The decomposition of R, into terms corresponding to the variocus

Airreducible classes of scattering diagrams is as follows

U 4 iwt ~iwt
cel o Bas TE S, Sy 5( ERA AL

-igt it

; . | T ' - ~igwt iwt 7.1
E +‘_-(Vg°e - Spe °V4-.*) ?['}b.- g2 53V, °e Sp. e . »V;")

4 e } s, S ! X | (10.91)
. ) «=0, wf‘ﬁ wi; E=M

_;He;‘e'v T iSjthe"constapt of Eq., (8.,,27)5 and the notation " wf =Wt
" ‘iﬁd.i.Ca‘te's‘_ that tﬁe initial and final meson energies' are t'o__be_taken' the same,
./ The f.irlst,f;ceiarm _insici-e the curly brackets in (10.91) corresponds to Fig. 1ib.
.. The s’ec;oj'ngv, tefrﬂ c"orr_e‘sponds to Fig';-. l4c plus all the diagrams 6b‘oainab1e from
e g_tbyiteration (The flrst term is not similarly iterated since the
f‘.li:t‘er;.ated fc;}'ms of Figl‘,' 14b lead to 'redundancieso) " The unwritten terms,
- correspondingtothe ‘r'ema‘ining irred‘a,c_ﬁible classges begiﬁning with Fig. 1li4d -

.- 'and its iterates, are infinite in number but .of higher order in gza

= Hére we use the symbols S and’ R, to denote what strictly speaking

:‘J-_‘shqﬁid be denoted by <’N09 Wol S \ Nos T°> and’ /\Nos ol R £|_N0$’TTO> .
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. _’::_‘s‘ - ',‘I“:"',‘ N =18, 8. . = Z R . ceeen (10°92)
. . < o#-”, + §=0, EM 0% 0(_0 B 2

one _~$Staiqg,,usi’qg Egs. (10 72 - 7l+), (1o 88) and (1o 9o), :

“uhere ... - |
B i TR -1t
=T le e Vor ScxVep'e
oo=iwt igt % T
+ (Ve . S, e Vog )
. 2 -igt 1wt L T|-1
[l‘b - & sCt(V € Sce © v.ca’- )
+oee ; _ : \ (10.94)

% =0, W= 0y, E=M

‘The -fgﬁormaliz‘ed unitary S-matrix may therefore be computed solely in terms

';:‘f‘t _»o-f theu renormlizéd c’otipling constant g. and the renormalized vertex and

propagation functlons The same result holds for scattering in which any'* ‘

Vnumber of. nucleons and mesons is involved,

, 'I'h é? rez-ictancte “operator..

.The . i‘enormalization theory of the.reactance operator. is very -similar
: to that. of the S—mtrnx We shall first give an outline of.the main.ideas
IR and tben verlfy ‘that they fit properly into the framework of the theory given

E 1n Sect1on 7
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. Essentially‘what one does in dealing with the reactance'operator is

*.to follow the same procedures as have already been 1ntroduced in the precedlng

'“”;irff';-.dlscussion, omlttlng, however, the imaginary terms ¢“1€ ~wherever they

E~"-::x.ppeéu' and evaluating all 1ntegrals in. the sense of the ur1nc1pal value. Thus

J"fJfone works with a bare nucleOﬁ propagatlon fanctlon of the form

”?ﬁ;?*ff_lng* S So(E) = _;%E;_- | ‘ (10.95)
4anéfhureél nucleon propagation function of the form
S e S(E) = A , : (10.96)
S E-¥, - % (E)
| fyﬁ@ére |
', ,’" ' ': - . Z (E) =' g2 V(E) °S(E - '9;) ),vo* B} g2 VOOS(E - %2 )oV(E)* .
¥ (10.97)

' /i'~These'funétioné are real everywhere on the real axis and not only for

- E < H +-)A

The varlatlonal technlque may agaln be introduced, permitting the

';modlfled vertex operator V to be deflned by
| ._4"19t - -igt -1 _
Ve . = Vgoe + g 9T /ox . o (10.98)
'* The renormalization constants are evaluated exactly as before with the use

- +:_ of the obvious modifications of Egs, (10.61 = 79),

.Comparison of Eqs. (7.2) and (7.51) shows that the evaluation of:
'??Z.theiunrenormalized.reactance operator K may be carried out in terms of
‘ J;»jaiagrams.identical'with those used to evaluate the operator -R.. 4n

important difference appears, however, in the actual expression which one
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., writes down for- K, namely

.

e, -1 ) iwe -igt
C o K= ‘T'g,z ‘So~-' ] {e V¥ S Vee + <t [ 1p
. . . ) " -

(X :Oy O‘)f: wi, E:M

(10.99)

",!,H-eré*'the .‘f:sxétdvr‘ s so’.'l which, by analogy with qu (104,91), would seem to be
'reqﬁifed:on thé right hénd side of this expfession, is omitted. The reason
?;;fbr this is‘tﬁat'fhé instructions™ "E = M" now demand an evaluation directly
'; 'at>thé’b§1e{of;the function -8~ in this factor, rather than immediately above'

L dr‘beiqﬁ it. Now, the expression;(s SO-'> may also be written as

. Sl , _ . o =0,E=M
'u,f[i - 5,01 E:Z(M)] —l,‘\WHen & signs are inserted this quantity has the
.&glué;_22,~ However, when tﬁgy‘aré"omitted, as in the present situation, it
‘ 1§ ﬁo;be inﬁerpreﬁéd as having the value 1, because 5> (M) = 0 owing to
;‘tﬁéﬁredéfini{ibn (10.80) of_ﬁhe unpertﬁrbed Hamiltonian. That is to say, the '
'lgitérafed;self—energy diagrams which this quantity evaluates are to be regarded

as making no contribution since the nucleon self-energy‘has been adjusted to

" ...zero. -

. The factor So_l-S on the left is, oﬁ the other hand, retained,
sipce it must be treated as a smooth'functiqn across the energy shell in
:1 grdér té Justify thé QSe of the formal symbol T in front. The value of this
R fééfor,is evidently to be taken as 1im [l —-‘ 2o (E) SO(Eil“l = Zy.,
T : E—->M :

~ The foregoing rules may be described pictorially as the omission of
E thé real nucleon iines at the bottoms of the diagrams in Figs. 14b, ¢, d, ete.

| énd ;he‘omission altogether of Fig. 1l4a. The omission of Fig. 1ha impiies
_théty;ﬁ,_unlike .G(i ,tﬁgs no singular part. Furthermore, since expression

(10,99):n9w has one factor Z, less than expression (10.91), the operator
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L . o ) #*
R 2& ‘appears to be already properly ncrmalized and expressible in the form

K N T g 2 1. {ei’%‘lt V %* S. ‘V ce“i‘:‘.’t‘ } .
) l- A\ e ‘— .- 4 c ,n.f . | B ¢} c . | + °%% D(=Oo° “Jf: UJ\iB E;:M

PYang

(10.1¢0) .
?1 'ﬁﬂ;; gThé;cofﬁectness_qf.this inference may be readily checked with the aid of
‘ﬂj-;}'ﬁq_Eq}‘(7oh9)o. One first collects the results of Egs. (10.83) and (10.8¢) into

C7 e the statements

P

‘ a*— - R;-'Fié(l "'"7’2’).9 - (1OLlO_l‘/'
| R,z ReF2i(l-23), (10.102)

and then substitutes into the gemeralized form of (7.49), getting

Ry F 1e(l-2y) = K(Z,F 3 1Ry ’ (10.103)

- f:inﬁﬁéking‘the matrix elements of this equation on the energy shell one must

".._rémembér to.fegardm-x és”smoéthLy varying across the §héll, The singuiar
"~:‘térm on the left must therefore be dropped (which is equivalent to taking
"~ » - the limit € -» O Dbefore the energy shell operation is carried cut) and

L fpne,gets

K = _Hex - , (10.104)
1+ %~i‘§Ct

o * and hence
| s, = 1-341K
1+4 1K

» : (10.105)

1.

'.Eor‘thé more general treatment of the reactance operator in relativistic -

field theories see réference [32].



'UCRL-2884

-173-

A word of caution must be ‘inserted regardlng the use of expression

L 7@‘(10 100) in formula (lO 105) to descrlbe the one-meson scatterlng problem.

,“If the 1nit1al meson kinetlc energy is greater than M. so that the production

e ,of extra real mesons can take place, then expression (1 0.100) must be amplified

~rto 1nclude matrix elements 1nvolving two or more mesons, even though only tﬁe

Mffdﬂe:meson matrix elements of (10 105) may be of interest.

T Experxmental determination of the renormalized coupllgg constant .
) In order that the renonmalizatlon program have a genuine practlcal

']upility, phere must exist a method whereby the renormalized coupling constant

‘> ean'be measured experimen@ally'in a reasonably direct fashion. We shall first

."‘?Aéhow;hoﬁ it coﬁld be medsured if a known time independent external meson field

- :could be provided in the laboratory, and then we shall brlefly mention the

. ':pract1cal dlfflculties opposxng such an arrangement and indicate some p0531ble

«alternatlves°

If the éxtefnal méson field is @Ae’d‘ (r) then ‘thé average value of the
_ -energy of & real nucleon in this field is M + < N |aH| N) where

N

AR g(”1$* v, IIY) ¢ ,' (10.106)

.

6' .
I

(203) L 3/2L//2PA Qé) e-%“°; d%r . ~ - (10.107)

{ffhis a#erage,valué-could be'determihed by observing the scattering of very

”’Va.Jslow nuoleons-as they pass through the field in question. It is only

‘;jnecessary to show that the value of g, follows immediately from it.

Rememberlng that

)N>= ﬁc(oﬁ"w‘)}@ Loz [1+ G, () R, 00) | \N> ;' (10.108)

" one has’
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(mmlu) | <N'olﬂc(zoo, 0)aH W, (0, Foo) ) No>

2," g[}fr aer™ (| Q) 5) | v, ™

N
1}

2" & (o | RyGes00 (1 - o) -y YT v, )47

S L G () Ry )
. " (10.109)
" By building the appropriate diagrams it is not difficult to see that the

" ;‘Ts_e_eo'nd term of (10.109) has the value

-1 1 ext]
si(gzi/a“ ) s,t sO:t °¢e J » )
| | Jeo, Bam 16,0,,70

L - ext
= 2,83, Yo°¢ . (10.110)

..+ {Here the instruction “geext = 0" reflects the fact that the external

-meeen meson _‘fie’ldf, being time independent, feeds no energy into the system.)

2 .»4Usi'ng'ﬁq'sl (»10.71)' and (10.84) one therefore gets

-1 ext ext
<N [AH| N> - z2 z2, gV 8T = g Vod (10.111)
L'81nce the structure of the matrlces TJAS and hence of V_, is assumed
. 'kn0wn, measurement -of <N IAH\ N) for various internal nucleon states

: :-‘;,:’.4'-a.ffordsa dlrect determinatlon of g+

. The great dlfflculty, of course, is that meson fields have extremely
f‘ short range, owlng to the finite meson mass, and therefore cannot be produced
.,on a macroscoplc, and hence class:Lcal, scale in the laboratory. Never more

_tha‘n‘a. small.number of nucleons (e.g. those in a single atomic nucleus)

- .Contributeeffectively to a given meson field at any point. Therefore the
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‘ quantum character of the meson field is always domlnant in any physical proCess ’
. N ‘ ¢
m which it takes ;nrt ;. and the calculation of the averag e value of. ‘ohe fif»ld
is generally msufflcient to solve the correspondlng theoret1cal problem.

) ~Thi;s _is unfortunate, because average values are easy to compute,

»A;s an illustration of the difficulty, consider the average value of

-

“the meson field'prodf;ce'd_by a. single real nucleon. This is given by

. N s , ) _ ipe -ip-
.(?A(‘,if)> = Z-p(,zw ,L'B) ? <N | (agpe” g %f* cEE) (%7

(10.112)

Inorderto _'e%raluate' this expression first observe, using (10.10) and (10.14),
R "', :: that .

© N

TR

... ‘Therefore, rewriting Eq. (10.108)in the form (6.8), namely

' 1
ey - 1€ 2 M -H x 1e) N,
L . TR =T e

a‘nd remembering that a ’ N > .= 0, one gets

alwp

ti€z, [a, M- H & i€ )"l} BN

a = (M —4”H + i¢ )_l(g.kwa +'g@*evo*°"@‘)] N\7
= gM-W-Hx ic L *E) |v). (10.115)

" Use of (10.111) then yields
Yo “' A . h .- ,-l, .
: <Nja ]N> z -glw=i€) ", - (10.116)

:‘The $ i«e in thls express;.on plays no role in the summation over meson

b _energies and may be 1gnored Therefore
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— -‘. tl OE | _l _’/'Ar .
3 ji: we T L o) e ko (10.118)

" If now one were to regard <#§(Iﬂ> ~as the external field appearing

L - % - .
! in’ (10 107), one would obtain ¢ - -2 gc~%3 loVo o If this were used in

szql (10.111), one would get for the potential energy of interaction betwee
ﬂ:jffe'“;-gifvtwo nucleons; the expression
G s 2 -1 %

TR Vot Y

N (10.119)
' Hﬁhere the summation is to be carried out over all visible indices.  This,
however,.ié only the first term in a series expansion of the exact sxpression
E .ithowers ef 'gcz; If ‘gc ’were small this first term could, of course,
:reasonably be. expected to give a falr approximation to theé exact exor95510h,

lffaso that the 1nteractlon potent1a¢ would be basically classical in spite of

o the_mlcroscoplc dlmensions involved; and an experimental 1n¢es»1gatlon of

*:." o . , ,
" The dot products on the left of (10.119) are meant to imply b-space

‘summations 6nlyn Therefore the expression is a doubie dyadic in f-space,
which allows for all the possible positions and internal states of both

nucleons,

ain - a b R . -:-'\ M i
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J?ﬁooiear»two-body forces (which immediately suggests itself) would give direct

‘iﬁfotmation on the value of g,.- Unfortunately there seems no reason to
'*fzbelleve that - g is small, and therefore the purely quantum effects_in the -

.;if_;two~body problem must be determined. . This general pfoblem is so difficult,

vl

‘.;.however, that no s1mple exact solution comparable to (10, 119) exists with

’si'whloh to correlate observed nuclear binding energies, moments, etc

The_next,thlng_that suggests itself therefore is to 1nvest1gate the

a's
- e

; ipossibilities inherent-in the somewhat simpler problems of meson-nucleon

jiixscatterlng and photo—meson production, The results of this in#eetigation have

‘[958 to 03]
-led to the so-called threshold theorems. A The threshold theorem for

f_ilscatterlng will now be derlved
‘ One flrst obtains ‘the equation involv1ng a® analogous to (10,115).

h~1‘USlng the Hermitlan adjoint of Eq. (10.113) and rememberlng that

":2f #; ’N.> L l os > , one gets

*|N> S O R % I R T Y

L (10,120)
. ;3~j.where“f
T o T -1
o .» C lN T :’L‘.> - UC(O,;' x ) \ NQ’ (Tro> =* ie Z,?_ 2(M+(l)~m) - H % ie) \NO’ WO) °

, (10.121)
. ."Use of the Hermitian adjoint of Eq. (10.120) allows one to write

N,*n‘ | onm,e) = dn)la v g(BFV R D) Mew - He1e)H | N, e
B O T R PTG A 11 T O E

".<f':§}f}bq‘_‘_i,.§'ct‘_"l . - o S (10.122)

The present derivation is essentially due to' F. Low, references 193] and [94],
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.where -

ch g<N }@r* 7@ \ N, o , _-> | }» (10 123}

* The operétoi‘ R 5 obtained by té.king Rﬁ. on the energy shell, is otviousiv
;."identical with the R of Eq. (10.94), and hence differs fro'n R, only by

' -,':.."th'e numerical factor Z:2 lo The opera,tcr R itself, w‘xen defined by

S
- (10 123),» is however not a simple mult;ple of R._h(uhe nonolngula,r part of
(Rg) as may be seen by examlnlng the bare nucleon propagaticn functions in
' 'the expans:.on of (lO 123) and noting that, except on the energy shell, they
: -do not keep a proper tally of the meson energies above the vertex lT’Ci‘Oddb@dA

" Using both Egs. (10.115) and (10.120), and remembering that =2~

Lo e * . % : : o -
.commut,es.mth 'lf Vo °“d'§ s one may reexpress R, . in the form

n

C:h 8<N,@-°V [a +-g(M+u.) - H % -i'e)"lo(”;[f*evoqib‘)jilm'>
G ([t -0t

o +i@"*°vo* Y e - Ha ie)7 (T, "zlsﬂ l n) |
Z {k T B o) o - 5 ] )

+< lﬁf*v '@\o(> M+ - BElxie) @‘@*V T “’>}

- "

where the - \o<’>' " are the eigenvectors of - H.' Keeping only the term
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lo(’>; 'N> 5 on‘e'has*.

“1

T T, . L a1 R
4 R . ch = gc [vo% °V° - .(Voogi.)- _vo ) . ] 4 oo _ ' (10°125)

(The dots ind:.cating dyadic multiplication in f-space have been omitted in
this expression ) This result. may be substituted diregtly int.o Eq. (8. 19)

i ' »to ebtain the meson scatterlng cross section. In this case vl o= p /w' .

_and one finds to lowest ‘order in gc

2

«v..:ir :. j : -) | , . ,' (10:126)

Here ‘a sunma.tion is implled over the various poss1ble final states of the

nucleona .

R * If the nucleon is 1ocated at the origin, then in many theories the V,

i o and V :Ln the flrst term inside the curly brackets of (lO 1214,) may be

" replaced by V ~and V, respectively, so that if one includes also the.
, t,erms» | />, = z N, ,t) one obtains a nonlinear integral'

equatlon for Rc* , namely . __.

o - 2 ,-1
. .- bA"‘p" Rct bAq p' - gc _wa [VOA"’p", VOAQ ,pg]
. S .

‘ b R b b 1771 ) Nl . R * . b " [
_+ Al p“ cx AT 1P ptte Rey A", P~
. 2 * T =

w76

ban pn Rc,__ A"' pna Ppyis pna Rci-_ °bAi’p:e
U ¥ — e

w-w. -.{-_i€

| To shif’t the nucleon to an arbitrary position r one simply multiplies
-thig expression by ei(p' - p") ‘X, If still more terms are included then

it is necessary to derive further equatlons, analogous to (10.115) and
(10.120), involving the application of the operators a and a# twice or

more to the vector \N> ; and leading to a series of coupled nonlinear

integral equations.
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;;}‘j :.At‘firsﬁ sight Qe}éeem to be no beoter:off than in tﬁe Wio-body
'-fép;oblem, for expre551on (10 126) is certainly pot%a gOOd_approximation Lo the
;v;exact cross section if gc is not small ‘However, if one is wiliing to
.assume that the exact expre531on is & smootn function of ¢3¢ 1in the

Sy
.nelghborhood of ;AX as well as in the nonphysical region betweer 0O acd

then one may extrapolate the experimenual results backward from the low meson
'~k1net1c energy reglon to Lo' = O, at which p01nt the term (10.125) complietely
domlnates all the other terms in (TO th) ‘so'that ihe cross section formula

ffj:(lO 126) does become exact Fonnula (lO 126) maAy con+a1n, of cuurse, a factor

3fdepend1ng on p' - (co‘ - LL )“ and having either a bLranch point or a merc

}L: which prevents a direct extrapolation of the experimental resulis

'-.atw

';‘;to W’ :,0; However, the observed cross section may be multiplied by the
i;reciprocal of thls factor and then extrapolated A direct deoermln tion of g

-l -
'Ls,therEby'achieved, provided phe'assumption of'smoothness is valid;

&

In the pseudovector couplihg theory coﬁsioered by Chew, [92) integration of
o Eq °..(10;126)'over all angleS'and avefaging over all initial nucléxn states
":ﬂzﬁ o 1eads t6 a total cross section CT(LQ') = A/B,;)(gc/ }A) */gu‘Q .
The renormallzed coupllng constant is therefore determined by
» . 2 '
e i = u.)]'-mo 3 w! 6b (us') .
AR : ) — P obs
*iﬁfilf ‘??: Here Cfég;i must refer only to observed P-wave scattering, since

-+ S-wave scattering is not described by the pseudovector courling.
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The substance of the t.hreshold theorem is contained m the following

"‘.f’."‘statement“ The cross section for scattering of a meson of ZEro energy is

g;ven exactly by the lowest. order perturbation expression, with g replaced

...X gc, (Eq (10. 126)) The statement is rigorously true and depends neither

: ‘ pn___t,h‘_e masses of the virtual mesons nor on the magnitude of 8o -

£ FQ‘\irier t.ra'nsforms ]

The partlcle propagation functlons are frequently m‘croduced through

S ‘ their Fourler transforms, as they then have a more direct connectlon with the

e 'f:l.eld_ '{arlables, This connectlon may be seen by defining

) e ,
" ,s‘#'(t) = (2m) 1[:08,:(}"}) e dE - o - (10.127)

‘-:‘fanﬁl meking use of Egs. (1.15), (2.9), (2.13), (10.20) and (10.21), and the
fact that v(o t) = U(t., 0) when the total Hamiltonian operator is time

,-'::‘-_u': independent  Evidently

e

(N | Gult, 0) | Mgy — =1 0,(t) {No | U(t,0) | No )

i

S (t)

. F1i e,(t) <vac U(O t)'ﬁ u(t, 0)} >

715

where "JY (t) is the nucleon field variable in the Heisenberg representation.

Fes () (e %) . (10.28)

Expression (10 128) may also be rewritten in the more symmetrlc

e

S*'(tn; - t.‘) 7“:1 e“(t", - tt) <No ' U(tm, tt) l NO>A

H

F i Gz'(t" - t') {vac l‘ﬂj’(t") w*(tﬁ)l vac>
" | (10.129)
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7~ Using the. fact that W(t) |vac) = 0 one may further modify %bis equatiim -

1

F i«<vac] [ﬁ(t")@ (t* ) .., ‘ vr'lc>

ERCIET)

i

- iO'(t," - t0) <v¢.cl [—»1,( o\g ;{4. ’ vaAc:>

41

' *Timeéorde‘red ex«pr'eslsions like (10.130) have a useful form in “he

1n’ceraction representatlon Flr"St consider the general exprecssis

<0<=F IF(tl) G(tz)lO( > where’ F and G ares arbitrary Heisenberg

.0 erators and X4') is an eigenvector of H corresponding ¢ the
) + g 1 £

oy . eigen,vectGr‘ loo’) ot JG,- Remembering that F(t) = U(C. tjF{t3Ul:, ).

I @he_ may write this expression in the form

1 <o{ F(tl) c;r(t-,z){o(h >

(oo, £1)F(E) Ty, 1)8(6)Ulty, Foo )| 4,7 )

= 27t .<°(of |

10.15%)

N

The combination of this result with Egs, (1.31, 32) evidently gives

<0( ][F(tl)G(t,g)} |o(

{F(i ) G(t ) exp(w’-l/ (}Gl\t)dk ] a°!>

(10,132}

- 2T <

: The rénormaiization constant 2Z' of the state ’O{:/> may be similariy

" expresseds

CLE YL

'.ZY

lSALng <O(ol J ° />

'S:ng{o(o'j[exp(xiA”f}clgt)dt)]i)o{o'> . {10133

H
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Co B S
. \. R \ ‘ ‘. , | : ...-‘ " : '_. .. - . |
. . =~ In the present example Z' - 1 for the vacuum state, and therefore
AT |
IR AT
Vo :_(’f'“_'_' 1) = mlfq(,“' - &%) <vac‘ [w(t")'l_]j (¢t exp(xlf f}C (t)dt)] ’ vac .
S _
Sy o : ‘
. L —
! 'QLg
SER
o
)

| (10.134)
This equation is also correct in theories which aliow pair creation, provided

all vacuumstomvacuum effects are consistently ignored.

In relativistic field theories the traditional development proceeds
fr‘om expressions of the form (10. 131;,)

The nucleon propagation function is,
o hoy;ever, .-f,hen defined by

S5 (xm - x ) - -1 G (e - t7) (vac

+ i

[pemprcan], | vae)
| . (10.135)
iu‘wh;ch the_épaﬁe and time coordinates are placed on equal footing
Q.lf;;1 fu i-xva;'(iﬁs‘it?); In the present éxample this function reduces to the
PR n.nbnrelet;ivistic- form '

Suxm - Xz S(xv - rt) 8(t" - £7) . (10.136)

The analogous structure for the mesons, on the other hand,; is relativistically
” cbvariant;

The Fourier transform of the .meson propagation function deflned
by E_q,,(lo‘,za) is evidently

3-—'5?.',<vva-c t [a(t") a (t')] ‘ Vac

‘L.Therefere jV'

—igg(t" - t’)
= =1 Gi(t" -t') e .

L j?i vac

(10.137)
[vPA" (x" ><PA,<x o), | ey - |
::Fl -Zp'i "(2L ) ‘L(m"

w ).% <vac
” » -i n%rn'

i 3 —i]li)e"P!.‘
+oayn ) (80) 6 F ')géAvspv(t“)elB =4 2pn pr (E1)e = 2 )] | vac)
SA"A? A-.t.( YA 2D

t

' o

o

(10.138)
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'f..'where

: . Z 3 1 [ . iper - wi) ;j_(g,z: - wtf)v}
, A,(X) =  Fi o (2wL7)  |e,(t) e | + 0(t) e | Rt

- o ik ! fo e mms
o e a(zqr) l”/(k + /u F 177) % ot s (1¢.139)
Wit:h ' _ ' A o

~ (k) = (ps i po) 9 dk = d'p dp, and n = 2we .

Some remarks.
The operator formalism finds probably its richest expression 3in its
»fapplication'to field theories. Obviously the foregoing discussion can be

f'”cérfied-on info maqy-other ramifications of the suhject. To take- just one

o e e

”‘j.eXamples thé‘concept of "the propagat~0n function can be applied not only to a

»:single particle but to any number of 51mulnaneously 1rterabtnnp partwcles°

'7Qf0ne 31mply 1nt“oduces structures similar to (10.130) but involving arbitrary

‘_-numbers of operator pairs 13' iﬁ s plus any number of reneeitlons of the

'foperators a and 3*° The resulting functions involve separate "emission
K . N

-* . times" and separate "absorption times® for each particle, If all the

. . ) & . a?e
.. ‘emission times are set equal and all the absorption timespset equal, and if

the Fourier transform is taken of the result, cne obtains essentially the

- quéntities <n, m" )Gz(E)l N, m*> where ‘n°1n> denotes the ztate-
tor descrlblng n bare nucleons and m bare mesons, Owing to the
"simple connectlon,(ch (10081)) between the Green's function and the scattering

* -operator, discussion of scattering can be carried out solely in terms of these

"5~;fun6tionsh The many-partlcle propagation functions also prov1d= the

'approprlate framework in Whlvh to study bOund state problems Morecver; if
‘ the various emission and absorption times are left independent, as is -

'especially apprpprxate in a reiativistic theory, they provide a method of
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;“7~;;carry1ng out the renormallzatlon program (in Partlc“lar the proof that the

‘“2;3 renormallzed S-matrix 1nvolves only observable quantltles) in a Smeler and
:-more natural'fashion than that outlxned above. Lack of,space, however,
e.prevents these appllcatlons from belng described here. A few of the pertlnent

”':_referenées are 1ncluded in the bibllography at the end of the article.

§7”"f':; 715 , ﬁﬂdther topic about whlch 51lence will be malntalned is the question

J'“o of the “renormallzablllty" of a glven theory. "This is the question of -

b whether or not the 'various 1ntegrals remaining after"renormalization has been
'"gipefformed are all convergent. This question arises only for local theories

i}(iﬁfinite‘cﬁﬁ-off),-and;the~answer-to it depends on details of the interaction.

- “Althoygh of practical importance, the subject is highly specialized and has
o "_'i'-_'*frio'.lﬁ"earing on-the operator formalism. |

We shall also say. nothing about rad11 of convergence for the expan51ons
ffof renormalized matrlx elements in powers of g,, nor about the question of
"*H'whether or not the expan31ons might have some meanlng even if the radii happen

: }ﬁ»}to vanlsh

:'}ifThe neutral scalar fleld

It is well known that the Coupled field problem can be solved exactly if

""?che matrices TjA occurring in the vertex operators commute with one another,”

'.af&*It 1s of 1nterest to show this within the context of renormalization theory.
7f_0ne must flrst recall that the functional dependence of the operators Sz,

Z:t Vi on E and X always occurs through “the comblnatlon

’ ~iwt % 1 wi
E - g(V 'e -¢x_+~cx ' Vb)' Therefore, if the vertices commute so

¢

e ot s i ——— -

X

e GiUWentzel,refeféﬁce[7}For other interesting field problems which can be

“‘,eolfed exaotly'see references [108,109,IIO] o
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.

: that the numerical factors appearing in various terms, under the operationt‘

x;inﬁblvéd in qu (10.65), are all eQuai to unity, and if the energy associated

v"'_ﬁith the external meson field is set equal to zero, then differentiation

u5f §ithjfespect to O is essentially equivalent to differentiation with

e

w

" respect to -E. This implies, for example (see Egs. (10.38) and (10.50))

e = 257 ®)/28 oo

Ih"pé,,r"tj’_.cular (seiting E-¥Mxi€)
-1 -1

2y o= Z, , (10.141)

- .and hence

1
o

- L : : (10.142)

i; "Eq,'(lo‘lhO) can be generalized to include the useful case in which

' the external meson energy does not vanish. The reasoning is-as follows;n,'

i lfkif the vertices commute then to any function F(E) there corresponds a

. ] ) : - mt * ifvo\“)t *® PR
unique function 'F of, E - g(Vo»e A +A".e”* 7V ) from which F(E)

' canibe obtained:by»sétfing X = 0. One may therefore define the following

- operations:

it -
Fa® = (dF/00) e ™ . (10.143)
X =0
'Z?EQr'exémpie: .
If‘ F(E) :IE " then F’;(E) = -8V, (10.144)

The geheral result of performing this operation on an arbitrary function of
'E, which is analytic in some region, may be obtained by induction from

(10°1ua) together with the following tally-keeping rules for the meson energy:
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If F(E) ='F1(E) Fo(E) then
TR e (10.145)
LT Ryg(E) = Py x(B)Fy(E - @)+ Fy(E) Fyu(E) .
* s 1 FE) - ¢"1(E) then
SRR - (107146)

"*‘FQ@(E) 2 NE) Gulm e )

o The i‘unctlons St(E), 2 (E), s (E E - ) are presumed to have a reglon

of analy‘tlc:.ty, and hence these rules apply to them in partlculara

. Uslng rules (lO 144 - 146) one may easily prove the follow:mg theorem:

FM(E) = ~gV- F(E)—F(E—Ncg) wt o
) °[ | ] ‘ (10.147)

-,» If F(E) E the theorem is obv1ous, and the general case follows by induction.
e Sin‘oe Vov T (E, E - 9;2) =g -1 Ss 1, « (E) one may therefore infer
i B-w). [s‘. (E) - 8,7 E - ) | (10.148)

o which reduces to (lO lhO) in the 1limit w—>0 Inserting this result
together vuth Eq (10 50) into (10.41a) for the case o = 0, one obtains
vthe following expressmn for the self«-energy function

T v < n [T,y - A o *
S0 2(B) s g2 Vo [St (E) - 84 l(E - )] W 1°S¢(.E -@)V,
i sE = B (10.149)

~ v

yfh,icrh,”;.when sdbétituted into Eq. (10.27), yields the simple integral equation

| (E - My xi€) Su(E) =1+ g v, [Si(E -w) - Sg(E)] TV,
e e L ' : (10,150)
for the nucleon propagatlon function, (Here we replace %f by 1 for
‘ smplicity ).

" Eq. (10. 150) may - be rewrltten in the form

o , ] -1 ¥ '
. ,(E-,-‘ M‘t i€ ) 84(B) = 1+g .voosi(E —w )R TV, (10.151)
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. fhé;self mass being identified as"
AM = - gtV T i (10.152)
o ofho rénormaliZation’oonstant Z, may be identified by passing to the limit
E—->M+ ic:

L | .
14g° Vg5, (M - o wi€)@ -V,

4]

2,

i

.[1 - g2V S, (M - w3 = i€ )°~c9"1«v0*] -1 . (10.153)

S R i -1
LR :Multiplication,of‘qu (10.151) by 2, then gives

"v'.given formally by

. R
(E ~M & ie ) s%(E) = 1+ g? Ve [SC*(E - w) - S (M- ww ie)] W l"Vo
o | | (10.154)

The 31mplest case in which the vertices commute is that of the

o voneutral scalar meson field for which the vertex operator has the form

- ° |
(2_wL3)>2 v elg ~f. f bp . (10,155)

3}

3
o
3

1
3

'Using this form it is easy to show that the solution of Eq. (10.154) is

r

v

\",:'sc;m) =Z > ( ) 121 _ggn 1
T ,n° v

n=0 - oo 3 . -0, - - - i
m}:l fn l . E b.)l vue (A)n_M:th

n

(10.156)

DA ~__'1"he integrations involved in each term of this series converge even ir the

llmlt of 1nfin1te cut—off (vp

NS

;however, goes, to zero as the cut- off becomes infinite, show1ng that the

= 1), The renormalization consﬁant Z

% T '
“,Eq,>(100152),may be compared with Eq. (10.119), from which it differs by
“the characteristic self-energy factor 4. In Eq. (10.152) the dot

products involve summations over f-space as well as b-space.

1
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:ﬁqhépdrqalizeq quantities thpmselvés diverge. Substitution of (10.156) into

= exp(-g° T, @ vo)

N
N
1

am{ (w@W) [mg(ZQ/whz-ll%

: ( 2vr) ' I
(L e/20) ¢ | : 1(10.157)

where .fl is the hlgh-energy cut—off
It is of interest to ‘take the Fourier transform of (10. 156) which is

A easily ‘geen to be
Sealt) "= FLO(t) o explgt Vor@ e T Vo). . (10.158)
-f]fWith §nfiﬁite cut--of £ £he.exponent on the right‘has the form

L 2 e 24 -ttt
L (_.g‘/z'vr)'A w’z(wz.»,u )% e 4w

'lFé>(y?nf[hgﬁ/bxtf)-Twlﬁx%71] as t >0,

. | (10.159)

i;'ﬁhgfe’ 'Qr‘ = .577..., and therefore

QElVf 3 e E wl(gz/swo -(r + 1) (g/zm') ~iME

(t) > Fieyt) e [2 e arsy 1 e

R - A R | (10.160)

>-;?; 2 ?5sz‘ t __;,d From the behavior of S (t) near the origin one sees that

the series (lO,L56), which is 1ts formal Fourier transform9 can converge

on;y if g < 2T . For larger values of the coupllng constant the nucleon

prcpagatlon function S (E) must be defined by analytic continuation.
Although these results are of some interest, the neutral scalar mescn

ks

prob;em iS‘otherw1se quite trivial. For example, the mesons are not scattered
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;e by the nucledfx_si “This follows from the circumstance’that the of)erapors

| ’Ec(o, -60) and' U (0, '00) are identical,, being given, in fact, by

3

BRIV 4. R .
u <(0; '-Foo) = exp[ ”& (v, »w ua}-'ovo )°U]' - (10.161)

" ""fb "'shom;i‘ ‘fhaf t}iié operator diagonalizes the %otal Hamiltonian operator, first
take its: commutator with Hyo S'iri’c'e the' verti'ces‘ commute the nucieon field

.variabiec play no role :m ‘the commutamcn prm,edme s and one finds
[Ho” (O =Foc)] [ °u.) 8, u (C =Fr>o:l

_==H 'U. (0 =Foo)-=g[71 (6, Feo)s '.LD' V,ea. 'TI"]

1

S R *
"’H:LU(O Foo) ~ g° u(o :oo){ﬂ_} Ty (T v, T

" and hence (c¢f, Eq. (6.29))

-

T W (Feo, 0) H U0, Fee) = Hy =g (T VU)o ( Y, o T)

- (10.162)
The second term on the right glve:. the 1nt.erartion energy between nucleon59

”-'plus the nucleon self-energy whl"h has aJ_ready been identified by Eq. {10.152).

s ’I’he renorma.lizatlon constant Z, may be obtained directly from expression’

L .(19,161),,0.__?_?@ have -
[ARIRCA ) S CA L Rt P

<O exp[g(V wloanav -t *‘]l0>

ni'

2n "“2 B % n , 'ﬁ B
= Z (“‘1) (2 n)g-_ g . (Vo"ﬁf.? ‘ o‘ro‘) . (16.163)
n--o 28 ny . 2wy . , y

n

B "wh:_‘i.‘chlfle_a‘ds"im;nediate._ly to (105,156% Here the facter (2 n)i/(2 n!) indicates
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the number of dlfferent ways in which n creaticns can be paired off with

'%,n annihllatlons.

~on

}. -AVstill more trivial example, which ‘is nevertheless not without

iihtefest@‘is.provided by the case in which the coupling term in ihe lagrangian

ideﬁéi£y~fqr the system involves the time derivative of the meson field:

Ve [ £

= (g/}k)./‘ 43'(0(5“' - g;)?,b*‘gb ng;' . (10.184)

MA

"‘The'Samé type of procedure can be used to compute 21l the other matrix
lements of u (0, F0). For example
. % . -1 £ m
< (U(O '-'FOO) O> - 22("8%."\’0)3}”“ 5

3 1% mml]
N P17 S CO N

-1 %
‘*"22%(- gw Vo) (gVat@ ), ete.,

N

,_'where the notatlon "sym" indicates that a sum over all permutations of the

Sm flnal mesons is to be taken. Here only one nucleon is assuned to be

'*present It 1s easy to see that all matrix elements invelve the factor

-;:22 or powers of it. When the cut-off becomes infinite so that Z

x';; van1shes, this would seem to imply that all the perturbed states are

4iprthogpnal to all-the unperturbed states (with the exception, of course, -

© of the(vacuum’state). ‘Thisfcircumsﬁance has sometimes led to the

u.;‘aéserﬁionvﬁhat Hy and H operate in different vector spaces [113, llh] -
< Such an interpretation, however, is incorrect. The operators a10(0,4=ao)

';T.gré:always uhitary, and the phenoménon simply shows that when the cut-off -

)

"is infinite, the switching on of the perturbation spreads a given state

2'infini€elylthinly over an infinite number of other states,



UCRL-2€24

~1 9%~

e

"l-'\fﬁeﬁﬂamiltoniaé operetof for ﬁhis systen has the form
.‘l : . ‘H ‘.‘7’;‘ M ']Is*v'}k . ‘§°(;5°a i( /l \”@‘%o(\r n())o’ a*.oql?o.v {‘)o’ﬁ
L : (o] “+ a o - g/"-/ ) O 74 d = o Yo
+ (/)T Voo (T Vg ) (10.165)

“54faﬁd.1s‘diagonalized by the operator
7,‘i;c(091;oo)“: exp [w i(g/};)iﬁ*°(V6ﬁa +-a*°70*)°”§!l , (10.166)
"which gives

ac<$w5 o) H ﬂ’\(O; "F"OO) - !{o o o (1(),,1()’?)

‘In'this cése there is not even any interaction between the nucleons thnemselves.
" This system, in splte of its triviality, may be adeVZed ina nontri ial
’ fashion by the methods prev1oasly develoned It is only necessary to replace

o : -
the ouantitles 85 Vos Vg s everywhere they previous%y cceurred, respectively

1 0

s - "
o by gA 5 -1V, ﬂag 5o i@V, . In addit,ion, since the self mass now

fi-vanishes, it is decessary'to add a term \g//A) V gk V to the right hand

Jside of EQA (lO 149). The renormelized propagaticn function is given agairn

p

- A

by Eq (10.156) with the functions v. replaced by -iwvg.
) . The 1nterest possessed by this example appearsz when Lhe cut-off is

’n allowed to become infinite. The individual terms of the renormalized series

(10 156) no longer converge on account of the ekxtra factors qu in the

'i numerators However, its Fourier transform is still well def;ned being
‘;;‘ given by
Sep(t) = F1ot) e exp |(g/m) Voo T V] ©(10.168)

f:.ThevexpOnent on the right now has the form

b ¢
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s @2 )y L w? )k % dw
e (gf2m) [—. (Mt) "+ 3 log (|mt]/2) & %’h’l} as © t =0, -
(10.169)
and ftherefore‘ S . - o ‘
B 2 - -2 2,
SR e o +i(g”/16m)- -2(mt) &(g/2m) iME
T Bgut) - w i gy(t) e lptl e e
- (lO 170)
’7rt_=ﬂ;;00_ The functlon S (t) ev1dently has a perfectly respectable

‘Fourier transform. However, thls transform cannot be exoended 1n powers of

i*"'f;g B 51nce 1f g2 is replaced by ~g2 ‘then Sc*St) does not vanlsh at the
ftijorigin but has an essentlal srngularlty there 1nstead Thls 1s the reason

-f{slfor the present lack of convergence of the terms of the series (lO 156)

_ . The present example perhaps throws some llght on the 51tuat10n

lizoccurrtng in the. so—called nonrenormalizable theorles, [lll 112] whlch

.are'characterlzed: as here, by "derlvatlve coupllng" and by the lack of

) uconvergence of even the 1nd1v1dual terms in the expan51ons of renornallzed

," *
»Lquantltlesé o
O U B R

v : :
The dependence of the renormallzatlon constant on the cut-off is given in

thls example by
-(Q2 /) ] i(g/2m)

e

z2 o | (/) 1,0 ] = [;m_/» e
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11. DECAYING SYSTEMS AND RESONANCE SCATTERING

l Unstable states. .

g t:’ " : Suppose the system H is known to be in the eigenstate ‘o( > of

H | at. the ‘time t = 0. Then the probablllty that it will be found in the

20 The state

. same state at a later time t is ‘{o{ | U(t, 0) l O(

’O( > is ‘sa;Ld to be unstable for the system H if

t-»oo ’<0( ‘U(t O))O( >j | (11.1)

the limlt. be:.ng taken in a straightforward manner independent of any special

WL

“.Naconventions° Otherw1se ‘the state is said to be stable. A system which
is initially in an unstable state is said to undergo a.subsequent decay.
BT | An unstable 1n1t1a1 state is often referred to as an excited state,
the.impllcation belng that some kind of previous excitation process has taken
-{ygjt?':?3ii‘placelwhich puts the system into the state in question. In practice it is
e ,.i-ﬁsﬁaliy an experimé%ial impossibility to put the system H into a pure unstable
"?éiéenstate of tﬁe most eonvenfeﬁt reference system H, at a given instant of
fﬂimeo. Hewever,'the subsequent behavior of te hypothetical initially pure state
l‘asigeﬁerail&'safficiently descriptive of the actual state of affairs, st least

: ‘_ "'a'fter an initial '"‘settl‘ing down" time has elapsed, for the adjective "excited"

»to be applied to 1t. dlrectly
: If the average value of the Green’s func’clon Gﬁ(E) in the snate
- {’0(09 ~ is known, then the time dependence of the amplitude

<0( i U(t, 0) !0( > can be determined from the relation
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T ) e e o o)

J.-(zwri) Sy <o( ’G+(E)‘O< >i(E FE)tdE, ot > o,

(2&1)-1[:0 <o(°' | 6.(8) | o, SE I ,  t <0,

(11.2)

i*;(Here E‘ ‘refers to the spectrum of H,.) An examination of the diagonal
matrix elements of the Green's function therefore allows one to determlne the
o stability for H of the various eigenstates of H, and'the decay rates of

'bzi;égfi those states which'are unstable.

The damping operator,--'
v The spe01al s1gn1f1cance possessed by the dlagonal matrix elements
}jf of the Green's functlon in decay problems is analogous to that possessed by

-'the'particle propagation-functlons of field theories. One may exploit’ this

analogy by introducing a generallzatlon of the self»energy function (or mass

operator) which has been called by Heltler the damping operator. [6%, 69, 86]

First denote by Fd and F d respectlvely the diagonal and off’-=

e diagonal parts of a g1ven operator F s i.e.

"Z'l“°'>-<0< 1« K l C @

F-Fy. ‘ (11.4)

Fq

Then, using this notation and the fact that Gos(E) = [Goz(E)]d , separate
the rlght “hand side of Eq° (2 15) 1nto diagonal and off-diagonal parts as

follcws°
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S 6.(E) = G.(E)\1+H [é @ 4 [G (g) | }
‘ £ = Vot ST 4 1 L7 od.
> R ; “ . >: G%(E) {l + D-.t(E) [Gt_(E) ] g } , ' (11.5)
o 'A"}';i ‘_ "
s _ywlhe‘re o . ) _
3 \, o o . -".. ) "._ B i . . [ . o
U T n® s Bl o) D) ] .t _ (11.6)

D*_(E) is the damping operator, Comparison of Egs. (11.6) and (7.4a) shows

">’ that it is closely related to the operator Ri(E). Iteration of Eq. (11.6)

i ogives

| | lsﬁsx' ‘

-1
" \‘ '
<0( \ Hy {l - (1 - { X > <O( i ) o:&(F)HlJ ’d‘g > :
3 (11.7)
% The self-energy function is the diagonal part of the damping operator:
| o -
‘iiw ) zt (E) = D*‘(E)]d - ,,___,:F(E) ° (_Ll.8,

o In terins.of it the dié,gonal part of the Green's function may be written

(11.9)

“- By "re"'ars:on‘ing' id'entical with that of the preceding section in connection with

the nucleon propagation functlon, one easily sees that the spectrum of the

A opera.tor H 15 given by the poles of [ *(E)] 4 on the real axis in the
limlt N €—> 0 That is, the eigenvalues E' of H are the real solutions
s of the equations .
v T, : ‘
E - - E) +1¢ ] = 0 11.10
_ o [ Zx (®) £ic | (11.10)
A where' V

}?;m R CARACIT @
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f=fWhen decay problems are involved, some of the equations (llmlo)

»iwave no real solutions° It will be seen presently that the corresponding eigen-

a T stat.es of H arethe ‘unstable states and have, therefore, no counterparts in

“e_t_he Asystem _ H? In Section 7 we briefly considered the situation presented by

_ suchv-‘states in connection with the S-matrix and dencted them there by l?’ > o

T S L, E
v, Ee . e
o R St

fffThe remainlng (stable) states were denoted by ’/3 > We now proceed to

0 f‘lnvestlgate these two classes of states in greater detail.

Real soluulons .

?.'f N'bjiv‘We con51der flrst the stable states \{3 > for which the

equations (11. 10) have real solutions E', Prompted by our experience with

*T‘_propagatlon functions in field theories, we expand }Qil(E) about the

‘;‘(;’po:mt Ev =F i€ 3

" 5: ’(E) = AE' - 3'(B-E'x ic) Rem 2, (E), (11.12)
; i i:,'_:”_:;_j. - KA-EG = -[2* (E)] E=E'% i¢ ’ | (1-1013)
. | j’;-{}g;%mmﬁ} . 7 (11.14)

E-E7 +# i€ .

. The eenetants4 AE' are, of course, the level shifts, satisfying

‘ fﬁ@ H N A - |
e =1k [w (- oYtz ] o)
e : ~ : (11.15)
.a'ii;whlch may be compared with Eq. (9.58) of bound state perturbation theor’y°
The L ‘S' are related to the normalization constants Zi by the now
. fa.nuliar equation |

zZb oz (L Fyoh (11.16)
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S 4 is instractive, in the present section, tc rederive Eq. (11.16)
R by methods _employing the damping cperater directl y Aéding the ~fi-diagonal
A - '
SPUTE part o‘f'Eq,, (1105) to the identity [ t(E)] '{(.E}J‘, . one gets
"5 ‘U‘se‘_‘o‘f this result together‘ with Egs. (11.9) and {1i.:2) an Bq. (£.2) 7ivss

f'-?* AR "’_fer the eigehvect.ors ‘ l(?)*_ }of H the expression

o 2% gD Lteq,(8) 160"

e tyL
e = . (1+3") { (E)‘”i\u‘)w }{o'
P (11.18)
IO " ”.'I:&ﬁltip]_;icat.ion on the left by <@o’§ “eads to Bq, (11.16).

Complex solutions,

If one replaces l@°’> by \'3’9 '> in the first line of Eg, (11.1&)
o tnen one ob’fains an explicxt svatement f the fact that the unstable staves

:',J.mdergo a mathematical as well as physical decay when the perturcaticn H, i:

-~

Do SW:’L‘Qched on, or ‘in other words that 2' = C for the i 7o'>° For vhere is

“a 7. .. no real value of E for which +£i1€G.(E). l 7@ > does not vanish in the

"'ii_miﬁ-_ € =»0, since such a value would be a real solution of Eg. (11.10) for

t.he state  |7') .
e - One may, in fact, ini‘er-that_}nhere is not even a complex vaiie of E
for 'i#hich :tiié Gt(E)l’Yol> remains finite in the 1imit. For if %thers
’ ; :.-f'_"w’er:e; ?E,hen this value would have to be an eigenvalue of H , which 1s contrary

‘r’c‘o fhe hypothesis that H is Hermitian. This means that Eq. (11.10) fér an
“unstable state h’o'> has no solution at all, if the cuantities appearing '

in it .are evaluated in a straightforward manner. This fact will subsequent.ly

be seen to be the greatest single complicating factor in the theory of decaying



UCRL-2884
-199-

\‘1f§fétem§5’eéﬁsing~ué in many cases-tovbe_abie to speaﬁ only in approximate

l fﬁfﬂiltefms.énd toewrite only approximate e@uatioﬁs valid under restrictive conditions.
v li The fact that Eq (11 10) has no solutions for unstable states may
v;r B 7’factually be. shown in a direct manner. We'note first that the =+ signs become

:,ﬂ ";,stuperfluous when E takes on complex values. (Their original purpose was

{l 'fﬁ_simply to distingulsh between values of E just above and just below the real
» ;:;{;;axis,)' Therefore we write simply -
T-;ﬁi;>;?;,' . t}.' o : " Eb - Hov - E:l(E') = 0 5 (11.19)

'ﬂigﬁzt:,fassﬁﬁing the existence of an E! satisfying'this equation, and then show that

5:§ﬁis;1eads to a contradiction.

UL Using Egs. (11.5) and (11.11) (without the # signs) we have

j EESCANREICORE CO RE A

L {meen[aen ] - Dan ] e | 17,
o :_' 4 <7C',' [D(E')]od* {Go(Ev) . Gc,(E'*)]. [—D‘(Ey)]od l"op> |

o - 2 Z I |<°<o'" l D(E') ) »'3/0‘> , : . o (11.20)

(Re E' - Hy') 4+ (In E1)°

it
N

"
§

. ‘(.'_-_’_4., . - ‘," . B Q’.O” # 'rﬂl
] ‘Il‘fn‘ the passage from the third to the fourth line of this equation H is
' replaced by ‘ '

- * % *
D(E') - Hy GO(E )[D(E')]od = D(E*)" - [D(Es)Jod Go(EF")H; .
(fIffﬁe'now divide qu (11.20) by Im E', which is permissible since PTO?>
" {s an unstable stete, we obtain a positive number on the left and a negative

quantity oﬁ the'right,'which is the contradiction sought for.
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Theisituation is clarified by considering the classic example of the

‘fnénfel&tivistic rédiative decay of an excited atom.  The unstable initial
T "‘.: B .‘ ] .

: state may be denoted by ‘Jo > , describing a bound electronic configuration
”f‘”iﬁ*the-absénCe bf photons. The perturbation Hy is the usval electromagnetic

i‘;coupling which can emit or absorb photons only sing;y. Its only nbnvanishing

1 | g
o’ YO (}ﬁ_,Jo )

1] N
: and thelr complex conJugates, where the label T describes a single photon

o]

) and the label 0( refers to the electronic state, either bound, mixed or
: “ﬁ§ free,»‘Since electromagnetic coupling is weak the diagonal elemcnts of Eq. (11.7)

xl' érélgiven to good approximation by

3w = G 10 - 1220 €30 Doonte) 1] 5,

o Z" 'k<d(o", S0 ) 9 ’ : B (11.21)

E-H,' i€

i'The'béhavior of this function off the real axis is easily inferred ia terms

'ilj’offa-ﬁhysical analog. Dropping the £ signs one may write

Re /(B = &E.®) ,

1]

(11.22)

Im - 3. (E)

"é (E) 5 '.‘ "

._.vwhere é;x and éi; are the components of a 2~d1mensional electrostatic

fisid oroduced by a dharge density of amount

Cpw s Dse-w) [0 s )| F

E
" We omit the term quadratic in the electromagnetic field, which occurs in

" ""the nonrelativistic theofy, since it is of higher order in the electric

" charge.
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Ll j;?, distributed along the real axis. Since F)(E) is non-negative one has

- . ey

Im Z'(E) < 0 - for ImnE > 0,

K ; ‘ - (11.24)
Im , 2 (E) > 0 for ImE < O,

"- whlch shows again that Eq. (11.10) has no solution,

Eq. (11.10) can, however, have a scolution if a process of analyt*c

ccntinuapion is carried out on the function 2.'(E). This function

. '-evidantly has a branch point at Emin’ where -Emih is the lowest lying of

: phe'levels_ Ho ‘for which the numerator in the sum (11.21) is nonvanishing.

*Eéof(1152l) defines this function only over one of its Riemann sheets, and

. although Eq. (ll;lO) has no solution on this .sheet it generally has solutions

on the next adjoining sheets. Use of Eq. (11.21) to define the function

:‘ ijzjf(E) implies a cut along the real axis starting.at E .n,.'One can get

‘;onto the adjacent Riemann sheets by displac1ng this cut either upwards or

downwapdsc The -+ .signs will now be reinstated so as to refer to the

2appropfiate adjacent sheet, The function >4 (E) is obtained by dlsplacing

the cut downward or alternatlvely by crossing the cut from above, Similarly,

'>““'the function .(®) is obtained by displacing the cut upward, etc.

,The rear part of Eq. (11.21) is usually divergent. In terms of the

B

' ’electrostatic analog this means that the total charge U/OO(E)dE is not

3_only inflnite but also dlstrlbuted at large distances in such a way that the

 component dg:x of the electric field is negatively infinite. We shall avoid

i'this‘difficulty by the usual procedure of introducing a high energy cut-off,

~which we shall call' E

max ® Emax is évidently also a branch point, For

géneral-systems there may be other branch points on the real axis, particularly

when the exact formula (11.7) is used for computing S>/(E) to an arbitrarily

" high order, In order to avoid extra complications in this section, however,
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we shall assume that Emir and 'Emax sre the orly two bhrancn points end thas

LY

" the Riemann cut connecta them, If formia (12.21) iz used as exzct this means

. that the charge censity fD(E} is infinitely d:ifferentiable everywhere alcng

" the cut,

i

Fig. 15 snows how the cut 13 tc be displaced so as to obtain the

~ J,. : ' . « . L . . .
. function §:+(E)u The contour C, Lying just abeve the resi axis i«

~

M2

deformed into a contour ~Cps, +C_ - C ... Similarly Fig. Lf shows the

.ﬁdiSplacement of the cut which defines the furcticn 2. "tE). Tre contcur ¢

" now exist) to the equations

lylng Just belum the Teal axis is deformed inte the conbtour O ..+ 0, + G .

Since the functions E:if(E) are analytiz cver their respective

 “sheets onevmay‘write

LyE = ZE » (11.25)

- _since, by {11 6. the equation holds on the real axis, The solutions (which

. ‘ . . p . R ' o
- By -H - 2, Y. ¢ (Ll.25)

B

* therefore satisfy the conjugate relationship

§ (- t, . e
E-,h = Eﬁ; o : : v -«0’5"{A/

Eq. (11.25) may have several soiuticns in a gaven Riemann sheet.

‘generally, however, be a principal one which lies sicsest to the rezl avis
2 4 9

* fthe rest.

LSS

~ the shift and widith of the perturbed energy level corresponding to the state ‘ﬁg}

I . ¢ et s . . .
. and passes to H0 ad g-%0; and this is the cne we snall sonsider, ignoring

L ¥ T, . . ' N
o E and E 1ie in the lower and upper half-planer respectirelw
*+ - iR : s

- and one may therefere write

4 § B} P
Ey = H A+ AR =m0 | o (e

L ! e s \ X L \ o
where. M ig a positive constant. AE? and ™" gre known respeactivaly as

72
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B a) Emin Emox
. E;
. ~Cmax.
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(16) oE'
. Emin Emax.
) I ettt .
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i a)
oEl
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: by  Cmin. o » Cmox.

FIGS.15 8 16 SHOWING THE DISPLACEMENTS OF
CONTOUR AND CUT, WHICH DEFINE
THE FUNCTIONS = (E) -

Mu~-too8es
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"+, although there is now no strict mathematical justification for this
- ) I3 i 2 ‘ < s
. - nomencliature since - l?o > has no counterpart in H. However; there is

'ample'physical juétifiéation, as wiil presently appszar, and it w1l be
,_(cdnvenient in the subsequent discussicn to introduviz & redefined perturbaticr
" operator 3@1. (see Egs. (6.4, 5, 6)) such that the eigenvalues of the modified

. unperturbed Hamiltcnian 3%% are given by

«

. e \
Bz Hy 4+ AES (11.29)
. for the unstable as well as the stable states. JIn the S-matrix discussion
-, of Section 7 only the stable-level redefinition was considered.

"« - % A ‘remark should be made about the level redefinition procedure. In

¥: relat1V1st1c local field theory involvlng only free particles the level

' 'f'ﬂfshlfts are both infinite and unctservable. In a decay situation. however,

in-which'a nonrelativistic feature in the form cf an external binding poﬁential
is present there. is; for states 1nvo*vAng bound particles; a finite part of
the level shift which is observable It is important %o remember that the
'Iévgljredefinition (11029) includes not niy the uanDGFVab contribution’
5;q§rréépohdiﬂg>§o the frée particle situation but aiso the observanble part

arising ffom‘the'paSSage to a bound (or mixed) state.

':;;DiécﬁSSiOn of instability.

.For unstable stateé, Just as for stable states; it is convenient

i ¥o "expand EZ*f(E); Remembering that the perturbation cperator has now

]3:Beehfredefihed so that AE! - 0, one has

[ R

2o E) = #3100 SUE-ES)+ Rem T,(E) . (11.30)

3

113

- [gi‘*’(E)/'BE]EE', p 0 (31.31)

el g
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" The quantity
UL Zy = (L+73") (11.32)
vl w111 be seen to play a physical role analogous to that of the renormalization
‘ " één'st.antsfor stable states,v although.hlere aga'in the strict mathematical

justification for an interpretation along such lines is lacking.
- Evidently ,’ and Y.’ are complex conjugates of one another,

.and one may write

5./ =3 e | (11.33)
where :3",..§nd "22 are real constants. It is useful to introduce also the
Y .'_“quan.tlit;y. | '
[ | | Z': L+ O, | " - (11.34)
- J.n .t.‘érms‘ of which 01;1e jha.s
2o = 2'Qeim ), o (11.35)
70' = z'n' : . (11.36)

" . The | 2¢ here i1s not to be confused with the strictly vanishing normalization

constant which expresses the fact that H’Q'> has no counterpart in H. If
. :_'ﬁhe perturbation Hy (or (T-Cl) is weak then generally

Il « 1, | (11.37)

‘ and the Z*_' are nearly equal to Z'.

" Now, set E = E' in Eq. (11.30) and take the imaginary part, getting
L w2 TR/E) = 27ir' w2mRen TL(B) . (11.38)
" Since, E' 1is real it lies on the original Riemann sheet defining the
- function S !'(E), and hence the left hand side of this equation may be

evaluated in the straightforward manner of Eq. (11.20). Reinserting the =
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£ B ;s'igris i'nt,o'the latter equatibn9 and using the fact that

Coy(BY) = G (B = ¥ 2T S(B' - W)

e one gets

SR rti Cawze ’ S (ﬁv By | (x| D) } 7' “ie1 2. wn)
8 r: <0 - < e Jy W5 o/ * < im Croy MY
. . ‘7_(0”#76' - .
i | 2%, Re 2 _ @@
e T of ex (11.39)
.-,,'}}:he;fref‘(cf, Eq. (10.75))
2@ -z, Rem Z(E) . - (11.40)

. _ij‘j:t_ﬁe perturbation is weak then [ ' 1is small and the terms in
v Zcil‘(E‘) (which are of order .'F' 2, and [/° respectively) may be

‘:négiécted in (11.39).. Comparison with Eq. (8.12) then suggests that [/ may

l -"vl'jxave an approximate interpretation as the total rate of transition out of the

B . ._'stat,e v I?’ > - This interpretation will subsequently be more fullj confirmed.

Eq .{11.39) allows one immediately ‘o infer the characteristics whi ch
L distinguish the st—able‘ stat,es from the unstable ones and which have already

= been--indicéted in Section 3. First of all, an unstable state [-’ro' )

“ .j”".,cannot be a free state, for the matrix element

] Do s 360 bl 1)

o 'v-'would then be inversely proportional to some positive power of the dimension

: ""I. of the normaliz1ng box and hence vanish in the limit € —>0, L -» o0,
= Secondly, 1f l’)’ > is a mixed state representable, for example, as
'_\YJO, s S.Q >, then the operator- [D*(E').]od must have some nonvanishing
[

" matrix elements of the form <0(0 5 301 l D.(E®) I Jo'? S’O‘> which depend

ER . . "
“on L only.through the labels o(o . That is, the bound subsystem cdescribed
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RO by the labels N mnst play the essential decay role, for only then can the
A e ‘ " .

et af"summatlon over the labels _be ' in Eq. (11. 39) remove the L dependence of '

};;5;§:ifri;F1nally, ow1ng £6 the presence ‘of the delta function in Eq. (11.39), the labels

gfj?;lff f;\t{oﬁ;‘whlch glve rlse to-the significant contributionsin ‘the sum must refer

ii?ff ei':ito 2 set of continuum levels engulflng ‘the energy level of the state l'T ‘>v.
‘;;ij;ously, the‘classical radlatlve decay example fits all these requirements,

‘ -ﬂiéﬁérengﬁxfingfcontinuum being provided by.the emitted photons. ‘One sees in

 generel-£hat,-of‘the oound electronic levels, only the lowest lying are
;3;fg;ﬂkgf‘?stéble;: Tne free electronic states, on'thejother hand, are stable, photon

S R ) - ' - ) . *
W o0 oo production in this case giving rise merely to inelastic scattering processes.

¢ﬁff'The decay process

i;i;?lflej; 5 = To obtain the temporal behaV1or of an ex01ted state ]?’ >
%'Asubstitutes Eq (11.9) into. Eq. (ll 2) and then deforms the 1ntegrat10n
JT:contour in the manner shown in Flgs 15 or 16. We shall consider the case

'~u<; b :> 0, the case t < O belng obtainable from it by the relation

_’ <5(0' \ﬂ(-t, 0) \ 0(o'> = <0(o‘i "ﬂ(t;{ 0) .I'o(o'>j (11.41)

(Here the substitution H —>-:}ﬁo has been made ) Using Eq. (11 30) and

fr 1gnor1ng any poles in the lower half plane other than the one at E+ , one

o | g \ iE' - E)t
St <Y v '> - - _1 / - f - f e dE
TR - I AR I q o C - -
SRR A o AN min . “max/E-E - Z,'(E)
R LIy | O i(E' - E)t
B I s / + /0 = dE,
2mi \ Cmin Cax/ E-E'- 3. (8)

(11.42)

o . v
The relation between [’ and Im- T./(E') is obviously a generalization
~of the relation, in scattering theory, between the total cross section
~.and the imaginary part of the forward scattering amplitude (Eq. (8.33)).
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;‘i f o | Tﬁe flrst nerm on th rlgbt of this equation givss the fam**iar_exponential

i f;f‘:;i;hr decay law, modlfled however through the presence af uhe normalization factor

. ';ifsi“”ﬁ;f;'_Since thevent re expression must equal unity at t = 0, the second term
.ffeﬁ"thelfiéﬁteﬁust aescribe various trapsient effects. Thls term etar1 out,

E ;“ﬁl*; f?hieﬁith theevalue ¥ - Z+1,:and then normally drops quickly to very small valuesq

= 7??*fl;]f~vr The "settling down timen depends to a considerable extent on the details of

e ' the spe01f1c system involved, and only a very crude estimate of it can be
given in geﬂeral The estimate is obuained by writing one of ihe sontour

1ntegrals, the ;ntegral over C .. for instance, in the form

* [xEmin [2+-,(E) .3 (1:)] i(E* - %;)t |

e Tow- 5.@] [ 2]
o ﬂ - | : (11.43)

RTINS . R

: LIRS . Z.g - < z i - » ” ' . < / . .
o - where - +.; : and ++ are the values of the function 2, respectively

po if:- : below and abOVe the cut from Ein to =-oo, and examining the breadth of
ﬁhe range of values "E  over which the integrand has significant values.. If

2:*+ (E) is approx1mated by Eq. (11.21), which allows it to be internfeted

Jﬁ;] : . 1n terms of an electrostatlc analog, it eV1dent1x “becomes negl¢p1ble in

B value when Emin - E >>» E .x Emiﬁ ,.vThe same ususily nolas, by
. -.v:g" - ' - . : ‘ ) :‘l ) .
analytic contlnuatlon, for §§+,(E), and therefore (Emax - “ip) - may be

regarded as a réugh estlmate of the settling down ulmco

For large Values of t it is often convenient 4o make the ifrans-.

e . ‘ ' 2 L )
> formation of variables E —» x , where x =z Bps) ~ E . which changes the

- bent eontohr ‘Cmin' into a straight line. It is then scmetimes pogsible to
make an approximate evaluation of expression (111&3)'in terms of complex

erfbf«functions._ The chief characterlstic cf such functions 1c that their

per g

asymptotlc behav1or follows not an exponentlal law but rather AT inverse
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power law in t. Thls means that although the second term on the right of
th,gﬁé§.{11-h2) may dropiio aivalue smaller than that of the flrst term it
iiff;é&éhtuallﬁ.predominates again, This pheeomenon has been termed ‘a "straggling
T effect.r [41] o
| 3 in trivial cases the straggling effect may dominate the entire decay
\iepfeceSSo For example, if H_  describes a simplehsystem ﬁeving bound states
‘eﬁaé‘e result of an ettractive-petential, and if the perturbation H; cthiS£S
'”';Tg}df;afhere switching off oflthis potential, then the disinﬁerited Eound states
}fhw111 decay by the ordinary wave-packet diffusion law, which is never exnonentlalo

: Thls may be illustrated by the one-dlmen51onal deltaafunction examplie

L,*‘»EQnsidered¢1n Sect;pns 8 and 9. Here the roles of the perturbed-and unperturbed

': 'systems are inverted: -

ST 8(:)'9 * o e8() . (L)

f?f?iExpressions (8. 85) andéh 87) are now the "unperturbed" wave fanctlons, and

Al

‘¥;_ one easily finds

R W
| '"'[JFT’ - }ft

1 '<n;n’*=" ] Hl:_lliJi> : :..A‘:F *gB /2 fé p' (g F vi p")jl 5

21 ow - -1 B |
gL p(g+ip") p'(g+ip')

3o
o

~ .
T

g ﬁ\J “{l 1_‘? . :. s . .
- '_ - ’ o : (11.45)

Substitutlon of these matrix elements 1nto Eq. (ll 7) gives

<JIH1\J> Z <w\all~::>p§§_ _lta'e}*‘ o

. . . 00 -
S »i*+» 2 s./ p2 dp
R . B 2. 2,2 .
ol T Yo (0P ) (p° - 2 E)

2 (E)

Jf
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: %f',} 2 (ZE\% ) + sign for ImBE > 0,
L o gm (k) xig o, ‘ '
,#1.,‘3.:_ @Eﬁ 4 2ig - _' .- sign for ImE < O .
| {11.46)

Here there is only one branch point at E = Eﬁ#; = 0. If the ent starting

,‘:from Emi is deformed as in Figs, ¢5 or 16, then thc "h01ce vf sign in
7f:g:?(llehé);cor%esponds to ﬁhe choice of functlon >, (E)°

Renembering that H,' = -4 g°, one finds th';;p Eq. (11.26) has two
“‘roéfg, némeLy ' : |

. . . ,

E, =2, =38, A , {(11.47)

7{:The level width-is evidenﬁly Zero, ‘which shows alreadv that the case of

' Q351mple Mgwitch-of f" is not an ordinary tvpe of aecay * It is however a tiue

;'*klff:decay as may be seen by carrying out the 1ntegrat10n of Ba: (11.2).

'ijflntrQQucing the variable- p2 = 2 E , one may write, for &+ > 0,

(].:L ozl—8 )

T 0 % 312 A
o, o] Ty 2 -1 +1 ] dp
2 1 2

pe
iec Y0 ﬁp +%g~g(p+1g)(p+/m)

]
i

-3i(p2+ 29t

PREEAT = -1 f 1, ig e dp
oo Il PF A8 (p 4+ ig) »

N

C Lo ' o dg(p + i)t - 25 (p%+ gt
g/ ),/” .dp/; dtt (1l + g"ti)e L ‘
‘ 2 yen2
vy

oy awmif S0 e | 3P
L ”»¢g(2/mft)% e J(: +‘/g )(l A 1g t«» g t")e< AN

11

1

”~

P

TR I
e C o dxl+ ige (2tAr)e

T

. . ‘. _ i . L
' j(l—-ig?“@.)_ [l»ige i?r. (2/'rr t)§ A

The»vanishing -of ImIEt is doubtl®ss related to the fact that the buanﬂ

5}states of H ‘are not entlrely without counterparts in H that they pass

. over, in a sense, into the bottom of the set of continuum states.



RS S

UCRL-2884
=211~
' ;fbeforﬁations of.ihe,integration contour are'involved_in the.paseage from the
'--”fifgt:to the second line and froﬁ the third to the fourth line of this equation.
J}v Ihe-&ariaﬁles‘ AL A ana X = ;iﬁ" have‘elee been introduced., One

7;‘j eaéily gets fer,the asymptotic behavior the’expressiens

R T

1 - (LI-/B)'TT __’i g 3 tld/-h. T‘l'g" 'f'l T-.Q r).'
| (11.49)

Asvfar es'simple systems are concerned’ a Caee‘of greater interest is
that in whlch the decay 1s due to barrier penetratlon . For 31m011c1ty con51der

ja nonrelatiV1stlc part;cle of unit’ mass which is 1n1tlally trapped in a

o potentlal V which has the form indicated schematlcally in Fig. 17a. Here

":‘the‘wave packet diffusi?n takes place by leakage through the barrier which
-lforms' V. Iflﬁhie earrier is sufficiently thiekxphe.eneet of the inevitable
estraggling;eehavidr will be deferred To a time.iﬁ the distant future so that,

to all infeﬁte'and pﬁfpeeeS; the deeay will now be“expenential° The
unﬁe;turbed eyéﬁem for thch thisﬂinifial stateéis-stable may be obtained
simply by placi?g an infinitely thick barrier B (see Fig. 175) ‘around the
pertiele,' Tnis barrier must, however, affect oniy ﬁhe bound state and not

the free states‘ Therefore the choice of unperturbed Hamlltonlan must be
esomewhat art1f1c1al for example |

© Hy = 0.\6_-_.'}1 8, (Hyy - h) - o Q1.s0)

. where h  is the height of the barrier B . and
H = $p°+V+B. . (11.51)
Since the Hamlltonlan operator of the actual system 1s “H = % p2 + V, the

' perturbatlon operator is

H = - B+ h 8, (H,o ~ h) . ' (11.52)
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FI6.17:

a) A POTENTIAL BARRIER V THROUGH WHICH
LEAKAGE CAN OCCUR

b) AN !NFINITELY THICK BARRIER B THROUGH
WHICH NO. .LEAKAGE CAN OCCUR

C) THE SUM OF V AND B
My-10089
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;;Denotlng the bound state by ’J > and the free statee by - |J; "3’,:one .

y therefore wrlte for the self-energy functlon the expan51on

b bl

S T E-E" £ ic

i

. -4 S ) ‘ | o '.'\- . . . I
.”wﬁjg i} #_1; .. w{¢><Jo’53 'So A/f <So | ,01° B)’go > \Bo ,BL&L)
I L ~ o E-EreiOE-Ee1e)
| | | (11.53)

ilthe E". being the elgenvalues of H,. If the barrier which formev VvV is
”f'qulte thick 50 that the wave functlon correspondlng tov \Jo'> penetrates
Nvery 1ittle into B, 1t is ev1dent that Z?L (E) is small. *', R o

By proper ch01ce of B 1n the above example the 1n1t1&l tran31ent

effeets'may.be largely eliminated which means that the normalization constants

”Zé_ may be brought close to unity in absolute value. For radieting atoms,

‘however, such ellminatlon of the tran51ents is not feasible. The uanrtnrbed

€

- state is one in whlch one or more bare electrons are bound in an electrostatic’

4

;potentlal. The translent behavior consists in the electrons' cloth;ng

ﬁ;ff'themselves_with virtualApHotons, and the non~unitary values of the Zﬁ} reflect

»In'§Ome'cases of importance the. barrier is so thick that decay is extremely

3 slow, and only ‘the level shift is of physical importance. The level shlft
a is then customarily computed by the Raylelyh~Schréd1nger perturbatlon
formula (Sectlon 9). The formula, however, actually diverges as a power
serles in:'g since the shlfted level E' = Re E, J overlaps the continuous
:i‘spectrum Thls mathematlcal situation is well known, for example, in

the theory of the Stark effect (See reference [3] s De LO3 ff., and

also rcference [82] .)
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ﬁ";éﬁ usua_ renorma 1aat10n problem for auan*lved field thecriss. Evidently it
f 1s not easy.to deflne in a precise ma nner just eractly what constitutes an
actual phy31cal eXC1ted state, ‘This dependc on how the state was excited
and can.be givenﬁa rigorous-definition only ip‘terma'of szattering processes,

The S~mdtr1x w1ll De disvqued below, but at this stage of our anairsis the

S ‘:a . 1 B * ’
- e T V. - ¢ ,. N
T <z ). (o9
L Ve > - Tt V) - ' a

We?cahnot, for'example; allow the -excited electrons first to become clothed

.
o«

and then ;ook at them, because the complete bLOthlnﬁ yrovess reguires an N -
inflnite amoant of tlme~»aw indicated.bv the-apblication of the cperagor
1L (O :meo) ~~and by then the state wl]‘ have de ed .

031ng the vectors l?; > .one may wfite
.G -
<fr

for tlmes t- after the transient effec*s hmve mos stly oeutWeﬁ down and belor é

e r__'t.

®
—
L
bt .
ol
g

ré r1ing effects e O‘er; In raCf‘ce' is includes ail ;imnshaiic?
the st 1 ff@ct tak \i In practi th includ t 1!
is evidently l/f*f 5 and on a statistical basis this confirms the previous

,;interpretation'of "/ as the rate of transition cul of the suate,

‘.

'u:af’{f_wﬁ'iL:Na£ufalﬁline breadth.
S It is of Jnterest to know the decay prcduct cf the state FTC-}

- after an inf)nlte amount of tlme has Dassedc Obvicusiy these can consist

s Lonly of stable states, and hence one is-led to. cons¢der the mat % elements
<{30 ]u(oo 0) ‘ > With the i'nsertion of normaliza’tion constant s

B ';.Kf;;g; for the states <(3o “and use of Eqbﬂ (6 8) and (11.17), t.e s matriy

.
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':}‘eie56n§8jtake'theff0rm

61 waln))

B N2 N
SE S E+ > @ '

g €»(Z’j' Z+')_% </3

c+

{ra" CJ 7, > | "'% f (g,

Whenf-f' isfemall‘one may write approximately
Desy | 7 >l (11.58)

Kﬂ l7>l W : o

- é r

where

e [7,) . s |

-When the system H has only one excited state this. eouatlon may be used
'a‘ immedlately in an analy51s of the nrobablllty dlstrlbutlon of the final
states <(5 , s and the level width r is seen to have a direct

'ﬂj 1nterpretatlon as a llne breadth. When other ex01ted states are present,

3, however, the analySLS 1s not so eimple since the descrlptlon of 1moortant

- processes 1n which the ex01ted states themselves act as temoorary decay
“prod;ots is hldden in the numerator of (ll 58). The most clean cut - example
,*bof~th13 is prov1ded by the radlatlve decay of the hydrogen atom, for whlch
‘“_the analy31s is ea51ly carrled out in terms of dlagrams‘*

| Let the 1n1tial exc1ted state of the hydrogen atom be denoted |

by ' J >2.; and let the flnal decay product be a stable state ’J s pl, p?>

/‘;‘ in whlch ‘the atom’ is-in a ground state (denoted by J' ) and two real photons

et “are. present having momenta pl and pz' respectlvely (For simplicity we

b%f,ffﬁ-g,'omlt labels referrlng to the polarlzatlon of ‘the’ photons ) The most -
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important 1rreduC1b1e diagram leading to such flnal state, plctured in

RN Fig 18 involves an 1ntermed1ate state in which only one real photon is
»\;;nfﬂ”'; -
S present (Llnes respresentlng the external impressed electrostatic fleld

' of the proton have notlbeen included in the flgureg) Since the momentum of. -
}uihe'intermediaﬁe photon may be-either p;’ or .p2 the contributzon of ihis
! LA . ’ o Loigd .

e diagfamfto expression (11.56) is -

X U :." ;- . '»'”2 .‘ ’ .
A z3-) o <J [v (p2)S ("4 0,08, ()5, (B w0, + )

B e -+ _V+ (31)s+(s‘ + wl)vf(ﬂgz)s\»(E"fwﬁ w)] ] 4')
: ib,:;&ﬂr'r' A - : o S (11.59)
' o where the notation is obv1ousa E" is the energy of-the electron in the
state J s 1nclud1ng the electrodynamlc correction, W 1 and (92 are the
photon-energles, 22 is the electron normalization eonstant for the final
-“Cff;s state, 22+‘ is that for the 1n1t1al state, Z4 is the usual photon normalization
. constant, e is the bere electronlc ¢harge, V+ (p\ is the modified vertex
érgperstor for the_em1331oo of s photon of momentum 'p, and S+(m) is the
'Eviﬁodifiedielectron propagation.fﬁnction.
S In the present example, with an 1mpressed electrostat*c fleld the
classificatlon of electron states based on the bound state labels J possesses
':‘ none ‘of the relatlvistlc invarlance propertles of the momentum classification
used for free particle problems The-electron—photon coupllng 1s.therefore
 ip:;? not “Symmetric" in the sense explaine&‘in section 10, and the propagation
",  {‘ functlon S+(E) is here not dlagonal in the bound state labels. Eqg. (11.17)

”_v ~shows however, that the off—dlagonal elements are of higher order in the

‘ _electronlc charge.than the diagonal elements, and therefore one may to good
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£16.18 DIAGRAM FOR TWO-PHOTON DECAY

-FIG.19 DIAGRAM FOR RESONANCE SCATTERING .
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‘ approximatlon consider only the lather With the abscrption of the
"normalization constants into the defln;tlon of the renormalized charge,

. - - . L P *& 2 b “

" propagation functlon and vertex operator. and with the revlacement of the
_latter (as a second approx;matlon) by the simple urmodified vertes operatsr

. Vo*, expression (lln59) then takes the form .

362 1y '<'J" l Vo*(pQ) ] 0<e e > <0(‘” , Vg*‘(gl)\, Jsz,m . : (1160,
L Zr '

- iee
Etw, ~E." - T (BT rw,)

~
ph o

‘v

<J"\v'<pl> '”><o<"‘ C,"’cp?,)\d"ﬂ -

f CErwy -ES N - 2w ey j

-
E+w +0, - E, - 2o (L + OD]-f 032)

e SUEE . . )
the labels CK- referrlng to the intermediate elecuronic states.’ Sguaring

T the absolute value of thls expre531on and negIACqug the renormalized self-

'{energy function ‘ ECC+', one gets for the two-photon decay distributicn

gt

For’eétimatés\of the errors ihtroduced by this and subsequent approximatiors
“see - reference [90]

e , -1 N | .
Ve = Zl V and ec Z Z Z e where Z, 1is the renormalization

£ ]
constant for the free electron 45, and 22" are "approximately"
- ' .

equal to 22,



UCRL-2884

-219-

T v la™ @lvstep]st)

!
R A T

‘

<3"'V <31>l0<'”>< A <92)‘ 2

\‘.:} - ' '
a E+u>l E +§1f' h

<J"lvo (p2 )Io<"”> <°<""'V DY
E + UJ "_Elm _ % ir”“ '

+ .<~J;'| Vg*(m-}' MR CEIACIED

"E"+~ “"1 — g _ % ir-uu

(11,61)

In practice (e.g. ordlnary spectroscoplc work) the two photons are

l?g  ﬁw!_ never observad 31multaneously The quantity of primary. physical interest is
;xherefore

. A
o

Pz(J 5. Pll o4 ) Z P(Jf', Py p2 t ') (11.62)

:'which is the total probablllty ‘of - finding one of the photons in the state
pl’ no matter what state the other photon may be in. ThlS probability
distribution, when 1ntegrated over the solld angle :521 ; gives -immediately

the 1line structure generated by twoastép decay of thé excited state ' J'>
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It 18 of course does no’s include Lhe direct one- stev 1ine structure which s

K
e

}¢given”by

:;‘.‘Pl(J"f}fﬁil‘ ) ~ \<J lv‘) )| > \ : (11.6)
. , - m : | [ - (% . n) "[2+ }r.Q

In the most genera,l cases exm*ession (LL 61) may lead to very

compl:.cated llne strucnures,, We ohall con.snier only the simple standard

: -
' ‘»case .:m whlch the level widths’ T a,re all. very small comparad te vie

[ B n

RO 1eve1 separations E' - Ei UE - E" -and in which nore of the discrete

l;,nes 5 to which these separatlons gl\re rise, cverlap one another. Firsl cof

%

o : ;all* {mder these c1rcumstances the cross terms in the nroduct u*xier the
.'f;-suimnation in (11 61) are’ ea511y seen to glve a neghglble contbribution.

P : i

,[,'Since F is sma.ll the fac’oor out in front is &ssenti ally a delta function,

'_:-‘so that one. may set 03 E' - E - OO 1n theqe terms, which then becaome

i,y

| <J"'Vo*(}32) "VD<.m,> <o(m‘_v0f*(;el)l:r]:> <J‘ \';‘5(22) i ol /m‘) <»,.,l,'r‘ Vo\lfl)i J">

[wl _ (Eg“ Ei:!ﬁ) _ %irl'ﬁ][wl ~ (ENH - E"j _ % if""”}

T+ complex conjugate o . (11.64)

LO > O a.nd s:mce \Je>, and WJ"> are btound states with

.E‘ > E 5 ,the factors in the denomiﬂator of (_Ll 64) become smali only for

Jv"':_“;"_‘“\sta‘tes lo( "’> and IO(""> whlcn ars bound, with B' > E' and

I
"' > E : Both fac’bors cannot becore small Slmultaneoa'%lvi however, owln,

".'to the assumption that the discrefe llneb do not overlap; therefore (ll.m)
"V'L';{f»‘always has values negllgible co;npared to the paak values of the other terms

-' ‘”f'?;}to be discussed next
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o The terms in the product whlch involve only col refer to a
”physical situation 1n whlch ‘the unobserved photon of momentum Dy 15.
emitted first followed by direct decay of the resulting intermedlate
excxted state \ \Mﬂ’> ‘to the ground state. Here the-assumed non~over1ap

of the dlscrete llnes effectlvely reduces the double summation to a single

<

KJ 1%, @\o{'”ﬂ \<0< el

[UJ _ (Et|' -E )]2+ krntZ

;'.

) f7ff summation, nameLy .

R A

(11.65)

The delta function character of the factor 1n front in (11. 61), combined
with the fact that UJ > O ‘ leads to the requlrement UJl'< E' - E".
The summatlon in (11 65) therefore need be carried out only over bound

state€ \J'J'> »J ith E '< E"'<: B' The valldlty of the omission of the

cross terms 1n the product in (11 61) and of the off-diagonal terms in the

;u‘\wi. double snmmation expresses an important physical fact, namely that the

successive anlssion processes for the two photons are statlstlcally
independent of one anothero'

. There remaln the terms 1nvolv1ng LU only Here again the double
semmation reduces effectlvely to a 51ngle summatlon, but the 1ntegratlon
ovar .Lﬂé  shich occurs in (ll 62) is. now more complicated than before.
| f.The-smal}hess;of:the 1evel'w1dths, however, al;ows thellntegration to be

o R : L PR 11 enen ‘ '
. tlsimplified. . "First of all; V. (pz) will generally have negligible
TR “;'{‘.:\“.._i R ) . ) . ’ ’ o

f) "

This follows from the fact that the eleqmgpdynamlc vertex opérator :

V (p) vanishes as p. -—>-O

o
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i

vafiatioﬁ‘abfoss eééh peak of the'function (11.61) and may therefore be

;f”regarded as a constant (evaluated at the peak) in the ‘W, integration.

2

EER

4"?i?Secondly, if the summation is- restricted in advance to bound statées Jg o

"'<f E?, then negligible error is inﬁrodtcea if tho range of

7“ _{integrat1on is alféred from {0, 00 ) P oS ( 60 ;5 00 ) Hence; using tne ,

?integral ident1ty |

od L L o ‘
oo ".Y_(xx - '3)2+ 52] [(X - ’b)_z + 'd2J Treed (g )2 4 (o o+ a)?
BT S - (11.66)

« i

1. for photons; one géts_f

e

J -:1_-'j“-;;>2<(J"-»;;ﬁl.]J";)/ ~ ec“.-_l*-g-”i ) -
R U RS s o A r’f" . . I ¢ ' I
L _'."." .'_. ) s '..a‘ Av C : 7‘ E < E 4»E . o '

iV

_ Eu)2

\;' r"“ ’<J'”|V <}31))J>| G

‘,.lgrm ) [0) ’_’ (E _‘Ecn)] 2+ é(r +rv.c)

/I<Jtv*<<»-«=”-mm\ DI

KJ lv (pl)\J'”H (&' —E”') ’_
[w A E")] 3T ”2.

/1<J“'lv (@ - f"mi ]2 ]

The p01ﬁt to Wthh one may now call attention is the well known fact that

the breadth of an emission line resulting from an atomic transiticn between

two exclted states (e. 2 \Ji> - am IJﬁ’t ) is equal to the sum ([ N
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‘Lof the widths of the ind1V1dUa1 levela. In fact' the simpler result for the
transition Trom an ex01ted state to a bround state may be resarded’as a special

'1fcase, in which bhe width of the lower level vanishes. The sum in question is

w,lknown as the natural line breadth " For. atomic systems the eXperimental

barrangement is usually ‘such that the natural line breadth is completely non-

E measurable because of the effects of colllslon and Dopoler broadenlng. For
"nuclear transitions, however, the natural line breadth can be quite significant,
;(and the equations written above may have useful appricability, subject to the

‘-Arestrictive assumptions mentioned at the outset The modlfication of these
'sequations for cases in which the emltted partlcles are other than photons is

| The consistency of ‘the approximations which have been made in the

jﬁabove equations can be readily checked One needs-for this purpose an

;Lapproximate expresslon for the level w1dths,- Eq. (11.39) may serve as a

Fbasis for discussion.. Uhfortunately thiS'eouation is not easily written in -

: a closed form involving renormalized quantlties only. Therefore one must

'ﬂjfall back on a power series expansion in the renormalized electronic charge

ééf and show that all divergences cancel to any given order° We make no

‘_;attempt to carry out this program here, but rest content with the lowest

2

: 2 L
’order resulx. Remembering that 2" =1 -‘O(e ) and e° = e, + O(e ), we

ffind

o e D e K]

M-

r'(J" \ J ) o " o (11.68)

. E <'E
where’

T s arre, A(L/2m) (8 E")'Zfln(J"}vo* s‘)n) |3 ]?
o , (11.69)
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If one sets -

rEt Y

0  for E' 2 EB' , (11.70)

then the instruétipns "Br < gt may be omitted in (11.68).
If one remioves the angular dependence of the functions P1(J", p |J")

3nd Po(d', p|Jd') by defining
P, ] 0" - (/27 )> cJF{)/th(J", wQ | J')d%{}, (11.71)

i n | 1 .'n' ¢ _
4 ) Pn(J 3 w } J )dw : . Zp Pn(J 9 M’i ‘ J ) s n - 1’ < o 00 3
| B (11.72)

then one may write

G wl i) o1 TE Y
. ) N - [UJ- (El* _ E")]2 + k r. 12 (11.73)

’  fP2O"mp | d'Y o L """ g
. - T  2qr v r: rdn

rterrt ' r:u
—— , - § -
[w_ (B'- EIH)] 2 + k(r + ") [(A)w(E'H-. E")]2+ kl—-m.?

p
(11.74)

Similarly, the line-structure functions for decay processes involving thyecé

or more steps are given, as one may easily show, by

. PB(J",UJI J') ,NV _—1-- | ZU‘,NN ]‘(LJ"]J“”)T'(J""\J"')f_(J'" ‘ J
- B ) N '

2T r’ r-m r-lm
‘T. o r'-»lr'“ o - - - g
L[OJ‘- (Ei_ Elll )]2+ i(r’ +rm.)2 [U-)— (Em - E"” )] 2+ i(r"""‘r"”)z
| - [

" T e I | ()
J
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- and ‘so oi‘x‘.': ~Since'a permitation of the 1 = 1 unobse'rv‘ed photons does not

change the flnal state one must. remember to deflne ‘

. _1 : -
:j ; P1| 7' - [(“ ; 1)] szmp » P pz"’p"‘J )
coLE L ] : . (11 76)

IR - . ) N . S
. B =, J i . - . . . —

* The consistency of the various approxma.tions may now be verified by
invoking the conditlon that \J } being an unstable state , must have unit
probability for decaying. This probability may be expressed however , as the

' sum of the probabilities for all the various single and multi-step decay

. processes.. Takmg into .account photon indistinguishability one should there’fore

haVe
! '
Z Z /P (", w\ 3 )duo

| rgJ"\’Jf) T rM g e )
. 'r' + : r—l .rlll ’

‘ XU -_(J"'J“")r(J"”lJ”')r‘(J”'lJ) o

" + '— r(u r-ml

e o - ) | (11.77)

| wﬁere the summation : 2_" is csrr‘ied out only over the stable bound states
\J > : 'Equa.tion (11.77) indeed ;holds actlz as may be proved simply by
inductlon from Eq (11. 68) together with use of the fact thst rEMlet'
,’ vanishes for all lJ""} if ‘J' ' '>' is-a stable state.

Ty If we return now ‘to the exact equation (11656) we appear, at first

R s:.ght, to have been led to a contradiction. For what we seem to be computing

5

T in (ll 77) is the square of the absolute value of <ﬁ ] 7 > -summed

over all. final states I{S > But since the vectors l/& > form a

;
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;‘%', o .’bbmplétglset;ye must have, in virtue of the renormalization (11.54),
L o mn 1 ym nl2 |
HRTRIERANE jE <p_ l%} - \Z+\- . (11.78)

“ Thé d;sé?epanéy lies in the sumation over intermediaté and high énergy rhotons.
" It is ﬁqﬁbé'remembered that the approximate f;;;s (11.635, (11.67), (11.73),
: ; (11;74),.(11,75),_etc. fpr the line—structure functions are valid only in the
'Vipiﬂitﬁ of the peaks. Thevhighnenergy tails as well as the "valleys" of these
. fﬁpctiéns ére incorrecﬁly given bj the approximate'forms owiné 1o the neglect
of  1) §he self-energy fﬁnctions which appear in the denominators of Eq. (11.60),
l2)-t§;_cross terms, and 373the éummations over the centinuum electronic levels
1. .1.(as\we11'as bouhd'levgls) having energy greater thén‘E'b To be sure, even
;: the;trﬁe values of theée‘functioﬁ;”{; the tail and valley regions are
:-'hégligibie compared to the peak values, but their deviation from the values
Jéf the'épproximate formulae is siénificant when integrations are performed
_ énﬁ 183;1n féct, Just sufficiént'to account for the discrepancy betﬁeen
B Eqs. (11.77) and (11.78). |
| . It is evident that the "épproximate" expressions have a closer relatica’
- to;pﬁyéical reality than the exact ones. Neglect of the self-energy functicns,
' ééﬁtiﬁgum_ieVels, etc. must corfespond in some sense to ignoring the "clothing

' pfoqesé"‘of the bare electron, which is unobservable anyway.

¥ .

'~gifhérs-matrix:
'...5;-f;f J';‘ﬁ In Sec'. 10 & éboﬁbd'hawVa renormalized S-matrix could be defined
. 1‘~ai. -Wiﬁbig £hé context éf a‘simpie field theory with symmetric coupling. We now
| "'lfmuét dqiyhis for ‘the géneral case. Egs. (7.23) and (7.25)’provide a

Ldbnvenienivstarting'point, if rewritten ih the forms
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.~‘<€E«‘Er sing ("] .7 = 228" Be0) (11.79)
E"'E‘ <ﬁ°

' Here only the s‘oable states “3 > are con51dered and the symbol "Sirg"

)@ > T i€ (2 -I)S(Fo"’(&o') 0 (11.30)

" -‘_'has been mserted in (11. 79) so as to generallze Eq. (7. 23) which was valid

'; only for dlscrete-spectmm (bound state) theory., One will recall that the
"symbol "Sing" separates out that part of a given expression which is
‘indep'end'eht; ’o.t; the aimensions L of the normaiizing box. Thus for example,
‘ : 1f the free states of the smple system described by Fig. 17 are involved
- then smg@ " lp*> vanishes except when B = po since <po'v | pa >
15r‘oﬂ1ordetr ‘h%‘“ for p # ﬁo .o (Ir*this example, of course, 2Z' = 1
for the free stat,es ) If stable bound states (if any) are involved then
i <ﬁo } ﬂ*> has no nonsingular part, and the diagonal character of
| , SE"E' < p o \ ﬂ*) depends on the nonremova.ble nature of ‘any degeneracy
 which" persists as the perturbation 1s sw:.tched on, For complex systems
i involving interacting fields the singular part of CSE"E' <@o ‘ By >
cen _always., .jua-t— ae i.n the example» of the preceoing section, be correlated
' pictorially'with diagrams in which the individuol resl particles involved
uhdefgo self-energy interactions. with virtual quanta ‘out do not interact
X E yvith’ each‘ oﬁher,. Agaio the ciiagonai character of this singular part depends
. on. the ‘noﬁremonbility of any persistent degeneraoy.
In the preceding section we have seen that the correct definition
- of the rénormalized S-matrix depends on a careful evaluation of the
nde‘nivative_term“ in Eq, (7.40). Only the singular part of this term
'contri‘butes in the 1imit €—-0 and therefore all that ..{s needed is a

straight-forward generalization of Eq. (10.89), namely

Sgrg: St (@7 2 Ru(s)/2E: \p) = (@ - DS, - (1.81)
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< . This equation, in fact, follows from Eq. (10.81) which mey be writ

. maﬁr“ix fbrm |

<po"\ @.-&-(E) | Bo' >
~ o 1//4 HE 1w

R il ‘ 6 ‘

= (E - B+ 1€)(E - E'+ ie€) < = ><Ez ﬁo £ - {E - B4

. E e s e
'TDifféréntiation with respect to E gives [32]

“‘ » “ - =F2'TT'18(E" - E') <p n l R:t:. I @0 >1

BREV/BE ! B, >

E"E"<f3o

m i U | .
. | : A (E' =E")E" -E"){ .
‘ :»-gE'";E'- : L=~ (E' - B & i€')2 . <@o" [6 m><{ I mo?

the 51ngu1ar part of whlch leads, via (11. 79), to bo. (ll 81;

Rememberlng that

| = sl

L r'epeatihg the derlvatiqn of Ea. (7.AO), and using Eas. (11.80,

1

o Q renormallzed S~matr1x is given by L32]

521

<Po" Po> D

I (z"z') 5 {[1 * 21@:‘1(—_*: ieF —16)(2' - 1)] §( B,": FO')

en in uhf

W

(11.84)

81) and the .

' ide‘rititﬁ- : 5( ﬁo‘h" “{50')8(*5"'- E’) = (e )“3-5( PO", [3,0'), cne finds Lhat the
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- o . | " : . " | o .
= S(pspd) F 1 <po ]ﬁc:: (30> - | - (11.85)

<{3 \»ct (3 > = “(Z", Z) R ! (5;> s (1'1086) |

- ‘Rg;-_-vbeing,, as one will recall, the "remainder” of (R , after the singular

where

’ part has been subtracted ”I.i\.c & ies the renormalized transition operater.

: Resonance scattering o

‘. We shall i1lustrate the use of Eq (11.86) with the nyurogen atorw

’ +

'previousl,y conmdered Suppose the unexcited atvam scatters a photon of

N '_'mcmentum Py SO t.hat the system undergoes a tranmtion from a state J'.,p.
S 1 Sl

L ‘.to a stat.e \J", p2> s both ' )J"} nd ]J"> be;ng ground states
(possibly ide_ntical) of the atom, The irreducitle s.catteri-ng diagram which

" 'Igi’veé’the& principal contribution to this process is pictured in Fig. 19. and

:° one may write

- »_?<.J"'"»{,§2‘3c;\?‘s P1)

I A EE W, - B -0 Py 2 2 5% (o | 9,2 (a8, (81 0y, (50|97

El T

o z 2'n'5 (;E;'-“‘,“’z e _*‘ét)ecz ZW<"" v @l ><“ IRARIEN

El4 Wy ~E, - 2

C+ @ +w‘.)

(11.87)
‘We shall cons:Lder only photons having energies less lhan that r-eQuired .
tfd 1onize the atome If accuracy is desired only near the resonance peaks the
‘ summation in Eq. (ll 87) need then be carried out only cver the bound atomiz
_ S_tates - 1J”‘> -; Moreover, ‘when the square of the absolute value of this

.eXpre'Ssion-' is taken, the resulting double summaticn may be reduced te a smgle‘v
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Tt

" summation in the familiar manner, and; using Eq. {8.12), cne may write ths

, transition rate as

RQ", 9y | Jv, 1)

"

~

Lw - E'" g )1 SPAPS

~ 20 5(Eﬂ+u$2 1)% Z” KJ" v (MZ)‘J >} ““v (pyJ \J \{

‘v

PN (11.88)
from which the angular scattering cross section may immediately be ontalined.

- Expression (11.88) shows the well known phenomencn of resonance scatteiing in

which the cross section becomes anomalously large when the initial photon

o energy wl has a value in the neighborhood of one of the level separstions

B R . \.
oo raes v
E T - E .

v.»g., . . . . . . ) .
- -As a check on the consistency cf our approximations in the present caze

. we. may make use of the probability conservation theorem expressed by Eg. (8.33).

'lIn*order‘to apply this thecrem, however, we need matrix elements of the

- transition operator which descrite processes in which more than one photon .is

‘present in the final state., Thus we compute

o : . # : :.
<J"9 p29 p3‘m¢+ 's pl> RS (En+ ('02+ UJ3 - E ’wl)ej(zz 2a B
| ®,
+* 1 .
FT(p)S, B+ -7, (p,)s, (B + uol)v+(51>] ED
_ | | - ' ‘ 'V—ﬂ|HﬂH/ |
: ~ zqrs(E"-f—wz-i—w'j - Et --C»Jl)ec3 2__
i | #* | # ! A
c g ) e v () L) L Vo) Vo) ¥

‘ [E,,‘,w-__w - E, '".', Ec, “”(E*+U31~U3 ij{E fo - ﬁ+m "EQ;"(E"““‘JI}‘X

(11.89)

’
2

;%
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B '.‘On the other hand from Eq (11 87),

_ 2Im<J ', pl \R;*-I " pl> ~ Z j""' '<Jl" ‘ v (B\l)’ J'> ,

UCRL-2884
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U e . : : : . i
: A'."":*”‘R)(ﬁf"':-p’g,-'pg‘\‘.lj‘»' bl)’ = _,z'n' S(E" + w + w3 “E' - W )ec6 _;_

|<J" v (33)1Jlm> l } ] } v, (Pz)‘ :uX’ ‘<J“’f v (IE )l J!>J +
[(E"*‘ OO - w ENH ) +. %rle] [(E‘ + wl-_ Em). + 3 r.;”gJ -

(11.90)

"‘aiad so om.. g Hére the notation 23 indicat.es ﬁhat the same expression is to

be repéated but mth the two final photons 1nt.erchanged

Eq (8 33) may, for the one-lnltial—ohoton case, be written in the form

‘v

R(J-f”~?2t"1"}.31)+%zp RO R By 9% ) + J
T . ' m2’4£3_ ' K _ ‘

) r(J515“,y‘_r ;{:’m r(yylﬁmf)iﬁJW'lJrg) 4o

X e 1<J"'1Vﬁ)t 7
| [w T BN

S g ‘ (o)

.-,__'-'--'.:’fwhere Z denotes a summatlon only over the stable bound states ] J"> .

e

1 - (Bt - Et)],2+ érm'é

(11.92)

S s

’The con51stency 1s now ev1dent smce, from Eq (11 77), the mght ~-hand qldes

of Eqé (ll 93 92) are equal Conservatlon of probability may be similarly
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. verified for the mAny-lnitial~phothn ‘cases,
The phenomenon of reQQnance scattering may alsc occur foi simple
| systems Gf the type described by Fig. 17. Here there is no renormalizaticn

problem}and using‘Eq,_(7,3), one may write directly
IRC NPT ST rRT e

<§ "I‘Hl\J ><J lG+(E")lJ >< ]th")
<‘S"J\B\J ><J |81, ﬁ e

B -ES - T (EY)

and;, since one has 2 ~ 1 4if B is properly chesen., the transition ralte
0 + = & P :

~in the neighborhood.of the resonance peak—is given.by

| . 3(30”’ l So") ‘,'3 ?271'.5 (E"' _ E”.)v \<'SQ'"]>B‘ JC'> ‘L l(Jc‘ }B‘ SON>'\‘2
- : ’ (E" - E‘)2+€;r'2

(11.94,
The-probability‘chsérvatiOn theorem has here the form
Y 4 " " "y ‘v Qz
—2m (3, IRJL > . RO ) S, (11.9%)
‘_and the consistency of the approximat1ons made in Egs. (11.93) and (11.94)

‘"follows from the equations

E | _fz bn'<32{l3+;\30” ~ l<JOi ]? \ SQHgg ‘ ) ' (11.96)
ST T et
x | r‘ | ,.’;‘, e ZWg(E“' ) Ei) i <TJI".‘B | JO£> \ 2. o (11.97)

The excitation Process,
'\_Tbe.S-matrix.having been_properly.défined,.we are now in a positicn

to:give an.écceptable mathematical treatment of the excitation of a given
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‘unstable state by means of incidenr pawtic*esa We éhali'réstric+’the discussion

"- '.4x'

'ilz?to the COntext of nydrogen-atom~p1us=~rad;at1rn9 56 £hat the incident particies

t

alwi;l be photonsg but the conclus¢ons will be qu*te general,

Suppose the atom iq immersed id aq ;sotropic "baoh" of nearlv

x'-‘lmonochromatic radiatienﬂ The 1ndiwidual photoxs :onst:tuthg the bath will

”! 1be'scat§eped'by thevatom and‘produce other pnotons having a distribution given

:ag'fﬁy _i"““?*

| "f “ D-" . -- - R " X ;Jg -w - . w . ( lo )
Lo = W RS ey, s

‘ _,'D'(J:.','-,';?,gs 333) E | z - R(I"; Py Py 'IJ"’,,?i) (W), ete.,

S P! (11.99)

< where I(UJ) is a peaked functicn WhLvh cnaracterizes the adiaticn bath.

‘vALet us«adsume that I(ua), which ‘may be ﬂs 2d pne excitation functicn, 1) is

"v;peaked around the energy Value W = E"’ j'E'} "2) does not sensibly overlap

‘iﬁenergy vaers corresponding to any of the other level separations, and 3) has

":“a width larger than tne Level width T s0 that it i3 essentially constant

Cin the range E“' “E - r'" o B B4 O | Then, inserting

‘ﬁ Eqsb (11 88) and (11 90) into Egs. (il. 98 9%); and u51ng Bis. (11.61) and

e f (11 63), We easily obtain

"D_('J'?_‘,.ﬁ;‘zz_) S Pl(J.", py | Jire)C(gere | gr) T(Be 07 - BY) (10.100)

| ";_’-\"_'D(lqﬂ,-_pz';ﬁ')'".r,a P_(J", p,z;,. 3 } J'“)T’_(J“" JOI(E ' - E') , ete., (10,301)
;these formulae being va*id in tne peak "egian)o

_” '*The distribution of. scatne”ed pﬁafon is seen to be direcﬁly
.»propcrtional to the simple decay.dist isution which we have alfeady calculated,

: The_physical 1nterpretatlon is cbvious. The radiation bath excites the atom
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::ﬂffom ﬁﬁe'ground'6£ate : \J‘}» to’the dnstable state \J'TT> s and then the

atom undergoes a subsequent spontaneous decay The "scattering" is essentially

| e:incoherent, at least in the peak regions, since the emlssion process,

. ,described by the P—functions, ‘is statlstlcally independent of t?e absorntwsn
;, _process, described by the factors T‘(J"’) JH IE' - "), i

| 7 When one speaks of a system's being brought into an exscitad state
 ene'i§_speaking,weeco;ding to eustomary terminology, about a state which is
‘»welyﬂdefineﬁzin itself’and'independent of the precise details of the excitation
- ﬁraéeséLj It iS‘lMpoftant'to:note, therefore; that the energy spread iﬁ the
radiation bath must be greater than T 1in order that the bath be a true

: excitant .For if'the width of I(UJ) becomes less than [™" then, because

; ‘ ‘energy is conserved under a collision, the distributlon of scattered photons

.. will begin to depend on the shape of I(w) instead of fOllOWlnE the natural

'F‘line shape, which simply means that the scattering w:ll no longer be incoherent .
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12, PROBLEMS INVOLVING SEVERAL PERTURBATIONS

"Introduction

In many problema of great pra ctical importance it is convenient to
split a ;otal,perturbation into several parts which may be considered

separately.or in various combinations. This circumstance gives rise to a

* . ‘number of,fufther natural developments of the operator formalism, to which we

now turn our attention,

_ The total Hamiltonian operator will be written in the form

-~

o= H 4+ Zi.ﬂi- . (12.1)

:'the operators"Hi referring to the separate interaetions which make up the

total perturbation, The mnltipiicity of these interactions leads necessarily
to a certaln complexlty of notation. We shall wish to construct complete

sets of eigenvectors based at one moment on one subset of the coperators H,,

: Hi and at another moment on another subset. These various eigen or basis

. 1
Vectors will generally be denoted by symbols of the form 04 13k, ‘> 5
v o

the indices 0, i9 j, Kooo - indlcating the operators Hg, ng HJ, Hkuo,

'1nc1uded in the subset in question, The operator Hy, usually representing

the kinetic energy (or simply the remainder after all explicit interactions

‘havé been sw;téhed'off), will be common to all subsets of interest., If

‘ecetteriﬁg is inﬁolved it will be neceesary to include == signs as subscripts

in order to distlnguish between advanced and retarded wave vectors. When

. the subset includes all the Hi then the-indices will be omitted, and the

basis vectors, being then eigenvectors of "H; will be written |d'> or
‘O(t'> as-usual Under special circumstances (e.g, for the system
described in Figs. 1 to 5 of section 3, which will be analyzed in detail in

the present sectlon) the 'a‘ may be replaced by combinations of the symbols
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he

-~ 0O ) or U(D. 22 ). We¢ oow

other subset by B. I‘ A is. regarded as the Munperturbed" Hamilieniar and

-~

;_.___ : : AAbT -iB{EM . 1) -dAt- ‘

SRR lA] k", t!) = e o e . (12,23
Hhen a degree of detail is desired whlch requires A and B to be replaced
expllcitly by their corresponding sams, a siight abbreviation can be achieved
'by ;&gting_Only the pertinent indices on the left side of Eq. (12.2). e

SCERE RS '
* shall adopt su¢h a convention., Moreover, in order Lo conform to previous
S : :

'Gheége,fekplicit_feference to A and B wiil be emitted entirely in the
' B - H.
In‘accordanCe with these notational developmepts we shaT replace

'symbols such as U(t", t'), U(o,=: ), Re(E), Ry 'S, etc., which have beer

duced 1n previous sectlons fcr the varlouq basic operaters, respesiively
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vy U], ), TlB12) (07 w), Ra[B1aA] (B), B.DBIA), s[B]4],
" ete, “Ih“ofdor to avoid excessive clumsiness, however, the operator

ﬁ[BI A]'(O' =F'oo)., beeéuse of its frequent‘ occurrence, will be abbrevisted by

A

[Bl K] U [8] a) (0 =FOO) . (i2.3)

f.The combination of perturbations.
From Eq. (12 2) cne obtains the combination law

iCt ~iBt iBt -iAt
e e e e

',,'F.[‘c I' ﬁ]'.(o‘;t)'ff [81a]o, ¢)

it

i

Ulclalo, &) , (12.4)

. fof finite t. The Question immediately arises as to whether this law
_remains valid when 't becomes infinite. More precisely, can one verify the

-~ -

- equation ‘

. _'E-*[d\ B]-E*[B\ A] o U [c\ A] | (12.5)

' the operators being défined by the standard linut:mg procedure of Eq. (5.22)?

71;4: J ‘In order to show that Eq. (12.5) is valid we may simply verify that

j.both sides of'the equatlon glve the same result when applied to any member

of a complete set of eigenvectors of A. We shall beéin by considering only
~.free-state eigenVectors of A which we may dpnofe by YI > Moreover,

";we shall assume that A B, C have identical spectra in the continuous range
v:and that the normalization constants involved in the passage from the eigen-
IVectors of one to the eigenve"tors ¢f another are ail equal to unity. Then,
‘»using Eq° (6 1) and remembering that the only role played by € , in the

'limit €F+> 0, is that of determin;ng integration contours9 we may write"
¥

' For comments on the analytical theory behind the passage frem the first to
" the second line of Eq. (12.6) see the next section,
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Wy - ‘ifc;> N PRSPURTRT I

€> 0

1lim

. t
= . E-C E-A)|T
E_’E,tic)( T E-nly,)
| im -1 1im -1 e !
- - E-C) (E-B E-B) (E-4A |5,
" BB s 10 ) ) sopatoE a A>
’( '. v N ‘- . ' _ _ : .
R L IR N RS I A I R ALIPYRA
- (12.6)

C .’ St : § :
where \T : > and. )S > are free-state eigenvectors of B and 0O
R R :F 3 Cx
respectively, andb-E is the corresponding common eigenvalue of A, B and C.
. Eq. (12 5) is thus proved for the free utatea

It is to be noted that Eq. (12.6) may te written in the form

'-\\501:,> z _ﬁ:['c ) B:] IS‘B;> - | (12.7)

'fThe important point here is that the *x signs must go together. This means,
,afor example, that in order tc ﬂonstruct the retarded {advanced) wave solutions
of a-scattering'problem one must use "unperturbed" solutions which contain
retarded {advanced) waves only, if any.
Eqs. (12.6,. 7) may be generalized so as to be valid for btound and
mixed states as well as free, and for interacting fields as well as for
simpler systems, if level shifts are compensated for by a scheme like that
’Jof,Eqs.i(é.h:# 6) and if appropriate normalization ccnstants are inserted.

e S ' 3
The resulting geperalization of Eq. (12.5) is obviously

it may be noted tﬁat'Eq. (12.5) actually has perfectly general validity
as it stands, although for states in which level shifts are involved it
reduces to the triviality 0 =0 .
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’uc;i;[c B] uct[B‘A] | _ﬁcf[c ’A] o ‘ (1208)

'i;We shall in the following paragraphs maxe ireeuent use of the generalisz etiens
vfof qub (12 6 7) for mixed states. Hoaever, the simple examples we shaLI.use
for illustrative purposes will stnl be eharawerized by vanie}*mg level
\ehifts and unit normalization constants (CObh properties to e verified in

"“eac.h 1ndiVidual case, of course) Therefore we shall simply ignorse level

' shifts and nor'mallzation constants 5 leaving it to t,he reader tc inseﬁ; them

i.nto the mathematical scheme 1f the nature of the partn cular applicaticn of
,a form‘u,x.a in which he is interest ted demands if
The physical content of Eq (12 5) (or qu (12 8)) is obvious. To

o 'obt.ain the eff‘ect of a total perturbat 0"1, one may elt}“ er switch it on all

T a.t once or else smtch it. piecemeels one part after anotiner The order of

o .'switching, moreover, is immaterial, -Similarly, a switchaeff procesc can take
f‘_'place either in a- single step or in any number of pennutabee smaller steps.,
*.'l’he~'comple e symmetry between e wn,-ehvon “and “":-:w:tlt.,hnoff-’ is emphasized by ‘
the equation - ‘ i :
_ :[C\B] ﬁ B:-. [B‘C]*- , | (12.9)

or more generally . Lo : : .

- - | \ —
q‘t‘-t[Ct B] = Z l/gftl > <ﬁ5¢: ‘ = ’uchB\ C
e o . (12.10)
: whe.r"’e‘.‘?hhe'-’?- \ ﬁB ;'>.. are all the veigerxvectore of B which have counter-

. parts among the eigenvectore of C, and vice verss,

Thie 1s strictg.x tme only w‘th respeﬂt to states whish have counterparts

at. eech step of the swﬁ:ehmg proc=ss
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’ Scattering bir two petentlals.

Simple scattering theory provides the most obvious illustration cf

v

. hk-:iu

the utility of the stepwise breakup of the "swxuch- n" and switch~off"
: processes. Consider~the scattering of & particle bty a simple potentisl

" which is expressible as the sun of two parts H, &:d H, S0 that
. - R I * I . 7o 1.‘
H - Ho+ Hl+ H2 . ‘ ‘ {1z.11)

Eqs. (12 5) and (12 9) then aliow the scatterino operator <o be written in

the form v
f-‘;,s*l = Tlkoo, 0)3(0, Foo) " = T.[o]o; 1;'__2’__\.'17,‘ [o, 1, 2]0]
- _ﬁ;LO '1,'o,i 1]6},[0, 1|0, 1, 2] T.[o0, 1, 2]0c, 1] Lo, 1] o |
- :U::[‘O ]-o,_ 1] s*‘l[o, 1, 2o, 1], U, [o, 1)0]
: 'U;[OIO, 1]{11:1}1*[0 1,2} o0, 1]} U.0c, 1)0]
- t3“[0, 1} 01;: iU,F[o 0, 1]R,[0, 1, 2}0, 2] T, Lo 110
‘ o (12.12)
Slnce st 1:111 and -’ f_o 1]0] 1R fc 1)0] . one
| therefore gete
| ,%t= R, [o 1%0]4. U;_[O‘O 1] [o 1, 2o, J.] o 1lo
| '£1" 13)

- Ey. (12 13) finds its chief application whern the operator H -k Hy

is sufflciently simple S0 that its eigenvactors are elthe” exaclly or wery

aecurately known. -Introducing an obvious notatlion for the various free-

state eigenvectors, and remembering Eqs. (7.1) and (7.45), one may wrize
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‘Hll 3'o:w.> <3‘0“$ lH [ "1:<E )H] 1!501*'> .

(12.14)

&
I
H

deSbW1bes the COulcmb fleld of a nucleub and

Soie)

It 1s 1mportant to ﬂCt@ that funculons

-The

‘12714) The Vector ,X > dadcribes a state of ocne

i
while the vector ty > denwtas a oneaelectron,

,1rst term in (12 lu) ev;dently makes no contribution
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-

by nucleon-nucleon collision, 'This,; e’xamplé :is quite

'ns.are.

.‘u-,

can be disposed of quickly It reprééents 'a; 'simple scattering

Jc.aken as H + Hl ra“bher t.han simply H, 'l‘he tra’nsition

‘ O(ol“_>' to the state lO( > is given by

'.vzqrg(En . E') <o(01 \Hz [1 - GOlt(E ) HZ] ((XOl

B annand

(12.15)

"lH [l _ GOIt(E )H] 113‘ ° BCH> ,

(12.16)
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One can now elther form wave packets and then dﬂfferen+1at@ the

N

(200

l:units ‘t“ *a—too > t" -—a— F 00 in Eq (1./~ 1’7), via the corwentlon (56 223,

e A T C o

- and‘obt‘aln the transitlon rate formally mth the use, of tbe T-symbol. As

both methods have been shown in sectlon 8 to lead to the same result, we -

v
-ak o .

( 5 22) can be applied mthout dlf’ficulty The nomalization conzbant - Z°%,

NE
Jot: 7|

,(o(o"luq:[o]o 1, 2] [0, 1, 9{0

] [01.4)0

0l

hn

funct."'on of partlcle A 1s a; plane wave but that of partlvle B has been

by the scatterlng effect of the poten’c,lal Hl" . An -alt-erna;-tive

it » Lon
‘KA’_. 3Bc=}=~>°

0 one obtains immediately the folliowing

e

S ER ORI LAY R P
2,“ 5 (E" Z E') ‘<0( Hz'; 1 - G01+(E°)H2] . l'o(OJ-? o
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(12 20)

"”éw_afuncti'n' or'the subsystem BC . but also of its advanced. free wave

e

= + 1, 'sincel the pertinent matrix elements are .
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] ce) and H is ‘t-Yie eiectronwpho’con c':ouplirigb Very accuralte

For the ana:.ysm of t.he process plctured in Flg L we agzain return to

:Lples.W The transitlon prebablllt;y of interest ig

',.“_4 e . . =

9 oo |

U[o 1, 2)0 2](t", o)u[o 1, 2lo 1)(0,1&)
S (H, -\—H)t N E
S Jo

»

| 2

I

i

‘SA 5 BC is the mixed state with particle B

,

I\ST ’ JR > is a mirxed state with particles

<0(02“IU;[O 2o, 1‘2]11*):0 1, 2\ i]

! Lo | \O(O‘ >I
el e
Jay = [rosomllag’y - e
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(12,,25)

—

E" "? Eq) <0(02 \D(O" > o.

(H + Hy). Using

P

' “t'Hl LG@(E")"' G:zv(.E'). - (E" - E )Gy (E")G (B )] Hz}?/x,ﬁ

]{H2+ Hl-i— (E“ - E‘)

.
'

+ H [Gt(}'ﬂ )+ G (E")+(E",~_E')¢ (E")Gy (B! )] IO(

i '_4_»(E") 2 (B )ﬁ.é"‘.o‘(_;of

B
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L -2kg-

~.

2..‘)‘{1'11 + Hz +'. Hl [G*(E")4. Gd:{'E‘)]Hz} \D(Qj. {}’

.

S

1/

lr;s ') |

HyJ1- Gol+(E’)H2]

o . A‘,_ (12.28b)
[l‘Hl 02+ (E )] HztrA’JBC>|
. (12.28¢)

Y
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‘T" JR , or equlvaleqtly by 51mply changing

he simple examples above.\ In practice, howcver, such
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BC- \Hz [.1.” Goa8' 083 | 7 [Sa's 3 ) |
oo (12.292)

PN

r T s IR :>‘ :

12,29b)

ic ured in Figso 2 to ho The discussion of the precedlng paragraphs has

'U n{\

”cussed?attention on one or another of these channels at a tlme, but the
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b . BN : PS—

z\o] ]3‘ , 3‘ > | (12.30)
;_:4‘”0 1] \3'4\ . JBC > | ' | (12.31)

-2;|o z] ’J’ ' > = ' .(12032)

’

‘1s is always possibleo Thu-s, in gene'f'al,

(12.33)

11,2, 3... . (12.34)

lJ > . s;ich as t‘hat-.

-‘ig 5 then t.he.._ lD( > do not. form a complete set. »Orlze must
(12.35)

i .. . . . +
PR - R
T . N o s
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T (12.37)

Z \0(1¢.> <\SA’V B) e

z IO(Zt ><3A 3 \ - (12.39)
= Z }0(3t> <3T -2, \._ \ B (12.40)

B B

peratdrs fcr more complicated systems. The super S-matrix for the

v

(12.41)

(12042)

We note

(12.43)

(12.44)
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~t

(12.46)

(12.47)

(12.48)

»(12,A9)

Instead' a

ot feasible to compute the super S«matm.x dlrectlv.

A theory of this type known as the

i

.s rucbure, level w1dths and lifetlmes,_ It is natural to.plcture

.
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If the decay rate is slow enough the decay process may be

Liirec ly:observad Many of. the level widths, however, may be large enough so

The existence of the

e

that-the dacay process is complatexy unobservableo

-

‘ T onance‘phenomena is obvious.r One places‘around the'comnound’nucleus a

"\‘,0‘! [

fic,it ous potential barrier, the removal of which is regarded as an additional

(12.50)
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r,.. are small compared to the
Lhén the Xa1,' may be chosen as energy independent’, and

~w 3

¢

lx‘b'r\ ‘Xaw\
(E -E,) + J:T‘

l \;*, A.V'z"_izlj.};.lfi;aa',
(E -Eq)"i‘kr'r

(12.52)

v #*
,’ationfof“probability (at least approx1mately) is automatlc,

;.rr%.

“‘~never mentioned as. such belng replacad simply by a hyper-

’..

a‘ r;_

__t‘ the tran51t10n matrn.x° The reactance matrix is (apart from

)ple_fact Ts)1just the "derlvative matrix" of ngner and. Eisenbud,

va av
7 E - ET

.
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.actuélly be estlmated on the ba51s of know’edg f nuclear structure, It

\., ERT.

9 £ e

";uarry us too far af‘eld howeve , to gO'into the details of such

r

calculationsb‘ Even when the »X ' cannot-be computed Eq. {12.50} is gaite

o

'seful in. the correlatlon of ‘theory with exper1ment, If obvicus factors
!?vu. "

e

- invvlvin densrules of states are correutl a“ﬁounted-foru values for these
g Yy 3 [

It twnq out tbat Eq (12°SO)>ha5,a wide range of

Altnough for the problems Just consiaeref Fhe multipliicity of varicus

H:  in which exact

i
expressiops fcr the transition ampllnudes are’ uﬁefu¢oi These are the probiems

' ln which a 51ngle particle is scantcred by aever¢+ different centers of force,

e

- The simplifylng features of such probscms wh1&n -make the exact exvressions

%\,

useful are generally eithe” that the scatterlng centers are arrangea in a

;special'statlstics (1ndlst1ngulsnab111ty) Sometimes ihe exact expresszicon

o

'iswde51red not to make use ‘of it in an actua; caLcu¢a o but slmp‘v te
it'by an approximatio

in the taleulstion of

| of the integral equation

st
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(12.54)

(12.55)

(12.56)

(12,57)
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. ea 11y' finds

_[11;3]

3 "" Z Rj__'__(E)GOi(E) ZJR ’E)Goz(E) 'Zk R(E) 4 von o
k#J - :

,!

«triple scatterings, et.c°

It is, of course, the amplltude= rdther than the

o1
e}
g

d ction in the labor involved in obtalning numerical answers. - These

thls article to descriptions of these tricksu However, the reader will by
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'.’ease. - .We shall su‘nply call -attention to two. outst,andlng o

“Iu

il“ustrate the utility of the formal theory' 1) the justificaﬁion

. .
.‘1‘ ¥

avved'mmpulse approx1mation [iu? to 152} and 2) the Juotlfncatwon

2 4o S

st ,emant of- thellmpulse approxlmatlon 13 essentlally that the scatterlng due
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‘:ar ed'ouﬂby Brueckner.A See, however, A, Reifman, B.:S. De'vhtt and
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: 13 . _FINAL-REMARKS
W ihave now reached a loglcal stopplng place. To darry the develop-

‘Wééﬁlace this.topic-first-becausefof its great

_~The lack of a dlscus51on of varlational methods as

- ..__-a;—,—(

’laek ofAtime and space and refer the- reader to the list of

,'[155 to 185} in the blbliography at ‘the end of the article.
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."‘. )

Thé.¢hapter_,n variational methods in reference [lO] prov1deo probably

ope‘abors such as R4_ and ‘R when~the condition of-invariance under time

eve, al: 13 imposed on’ the operators H and Hq ’A very ooﬁpleie accouné of

Fas -

1on of this problem is highly underdetermined A knowledge of the

"' . .
5 s
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These investlgatlons have, however, revealed information

it o e

*;general 1nterest on the role played by bound states 1n scatterlng theory.
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ons of sectlon 9 and in the rnaracteriz tion of excited states in

.

= Moo al By (13.1)
E ﬁ>E? i0 I -
_— N
= (B~ HY © (B - Ho),d¢{>

| = [L - GG(‘E)HI_] |_o(o>
= [’lﬁ- Go(,E) R(E)]]O(o,> IR ' {(13.2)
) GO(E) = (E - HO) | 5 ) : ) (l,n,‘\
R_’(E_)a » H'l[l +GO(E>‘R(«E)] A 3

O t

l':de, vation 0f qu (12 6) of the preceding geutiuno ‘The advar ageq of this

is of the solubticns cf the
The kernel H:*G (E) of the latter equatien

o

E 'and’the«coupling constant z. By considering

B

in various special systems. These



t

,ouS‘operafors and matrix elements (parclcularly the Samatrix) in the

These properties in turn permit the 1nvccatlon of

On the other hand to take an example from

[207 to 210] have ehown that expression

4

¢i view o the st ,ng statement Ag?out convergence which can be made within

- . : . C . . - . . . k.
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>

S0 - »LD(E)_-T?‘G(}%:) swo

)__;
AEN)

(o
g

o

R

- a;t-~[1gf GQ(E) H1] = exp Tr Im[1 - o (8) Hl] |
oL | | (13.10)
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B

In'dhéaéiménsional‘pfbbléms' D(E) (and hence'aléo its variational

—~r

éntmre functionso For problems of more than one dlmension, however, D(E)

mustvbe replacgd by

,_,,’ ’ Dv_l‘(-E).'- axp Tr Go(E) Hy
L .'éxp_mr'{y;,\:[l - Gy (E) Hl] + G,(E) Hy [
‘- o o |  (13.11)

G(E): " (E) SQm\ (1)(E)/5H (13.12)

"
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references is glven, Unfortunately the operator formallsm has often been

Even setting aside the

zlsused 1n-articles appearlng on thls subject
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