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ABSTRACT' 

This article i.s a review of formal perturbation theory as lt 

has been devel~ped in the past few years o Most of the iinportant· 
,. -

formulae found in the H.ter'ature are presentedo The emphasis i.s on 

showing that the formal theory provides an adequate skeleton on vmich 
. . 

to hang the whole of quantmn perturbation theory .and therefore plays 

a valuable unifying roleo Topics to which attention is devoted 

].ncludeg Green~s functi.ons_9 scattering theo!""y, level shifts9 state 

vector normalizationD bound state perturbation theory!" renormalizati.on 

theory of quantized fieldsD decay an~ resonance phenomenap and the 

theory of nuclear reactionso 
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INTRODUCTION 

In the early days of''quantum mechanics approximation methods 

were very largely unsystematized. Although the general classical theory· 

of perturbations which had been developed in the 19th century for application 

to celestial mechanical problems could 3 when expressed in the language of. 

angle and action variables, be more or less directly translated by a recipe 

known as the Correspondence Principle into a scheme applicable to the 

quantum mechanics of bound systems, the techniques introduced into the 

study of other systems (e.g. colli.ding particles; periodic structures; 

decaying atoms and nuclei) v1ere much more specific to the individual prob_lems 

at hand. This situation began to change as the quantum mechanical systems 

receiving major attention became more complex, and particularly as interest 

arose in the "higher approximations" of quantum field. theories. In recent· 

years increased effort has been made to generalize the earlier techniques 

by abstract'ing out of them certain corrunon essentials, This has led gradually 

to a compact symbolic language which is characterized by; full and uninhibited 

use of the abstract operator formalism. The statements in this language 

(~onstitute what may be referred to as a formal perturbation theor'J, 

Aside from a desire to introduce the symbolic language in order to 

exnress key notions in a very concise form, there has also been a hope that 
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the flexibility of such a language 9 exemplified in various formal tricks 

of ma.nipulation of operators~ would produce some new approximation methods 

or justify previously suggested ones. In fact; the search for tricks has 

often motivated formal dev~loprnents 9 and these developments have· consequently 

been somewhat erratic and scattered in the literature, 

This article is an attempt to collect together the most important 

formulae of the operator formalism. Since 3 however 9 the results of the 

formal theory have generally had little more than a (perhaps disappointing) 

preliminary usefulness as far as practical problem solving is concerned, 

the emphasis here will not be on tricks but rather on showing that the 

formal theory provides an adequate skeleton on which to hang the whole ·or 

quantum perturbation theory and therefore plays a valuable unifying role. 

In the interest of keeping the operator language flexible 9 rigor 

will be maintained only in a very loose fashion. In spite of the fact that 

the formalism is known to contain a number of logical traps these traps are 

identifiable~ and one may still use the formalism in a well-defined and 

unambiguous way to set up the correct mathematical staternent of a given 

specific physical problem. The mathematical operations in the specific 

case can then be tested for rigor. This point of view has long been well 

* accepted (see, for example, Dirac, referel/ce ['t] )v· 

No attempt will be made to discuss the rather specialized covariant 
[143 to 1.2.5"] 

formal language developed by many authors A for use in relativistic field 

theories. The equations written here will remain nonrelativistic in formp 

although in many cases their generalization to a covariant form is perfectly 

* References are to the bibliography at. the end of the article" 

0 ·" ': 

'•: 

j·--.·. 

. ·,"" 

.. 
j 

' .. 

. ~· -.~ 

· .. ·. 
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straightforward, This restriction is not really ·serious~ since many of tb.e 
I . 

special features peculiar to field theories can be well illumined by th~ 

nonrelativistic formalism alone (see section 10). 

In the following section the mathematical fundamentals of the. 

operator formalism are assembled, In section 2 the basic Green 1 s function!j 

and t-heir Fourier transforms are introduced. Section 3 contains a. brief 

cla·ssification of systems according to their. bound and free states .and the 

grouping of their energy levels. The simple theory of scattering is 

described in section 4 and forms the point .of departure for subsequent 

developments. 

The intuitive constructs introduced in section 4 are refined.in 

section 5 through the introduction of suitable limiting procedures. 'Questions· 

of convergence are immediately encountered and are analyzed in an elementary 

fashion. One is led naturally to a study of level shifts_, which is carried 

out in section 6j the important phenomenon of state-vector renotrnalization 

being simultaneously emphasized, The utility of the adiabatic switching 

device is also fully illustrated" 

Section 7 contains simple derivations of many of the important 

formulae of the mathematical theory of scattering. In section 8 the method 

of applying these formulae to the computation of cross sections is indicated .. 

Section 9 consists of a fairly detailed exposition of how bound: 

state perturbation theory fits into the general operator formalism, and how 

t~he discreteness of the energy levels modifies many of the theoretical as 

well as computational techniques usea. 

The "facts of life" of simple quantum field theories are told (in a 

necessarily compressed form) in section 10. The phenomena .of mass and 

/ 
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charge renormalization and their intimate relation with state-vector 

renormalization is shown~ t.he demonstrations being among the ·most beautiful 

illustrations of the power of the operator fo'rrnalisrn. 

In section ll is presented the theory of decaying systems: line 

breadth~ Lamb shift~ resonance scatteringo 

In section 12 3 the theory of scattering by more than one potential 

::l.s outlined~ and the connection of this theory to the. theory of nuclear 

reaetions. is b.riefly indicated,. 

Section 13 consists of a number of closing remarks, ehiefly·about 

those to~ics of current interest which have been necessarily omitted from 

the present survey. 

. ~. 
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l. FUNDAMENTALS 

!~e_Eerturbation operator 

The motif of perturbation theory is the ,s:~rison. of two ph~.Tsi.:::;3.l 

systems~ one of which _is simple and the other complicated, Denote by H 
/W>\0 

the Hamiltonian operator of the simple system, and by ,!i .that of the 

complicat.ed one. The central role of the theory is played by the difference 

of these two operators~ 

which may be called the perturbation operator. In practical applications 
. 

the syst.em of interest is naturally the complicated one, and the simple 

system is chosen (if there is any: choice) to be as similar to it as possible 

so that Jia. may be regarded as "smalL" As far as the purely formal theory 

is concerned~ however~. this is an u.nnecessary restriction. Any ~0 has ·a 

c-srtain utility, if no other than that of providing a matrix representation 

* as a basis for discussion, 

The d1-namical eguation~ 

If F is the operato·r corresponding to any physical "observable" 
IIWI 

of the system H s its rate of change with time (we choose units -i"i ::; c = 1). -
is given by 

F 
¥WI 

(1.2) 

where the partial derivative is taken with respect to any·explicit dependence 

-~~------------

Both H arid · H must~ however, operat.e in the· same vector space. In M<o i/Wl. 

field theories questions have been raised in connection with this point. 

(See references·. [113] and [11.4] .) 

.. 

. ' 

' ·. 1 

. · 

.. ' 

·' 

·• ., 
.J 
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en the time which F may have. An immediate consequence is that H is """ ,.. 
constant if it has no .explicit dependence on t. For·the presentj howeverj 

we shall not make such a restriction, 

. Basic commutation relations 

If the system H possesses a classical analog than its operators 

!::an be constructed explicitly through use of the commutation relations 

0.) = 
. i 
1. s. 

J 
(L3) 

where the q v s arid p 1 s· are operators corresponding respectively to the - -
classical coordinates and their canonically conjugated momenta. If the 

system possesses nonclassical elements (spin in its various forms; sub-

systems obeying the exclusion principle) then other '"ell known methods of 

construction must be employeds but Eq. (1.2) is assumed to hold in any case" 

It· is also to be assumed that H, H
0

s H1 are Hermitian operators. 
/Y(\ - -

The Heisenberg representation. 

If I iJ) is the vector which describes the state of the system - . 

H } and if ( ll denotes the adjoint of this vector 3 then the average -
result of an experiment designed to measure the value of the observable 

F at time t will be -
- (1/1 I F(t) I~) 

""' 'W' -

Eqs. (L 2) and (1.4) are the fundamental equations of the Heisenberg form 

of quantum mechanics 0 The chief characteristi-:s of this so-·cal.led 

Heisenberg representation are l) the constancy of. the state vectors 

and 2) the change of the operators F -with time. Its utility is mainly 

theoret,ical in that it provides the closest quantum analog to the classical· 

theory 0 

... 

.. · 

.... \ 
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The Schrodinger representation. 

Since an operator is c. more complicated object than a vector~ it 

is desirable to place more emphasis on the state vectorso This is 

accomplished by introducing the Schrodinger representation: 

Define an operator function . V( t\ t j) as the solution of the 

following integral equation~ 

II i 
V(t , t. ) 

An equivalent definition is evidently 

i 0 V(t", t') 
at" 

= H(t") V(t", t') 
AN\ 

combined with the boundary condition 

V(t 1
,. t') 1 

Eq, (1.6) may also be written 

i d 
Q t" 

V1t" 
\ ' 

forall t', 

::: V(t" ~ t I>* H(t
11 ) j -

. (1.5) 

'(1.6) 

(L?) 

where the asterisk is used to denote the Hermitian adjoint (or, in the 

case of num.bers 3 the ordinary complex conjugate), Eqs. (1.6) an9 (1.8) · 

together give 

(1.9) 

which implies, with the aid of Eq, '(1.7), 

.. 

~· .·. 

.. 
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( i i i t"tvct'''~ i II n,* 11 t i) V(t" ·' t i) 
. . 

v t 3 t ) -· V(t 9 t ,1 V(t ~ :;: (LlOa) '1 

V(t 
1 

~ " * i t i) V(t I' il) * (l.lOb) = t ) ·' V( t , ::: t J 

which in turn yields 

V(t", t 111
)V(t 111

3 
t i) ::: V(t

11
j t') for all t iII 

j (l.ll) 

V(t", t 1 )* V(t 11
} t i) = V(t", t-') V(t 11

9 t 1 >* - 1 . (1.12) 

Eq. (Ll2) e)(:pr.esses the unitarity of V(t
11

, t i), It is important to 

remember that both parts of this double equation are essential to the 

establishment of this fact, Eq, (1.10) allows the Hermitian adjoints of 

Eqs. (1.5) and (1.6) to be written in the respective forms 

V(t", t') ::: l -· i/t'V(t\ t) H(t)dt 
tll -

(1.13) 

·Q II i - II i 1 
i - V ( t. ,_ t ) - V ( t 3 t ) H ( t ) 

at' -
(Ll4) 

· The analysis thus far has been C;ompletel.y generaL Any operator satisfying 

an integral equation' of the form (L5) wit.h an Hermitian kernel w1ll 

satisfy also equations identical in form with Eqs. '(1.6 - 14). 

Now introduce the Schrodinger operators a.nd state vectors by the 

definitions 

F(t) - V(O. t) F(t) V(t, 0), 
. - (1.15) 

(1.16) 

-. 
':. 
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These·new structures satisfy the equations 

., . 
= 

i! \~(t)) 
<F>t = 

H(t) l'o/.(t)) 

<"+'<t) 1 ~(t) 11fct)) 

UCRL-2884 

(1.17) 

. (1.19) 

Eqso (1.18) and (1.19) are the fundamental equations of the Schrodinger 

' . 

'! 
' .. 

representation, Eq. (1.17) expresses the chief utility of this representation. 

If an operator has no expliCit dependence on· t then its.Schrodinger form 

is constant in time. In particular, for a ·system with a classical analog. 

the q's and p 1 s are constant operators, and consequently coordinate 

and momentum representations have great and meaningful applicability in 

this form of quantum mechanics. Moreover, the burden of describing the 

dynamical behavior of a system is.thrown completely onto the state vectors. 

The Schrcdinger state vectors at two different times are connected· 

by a unitary transformation 

(1.20) 

where the operator U(t", t 1
) satisfies the integralequation 

U(t", t') = 

t" . 
1 = i/ H ( t) u ( t' t I ) dt 

t' . 
(1.21) 

and its corollaries. Evidently 

II I U(t , t ) :: V(O, t") V(t 1
, 0) . (1.22) 

"' 

. ·, 
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In general U(t"~ t I) will not be equal t.o vr·' .. t 7 t") unless H happens 
... 

to be constant in time~ in which [ V(O~ . II) v(t', o)] 0. case t ~ ·---

The interaction representation. 

We now bring the operator l!.o ~.or rather its Schrodinger form H0 , . 

into the picture. The "reference system11 described by H0 is assumed to 

be completely solved. That is to say, the b~havior of all its state vectors 

in the Schrodinger representation~ or conversely 1 the behavior of all its 

operators in its Heisenberg representatior.~ isknown. Since one is 

primarily interested in the deviation in the behavior of the Schrodinger 

state vector of system H from t.h·at of system H0 :~ it is often convenient 

to remove from j1p( t.)) - that part of its behavior which derives from 

the known properties of H
0

• This Gan be accomplished by making a partial 

transformation back to the Heisenberg representation~ 

F (t) (L23) 

(1.24) 

where the operator U
0

(t." :~ t 1
) satisfies the equation 

(L25) 

Eqs. (1.23) and (1.24) introduce what has come to be known as the inter-

action representation. The interaction operators and state vectors s_atisfy · 

the equations 

dF/ctt ;:, -- i [ F ~ H0 ] + 'd F/'d t (1.~6) 

d )ij;Ct)) Hl ( t) I i ( t ) ) .I (L27) ~ -- = dt 

<t> = (~(t) l F(t) I f (t)) (1.28) 
t 

',t ', 

-. 
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The transformation from one interaction st.-ate vector to another 

is effected by the operator 

u(t"~ .:. I \ uo<o~ t") U'." t i) u /J. I o) 1, I - \"C. J 0\ l• $ ' s (1 . ..,, \ 
.~~-i~r' 

w.hicn so.tisHes the equations 

. -

. +· !I 

u(t 11 ~ t I) - l ~~v H1 (t) u(t, t y )dt ( . -0 ' ·.L o_.i· a) 

t I 

i{., - II 
t) H1 (t)dt -· l+ u ~t !' ) etc. - (l,30b) 

If Ho. and H have no explicit time dependence then the operators 

Uo(t."> t I) U(t 
11 

t i) and ~ depend only cin the difference between the times 

t" and 
. i 

It is to be noted. that the operator 'tj(t"~ r' on the other t. . t' J $ 

hand .. is never a function simply of 
II i 

t - t ,. except in trivial cases 

Iteration formulae, 

By iteration df Eqs. (L30) one obtains 9 for 
II 

t. > .. i 

v ' 

::: 

' 

·.• 
(L)la) 

= 

I 
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t il t' and, for < 3 

(LJ2a) 

= (l.32b) 

. where 

e:t:(t) : ~(1 * t/Jtl ) , · (1.33) 

and where the ,·'time ordering" brackets [ }_ arrange 

the time dependent operators contained within them from .r.i.ght to left in 

order of increasing and decreasing values of their arguments t respectively. 

The second forms of Eqso (1.31) and (1.32) are obtained from the first forms 

through the observation that one can permit the inclusion of all n! ways 

_H1(tn) (which is equivalent to omitting 

the functions 9: and replacing the limits of integration by· t 1 and· t") 

if one simply uses the time ordering brackets as a formal device to unscramble 

them again, and then multiplies by 1/n!. 

H0 independent of t. 

The interaction representation is particularly useful when H0 is 

independent of t, as is almost always the case. The system H
0 

then has 

N 
. i 

independent commuting constants of motion ()( (i. = 1 0. 0 N) 
. 0. 

where N 

is the number of degrees of freedom. (N may be nondenumberably infinite!) 
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If the system has a classical analog t.hese constants correspond to certain 

independent functions of the q 1 s and p 1 s which have vanishing Po1.S30'l 

· brackets with one another. 

collectively by ~ 
0

• 

For convenience the . CX i v!ill be qenoted 
v 

The 0( 
0 

are a comnlete set of cormnuting ope~ators, and define· a 

most useful basis in the.vector space of the system H
0

• Following-Dirac [Li-] 

-----· 
we shall use dashes to identify the eigenvalues of the 0\ 

0
; the. corresponding 

eigenvectors being denoted by 

(1.34) 

The ex' 
0 

may·come partly from a continuum and partly from a discrete set, 

or all from one or the other. The most important of the different 

possibilities will be discussed in section 3. For practical purposes, 

however~ all the rx 
0 

may be rendered discrete by placing the system 

* in a box, so that a single normali~ation condition can be impos~d on all 

basic vectors uniformly throughout the discussion: 

l ir ex 
l ;, i I 

.for all i 
C· 

- 0(0 

< I!\ i \ 
0( eX . 

o I o I 
0 otherw-ise, 

(1.35) 

H
0 

is an operator function of the ~ 03 since the latter, being 

constants of the motion.! commute with Hence 

* 

= (L36) 

It is most·convenient to ass,~e that the box does not actually contain 

the system in the sense of providing an infinite potential barrier 9 but 
that it merely imposes periodic boundary conditions on the wave functions. 
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where the energy levei H
0

1 
of the state. \ 0( 0 ') is the corresponding 
I 

· ordinary function of the. CX 
0 

It is sometimes convenient to choose H0 

as one of the 0(
0

• 

When H
0

. is time indep~ndent the solution of ·y~· ( J ,J.~;) is 

immediately written down: 

U
0
(t", t') -

- i H0 (t" - t') 
(L37). e 

Hence 
i H0 t -i H0 t 

F'(t) - e F(t) e (1.38) -

I~ <t) > 
i H0 t 

I<P<t)) = e (1.39) 

i H t" -i H t' 
uct", t') 

0 
i.J(t", t 1

) e 
0 

::; e (1.40) 

" 
Transition probabilities. 

The operators 0( 
0 

and H0 remain invariant under the trans-

formation to the interaction representation: 

0( 0 = 0(0 = (1.41) 

As a consequence, transition probabilities taken between members of the 

basic states I D( 
0

1

) of the "reference system" can be expressed equally 

~ell in terms of either the Schrodinger or the interaction transformation 

operators. If the actual system H .is known to be in the Schrodinger 

state ) ~ 
0

1

) at the time . t 
1 

then the probability of finding it _....in the 

Schrodinger state 
\ 

II \ ex ) 
0 / 

at the time t" is 

,.~--

' 
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II 
II I I t i) I <~0 11 

I U(t", t') 1~01>12 P(O' 
' t ~ = c . 0 

-i h011
t

11 + i H 't' 'I ~, 

o <o:o") U(t", t I) j'c< (I) I e~ = e 

( 1. 42) 

Transition probabilities are often computed approximately by'inserting the 

first term or two of the expansion (L3la) into (1.42). 

This section may be closed with the observation that the Schrodinger 

and interaction representations have been defined so as to coalesce l·dth 

the Heisenberg representation at t = 0: 

(1.43) 

The formalism above would not have been significantly altered if other 

. arbitrary meeting points t· 
0 had been selectedJ but no real generality 

would have been gained thereby since the system can always be displaced 

in· t·ime without altering its essential physical· characteristics. 

,. 

... ':' 

.. 

.j, 

'· 

·'· ,·. 
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2. GREEN'S FUNCTIONS AND FOURIER TRANSFORMS 

Temporal switching opel'ators. 

It is often a useful mathematical device to "svlitch on" a quantum 

state abruptly. The operators which perform this action for the systems 

H0 and H are respectively 

=f E ( t" - t I) 
GO±(t", t') =f i e e*-( t" - t 1 ) U0 (t", t') = ' (2;1) 

~E (t" - t') 
G±(t",.t') = ::r i e e:(t" - t') U(t".• t'). 

(2.2) 

Actually~ the + operators switch a state on and the operators sv.rj.tch 

it· off. The exponential factors damp the state in the future or the past 

as the case may be. They are inserted here so as to make certain future 

limiting procedures convergent. ~ is a small positive number, ·having 

the dimensions of energy, which will eventual~y tend to zero. 

Switching operators are Green's functions. 

The following properties of the 9± functions will be needed: 

..£.. e= ( t) = ±. S ( t) , 
dt 

Using (2.3) and the differential equations satisfied by the operators 

U0 , U, one finds 
.•. 

(2.3) 

(2.4) 

(2.5) 

' :~ 

•. 
·' 

-, 

.. ., 
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:: 
{2.6) 

= (2.7) 

Eqs, (2.6) and (2.7) entitle G0 .± and G:t. to be called the Green 1.s 

functions of the systems H0 and H respectively. The lar>.guage of Green's 

functions allows one to refonnulate the perturbation problem in terms of an 

integral equation which directly connects one system with the other~ 

(2.8) 

Fourier transforms. 

If neither H0 nor H has any explicit dependence on t ~ thtm 

~i H
0
(t"- t') 

U0 (t 11 , t') = e U(t 11
j V) = e 

-i H(t:t- t') 

(2.9) 

and the functions G0 ± and G± depend only on the difference between 

the tJ.JlleS t" and t I 0 Setting t i = oj orie 'has 

-i (H~:;: i € )t 
G0 :t.(t,·O)::.: -:ri G:.(t) e 

-i (H 1=-· i e )t 

(2.10). 

(2,11) 

With G0 *·" G :i-.. depending only one one variable it is useful to take their 

Fourier transforms. 
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/ ocGo±<t~ 
i Et 

GO±.(E) = 0) e dt 1 _, 
-oo . E = Ho ± iE' 

(2.12) 

.,. 

;:: G:t:(t, 
i Et 

G~(E) 0) e dt 1 - -· 
E - H ±. iE 

(2.13) 

.• 
As long as E remains finite G0 ±(E), G:(E) are not singular for real E. 

Algebraic relations. 

With the use of the operator identity 

-1 l [ B)-lJ (A + B). . - A- 1 - B(A + - (2.14) 

G±(E) may be expressed in terms of G0 ±.(t) as follows. 

(2.l5a) 

= (2.15b) 

Eq. (2.15a) is simply the Fourier transform of the integral equation (2.8). 

It is customary to refer to Eqs. (2.15) also as integral equations, This 

is because in order to deal with them analyticallY. it is necessary to 

- express them in matrix form, in which case :Lntegrations over matrix 

elements generally make their appearance. It is noteworthy, however, 

that the Fourier transformation has made the equations of interest more 

·c9mpact than before. 

Eqs. (2.15) can be solved formally to giYe 

G~ (E) -· [ 1 - G0 ~(E) H1 ] -l G0 ± (E) 

= G0 ±.(E) [ 1 - H1 G0 :(E)] =l " 

(2.16a) 

(2.16b) 

' ... 
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"Approximate" solutions are obtained by taking the first few terms of a 

binomial expansion of these expressions.. Obviously, difficult questions 

of convergence are involved here .. 

Time independence • 
• 

The time independence of H0 and H w~ll be assumed throughout 

the remainder of this article unless othe~wise indicated. Then the system 

H~ like H0 , has N. independent commuting constants of motion ~.1 , ~hich 

remain invariant under a transformation to the Heisenberg represer .. taticn. 

0( - 0( H - H (2.17) 
I'M ""' 

Introducing basic vectors corresponding to these constants, one may write 

0( )o<') .HI ()( 1
) = H' \«') (2.18) . 

(2.19) 

A central task of succeeding sections will be to set up a correspondence 

between the vectors l"' ') and the vectors \"' ') d t tl ~ ~ 0 an o express 1e 

former in ternis of the latter. The operator U(t", t'), v.:hich now has the: 

form 

-U(t", t') = 
i H0 t" -i H(t" 

e e 
t') -i H0 t 1 

e 

turns out to be of great importance in .this undertaking. 

(2.20) 

·· .. , 

: . 



-· 

UCRL-2884 

-20-

3. TYPES OF SYSTEMS 

· Classification of states. 

. The. states I 0( ') of a system . H may· be classified into bound., 

mixed, and free states. For example, if the system has a classical analog 
. 

one may introduce the coordinates .qa, place the system in a·ree:tangular 

box of side L" construct, iri"- the coordinate representation, an eigenf~ction 

.1f(q) which remains· finite as L -+ oo , and define the corresponding ·state to 

be bound, mixed, or free according as the integral J 'tf~lf dNq is of order 

· 0. n 
L ·' L , or LN, where N is the number of degrees of freedom, 0 < n <. N ~ 

and dNq is the volume element in coordinate space. Related criteria may 

be employed for nonclassical systems, 

Simple and complex systems. 

If H possesses bound or mixed states than the rangesof value o.f 

some of the o< 1 must include discrete set.s even when the system is not 

placed in a box. If all' the ex 1 for a given s t~te lo<') come from 

discrete sets, the state is bGrund. The system will be called simple if 

\ o( 1
) is free whenever at least one of the o< 1 corr,es from a continuum, 

Otherwise it will be called complex. The states of a simple system are 

always either bound or free, never mixed. 

A complex system is usually characterized as being composed of t;..ro 

or more simple subsystems. A mixed state is one in which some of the sub-

syst~ms are in bound states while the others are in free states, The 

subsystems may interact with one another, but not strongly enough to 

destroy their individual identities~ Otherwise a separation into simple · 

subsystems· becomes meaningless. Sometimes one separation may be used for 

one range of values of the 0( 1 while a different one must be used over 

another range. 

.i 

•• > ,· 

'.· 

'·I 

I 
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In discussing the various situations which can arise it ·will be 

convenient to develop our notation by r~placing the general labels 0( 1 by 

other labels which distinguish between free and bound states" For si"rrr;ole 

systems the Greek letter ') will be·reserved to denote free· states a11il 

the capital J to denote bound state.s. Eqs. (2.18, 19) will then be 

repla.ced by 

- 1' I-s') 
J 

J \ J') 
(3 .l )· 

b (!" 'S') 
.,1 ) = 0 

(3,2) 

If the system has a classical analog the operators which J collectively· 

denotes are usually chosen to be the quantum counterparts of·the'classical 

action variables. Some of these action variables may be .included among 

the '3 , though not all; in the case of free states at least one. of the J 1 

must be replaced by a label referring to the cont.inuous spectru.'Il. 

Hixed states of a complex system may be designated by expressions 

of the form \!A'.~ "Ss' ···~ JE
1 

1 JF'. ···> 3 the labels· 1A-·, 'SB;•· 

referring to the free subsystems and the J i J I 
E ~ F referring to the 

bound ones. HoweverJ the system of interest H is 5ometimes so complicated 

.(as in the case of interacting fields) that the phy$ical separation .. into 

.. ·...:.bsystems is by no means obvious~ so th'at the labels above may have a 

31.JT.ple inte~pretation only with respect to the reference system H
0

• This 

}.eads us directly to the next topic. 

~eQarable. Hamiltonians. 

The subsystems of a complex system need not interact wit.h one 

ar.cther, and if they do not the Hamiltonian operator is expressible as a 

·' 

.. 

.. 
.• 

.· .. 
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sum of terms, each corresponding to only one subsystem 1 and will be called 

separable. The separation may be more mathematical than physical. For 

example, for two particles interacting through central forces the reiative 

coordinates form one simple subsystem and the coordinates of the center of 

mass another. 

If system H is complex the Hamiltonian oper~tor H0 of the 

reference system is usually chosen t.o be separable, the perturbation H1 

providing interaction between the simple subsystems. The labels used.to 

specify the eigenvectors of H0 then usually have a simple physical 

interpretation. 

A special example. 

It is instructive to consider a special example of a complex system 

which illustrates some of the important situations occurring in practice, 

and for which several different reference systems must be chosen depending 

* on circumstances. 

Let a particle B be attracted by a center of force 

interaction potential being H1 • Let a particle A simultaneously interact 

· with B through a potential H2 • (Here, instead of one perturbation we 

have two; in the preceding discussion they have been regarded as lumped 

together.) The total Hamiitonian operator for this system is 

(3 .3) 

where 

* This system is discussed in greater detail in section. 12. 
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HA. and HB being the kinetie: energies ::·f part.icles A and B, If :) (5 · 

convenient. to wri~,e also 

·where HR is the rct.a.tior,al and H.r ,.t-he t.ransbtional energy of the p:s.:1.:r AB. 

Consider a scattering sit·uation in vrh:i.ch the initial state~ f:J nds 

p-:J.n.icl.e B bound in an orbit around C, with A coming in fr·om :i.r:f:l..n:Lt.y 

t.o. collide with B, (See Fig. L) This state may be described by l':l.bels 

referring to the free moticn of A5 and J ' ! 

BC 7'eferrL<g to t.he bcund 

condit}_on of B to C ,. For this st.ate the com·eni.ent Hamiltonian operator 

. H to im.roduce fer the :r·eference system is H
0 

+ H1 ~ which separates into A 

a.nd HB + H1 • The perturbation operat.or is ther; The state vector 

J 'SA 
1 ~ JBC 

1 

) will somet.imes a.lso be denoted by I ex 01
1

) ~ the subscripts 

0 and l on the CX 1 s indica:.:.:tng that the Ham:l.ltonian ope!'at.or of the 

re.f'eren·:;·e system 2 which may be called the 11 ur:.perturbed Hc.miltvnian," is the 

sum vf H
0 

and H-. ., 

The initial state j :SA 1 , JBC') can le.3.d to severc;.l types of 

final states, as"pictured in Figs., ~to 5. Fig, 2 shows a final state 

'nhich is of the same type as the initial state .• with mer·el.y new va:Lues 

In Fig. 3 particle B has been knocked loose from.ita bond with C 

so that both A and B are free, This final stat,e may be denoted ·~;y 

'C" II ~· II II 
labels ..J A ~ .) ? ~ or collectively CX O , the convenient ·,mpert.:1rbed 

Hamiltonian being simply H0 .9 whieh separates according to Eq. rj • .4). In 

t.his case the perturbation 1s 

(,' 

' . 

,, 
., 

'' 

.. 
~-. 

.. 
. ·' 
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·Fig" 4 shows a 11 pick=up11 process in which particle B loses its 

bond with C and becomes bound vdth A instead" The convenient unperturbed 

Haniiltonian h.ere is H
0 

-+. H2 ~ which separates into HT and HR + H2., and 

the perturbation is Suitable label.s fer this final ::>tate are 

JR 11 (referring to the free translational motion and bcu.nd rotational motion 

of the pair AB) or collectively 0( it 

02 • The inverse of this particular 

reaction is a "stripping" process, which is also of interest. 

Fig. 5 shows the remaining possibilityy a capture process in which 

A, B and C become all bound together. There is no obvious reference system 

for this state, the total Hamiltonian operator H must be examined more 

or less. directly. Suitable labels for the state would be J'' or o( 11 , 

referring to the total system. We shall see later that such a state is 

'actually not a possible final st~te for the reaction unless some other 

physical process, such as radiation~ takes place) that such a state would, 

' f t b t t bl ' f ' t II ' t d11 f 1 . h f t' t 11 ~n ac , e me A.s a e even ~ ~ e::a.s e or any engt o - J..me a a • 

The reader may easily construct more complicated examples, for 

instance by adding a third potential H
3 

acting between .A and· C, and 

considering the final state in which A is bound to C while B is free. 

It is sufficiently clear from the present example, however, how the 

-reference . system would. be chosen under almost any circumstance' of the·. 

same general types, which may arise. 

· .. 

. ...,·, 
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The basic.spectral types. 

The precise form which perturbation'theory must take in order to 

des~ribe the behavior of a given physical system H depends on the 

structure of the spectrum of H in the energy range of interest and also 
0 . . 

on the structure of the spectrum of. the most convenient reference system H
0

• 

for simple systems three basic spectral types may be distinguished: 

~.The simplest type of spectrum is the on~ which occurs when H 

and H
0 

each possess only discrete bound states for which a one-to-one. 

correspondence can be set up, An e~ample of this situation is pictured in 

Fig. 6 in which the correspondenc~ is indicated schematically by dotted lines 

connecting the levels, There will in general be a shift in the positions 

of the. energy levels in passing from system H0 · to system H. The 

occurrence of possible degeneracies is not pictures in the figure, 

~ The second basic spectral type is one which occurs when H and 

H0 . possess free states as well as bound, the discrete energy levels of the 

bound states in each case lying below the continuum levels of the free 

states. In the typical situation the free states can be put into one-to-

one correspondence but suffer !l£ level .shift in passing from one system 

to the other, The bound states, ·-on the other hand, will generally have . 

levels shifted relative to one another as in spectral type 1, and may not · 

necessarily be able to be put into one-to-one correspondence owing to the 

fact that ·one system may have more bound states than the other. Such a 

situation is pictured in Fig. 7 in which system H has bound states 

which have no counterparts in H0 • This spectral type is typically 

encountered in simple scattering problems and will be dealt with in 

sections 4 and 7. The situations in which one or both of the systems has 
0 

no bound states may be regarded as special cases of it, 

I 
'' 

' ' ·' 
; 

'I 
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~ In the third basic spectral type H and H0 again possess 

both bound and free states. The important point 9 however j is that the 

energy levels of some of the bound states of the r.eference system H0 fall 

within the range of the continuum levels of its free states. These bo'und 

states generally have no counterparts in the actual system H. The ~;itchin~ 

on of the perturbation H1 annihilates them except in trivial cases in which 

there is no coupling between the bound and free states. Situations of this 

kind arise in t.he study of decaying systems and will be treated in section 11. 

Th·e states of H0 which have no counterparts in H are those which in 

physical reality undergo decay.· 

The energy spectra of complex systems will generally combine the 

features of the three simple basic types. This is evident, for example, 

in the case of the special complex system pictured in Figs. 1 to 5. The 

combination of basic-type features may not~ however, necessarily result from 

s~ple ~dditivity of the subsystem spectra. This is especially true of 

complex decaying systems, which may possess spectra of type 3 as an intrinsic 

result of their complex character combined with special properties.of the 

interaction H1 • In fact, when spectral type 3 occurs for simple systems 

the reference system H
0 

· usually has some rather artificial properties 

which arise out of the peculiar way in which a de~ay problem poses itself. 

The existence of situations involving decay is responsible for our 

previous remark that the state pictured in Fig. 5 could not actually be a · 

possible f-inal state for the collision process starting in Fig. 1. Energy 

must be. conserved.in a collision~ and a discrete energy level of a bound 

state (Fig. 5) would therefore exist lying within a set of continuum 

leve!Ls (Figs. 1 to 4). The bound state of Fig • .5 could be stable at the 

energy in question only if a barrier were placed around the system. The 

. I 

. 
•• 
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removal· of this barri.er would be a perturbation arlnihila.ting the state .. 

We must finally mention the important situation. pictured in Fign 9 

in which H has tree states whose continuum levels are shifted. relative 

to those of H
0

o This situation is not counted among the basic spectra!. 

types since it occurs non-trivially only in connection with complex 

system59 specifically in quantum field theories.. It can occur in 

combination 'With any or all of the basic spe.ctral types and has 

historically been very troublesome.. It will be deFtit with L11 ssction 

l 

! :. 
' 

\ 

' . 
' 

f•' ,' 
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'. 
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4. SIMPLE SCATTERING 

Confined forces" 

The theory of sc_attering provides perhaps the most natural point 
,, 

of entry into the further mathematical development of the operator formalism. 

For definiteness consider a system H consisting of a single particle 

interacting with a fixed scatterero The force exerted by the scat.terer 

need not be centrally dire~ted nor even velocity independent. However~. 

it may be necessary to choose the reference system H
0 

so as tc include 

part of this force 11 for it will be assumed that the remaining force is 

confined to a limited region of space called the scattering region. If the 

force is attractive the energy spectra of systems . H0 and H may have the 

structures shown in Fig. 7, although, in general" bound states may be 

absent in either or both of the two, In any case bound states will be 

ignored for the present. 

Retarded waves. 

The scattering problem is solved if the free~,state eigenvectors of 

H are' known, In analogy with the ~ t:neories of light.11 sound~ etc, one 

may write these eigenvectors in the form 

"""'-J. 

(h.l) 

I 

.. where \ reti). represents a retarded wave and ., !o') is a free-state 

eigenvector of H0 suitabie for representing the incoming particle (ecg. 

incid~nt plane wavej or spherical wave of given angular momentum). 

·Eq. (4.l).presupposes at once a natural one-to-one correspondence between 
. ~ ' 

the free states I '5 0 ) of H0 and the free states 

The significance of the + sign on the )+ 1 will become clearer in 

., . 

.. :. 

--
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subsequent pa;ra.grcl,phs and is connected with the fact that a scattering process 

introduces a preferred (in this case positive) direction in time into the 

scheme of things. 

Eq. (4.1) is supposed to be an asymptotic equation and should more 

properly be written in the form 

(4.2) 

where the q" are the coqrdinates of the particle and the asymptotic region 

is that, at large distances from the scatterer. However, no misunderstanding 

will arise if the coordinate eigenvectors lq 11 ) are frequently dropped. 

~e 'Writing of (4.1) as an asymptotic equation is sufficient for 

present purposes since a complete knowledge of the eigenvectors I~+'> 

is not actually necessary for the solution of the scattering problem. ·only 

the asymptotic behavior of the corresponding wave functions is needed. 

Wave packets. 

' The scattering process is more graphically represented if one· 

constructs a wave packet: 

(4.3) 

where f( :S 
0

1
) is a (generally complex) function which is 11 peaked11 around 

a particular set of values of the· S 
0

1
, and where the symbol ~ 1 

denotes a summation over all of the dashed variables. The wave packet 

may itself be separated into an incoming part and a retarded wave. 

,, 

., 

' ., 
I 



UCRL~2884 

--32-

I!)~ \ in) + \ ret> , (4.4) 

}in) = ·.L' f(1o
1

) l )o') _(4. 5) 

j ret) = L' f()o i) f ret') • (4.6) 

The vector I ';f) is a constant Heisenberg state vector. To picture 

the moving packet one must pass to the Schrodinger representation. With 

the help of (1.20), (1.43) and (2.9) one gets 

= 
"'\'I ~i 
£...:., e 

H't 
f(I ')I'S ') 

0 + • (4.7) 

The complex phase of the function f'- must, of course, be selected 

in such a way that the packet moves in a physically interesting fashion. 

Here it is necessary to rely on a previous knowledge of the behavior of 

wave packets, based on more precise details of the structure of a given 

Hamiltonian H (or H0 ) than can be got from the abstract operator 

formalism alone. · The packet must be formed in such a way that for large 

negative and positive values of t it is found at a large distance from 

the scattering region. Under these circumstances only the asJnptotic parts 

"' of the energy eigenfunctions contribute sigrdficantly to the wave packet, 

and (4.7) may be replaced by 

t-+-:t:oo 

For large )tl both (4.7) and (4.8) provide a mutual cancellation of 

eigenwave amplitudes in and near the scattering region, although the 

precise manner in which this cancellation comes about is different in 

the two cases. 
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Definition of I ret 1 ~ 

So far the vector I ret 1") has not been well defined since an 

infinity of different functions ( q II J ret') can be chosen, all having 

the same asymptotic behavior. The most praclically convenient choice is 

one which makes Eq. (4.1) exact, rather than merely asymptotic, outside 

of the scattering region: 

= for qfl outside s~attering 

region. (4.9) 

For then, since <q'1 J !+ 'J satisfies the Schrodinger equation of the 

reference system outside of the scattering region, so also will <q 11 I rev) 

Indeed, may be allowed to satisfy this equation everv;.;here 

except. at a single point within the scattering region, which ma,~r be called 

the origin: 

(Ho - H1
) I ret') = Is/> (h.lO) 

where 

<qv'l S!) -· 0 excent whe::l q!l is the origin: (4.11) 

The -~-unction ( q 11 J ret'> then has a simple structure in terms of knovm 

functions which provide an analytical apparatus inderendent of the .. size 

of· the scattering region and which can tht~refore be a-pplied to a ''ide 

v-ariety of problems. 

Eq. (4.10) has, in general, two independent solutions. It is 

necessary to choose the l:lnear combination 6f these solutions which 

sat-isfies the boundary condition appropriate to scattering in the positive 

t~me direction .. This boundary condition may be expressed in a form 11hich 

. ' ... , 
. ' 

•, 

... 
: 

·t 
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makes use of the wave packet picture> namely 

(4.12) 

That is~ the retarded (or· scattered) wave disappears as t tends to -- oo ·. 

In fact· it gets sucked into the origin upor. tim.e reversal; or conver5ely j . 

it emerges from the· origin as a scattered packet as time passes from -· oo 
as 

.to oo , The vectors I S'> ma.y be regardedAthe sourca or sinks of this 

packet. 

Advanced waves.· 

The other independent solution of Eq. (4,10) corresponds to an 

advanced wave~ satisfying the conditions 

:: 

----')o~ 0 (h,l4) 

The advanced wave is annihilated with the passage of time. 

For. the correlation of actual experimental results with the results 

,of the theory of scattering the. use of wave packets as above is absolutely 

necessary, (See further section 8.) Eqs. (4.12) and (4.14):; expressing 
·~· 

boundary conditions, _are cruciaL It should be observed that these 

equations require the retarded and adYanced waves to be completely sucked 

into the origin as t tends to ~ oo and + oo respectively. This 

.. 

... I 
;.,_· 
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obviously requires the use of finite packets.* 

In analogy with the definition of the 11 radiation field" in 

electrodynamics [1~] and acoustics, one may define vectors 

\rad') = . \ret') - I adv•) (h.l5) 

satisfying 

(H0 - H1
) )rad') = 0 . (4.16) 

Eqs. (h.8), (4.12) and (4.14) then yield 

-l~(t)) L:l -i H1t 
f()o

1
)j'So') >- e ) 

t-+--oo 
(4.17) 

jlf;(t)) I:' 
-i H1t 

f(~0 ') ( J '5
0
')+ j rad•)) > e 

t-+-OO 

· The scattering operator. 

At this point is is convenient to return briefly to the Heisenberg 

representation and Eq. (4.4). Instead of separating the packet into 

incoming and retarded waves, one may also separate it into outgoing and 

advanced waves: 

* 

\1f) r-.; I out) + j adv) (4.19) -
There is a slight difficulty. here, connected in the rionrelativistic 

case with the fact that a truly finite packet tends to spread infinitel;>r _ 

fast, and in the relativistic case with the fact that a complete se't of 

eigenfunctions is not available with which to construct such packets if 

only positive energy particle states areallowed. (Cf. van Kampen, 

reference[~o3l) A more detailed study (e.g. Low, reference[/(.]) ~haws, 

nevertheless, that Eqs. (4.12) and (4.14) are·essentially correct. 

'j .. 

. ' 

- r 

.. 
' -.J 
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where 

j adv) - Ll f(!
0
') ladv'> - :? (L~.20) 

\out) = \.in ) + \ rad) ~ (h.21) 

lrad) j ret) - \ adv) - L' f (:)
0 

1 
) I rad 1) • <__- - (4.22) 

.. 
Heisenberg [lct] has introduced an operator S called the scattering operator 

which is defined by the equation 

jout) = 5 J in) for all packets. (4.23) 

In the limit of a very broad packet (which is equivalent to a very peaked 

function f(S 0
1

) ) one has I in) ~I ! 0 
1 > ~ j rad) ~ I rad 1> 1 and evidently 

(4.24) 

In its matrix form the scattering operator is known as the 5-matrix .• 

The 5-matrix is determined completely by the asymptotic behavior of the 

time independent Heisenberg eigenfunctions of the Hamiltonian operator H. 

A knowledge of the S-matrix completely solves the scattering problem. 

The 5-matrix may be related to the transformation operator in the 

interaction representation~ through which its explicit construction may be 

achieved. Here it is necessary to assume 

H I I 
o = H ' (4 2'") \, 0 ) 

i.e. that the energy levels undergo no shift in the pas·sage from H
0 

to 

H. Eq. (4.25) is automatically satisfied for the simple scattering problems 

with confined forces presently under consideration~ the energy being simply 

the kinetic energy of the particle at large distances from the scattering 
·' 

. . ' 

'. 

. ',. 



UCRL-2884 

-37-

region and being therefore corrunon to. beth systems H and H
0

• For other 

systems to be considered later~ however j it will be necessary to take care 

in making this assumption. 

Eq. (1.39) gives the transformation to the interaction repre$entation. 

Applying it to Eqs. (4.17, 18) and using (4.25), one gets 

\~(-e>o)> - L'rc )o') / )o') = I in) j (4.26) -

\~(oo)) - L' f( !0') <I'So') + \ rad') ) ::: \out> -
(4.27) 

. Evidently 

S - U(ooj -Oo) (4 .• 28) 

· Thus the transformation operator in the interaction representation contains 

full information on the behavior of the free-state eigenfunctions of H in 
. . 

the asymptotic region. It also contains complete-information on. their 

behavior everywhere else ·as weli. For, remembering that all· representations 

coalesce at t = 0 (Eq. (1.43)), one may write 

1 ! > = rr co, - oo ) 1-f c- oo ) > = · · u co, -0o ) 1 in> (4•.29) 

In the limit of a. very broad packet one has \in>-+- 13 
0 
'> and 

Hence 

... 

(4.30) 

.• 

i 
( 

'. 

.. , 

.. f .. ~ 

·-----. '='. 

' ·--;·-. 

. .. 
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5. LIMITING PROCEDURES 

Adiabatic switching. 

Eq. (4.30) expresses the free-state eigenvectors of the system H 

dir:ectly in:terms of those of the reference ·system H0 and points the way 

_toward their explicit construction. However 3 the-problem is immediately 

encountered of how to give a proper definition to expressions ~f the form 

U(Oj Too ) and U(± oo j.-,:: oo); which is certainly not clear from Eq. (2.20). 

·· A key to this problem is supplied by Eqs" (4.17 $. 18) which state that for 

large values of jtj the wave packet satisfies the Schrodinger equation 

of the unperturbed reference system. (Remember the \rad') are eigenvectors 

of H0 byEq. (4.16).) As long as the packet is at a large distance from 

the scattering region it matters very little whether the perturbation H1 

is present or not. This suggests the use of the widely employed 

mathematical device of switching the perturbation on a~· the packet approaches 

the scattering region and off again after it has been scattered 3 in order 

to give a precise definition to the limiting procedure implied by the 

symbols t ~ ± oo • 

In order to accommodate the widest variety of packet sizes and 

shapes the switching process should be very gradualj i.e. adiabatic" 

There are an infinity of modes of accomplishing adiabatic switching, but 

the one which is probably the simplest analytically is that which replaces 

- e ltl 
= e Hl 3 E ~ +0. (5.1) 

The time of duration of the perturbation under the adiabatic switching 

procedure may be defined as 

.. 

.. j 
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2/€ (5.2) 

Passing to the interaction representation (Eq. (1.38)); one gets 

€" ltl 
( 5.3) 

This equation may be substituted directly into Eqs. (L3laL (L32a) 

to get explicit expressions for the interaction transformation operator 

Uad(t" s t 
1

) under the adiabatic process (5.1). It is convenient to make 

the following transformation of variables: 

t I 
2 

= 

,. 

(5.h) 

+· t n 

'-ad ) · _Then one gets for the operators U ( t j :;: oo· 1 where t is positive or 

negative according as the oo carries a + or - sign~. [11-0] 

,. 

i 
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< . 

""'' ~ n r:f-oe'J. I /''f'OO i -i(E'- Ho± i ne)tl' 
_ 1 + L. L..., (i) J dt1 •• •J.. dtn e H1 

n=l t 0 ., .,, 

0 0 • 

i i 
-i(E - H0 ± ie )tn 

e 

ad · 
=-:---:-::-1-· --::-- H l ( t ) . . . 
E1 -H0 :tin€ 

0 0 • 

-· (5.5) · .. : 

· I I 
where E = H0 • The second form isobtained through multiplication on . ' 

the right by the equation 

(5.6) 

which expresses the completeness condition for the basic vectors o,f the. 

reference system. 

Scattering will be properly described if we now define 

- lim ~4d U(t,=Foo) - · e ~o u (t, T=oo) , (5.7) 

U(±oo, T"bo ) ;: U(O, ±.oo t V(O~ ~oo); (5.B) 
..... 

. whenever the limit (5.7) exists. 
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Convergence of the series (5o 2.2..:... 

Postponing the :question of the .·existence of the limit (5o 7) 3 we 

shall first say something about the convergence of the series ( 5. 5) o Little .· 

generality is lost if t ·is set equal to zero so' that . 

-ad Ll. I U (O,:t:co) ::: ~-'(0(0 ) (5o9) 

i 
()0 

u:j, < rx 0 ) - 2: un:<o<o') :1 -
n:O 

( 5 .10 )' 

. I 

lrxo')<~o'l lie±( 0(0 ) ... 
> (5.11) 

n ~ 1 , ,( 5 .12) 

rn± (E
1

) -
I -1 

(E - H0 ± i n € ) H1 ( 5 .13) 

Since H
0 

is an Hermitian operator the following inequality holds~ 

I E' - H0 ± i n E: I ~ n E , · 

Therefore~ by the ratio test of analysis one can assert that the series 

(5o 10) is absolut.ely convergent as long as € remains finite. For, the 

11 ratio11 .of successive terms is given by expression (5.13), and 

lim 
n ~oo - 0 0 (5ol5) 

.. 
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Strict::..y speakir.g, more rigor is required here. Eg. (5.15) is valid-

only if~ for finite n and E r (E 1 ) n± is a ~ounded operator, i.e. if 

all-its eigenvalues are finite,* !n bomld=state problems, and in simple 

scattering problems with forces of finite range~ this is generally the case. 

However 3 in so-called "local" field theories rn±(E 1 ) is unbounded, the 

f.:.rouble arising from the high energy matrix 'elements of H1.• Conventional 

practice has therefore been to impose an artificial high energy "cut-off" on 

the matrix elementsj then to -:.arry out certain "renormaliza.tion" procedures 

(see section lO)y and finally-to allow the cut-off to become infinite. 

(Even when the cut-off is never explicitly mentioned this is what present 

renormalization techniqu~s amount to.) With the understanding that such 

d t b d t d · 1~ d -uad r, o , = oa ) proce ures are o e a op e l necessary, one may regar , ,-

as well ·defined by expansion ( 5, 10) • 

Passage to the limit E __. 0. 

· Difficulties now arise, however, in the passage to the limit E ..,. 0, 

Although the operators 
-ad 
U ( t ~ 'T oo ) are well-defined for finite E thei"r 

matrix elements may nevertheless not have well defined limits. For example, 

these limits will later be seen generally not to exist for bound state matrix 

elements or, in the case of complex systems, mixed state matrix elements. 

Ivl:oreOver, these :J..imits may not even exist for all the free state matrix elements 

of simple systems~ with which we are primarily concerned at the moment. ive 

shall attempt to d_eal with these difficulties in the remainder of this 

* If the eigenvectors of do not form a complete set, 

said to b6 bounded if its norm is finite. (For the definition of "norm" 

see section 9.) Notice. that we do not, say that H-. 
.L 

by itself must be 

bounded" For example 51 any potential which has even the weakest kind of 

singularity is unbounded.; although rn± (E 1.) may remain bounded. 

r . 

... 
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section and ·in the. next section, but it is here'that the formal theoJ1' ~u,ffeps 

most from lack of ··rigor. 

<· In the limit of vanishing € the mathematical :r:?le played oy th~ 
' r • ~ 

of the_ denominators · ~, .:.. H0 ± i m € · (m = 1 9. 2~ •• n1 in 

expansion ( 5 ~ 5) reduces solely to' one ~f d~termi~i~g the contour for integra~ions 
~ . . ' 

imaginary parts 

(if any occur) around the pole at E 1 • · In this limit therefore the ratios 

l'n:t(E 1 ) may all be replaceO. by 

(5.16) 

and one may write 

i H t · -i H t 
u(t, :;= oo ) 0 - 0 e · . U(O, ~ ClO) e 

' 
(5.17) 

where 

U(O, ~ 00 ) = 

!g,alytic continuation. 

The series (5.18) may be regarded as an e_3Pansion in powers o_f a 

"coupling constant" g to which the perturbation H1 is imagined as bein~ 

proportionalg 

' " 

(5.19) 

The free state matrix elements of series (5 .18) are actually knovm [JtqJ 
. . 

to possess finite radii of convergence in the complex g-plane for many 

simple s~attering problems. Inside these radii~ which generally v.ary from 

one matrix e:l:-ement to· another, (5.18) defines operators U(O, ~IXl ) which 

are analytic in g. For these same problemss however, the transformation 
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operators from the eigenvectors of H0 to the eigenvectors of H ·are'known [~6) 

to be analytic everywhere except at discrete sets of poles. Therefore (5~18) 

may be used to define U(O, =F oo ) everywhere in the g-piane by analytic 

continuation. We may advertise this possibility by replacLng {5.18) by its· 

formal equivalent 

U(O~ TOO) 
(5.20) 

I 
It will become apparent that this closed expression quitegener~lly has 

' . * 
-m~aning for all systems ·even when its expansion does not. 

Alternative limiting procedure •. 

OWing to the replacement (5.16), Eqs. (5.18) and (5.20) are not 

obtainable from an adiabatic ~witching of the perturbat~on as (5.5) is •. . . ' 
I 

They derive instead from a eome_what different limiting procedur.e. Using. 
. · .. ·. .. . . . 1 . 

Eqs. (2.16a); (2.13), (2.11) and (2.20), one may write· 

00. . ~E't' 
=. ,E /_ . e ... (t')e U(O$ t 1 )dt 1 ' -DO ,.. (5.21) 

where t' = -t. Eqs. (5.18, 20; 21) therefore result from a convention 

which takes as the value of any bounded function f(t) at t : ± oo ··the. 

expression' [..3oJ 

f(:roo.) = lim 1 DO ~ € t 
€ -co0 e:t. (t)e. · f(t)dt 

E.,..+O 
(5 .• 22) 

* In some field theories there is evidence that the expansion is nqWhere' 

convergent. [11 S t·o I ~ <.] 
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' 
If f(t) approaches a well defined li.Init as, t becomes infinite thE:m ('5 .22) 

givesthat li.lnit, as may be readily seen by a simple partial integratio'n. 

However, (5.22) eliminates any part of .. .f(t) which oscillates like .• · 

iwt . 
e ( W # 0) as t ~ :.t:O() • . It will be seen in the next se.ction _that: the 

operator U(O.~~ t) fre~uently has such oscillating components. ·These 

components will therefore be eliminated by the definition (5 •. 20, 21). · 

'It is possible here to anticipate the fact -that. the· operators 

U(O~ TOO) are often non-unitary.. Although the operators uad(o,:F~) : are 

necessarily U:nitary by their construction.~~ the operators ·u(o, :#.oo) are, 

by (5.21) .ll expressible only as weighted sums (~ products}_ of unitary 

operators, which certainlY does not guarantee their unitarlty. 

Conventions to be adopted • 

The convention ( 5 .22) is, for the remainde_r of this article, to 

·be applied to the definition of the operators U(t,:Foo) and U(:oo.~~ t) 

as well as U(O.Il 'foo). Evidently then 

U(t;-roo) = u(t, 0) U(O,=Foo) (5.23) 

U(=Foo, * (5.24) = t) ' 

U (:too , :!= oo ) - * = U(=Foo 1 :t. oo ) (5.25) 

From now on whenever expressions like (5.18, 20, 21) are written, 

involving the Green 1 s functions Go:t: or· G ::1: , it will always be under-
. . 

stood that the limit E ~ 0 is finally to be taken even though not 

ex:p::p .. citly indicated. With this understanding it is customar,y to write 
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E :::: <P 1 
E 

(5 •. 26)_ 

£(E) , (5.27) 

' 

where the symbol (J. indicates that tpe principal value of any integral · 

in which it appears is to be taken. Eq~ (5.28), which separates the Green 1 s 
function into its real and imaginary parts, makes explicit the effect of 

the.contour integration around E1 • 

·. Eq. ( 5 .27) may also be writt~n in the form 

S (E) 
· -1 r co i Et :.. €·1tl 

= (2rr) v_~ e dt 
_1 /' 0t0 i Et . 

(2'1'r) V..,
00 

e dt 

This leads to th~ purely formal equation 

(5~30) 

which we shall have occasion to co~me~ on la.ter. 
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6 ~ LEVEL SHIFTS 

Construction of the eigenvectors of. H. 

The operators U( 0, =F oo) have now been given a clear definition_; 

and we may proceed to write Eq. (4.30) in the fo~ 

' . 

., 

(6.1) 

which follows from (5.21) and (2.13). Here, in addition to the vectors 

representing retarded-wave solutions .of the scattering problem, 

we have also introduced the advanced-wave solutions l !-') Multiplication 

of Eq. (6.1) by £ 1 - H ± i€ yields (E 1 - H) l'5:') = 0 in the limit 

E ~ 0~ showing that the J .'J±.') are indeed eigenvectors of H. · 

This construction of eigenvectors of H evidently works only if 

E' is an eigenvalue of H as we~J. as of H0 , i.e. if there is no level 

shift. This condition is of course satisfied for the free states in simple 

scattering problems {Eq. '<4.25)), but it is not generally satisfied for 

bound states, nor even for the free states of some complex systems, e.g. 

interacting fields. For bound states the construction (6.1) gives~ vanishing 

result in the limit E ~ 0 since E 1 is then generally not included in 

the spectrum of H and the denomi.nator E·' - H · ± i £ remains finite. Thtis 

0 

Construction (6.1)· may, however, be salvaged for general use through 
. . level 

a simple reselection of the. unperturbed Hamiltonian 'operator~ Let theAshift 

(if any) of the state ·\<X/) be denoted by · 1:::. E 1 so that 
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H' = Ho' + 1l E' •. . (6.3) 
' . 

The /:::.E 1 are of course unknown in advanc~ and must be computed in,the 

course of solution of the. problem. In sections 9 and 10 it will be shown. 

how these level shifts may be determined, but for the present this _question 

will be set aside. Introduce the operators 

L\H = L: ' I ex:) t::. E' <o< o' \ (6.4) 
0 

·.· 

'J-(,0 = Ho+ t::.. Ho (6.5) 

'J-£, = Hl .:.. b. Ho (6.6} 

are. eigenvectors ·Of 'J£ 0 as· 

well as of H0 • If 'J£0 is taken instead of H0 as the unperturbed 

Hamiltonian, and if 'J6 1 is regarded as the perturbation, then no level· 

shift occurs, and 

Construction (6 .1) may therefore be used for all eigenstates of H which 

have counterparts in H0 if one writes 

= ±i€ \O(o') 
E•- H ±.i€. 

(6.8) 

where 1.,.L(t", t 1-) is the modified· transformation operator in the inter­

action representation ·defined by the neW O;perato~S 'JCO;.'Jil .I ·1-nd Z 1 ~ · iS 

a positive real normalizing factor$ th_e necessity for which wiil pl"esen~l.y 

become apparent. It is to be remembered that E1 in (6.8)-is now an 

eigenvalue of the total Hamiltcrmian operator H. 
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The normalization constant. 

The normalization constant Z1 has a simple physical significance 

which may easily be seen by multiplying the vector :1 0( :t: 1) by the Hei'mi.tia.n · 

adjoint .of Eq, (6,8) and· observing that· 

--

in the limit E ~0. This relation together with the requirem~nt 

:.1 leads to 

Z' is the pr'obability of finding the unperturbed state 

perturbed state \ 0( ±') . * Therefore. 

o ~ ·z' ~ 1 . 

(6.9) 

(6.10) 

(6.11) 

In the next se.,ction -we shall see that Z1 : 1 for the free states in simple 

scattering problems, so that Eq. (6.1) is still valid as it stands. Z' is 

generally different from unity~ however, for problems involving bound,states 

or interacting fields. 

The case of bound states. 

In the case of bound states there is a high degree of. arbitrariness· 

in the construction (6.8). It is apparent that ::t: i€(E~- H)/(E'- H±i€)-+0" 

so that the expression ± i€ (E' - H ± i€)_1~1-,p) is, iri the limiti :an 

eigenvector of H corresponding to the eigenvalue E' regardless of the choice 

* That Z 1 is independent of the ± signs may be inferred by taking 

the scalar product of (6.8) with itself. 
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of the vector ·Therefore the bound states of the ·two systems _,H~-
---

and H can be paired off in any manner desired, the level shifts .6 E1 . 

being adjusted accordingly. 

This arbitrariness does not exist in simple scattering prob-lems 

nqr in quantized rield problems. For these problems there is a 11 natural" 

pairing of states between H
0 

and H ·which is dete~ned first of all by .. 
a "natural" choice of H

0 
and, secondly, qy the physically motivated _. 

procedure of adiabatic switching. We have seen that the validity of 

adiabatic switching for these problems depends on wave packet arguments. 

No such arguments exist in the case of bound states. However, there exist·s 

a celebrated-theorem~ which will be proved in section 9 9 which permits the 

extension of the adiabatic pairing process to bound systems a~ well as to 

all others. This adiabatic theorem states that a bound-state eigenvector of 

H0 is dynamically transformed into a bound-state eigenvector of H when the 

perturbation is. switched on gradually~ provided the vector is subject to· 

certain w~ll known restrictions· (see end of this section) if H
0 

possesses . 

degeneracy which is removed by the perturbation. 

In the limit of vanishirig E ·, therefore, lo<:') may for bound 

states as well as free (Wl!tl:i i-~ppropriate restrictions when degeneracy if!· 

removed) be defined as Uad(0 9 'FOO) jo< 0 ') apart from a phase factor. 

Unfortunately, as we· shall presently see, wheri a nonvanishing level shift• 

occurs the phase factor oscillates infinitely fast as E goes to zero. 

This prevents ifd(o$:Foo) from being well defined in the limit. However, 

,. 
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the difficulty can be avoided by writing [ 3~] 

... 
lim 

= · E+o 
-ad \0( ') U (0, :J:oo ) o (6.li) 

< O<o') uaa<o j =~= oo ) \ 0( o'> 
Tr.te numerator- and denomi-nator of this expression have the same oscillating 

phase~ so· the ratio is well defi~ed ~ .It iS evident that the norma;L_izing 

* factor has been correctly chosen. 

Remaining arbitrariness. 
' i 

Actually, the construction (6.12) still does not remove all the 

arbitrariness in the pairing;of bound states. The pairing still depends 

on the operator H0 , and an eigenstate of H0 which passes.over into a 

certain eigenstate of H can.be made to pass over into quite a different 

eigenstate of H if H0 is redefined. This may be illustrated by the simple 

system 

H = c :) '(6.13) 

... 
which has a discrete spectrum of only two levels, Oand 2. A choice· of H0 . 

_according to 

c _oJ ( 0 1 ) Ho - Hl = - ' 1 2 
(6.14) 

Evidently also, 'll (0, =FoO ) 

l -ad J where U (l=oo, 0) d -ad . _ , denotes the diagonal part of. U (-:roo, 0,,, 

(For definition section 11.) 
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I •· * leads to the adiabatic par~ng 

0 l/J2 . ( ). ( J -+ ··1/fi . (6.i5) 

'· ... 
while the choice 

(6.16) 

leads to the opposite pairing. 'The two choices correspond respectively to 

1Go - (: :) and Ji. = (: :) 
(6.17) . 

It is not possible to tamper with H
0 

in this manner .in simple 

scattering and quan~ized field problems. In the simple scattering_case 

it is possible to prove that Z1 = 1 only if H
0 

is chosen in t?e· usual 

manner, in which the remaining perturbation H1 describes a force which 

is confined to a. limited region of space. This last point is essential, 

· as will be seen in the next section, and the proof would no longer hold ~f 

H1. were redefined as in (6.6), since the arbitrary level shifts ~ E 9 

:would not corres}Jond to a confined force. In fact, everything.'wouJ,d break 

down, as one would consistently get Z 1 
__::,... 0. 

Contrastingly, in the·case of quantized fields a·redefinition of 

the type (6.4, 5, 6) is carried out precisely in order to cancel that'part ~ 

* Here' it is sufficient· to multiply H1 in. (6.14) by a variable ""· '· then 
.. 

to regard H as a function of ~ and observe the continuous change of 

its eigenvectors as X. passes frotp. 0 to 1. 

,. 
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I 

' ! 
' I . 

of the. interaction between field quanta which is ti.nconfi~ed (i: •. e~, which 
. ;- .· 

exists no matter where· a given quantum is located)~ the .so. called self~ 

interactions. However.ll Ji0 must be chosen in. a definite wayy and there .is 

no arbitrariness in the level shifts. (See section 10.) 

In practice.ll of course, there is usually a "naturalf' choice ·for H0 

even in bound state·problems. Therefore the remarks about arbitrariness are 
< 

largely academic .ll and we shall _continue to assume that the correspo_ndence 

between the eigenstates of the actual system H ·and those of the reference 

system is unique and well defined in all cases. 

Oscillating factors. 

The effect of the level shifts on the time behavior of the unmodified 

transfo:nnation operator U(t"jl t 1 ) may be readily seen. From Eq. (2.20) 

and the commutativity of A H0 with H0 .ll one gets 

-i A H
0 

t 11 _ i b. H
0 

tv 
e 'U(t 11 .ll t') e u(t", t') = 

ors i~ matrix form, 

=i 6. E" t" + iAE 1 t'/ · 
e \0(/'ltict", t 1 )jot/) 

. {6.l9) 

When t::. E 1 or. fl. E" is different from zero the corresponding matrix 

elements of U(t".ll t') have osc.illating factors. Because of :these, factors 

the matrix elements are forced, by the limiting convention (5.22), to· 

~anish for t 1 .ll t" = ± oo .ll and results like (6.2) follow. 
0 

The fact that Z 1 is generally less_ than unity implies that 

'U. ( t", t 1 ) itself possesses additional oscillating parts whicn are 

eliminated by (5.22). Otherwise the unitarity of ~(t", t 1 ) would 
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gu~ra~tee the normalization of the vectors. (o(.t.'> without the.factor·,·Zi~~·· 
The simple example (6.13) readily shows these extra oscillations. 

the first choice in (6.17} for 'J-C 0 ~ one has --
'U.(O$ t) 

i Ht -i rr6 0 t 
e' e 

(

l + e-2it 

. 1.. '. 
- 2 

. -2it 
· 1- e 

2it 
e· 

2it 
·e. + 

:) · .. 

... 

(6,.20) 

yielding the non-unitary result. 

1l(o,~oo) = !(: -:) {6 .. 21)' 

which leads to Z
1 

: ~ for both eigenstates of 1C0 The oscillations 

of ii. (t", tV)· generally do not.occur multiplicatively. 

Th~ fact tha.t the level shift .oscillations in U(V', t 1 ) · do occur · · 

.multiplicatively/fallows one ~o determine.the form in which the oscillating 

. · -ad · · · · 
phase appears in U ·(0, :r- 00 ). Regard the adiabatic switching (5.1) as due 

to a time. vari,ation in the coupling constant of the ·form 

dg/dt .· = ± E: g . (6.22). 

The level shifts ~ E 1 at any instant of time will be· functions of · g.' . · 

The operators ifd(O, =Foo) may be expressed. as i.nfinite products of 

· -ad 
factors U · (t, t + dt), each factor contributing ·a.r:i amount ~E 1 (g)dt 

·to the level ~hift p~ase for the state J 0( 0
1 ) 

between 0 and =F 00 is evidently · 

,•. 

The total phase change 

·. 

(6.23) 

.. .... 
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The matrix element (0</ \ Ua~(O] ~oo) jo</) will therefore have as .·a factor 

. exp [ (±.iE ) -y g D. E 1 (g)g-1 dg] • Its other factors will depend on (; in 
. 0 

a much less singular way. Hence one r:pay write 

l~E' 
(6.24) 

'. 
Rigorous derivation of Eq. (6.24). . ·· 

Eq. (6.24) is useful theoretically although it .is not to be rega~ed · 

as providing a practical method for the calculation of level shifts. It 

may be derived in a more rigorous fashion by using the:ti.me-ordered expansions 
I . • 

. l . 

(1..3lb) and (1.32b) of the interaction transformation clperatorii ·and the -~ 

equation of motion (1.26) for operators in the interaction representation~ 
t 

One writes [3 '+] 

- = -. 
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Advantageous use of the time-ordering brac~ets is made here. The firtai 

form .is obtained by a partial integrat~on and the observation ~hat the 

resul~ ··is equivalent ·to an appiication of the operator H1 =F iE. g ~/a g 

in the marmer indicated. The· operator H1 = H1 ( 0) · com~ a from' an e"va:luation··. 
~ . ' -

I 

at the lower li,mit of integration; the time-ordering bracke~s ~psurfng_tha.t 

it s~ands to the left. Eq •. (6.25) may also be derived by worki~ dire~tly. 
' > 

I 

Using (6.12) and (i6.25) ~ and letting the limit E ~ 0 be unders.tood ·· 

one may now write 

. ' 

which leads to the identification (6.24) for the level shifts. The vanishing 

limit expressed by the first line of (6.26) occurs because l<i::e') , unlike 

ijad ( 0, ~ oo ) \ 01.0 1
) 9 ·does not depend on € in a ~ingular way. 

Eq. (6.24) may actually be generalized to 

< 0( o''l uad ( 0 ~ :;; 00) \IX 0 J > A E ' = ± it g ~ < 0( 0 11
\ ij8.d ( 0' -:p 00 ) I <X/> I d g 

(6.27) 

' \ 
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for arbitrary . < o<o II I (the limit G 41- 0 being uncterstood) 'since the ·. 

-oscillating phase· factor is independent of· (o</' I M~ltiply:ing ·(·6.27) .. 
· .-.a.ct·· · 

on the left by u . (.;:oo, 0) lo<o'1> ·.and oh 'the· right' by .(o(,/1 , 'and 

Summing OVer .0( u I · and.· o(0 IJ , Orie gets 

· · -ad -ad · 
td:I

0 
=±.iEg·u (':roo~O)'dU (O;=Foo)/ag, · (.6 ~·2s) ·. 

' ' 
·{ 

which, together with (6.25), gives the· concii3e statement 

' (6.29) 

Some remarks. 

Several final remarks should be make. The first is that th_ose. · . · 

eigenstates of H which have no counterparts in · H0 (if any)· cannot be 

constructed by schemes based on (6.8) or (6.12). · They IIJUst be·f-ound by; 

independent and generally more difficult means. The second is· tha~ if ant 
of the states l~o'> has no counterpart ~n. H,. because 'it Uridergoes' de¢ay 

for examplej then the normalization constant z' vanishes for that state 

and the symbol * is meaningless. 
•• 

·The third remark is that the .redefinition (6.4, 5, 6) ·is .not the 

only possible one which eliminates th'e level shifts. In relativistic · · 

field theories 11 H0 generally does not commute with H0 ·but is chosen 

in such a way as· to maintain the-manifest covariance of a ·rela:tivisti~ 

* 
~~·· 

rn·this case Z1 is rigorously zero. In divergent field theories on~ . 
some;ti~es encounters the equation Z1 ::: 0, but what is·meaht ~s·' only-

that zr becomes vanishingly small as th'e high energy' cut•off' is 'allowed 

to become infinite. As long as the cut-off remains fin~te Z 1 is~finite 

and the state vector lo<::f!.t) can be normalized. The sytnbol )«:t:. 1 ) 

then retains meaning even in the limit. 
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formalism. However, the ~-~;eice {6.4) is sufficiently typical and- illustrates 

·all the features of the pr.~cess.' -~~ ~act it differs from the rela:tivistic 

choice only in that. it may be described as a renormalization. of ·emergy., 

which is not a relativistic invariant, while the relativistic choice is a 

renormalization of rest mass, which is invarianL. The one is generally only · 

a slight modification of the other: 

The last remark concerns degeneracy. If there i_s degeneracy which is 

removed, at least in part, by the switching on of the perturbation then the 

constr-ucti~_!l ( 6 .12) will work only if the vectors \!X 
0

1

) are suitably 

chosen, viz: they must be the limiting forms of the eigenvectors of H as 

the perturbation is switched off. This requirement evidently leads to_a 

vicious circle as far as practical applications are concerned, since the eigen­

v.ectors of H are generally not known in advance. Therefore, in the_ pre_sence . 

of degene~acy, Eq. (6.12) must be understood as having theoretical. utility only. 

The situation arises mainly in bound state perturbation theory,* and 

there gne has several methods of dealing with it practically. Two of these 

methods will be outlined in section 9, one which deals directly with .the 

projection operators arising from the degenerate levels, and the other which 

systematically redefines H0 ~C that all the removable degeneracy is removed 

in advance. 

It will also be seen in section 9 that it does not n'latter t'lhet.her 

the bound-state eigenvectors of the system H are obtained by adiabatic switching 

from the remote past or the remote future; the result will be the satn_e in 

either case. That is to say, ~~+-') = jiX _1) , and the symbols ± become 

superfluous. This is true even in the presence of unremoved degeneracy; for 

which construction { 6 .12) is valid without restriction. It is not; however, 

generally true for free states, for which unremoved degemer·acy is the rule_ 
rather than the exception. Thus, in scattering problems,.the ~ signs_are 

not superfluous. In passing all the way from - oo to + oo , the perturbation 
being switched on and then off again~ the \~o'>will become shuffled around, 
winding up in new iso-energetic combinations. 

The situation may also arise in field theories for which the coupling,is 
asymmetric (see section 10). The proper choice of unperturbed vectors is 
then usually obvious~ however. 
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7 • SCATTERING CONTINUED 

The ort.honormality of the vectors,' I 1': ') . 

The first task of this section will be to prove the orth9nqrmaiity . 1 

of the free-state vectors I !:i: 1) ~s defined by (6.1). For this. and ·many 

other subsequent purposes it will be convenient·· to ihtroduce the follo"'ixlg-
" 

"11' * auxi Iary operatorsg 

R:l::: = H1 U(O, =F-oo) 

= E' R:t:(E') lo<o')(O(/\ ' (7 .1) 

where 
Hl L 1 - Go.:CE') Hl]-1 R"=(E') - (7.2a) -

- L1 - H1 Go±(E' )J-1 Hl (7.2b) -

- Hl+ H1 ,G:.(E') H1 (7.3) -

- H1 [ 1 + GO±(E1) R:h(E1 )] (7.4a) -
- [ 1 + R:~:.(E') a02:.C:E' ) ] H1 . (7.4b) -

Eq. (7 .2a) follows from ( 5 .20). ~he re:rnaining forms may be obtained_ either_--

by expanding and comparing t·enns or by using·Eqs. (2.14) and (2.16) judici:oualy. 

By similar algebraic manipulation one may also write Eq. (.6ol) in the forms 

r 1 - Go,(E') ~lr I !o') 

[ 1+ G:(E') ~1 ]110 1) 

I 'So') + Go~<E:•) Hll l':t:') 

[ 1 + G0:(Eq R:(E' >]I ! 0 '> 

(7.5)' 

-(7.6) 

(7.7) 

(7.8) 

* The operator R.: is often denoted i:n ·the literature· bv T( :t:.). Frequent 

use is also made of a symbol ~±)(E) - [ 1 - G0)E)H~] -~ such that 

u <o $:;: oo) = I::n <=> (E, > ,O(o'><cxo' r 
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The -proof of the 'orthqnormality of t.he 
I 

handling of limits. One must not allow 6 to vanish too soon. Thus, 

from (6.1), 

(E 1 - H) I'S:~:') - ±i€{ ]!/) - \:S:')) . (7 .• 9). 

This equation and its conjugate yield the identity 

(7.10) 

which in t·urn, with the aid of (7 .S), ·gives 

E 1 - E" ± 2i€ 

+ <J0
11 jGo:~:(E 1 ) R;:{E 1

) J 5/) J . 
: S(~o'~~:):f- 2€ <~·:')ImR~b:.). 

(E 1 ·- E11 :: 2iE )(E 1 - E" :1: i €) 

· 0 , E" # E1 

(7 ~11)- . 

0 ('s/1
,; So') .±: €-I <~011 I Im R-:, \'So'> 

'11 

: ,, 

where the obvious'relations 

* Go:t.<E' ) - Go;:.(E ~ ) j (7 .12) 

have been used, and Im R~ is -i times the skew-Hermitian (imaginary) 

part of R-.t; • The orthonormality of the I 'S:t:) will follow from (.7 .11) if 
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lim· € -1 <J/.\~·R:\ )/) 
e+o 

Proof of Eq. (7 .13} in the ~ase. of simple scattering.· 

It will ·no~ be shown that ( 7 .13) is a ·correct : equat.ion !or · ~imple · 

scattering problems, but only as the result of a certain necessary double· 
" 

limiting process. ·. 

In order that the normalization condition (1.35} be ·imposable on ·· 

the free-state. basic vectors J :S/ > it . is necessary that the system be . 

placed in a box, which is conveniently taken as rectangulaf with ~1de·. L •. 

* If the coordinates q 1 of the system are introduced, ~h~ free-'state 

eigenfunctions < q 1 ] So') will be proportional to (L -N dNq 1 )~_: :where 

dNq.B is the volume element in coordinate. space and. N · is the number of 

de.grees of freedom. Consider the matrix element 

= 
. . . 

. (7 .14) 

of the perturbation operator H1 • Its coordinate matri4 elemep.t.s .. 

<q"/ H1 ) q 1) a~e proportional to (dNq" dNq 1 )~ · so that ~he right-h~nd ' 

side of (7.14) becomes a double integral. Now, one of the requirements 

on the .scattering force is that it be confined to ·a 'limited region of spa6e 

(see section 4). ·This means that the matrix element. 

must vanish when q 1 or q" is outside of this .region. The integt<J.t;ion-,. 

in (7 .14) ~s therefore convergent,** and ·the result is of ord.e'r, :L "'~.' · · 

* The inclusion of spin or other variables is irrelevant for ~the present. · . 
argument. 

** This also assumes the forces are not too singular at the ori-gin. 

i, ' 

\ 
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We write 

( -N). 
: 0 L o 

By similar reasoning it is. evident that the .corresponding matrix el·ement 
-N. . ·. . . ··* 

of each term of the expansion of (7 .2a) is of order· L ~·and hence· that · 

(7 .16.) .-· 

the expansion being evaluated by analytic continuation' if necessary. . . 

Eq. (7.16) must hold separately for both the real and i.inaginary parts of 

R± , and therefore 

. E -1 ... 

. (7 .17) 
( . 

Eq. (7 .13") can follow from (7 .17) only if, as E vanishes~ 1 

becomes infinite rapidly enough to tnake € -l L-N infinitesimaL The 

necessity for this, however~ can be· shown by two arguments. The first is 

a physical argument and is based on the wave packet picture~ If v is the 
~ 

group velocity of a packet then ~~/v is the length of time it takes for 

the packet to traverse the enclosing box. This time must· always be mlich 

greater than the time 2/ € of duration of. the perturbation, if the 

* Eqs •. (7 .15) and (7 .16) are actually satisfied by a..much wider class o.f 
potentials than those which are•strictly confined to a limited region of 
space. The confinement restriction can be replaced by weaker condit"ions 
concerning the rapidity w:i,th which•the potential vanishes·at large distance 
Eqo (7.15) by itself~ however, is not sufficient to express these 
conditions, as is shown by the. well known example of the Coulomb potential, 
forwhich (7.15) holdsalthough (:So.'1 1 R J )/) is divergent. There is 
strong evidence that the Coulomb case can nevertheless be analyzed by 
the formalistic techniques of the present article in terms not only of. 
t.he well known infinite phase shift but also of a simultaneous state 
vector renormalization, although such an analysis has never been carried 
out; to the author's knowledge. 

'-,.' 
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adiabatic switching procedure is t"o p~ovide an adequate mathematical 

substitute for the actual scattering process in which the packet moves 

unperturbed both before and after scatt·ering. Therefore 0 

. E -1 t_;l -+- 0 • . (7.18} 

which leads to (7 .13) for all N. 

The seconr argument is more mathematicalg Whert the system is 

placed in the box the energy level_s necessa~ily become discrete, the level ,. 

~ . . ·. 
spacing being of order L "·· In order that the imaginary parts ±i€ of 

the "energy denominators11 of the Green's functions G0~(E} give the correct 

causal description of the scattering·process (Le ... , be able to dist:i,.nguish 

between retarded and advanced wave solution~), € must be ·much larger 

t}!.an the level spacing so that the summation over intermediate states will 
' j ' 

' 
take on a fine-grained aspect with respect to € and bejrepresentable··a.s 

an integral over.a contour which passes definitely to on~ side.or ,the other 

of the energy pole. This argument again gives (?.18), and the orthonorinality 

of the I 'S: ') is therefore provedo 

The case Z' < l. 

In those cases in which the normalization constant Z' of Eq. (6.8) 

is different from unity, Eq. (7oll) may be used to determine its value •. 

Here we work with the operators 

(R. :l:. :: 'J{l 'U.( 0 .P +00) 

~ Sing (R± + R:- • 

(7.19) 

(7.20) 

The notation "Sing" separates out that part of CR.:~: which has matrix ele~ents 

independent of L, L e .. the 11singular11 part of (ft±. For bound· states lR.;: 

has no nonsingular part R.: • For the free states in 



UCRL-2884 

-64-

'' 

' 1,' 

\ 
quantized field theories the matrix elements of R: are of order 1:-N,- the 

· exponent N depending on the number of field quanta involved._ Therefore~ 
. . .. 

while R;±: is all iinportant as far a.s scattering is concerned, it doe_s not· 

affect the normalizat·ion and may be neglected ·in the pres~nt discuss~~n. 

For orthonOI'fi1P.lity of the ve·ctors I ~i:. 1) one must· fi~st be able·· 

to show that 

'(7 .21) 

1\1 .. 
where the are positive real numbers independent of e and 1,· and then·. 

one must choose 

z' = ·1 ~-/\' 

In bound state problems Eq. (7.21) follows as a consequence of those symmetries 

of the perturbation which leave degeneracies ~n the system. In sec. 10 it will-

also be seen to hold i~ q~antized field theories • 

. The symboi Im in '(7.21) is actually unnecessary. It will-be seen 

in section 9 that in the case of bound states~ if there is any \l.nremoved 

degeneracy, 

·~., .. 

E" = E I 0 (71.2.3) 

This, combined .with the obvious generalization of Eq. _(7.8), gives 

E" = E1 

(7 .2-4) . ' 

or 

< 11 I 5 10 \ 1 ). . • 1\. , c- (o< 11 ex ') O<o l.t'ISIJ\.i= C<o - ~1.€ 0 0.; ~) 

' (7 .25) 

This result will also hold in the case of quantized fields. 
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Use of these equations may be readily illustrated l-rith the simple 

system (6,13). One gets~ with the first choice in (6.17)., · 

= 'JGl 

=1 1 l:t i£ 1 
:> 

±i€ E':: 
* 2iE- € 

2 
1 1 1 li: iE 0 

-· 

-1 1 -1 :i::. i€. 1 0 2 

±i€ ...... E' -. 2 
+21€-e 1 1 

.. 
1 1 

-
yielding the previously inferred result 1\1 

::: ~ ~ Z1 = -i for both ·States~ - . 

I 

The illustration with quantized fields will be given in section 10. 

Orthogonality of 

Returning now to si.mple-·scattering problems~· ~e note that since the 

are free-state vectors of the system H, they are orthogonal to any 

bound-state eigenvectors I J 1) which H · may have~ 

= 0 ' .(7~.26) 

This follows immediate~ from Eq, (6.1) multiplied by (J 1 I It ·also . 

follows indirectly from the observation that the expression ei Hot e-:-i Ht · 

may be interpreted not only (by (2.20)) as the: transformation operator. 

U(t.9 0) from time 0 to time t in the interaction repres<:mtation of. 

system H, with H0 as the reference system~ but -'also as the· transfomation 

operator from time t to time 0 in the interaction representation .of 

system H0 , with H as the reference system, Therefore by reilsoning 

2 

I 

0· 
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-·6.6- . -. 
identical with that leading to Eq. ( 6. 2) one gets 

the roles of the two systems now heing inver.t.ed. Expression (7 .27). vanishe's'· 

in the limit since H1 is not genera.lly included*. in the spect-I"'Jll_l9f 'H0 .;· 

This equation can be obtained directly through use cf the limiting conventioJ:?: · 

(5.22). Multiplication on the left Qy 

Question of unitar~ 

It is now possible to discuss the unitarity of the operators· U(O.s'i=oo) 

and U(±:oo ,~oo). Eqs. (6.1), (6.2) and (7 .27) evidently allow one to wr;ite 

.. (7 .28) 

Therefore} owing to the orthonorma.J.i ty of the I 'l' :') and of the I'! 0 1
). , 

-· *:... . 
L 1 /!"')<1"o'l U ( 0~ T-OO ) U ( 0, =F 00) - = P:r (7.29a) 

~ 

0 

- l - PJ (7~29b) - . 0 

- ·- * L:' l!~')<!-.'l (7.30a) U(O~:roo) U(O, TOO) - - Pr -
= l -· PJ (7 • .30b) 

Where P! · and P1 are the free~·state projection operators for the systems 
. 0 

and H respe.ctively, and PJ and PJ ·are the bound-state projection 
0 

·ape;rators. 

L:'\J'>·<J'\ . 
(7.31) 

* For simplicity in this dis.'lifussion of bound states we exclude cases in 

which some of the bound levels of H and H0 coincide. 
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= P'S -r PJ. = 1 

UCRL-2A84 

. . . 
express the completeness condition 

for the eigenvectors of the two systems. It is seen that if either of the 

systems has bound states th~ operators U(O,=Foc) ·are not· strictly unitary. 

From Eqs. (5.8), (5.24), (5.25), (7.27),. (7.29), {7.30), one g.ets.~oJ 

- *-u (±.oo ~ =F oo ) U (7-oo, -1= oo) 

- u(~oo, o) U(O,:too) u(:roo, o) u(o,~oo) 

(7 ~32) 

or 

s* s = s s* =·pi 
. 0 

Therefore the unitarity of the scattering operator, unlike that of th~ 

operators U(O, =roo), depends only on the comparison system H0 • .It, as 

is so often the case in practice, H0 ·has no bound states, then the 

scattering operator is strictly unitary regardless of whe~her or not the 

system H has bound states. 

Far systems involving quantized fields analagous·quasi-unitaey 

operators may be obtained by 11 renormalizing" the operators , 'U.. (0, :t-OO). 

Denote by 
. I , . 

the states 9f H0 which undergo decay or otherwise 

have no counterparts in H. Denote the remaining states by \(3 0 ')·. ·Then 

the "renonnalizedtt or ricorrected" operators are defined by 

= 'U.(o,:roo) L 1 }[jo')z'~<~c/\ 
(7 .;34) 

,: 
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.... 

. . . 

Evidently 

I 
P(Jo ·and ·p'To being the ·projection ope1~ators on the st'fl;.es 

the .states· lro 1 ) respectively. 

(7 .36) 

' / 

L,1o 1 ) and 

The scattering operator for other ·important complex systems will be' 

defined in section i2.*· 

Structure of the S-matrix. 

We ·shall now carry out an explicit construction of the scattering. · . 

operato~. For this purpose thre_e simple identities will be needed. ·Fi"rst, 

from Eqs. (2.16) and (7 .2), 

.- ' . 

. (1~37)· 

Second~ from Eqs. (2.13) and (7 .3) 9 

(7 .38) 

The third. identity results. from taking the limit E" ~ E 1 in (? .38): · 

.. (.7 .39) 

. Using these identities together with Eq. (7 .8) ~ one may write the element.s 

of the. S-matrix and its Hermitian adjoint in .. the form 

( J 0 ''I U(:t:co, ~ oo ) I j 0 
1
). - ('s ~ II ) j :t: I> 

= < j~" I [ 1 + R±(E11 )G~(E~t ~ [ 1 + GO±(E 1) R*:(E I)] I· !o 1> 

i . . <-s:lf [R:~:(E") +R:t:(E 1
) +(E'- E11 )HlG~(E")~(E'')Hi] ho~>· 

E"-E':i:iE . . . · ... 

i • (s. » \ [a,.(E•) +. R,.(E • l +(E•- E • )H1 G,.(E" )G,._(E • )H1}1 :r: > 
E'- E"-i. i€ . . · . · 

+()0
11 I H1 G:{E") GJE 1

) H1 \.!0
1
) 

For bound systems the scattering operator· reduces to the triviality s~=l. 

•'. 

,i . 
. ·i. 
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iE 
----- 2 2 
(E" - :S' ) + E. 

--;.. .s < ~.·~!:) "~' 2'lfi .s < E" - E • > [ < '!," ) R: 1 :r.' > , ~H: (S:'')aR.,.< ~ • > /aE ·I ~ .' > J 
'<?~40) . 

The S-matrix is seen to have nonvanishing elements only for states 

with equal energies. This is a stat~ment of t~e r.act that the .energy'~±: th.e 
. ' .. 

:mperturbE3d system is conserved under a collision •. It is useful.to indic~te 
~··? . ' . . 

here several other ways of obtaining the same result" First, since ·H0 ·:: 

H 1 
::: E v for the states I ) 0'); 11 :t:.'> ~ use of Eq. (7.28) ena.bles one to .. 

* write 

.. 
This equation together with its Hermitian adjoint and Eq. (5.8) ·yields 

.·.1 

::: 0 ·'(?. 42) 

whic.h ·is the operator statement of conservation of energy. ~~ · (7 .1;.2) also . 

follows f~m (1.26) and the special cases of Eqs. (l.3lb ) i> (l.3'2b) 9 viz., · '. 

(7 I 3'' •'+ } 

The displ.~cement in time .. effecte.d 'by taking the commutator with H
0

. leaves 

* A related equation 9 namely 
.... ,' 

explicit definition to the operators '!:t: which~ up to 'now~ have· bei3n: · .. 
largely undetermined, their role having been con'fined merel.y to one _qf 

providing suitable labels for the eigenvectors of H. 

.) 
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',. ::;. 

S unchCl,nged since the integrations in (7 :43) run from t =- ':"' oo .to . t = + -~ -~ 

Finally:, ~.q. (?.41) may be combined with Eqs. (5.23) and (2.20) to ylel~ _ 
'. • ., ·c' 

once again Eq. ( 5 .l'l), which, when combined with the integral· equaiion 

.(l.30a) and the integral representation ·of the delta function _(Eq: .. (5.30)), ·. 
'-

gives 

·(7.4h) 

\'there . 
<7 .45_ar. • 

- (7 .45b) . 

satisfying 
-.' 

* ._ 0 

R:t:.. : R :t: • .... "'' -
In Eqs. (?'.43; 44) we have been careful to multiply by the projection 

operator Ps
0 

, since the removal of the oscillating compo~ents of tne · 

interaction transformation operator, which is implied by the limiting 

conyention (5.22), is not implied by the integral equations (1.30).· - •. •' . 

Eq. (7 .44) is the operator form of (7 .40), except that the t·erm 

involving the derivativ>e of R*-(E 1 ) in the latter equation· ·is m,issing.-

In simple scattering problems the magnitude of this. third term is of order 

E times that of the second and vanishes in the .-limit € .....,... 0 .. •· In· 

quantized field. problems, however, this term remains important and ~s 

~elated to the state-vector normalization--question. It will be treated­

further in section 10. For the present we shall drop it from the formalism. 

\ 

c ;~ ' 

; ' 
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The reactance operator •. 

A very useful development of the op~rator· formal~sm in connection 

with the S~matrix is the introduction of the reactance operator •. One uses 
y 

Eq. (5.28) to split up the terms of Eqs. (7.4) in the following fashion: 

[
1- H1 (P 1 J R~(Ec) = H1 [1 =F:'Tri b (E'- H0 ) R;t:(Ei)], 

E 1 - H 0 
C7.47a) 

(p -1 .. Hr] = 
E1 - H0 

. (7 .47b) 

These equations then give R:~:. :: 

K 

where 

K(E 1 ) :: 

-1 
: K(l ± ~ i K) 

1#11 

-1 
:: R:t:(l :;: ~ i R :t: ) -

(7.48) 

(7.49) 

(7.50) 

= H1[ 1 f (P 1 K(E 1 )] : [ 1+ K(E')(p 1 j H1, 
E' - Ho . -E' - Ho . 

(7.52) 

and where !. is related to K in the same way that the operators ·!~ . 
-· 

are related to R±. It is a prevalent figure of:speech, to refer to the 

construction of the operators ,! t: , ! from R =· ~ K as "taking the 
' . : ·. 

matrix elements on the energy shell." Taking the .matrix elements of 
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. . 
' *' ~s; (?.o48, 49) on the energy shell, one obtains · 

, I' 

'' 

·K - ' 
'(7 .53) ' 

1 :t:. i i K 
{fir\ 

K = '.{7 .54} -
l is 'known as the reactance operator. It is a real! (Hermi~ian) 

·I 

operator since the,operators K(E•), by (7.51), are real, arldis therefore.'· 

. '** ' ' i ' often easier to construct in practical cases than the operiators R:. • · 
,, , .· .. , I . -

The latter operators (and hence the S-~atrix) can be constructed from. ll 
l 

by solving the.integral equation 

(T. 55) 
[fOS to--~0::1 

which is known as the Beitler integ_ral equation. A This equation was first 

introd11ced in· order to desc_ribe the .effects of radiation damping in field.:.... 

theoretical scattering probl~ms. How· this description co~es·. about can 
. ' . 

easily be seen by expressing the scattering operat.or in terms of K o. --
Eqs. (7.44) and (7~53). give 

s l - ~ i K 
----- P'S

0 
o • 

(7.56) 
l+~iK 

' -
The matrix elements of ~ are computed ·up_ to a_ :certain :order in· a 

perturbation expansion (according to H~itler 1 s,prigin~l :plan,, the_-highest-

nondiverging order) and then insert~d ·into Eq. (7.56). The.presence of· K -
* Here one uses the identity 8(En-E')S{E''.' -E') = ~(E"- E''.I)S(E'''.- E'). 

'** 
The ease of construction shows up particularly when variational techniques 

are used.· 

,\. 
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in.the denominator insures that- many·h;igher terms in the exp~nsion of S_ 
. ' 

are actuaizy fnc1uded. · T~ese higher _terins account for ~he -radiati:on. 

dampirig a~d produce a reductio~ in computed scatteriJ?.g cross sections. 
. . 

The unitarity of S with ~e.spect: to the free-st~t·~ .. suhspa'c~· '. P$ •. 
~ . 

follows directlY from Eq. (7.56) and the reality of K • P~actical u~e ·or. - . 
Eq. (7 ..56) has th~ advantage that S remains unitary even though ohl.y an. 

approximation to K is inserted on the right-hand side. -
The phase-shift operator. 

Another expression for S which makes its unitarity:_manif~st is 

the following: t 

~· . 

s (?.57) 

Here '1( is a real operator known as· th.e E_hase-shi,ft operator, wpich is 

defined only with respect to the subspace P10 and which may be taken to· 

In terms of · "t . the' operators R.., -- and- K have the .,_.. 

'. 

±i'l 
R ..i. = - .2 e sin ')1 _..-.. '1. ; (7.58). 

~ _ . - .2 tan "t 

From Eq. (7.58) one gets 

* ·R R 
-~ -·± 

Integral forms. 

* -· R* R - - -* 

- ~ .. 

.2 . 
::: 4_ sin '>z 

(7.59) 

.· 
. · ..... 

'(7.61) 
· .... 

·' 

. ' 

It ·is 'Sometimes ·convenient to· introduce integral forms for the -
operators R:1: ~ K ~ 

' 
R: ~ K • This may be done by using Eqs. C5 .17), ,. -

(7.8), (7 . .28) and (.2.1.2), and writing 

If 
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U( t' ~oo) ·, = P'So + L J ~i(Ho - E' )t -Go·:t.~E') H±(E') 1-so')(s/\ 

, ::rEt ""\' '/_ t i(H0 - E 1 ~ {( }t' ' .. 
1 e . . L,.J •co e . R::~:. dt' l'so')(so' l 

- i .1 t a cv )dt' TOO :: 

where 
i H t -i H t . 

0 0 
e R::~:. e 

Evidently 
. f'OO-

!± = J_ 00 R±(t)dt. 

. ., 
Using definit,ion (7 .·63) ," one· gets from Eqs. ( 5 .17) and (7 .1) 

a result which could also be inferred. by substituting (7.62) into the 

differ~ntial equation 1 a u(t, =Foo)/a t = 'H1 Ct) u(t,-=Foo ) .. 

In a similar man~·er one may introduce the operator 

· 'KCt) 
i H0 t -i H0 t 

= e K e 

(7.62) 

(7.63) 

(7.64) 

(7.65) 

(7.66) 

(7.67) 
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~where ., 

()(t.) e_(t) ... 
.L • 0 

Here we have made. use of the integral representati9n·· 

€' \t\ 
({:> (1/E) dt" • (7o69) 

The re.lation betw·een the operators R±. (t) and K(t) is determined by 

Eq. (7.49) to be 

R :l:(t) - K(t) [ 1 =F ~ ~ f.ooe.o R: (V )dt •] (7.70) 

which can ·also be obtained by itef~ting the split form of Eq~· (7 ,65), namely 

ii,.(t) = Hl(t{P •• 'F ~ i./__: ii._(t')dt' -.! i A~-.(){t-t•) ii._(t')dt.J, 

(7 :·71) 

and making a termwise comparison with the iterated form of (7 .67) • 
.. 

Integration-of (7,70) from -oo to oo leads to the.Heitler. integral 

equation (7.55), the reactance operator being now expressible as 

' 

K -- ~' oo K(t )ctt J_(/0. . ' (7:72) 

·Recurrence formulae for K and So -
When the· perturbation H1 is small enough so that it becomes 

practicable in actual calculatipns tp e;omp!J.te the'operators S and K by -
means of series expansions'; it is sometimes usefuL to have available 

relations between the terms of tne two series. The terms themselves may be 

obtained either by performing a .binomial expansion on Eqs. (? .• 4) :arid (7 ,51) 
~ 

or by iterating Eqso (7.65) and (7c67) 9 and using (7.39). In the latter 

c;ase· one gets 

.. ~ 
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00 

s - p! + L: sn - 0 n::l 
(7.73) 

00 

K = ·L: K - ~1 
-n (7. 74). 

., 'with 

sn = (--.i)n f...: dti ... j'_ooO'Q dtn a.(t1 - t 2); •. e.(tn-;l- tn)ii1 Ct1) ••• H1(t0 )P:s'o 

(7.75) 

'(7.76) 

·Eq, (7. 75) may also be obtained directly from (L3la), taking t" ·= oo 

t'--oa. 

If. the function fS ( t) in (7. 76) is replaced ny its· expression in 

terms of. e+(t) (Eq. (7.63)). and comparison is made with (7.75), one is led 

.,.to the relations ['7S] 

n-1 
sn 

1 i ,·2: sn-p ,!.p = 2 
p:l 

(?.?Sa) 

n-1 
- s~ + ~ i 2:' I( ·s - ..,p n-p 

P=l 
(7.78b) 

Eqs. (7.75 to 78) ar~especially useful in relativistic field theories; for 

which covariant calculations are demanded. The first few terms (7, 75) of the 

scattE;lring operat?r are easily evaluated by standard rules .. The 

corresponding terms of the reactance operator can thenbe calculated by 
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means of the recurrenc~ formula:~ (7. 78) and finally substituted back into 

(7.56) to obtaiJ:l a unitary S-matrix. 

Eqs o (7': 78) together with their Hermitian ad joints imply . ,. 

(Re Sn-p~p (7 0 79) 

•.: 

(7 •. 80)' 

since K - is ~eal • ,.. Therefore one also has the still more' compact formula, 

Im S~:- ~ 

(7.81) 

Alternative d~finition of~.· !. . 
. (6'iJ6Cf]: 

Heitler'/1. has inv~nted ·another method of approach to the reactance· 

operat9ro He introduces a unitaryr operator W(t) "and a transfo~ti~n 

(7 .82). 

of such a naturt;! that the transformed state-vector satisfies 

(7.83) 

where K1 is a constant Hermitian operator which is diagonal in energy. 
·:l'.• 
r 

Evidently· 
--1· .-- - . 

K1 - W (t) H1(t) ~(t) 
--1:' !.. 

i W (t) W(t) 

-~ 

Eg. (? .83) .describes only real ,transitions which conserve energy. 

If the boundary condition 

w(- oo ) = 1 (7.85) 

• .. 
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is .. imposed then Eq. (7 .84} may be integrated to give· 

(7.86) 

• The interesting solution of this equation is the erie for which W(t) becomes 

a constant W in the Schrodinger representation, i.e. 

(7.87) 

Then 

'· (7.88) 

and 

W P'S. 

·' (7. 89) . 

.. 
where 

W(E') - l + G0~(E 1 :) rHl W(E') - ·w(E 1 )Kl] 

- . [ l- Go+(E 1 )H1]..:~ [ 1.- W(E 1.)K1J ... (7.90) 

' Now, the matrix elements of (7. $8) which are diagonal in energy 

vanish. Therefore, by (7 .86), 

1 /'oo i(H
0
-E 1 )t · · · 

W(oo) - l - i ~ J -oo ·. e · (Hl W - W Kl)dt I 'So'}< 5"/ \ - 1 ;. 

(7.91) 

anct hence, with (7.85), 

(7. 92) 
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This means that the scattering o~J~ator may be constructed from K1 .. in 

·exactly the same manner a~ it is const::uc.ted from Hl.• That is.:9 · 

· .. 

But since. K1 isd~agonal in energy 

so that (7.,93) becomes 

* ·which leads to the identification. ·' -., 

(7,93) 

- (2 K1/€. )P:r., , . 

(7 .94) 

(7.95) 

·· ·The operator .W P'So ma.y now be constructed by iteration 0f ( 7. 90) ~ · 

w p~ 
0 

(7.97) 

:. * 
The same result is obtained by writing 

! = 2'1r L I 0 (E' - Ho)Kl [ l - CP E; :: H~ Kl r I >.'/(s.'l 

.and .remembering that (p 1 /(E • - E") vanishes for E11 :;; E 1 " 
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Heitler bases his construction of the operato~s W ·and K1 (and 

hence of K) directly on Eq. (? .88) plus the conditior'ls. that · vf be unitary -
and that ·K l be diagonal in energy. As this construction is rather: complicated, 

however, we omit it here and refer the reader to the reference cited e'arlier.~--

.-

' .,, 

-~·· 

.i 
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8. CROSS SECTIONS 

.Return.to the wave packet picture. 
·, 

In ·the preceding_ three sections emphasis has been placed on the 

operators U(O,:f=oo), U(z~j=Foo), etc. as abstract formal entities more or 

less independent of any immediate physical processes" It is to be remembered, 

nowever~ that the ··limiting procedure of adiabatic. s'..fitching .and the related 

limiting convention· (5.22) 9 which were adopted in order to give precise 

. definitions ,to th'ese operators,. were ·.motivated py physical considerations •­

In fact, an "operational" definition . .of these operators within the context 

of a given physical situation is always possible and sometimes preferable. 

·Thus, if the scattering of wave packets is under consideration one may 
'¢ 

: validly write 

lim 
(8.1) 

where \in) specifies the incoming wave packet of (4~ 5·) and the li:nit · 
:,, 

ti - - oo is to be taken perfectly straightforwardly j .a~ though th~ equation 
,. 

is meaningless if the vector \in) ·is omit't:ed. The presence of the 

vector \in) provides the physical context, and the equation,says simply 

that U ( t ~ - 0o ) J in ) may be regarded by definition as the result of bringing 
. ~ . 

the wave packet into the picture at an unspecified 'time in the· sufficiently 

remote past. 

In the derivation.of the basic cross section formulae in the theory 

of. scattering the use of operational definitions involving wave packets is 
·' 

particularly appropriate~· To be sure·jl several derivations of these formulae 
[301 "t~j /E!O) . 

exist 1\ which.proceed directly from expressions for the abstr;:l.ct entities 

. u(t, :i:oo ), u(±oo, =Foo) themselves, via more or less obscure argumehts. 
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Wave packet derivations~ how;ever; stay closer to experimental reality and. 

:are therefore both more physicallY. satisfactory and 
0 

more coorrect. These 
-~ . ; . 

latter are the derivations which will be presented in this article. ~ 

Before turning to the cross section formulae it is ,-instruct:iove to 

verify directly the existence of the limit in (8.1). In so doing one will 

be led to a more conc.ise if not more rigorous proof of Eq. (4.30), 'the 

deriv:ation of which in section 4 depenqed upon picturesque but someWhat 
-: '~'- ' . 

·loose arguments involving the qualitative· behavior of retarded and advanced 

wa,ves •. The following formal identity will be needed: 

lim i Et 
@ (e /E) _0 ±. '7li S (E) • (8.2) 

Thi.s is to be understood;~ as usual~ as an abbreviation for a class of 

;integral identities~ Its derivation is brief: 

lim · . /' oo i Et 
t ~ ±oo(p J -e-o (f /E)f(E)dE 

ix 
( e /x) f(x/t)dx 

_ ± 'Tr:i. f(O)c (8.3) 

· where x = Et . 

Now consider the vector U(O, t) I '30

1 
). 

Expand in terms of the eigenvectors of the operator H and 

use Eqs. (7.7) and (5.28)~ getting ['t3] 

i(E 11 -E 1 )t z=" e I'L'1 > <-s 11 I H G (Ell) I! '> • . 0 1 0~ 0 0 

(continued on next page) 
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\-v..L')± ........ i-~,'''ccEn ')\v /'>< ,;1 ~ ,-) 
,). • • 11 • L. o - E ,)± ~±,, H{1:so 

~II 

+ CP ~ E" - E' 

. · i(H 11 ~ E 1 )t 

L /1' + -~e----~----. .· H" .:.. E' 

In the last line the ide~tity 

(8.4) 

< J" \ (H = . (Hii - El ). <j" I "S,/) 

(8.5) 

has been usedc Next, sum Eq. (8.4) over the wave packet amplitudes of 

Eq. (4.5) and thmpass to the limit t~ -t>o , obtaining, with the use of 

(8.2).9 

lim -
1
. > t~-oo u(09 t) in 

(8.6) 

The last term vanishes since the bound state spectrum does not overlap the 

continuous spectrum. It is to be noted that the use of (8.2) in obtaining 

~·(H 11 - E 1
) . the factor o in this term is justified only after the packe:c. 

.summation is performed, for only then does the rapidly varying exponential 

appear in an integral~ viz. the surrnnation over the continuous range of 

ene~gies Ei contained in the packet. On the other hand, the use of (8,2) 

·, 
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-to obtain the factor S (E
11 

·- E 1 ) in the second term is permitted before 
.· 

' the packet sununaticn" · This means that if H has no hound states the use 

.of a wave packet is not actually .. mandatory in defining the matrix elements 

of' U(O~ ·-oo) o The limit as· · t ~ - 0o of U(O, t) \·~o') wiil. 'in this 

' 

SP.ecial cas.e exist ind-ependently in its own right and be iderit_ical with the 
f .• . 

result of the limitir~-convention (5,22)o 
..... 

.. 

If the )1+') are chosen as basic vectors in Eq. (8'"6) then the 

second term on the right also vanishes, leaving nothing but the' first term 

which is simply the vector J1/J) defined by (4 .3). In the limit of a 

very broad packet therefore one is led to Eq. (4 .30) as predicted o The 

choice of the 1 '! _ '> 
with (4.30) the result 

as basic vectors) on the other ha~d,.yields together 

(8.7) 

which, when multiplied on the left by (!_'' \ , leads to expressiort (7 .40) 

for the S-matrix (with' the derivative term omitted). 
;": 

When t in Eq. (8 .1) is not restricted to the value. zero, one has 

the more general result· 

U ( t ~ ~ oo ) I in) 

Multiplication of this equation on the left by . ~ '$ 0
11 

\-· and use of (4 .3), 

(7.?) and (5o28) giYes 

i( E. '' - E 1 ) t 
(p 'L'rc !/ ) e 
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Allowing t to become·infinite, using (8.2);. and then allm1ng the packet 

to become very broad,* one obtains again expression (7.40) for. the S-matrix. 

This is sometimes regarde~ as an alternative demonstration of the equivalence 

of the time-dependent and· time-independen{ definitions of the S·-rriatr:ix 

(Eq. (4.28)) •. 

Transition rates and the angular cross .section. 

The cros_s section fo'nnulae can be derived by two independent 

arguments~ one ba.s'ed on the computation of transition rates and. the other 

based directly on the S-matrix. We_ present the transition-rate argument 

first. 

If the system H is known to be in the incoming packet state which, 

in the remote past, is described by the interaction state· vector \ i~) 

the probability of finding it in the state 

given (see Eq. (1 .. 42)) by 

at the time t is 

( 
II ., . ) P )'0 ~ t in:. = oo \ ('s," \ ii ( t , - oo ) [ in) /

2 

I ('S,II .1 / H 0 t e -i Ht j:!; > l 2 

(8.10) 

The rate of transition to the state 11" / > .is tHe time derivative cf 

this quan~ity~ · 

It should be clear that the procedure of passing to .the limit E. ~ 0 at 

the end of a derivation played the same analytic role in previous sections 

as the final passage to a very broad packet. plays in the derivations of 

the present section. Use of a finite € avoids the necessity for 

dealing with finite wave packets .9 and vice versa. The two methods are 

not~ however, equivalent in physical detail as sotne authors l.30:,~ l~o] ha.ve 

assumed .. 
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( :S /' I e i H0 t e -i Ht j!) J. 
(8.11) 

In the .limit of a very broad packet this expression reduces to. 

= 

= ·~- 2 1m {<~./I R_(~·) I j~':.) [ ~(S/',. ~;)+ <~;r-l GO+(E' )R+(E' )\ ~:>J} 

-· 2 ~Cso'~~o) Im ( S/\ R~-\S/) + 27i£(t'.'~-E')J<s//JR+]:;/,)I 2 

~ J (8.12) 

which is independent'of.t'he time. 

Now suppose that the unperturbed Hruniltonian Ho is a function 
~ 

only of the absolute value of the N-dimensional momentum vector ·~· p of the 

scattered particle-/ This 'vector· will then be a c;n~tant of the motion of 

the comparison system, permitting the lab~ls ·· )/·:, 
·: I I to. be chosen as. p , cr -. 

where 
. I cr describes any internal or nonclassical·Q.egrees of freedom which 

the particle or scattcr·er may haveo The velocity of· the part,iple in the 

state I p 1 
: (S' y -- .'· will be given by v' = dE 1 /dp 1 ' (E3.13) 

whc re p 
1 ~ \ p 

1 j ...... 
The state· vector ) p 1 , cr ') evidently ··corresponds .... . 

to a particle flux densitY of .. v'L-N, and :therefore the_angular cross 

section <5 ( !l: ,_aM I p 1 ' 0" I ) describing scattering from an initial very 
- c 

·section 12 where scatteri,nr, by t,,,o or more potentials is discussed. 

l 
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broad packet~ which has · \ ·f 1 ·~· . rS 
1

) as its limiting form, into ·a final 

state with' momentt.ml' directed along a, unit vector _:Ii and, l'rith nonc_lassical 
. . ~ . ~ 

degrees of free~om as indicated; is defined by .,· 
'. 
-;: 

v'L-·N () (.£} $6-''jp'~<f')dN--:-l.g_ - . 
= 

(8.14) 

Here dN-1 .fl. ·is:: the (N-1)-dimensional element of solid angie in .the -
direction ...0. (If N =· 1 ·then d01l ; 1 and integration over solid -
angle reduces to _a sufumation over the two possible· values of ..n. '+1 -

·and -L) 

Wh~n tlie system is placed in the rectangular box of side L, the 

element ._of momentum space . becomes 

{8.15). 

and the summation - . 
One may· further Write 

.•. 
·,. 

(8.16) 

where· 

I 
(dp"/dE") d (p")/'d (p"' {)_11

) . .·- - . -:.· .. 

. . . . 

Consider nowthe.case in which p 1 d · t 1' · ·dN-_11"\ .··. Then. oes no . J.e 1n ..11... , 
. -

introducing the operator 

(8,18) 

in order to work with finite quantities, one may insert ($:.12) into (8.14) 

' 
and use (8.16, 17);. obtaining . 
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' 

(8.19) 

Derivation based on the·S-matrix. 
. 

Here it is cohveriient to specify the wave packet in.slightly greater 

detail. 

of area 

We shall ~s~ an incoming packet which has the form of a plane slab 

N-1 * L g 

* Here we assume the enclos~ng box to be oriented so that one of its 

axes is parallel to p 1 • -The generalization to -the case of a packet of smaller area is easy. The . 
·''. .• 

packet must, however, always be broader than and a~ed at the scattering 
~~ 

region. rypical~y in an actual experiment the lateral. breadth Ax\ 

is given by the ape'rture diameter of the beam collimator. T.his implies 

an uncertainty in lateraL momentum of amount t::;j l /A. x,, and hence a 

,lateral velocity spread roughly _equal to v 1 / ( p 1 .A x'Z. ) • In order that 

th~·res\.l.its of the present section be applicable to experiment the· 

lateral' spreading of the packet must be negligible { << .6xt) during 

·the transit time i /v', where Z is the distance from the· collimator 

to.the.detector' of the scattered beam. The following inequal~ty must 
2 'therefo.re be satisfied~ p 1 >> Z /(4 ~) . It is easily· verified, 

by the.insertion of actual numbers, that with typical laboratory 

dimensions, energies and 'accuracies this inequalityis satisfied for 

ali molecules and atoms and all elem~ntary;particles except very soft 

photons.and neutrinos ·(<leV.).· 
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Here f(p' 1 ~) is a functior~ which is peaked.around the value p 1 w.ith a 

spread which will be denoted by D.p. It will be _assumed that the experi-

mental apparatus has provided a sufficiently monoenergetic particle beam 

so that f(p 1 1 1
) varies !'lnich more rapidly with p 1

'; than do the elements 

uf the S-rnB.trix. That is9 l:;,.p is so small that-Jr(p 1 ~ 1 )\ 2 
:ts virtually 

a delta function as far as integration over these matrixelements is concerned. 

The vector j in) is conveniently normalized to unit probability 

per unit area of the incoming slab, This _ .. means. 
. . ~ 

LN-·l 
<in\ i~.) (2tp" /L)/ I r·(p', ~-) 12 dpi 21. (8;21) 

: 

= -· ' ' 
., 

in which the relation dp 1 11 = 21f /L has heen used, With this normalization 

the scattering cross section is givE?n directly by the antount of 11 probability'1 

scattered out of the slab. The components of .the scattered state vector are· 

,....., 
when p 11 is not parallel to ..l. L. 

•. ,... ,.,..,.. 

given by 

: (f' ~ 6 II ) S \ in> 
. . . 

(8,22) 

and hence the angular cross section i.s 

nN-l 
p jf(p")l2_\(e"j~'ll~+)P'~',cr')/2dp" '· 

(8.23 y 
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leading 5 in virtue of (8,21) and the delt.a function character of .. ,f(p")l
2 

·, 

to Eq, (8 .19), .. 
'· 

The connection between transition rates and the S-matrix. 

The existence of the preceding two independent derivat:(ons of the 

angular cross section formula (8.19) implies a direct connection between 

the transition rate (8,12) and the S-matrix. This connection follows; ~n 

· fact, from the time indep~ndence of the transition rate in the limit c:;>f a 

· very broad incident pacj.cet, which allows the total probability· of transition 

from the state at t = -· C>C to the state · i 'So''> .' at·, t ~ C>O 

to be expressed in the form 

= &C~o"1 'So')[l+ 2T'Im (so'\ R+ Jr./?] + 2'11 T'S(E11
-: E') \.(sO'~L.a.J~o')) 

2 

: (8 .24) 

where T 1 is a purely formal symbol which is used to replace the expression : 

/' 00 . 
t/,..()0 dt, Now, setting t ;;;; C>O and ; I in)' = I'!/) in. (8.10),. one 

_may also write 

~-. 

(8,25) 

Eqs. (8,24) and (8.25) agree with expre8sion (7.40) for the S-matrix provided 

a convention is adopted which is expressed in the formal equation 

. s (E" - E I) (8.26) 

which may be compared with Eq. (5.30). This convention is sometimes used 

without refinement to 11 derbre11 the transition rate, and h~nce the cross 

sections, directly from the S-matrix. One simply divides Eq. (8.25) by T~ 
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A question naturally arises as to the extent of the applicabil,ity or 

the formal equ'ation (8.26) as an ordinary algebraic equation. This question 

bec;omes especially pertinent when it is remembered that the delta function; 
• . f • 

in the formaiism of al·l preceding sections~ is. regarded a~ the limit._?.nts 

form of a· function ( 5··.27) ·which has a finite half '-width· f Since cond:Ltion 

(7.18) must always hold, the distribution of states is always 
'· 

fine-grained with .respect to this width. Hence the limiting behavj_or of· 

S.(E" - E') is not. as' indi?ated by (8.,26) in v.tdch it val)ishes unless the 

levels E" and E 1 are identical. The 11 energy ~hell": embraced by· 

f)(E" E 1 ) contains, in the limit, an infinitesimally thin but infinite 

group of levels rather tha:n merely a single leveL The replacement of the 

delta function by a weight factor times the Kronecker delta. ca.n therefore 

be permitted only if the factors which mult,iply it in any sur;rmlandor 

integrand vary slOi'>'lY ·across the energy shell ~hile E: · is st:i . .i.l finite . 

.· 
That this condition ~~:~~:·:.12.::0.~· holds may be seen by examining ·one or 

t·wo special cases. An example which affords a certain arnount of insight 

is prov-ided by the wave packet integration of Eq. ,(8.22). lf the delta 
~ ..: 

function in this equation is replaced ty a function with a .finite.haJ.f 

width E it is necessary to remember that thi.s replacement corresponds 

· to a physical complication of the scattering process consis~ing of an 
., 

adiabatic switching procedure having a t.ime duration of 2/E. In order 

that the actual scattering picture rema.in unchanged the wave packet must 

pa·ss completely through the scattering region w!i'ile the perturbation H1 

is essentially at, full strength. Assuming the dimensions.of the,seattering 

region to be much smaller than those· of the p§lcket ~ this ':·.requires that 

.6 x/v~ << 2/f where 6x -is the thickness of the packet. But 
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since A x ~ 1/ .6. p . this means 6. E >> € /2.". · That is, the 

energy spread of the packet. must be much broader than the . function having_ 

the half w~dth € ~ so that the latter is still an effective delta· function · 

in the equation. ·Said irr another way, f(p 1
' 

1
) must have negligible 

variation across the energy shell. 

Similar conclusions hold for the factors multiplying 8 (E" - E 1 ) 

in expressions of. the form 

F 
""' 

2 rri 2: 1 2.: 11 cS (E 11 

where Here~ ·although 
• 

R ± and K depend on E 7 they approach. 

their limits smoothly as E:.-+- 0. ·Furthermore, the matrix elements of 

these limits generally vary smoothly, allowing E to be chosen small enough 

so that. this ·variation becomes negligible across the energy shell. Eq. (EL26) 

tliay there!ore be validly applied to the process of taking matrix elements 

of given operators on the energy shell, and one may conveniently. write: 

(8.27) 

An exception to the rule (8 .27) is provided ,by the operator ·· K1 

introduced at 'the end of section 7. It would not be correct to infer from 

Eqs.-(7.94) and (8.27)-the identity T1
: 2/E Eq. (8.27) cannot be:· 

applied in this case simply because K 1 is already diagonal ~in e~ergY ~ ·· 
~, 

and hence its matrix elements always vary abruptly across the energy .shelL 

That T 1 ::/= 2/C. can "be seen from the formal ident;ity 

= b (E" = 
Combining this with (8.26) and using the equation dp' _ 2'JT" /L, one ohta1ns 

the fmrma.l re}.atiml. 

T 1 
::: L/v 1 " (8.29) 
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That is, T1 may be regarded as thf; length of til'ne required for the incident 

particl;e to traverse the enclosing box~ and invirtue oi condition (7.18) 

this.implies T 1 >> 2/f.. 

In the futtire we shall not hesitate~ if conveilient, t6 use the 
'· 

T-symbol as an <?rdinary algebraic quantity" It ;1. s .always to be remembered. 

however, that it is a purely formal ~eight. factor wh'ich Hill c:ar,cel 

out in the final expression for any physically observable quantity. 

The total cross s.ection. 

It is customary to define the angular cross section by Eq. (8,19) 

even when ·p' is parallel to ~ - However, the true .depletion in the 
.• . ,. 

forward direction of a beam of incoming·particles ~or packets) is described 

not by this quantity but by the total scattering cross section, \..rrdch, in 

the transition rate argument, is defined by: 

·0 ( p! ' ()I ) '--
. N . . 
-(L /v') -~ R(p" ..Il.' s &' .j pi' .<J' ) 

~pll - -

:= -(2/v'~) I~(,!:',' (J' \ ~+ \ ,£', ();) 

(8.30) 

where use has been'made of the relation 

* (L/2'!Tv') F.(p 1 ). In the arg~ent based directly :ori the S-matrix, using 
. •. "> 

.a finite slab for a packet, the. forward depletion is· def;ined. by . 

cr<.!:', cr-') = <in 1 in) ..: :Lp~• l<p';:D-', (),··) out)! _
2 

·. . 

.~ LN-
1

- ( 2'1f/L)/ dp" 1£ ( p") 1
2 r 1.+ 2}C ( N,l) /v•) Im < P" £2.1 :6" I I !R; + I p" £!.~; "' > 

+:<L~_(N-i);vrr)2 !<Pn£>.', ~~l~·~IP.i;~, ~~) j 2] s 
. (£~.3~) 

· Here .again we assume p '· is parallel to one of the box axes .. ,...· 
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which also yields the same resulto In passing from the first to the second 

line of Eqo ·(~L31) it is necessary to use the generalization of Eqo · (8o22) 

which takes into account diagonal elemer:ts of the S-matrix: 

< p" f}' ~ ()' I ou~ > 
f(p")_. [ (2'1T/L) r..-N(2'Ti i/v")<p" .£2-' ;cr'J:R.+ IP'\Q.'/>')] ~ 

(8.32) 

A distinction is immediately apparent between the cases N = 1 and 

N ~ 2o In the latter case the last term of Eq. (8o30) vanis-hes in: the 

limit L _.oo 1 and the tot,al cross section is seen to be determined completely 

by the imaginary part of the amplitude for forward scattering with no change 

in the variables tS 
1 

• 

For' N ~ 2 the relation between the total and angular cross sections 

may be readily obtained by· using Eq o ( 7, 61) of the last sect-ion. Taking the 
.,. 

diagonal elements of this equation~ using (8 . .26), and removing a factor 

T1L-N from both sides, one.gets 

-2 rm(£_',cr-'l~:rlE,9 ,() 1 ) ~ 2trL-N L 110(E·'-E 1 )\(r,cr''l~+-\t;cr•)/ 2
", 

(8~33) 

which implies. 

(8.34) 

· Eqs •. (8.33, 34) are consequences qf the unitarit.y of the scattering operator 

·with ·respect to the free states j p' , cr 1) , and are simple expressions ,_ . 

of the conservation of probability, -·. "· 

The case N = L Transmission and reflection coeffi¢ients.: 

In the one-dimensional case the cross sections become dimensionless 

probabilities and are conveniently replaced by the so-calied'transmission 
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and reflection coefficients~ T <r" o-, and R o-" CT, . respectively. The diagonal 

transmission coefficient T <>'a-' is defined as unity minus. the forward 

depletion: 

T ~r' cr' (p') ,.... 1-t- (2/v').Im(~', a'l~-~- \ p',cr'>· 

+'(1/v'L) l<!',cr'\~+l;'~o-i) ). 
2 

The other coefficients have the definitions 

- = () ( .n..' ' (5 1/ I pI ' 0 I ) ' . <S" It =1- (J' ( ., - . ,... 

= o- C-.Q.'' ()" J.e'' cs' ). 

Conservation of probability has in this case the expression 

1 

.' . 

for all p 1 , r:5 1 

,w. 

The transinission and reflection coefficients may be directly 

(8.35) 

(8.36} 

(8.37) 

(8.38) 

related to the total transition probabilities from t = - oo to .· t = oo 

Using· (8.18)., (8.;26) and (8.29) in Eq. (8.24), one readily sees that 

T <r'' "I ( p' ) ::: P(p'' a-" '00 l p'' (Y I ·, -DC)' (8.39) - ,.,... -
Rcr"o-'(p') P(-p'' r:J'I ' C>o. I n' . cr-i -I)() ' (8.40) = . ' ' J. - ,.,... -

Phase shift formulae. 

In many ·practical applications it is useful to discu·ss scattering 

" 

in terms of, the phase shift operator 11'{ .• ~ is an Hermitian operator 

and hence can always be diagonalized in principle. It is already diagonal 

with resp~ct to energy. Denote by . 'A' the remaining labels necessary'. to . 
" .. 

complete the diagonalization process: 
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C' r_ .._,, \ 1 '/? I . 
- o EnE? o" " L 

The expansion of the vectors .ll' 1 
, r:r ') 

needed g. 

in' terms of 

UCRL-2884 

(8.41) 

will be 

C' C' . ' '] j ·,(E I 9 .f)_ II J C) II ) • 
OE"E' ,l)\ .. ,_ (8.42) 

Here the ~>,1 ·are functions normalized on ,t~e unit .N-dimensional sphere;~ 

.. 

L(J'I/J 'YA" *(E!,, ..£::" ;6"") 1J~,·(Et,.£i'' ;C5'' ')dN-l;Q.";:;; ~>."X'" 

'• 

_The normalization constant C 1 is chosen so that • 

. 1 i i 
p - ~ /1( > < 

, 

(8.43) 

$,,E"E i 8>." X' • 
(8.44) 

Inserting (~L42) into the left side ,of this equation, and usirig Eqs. (8.15), 

(8.26) and (8.4.3) 5 one finds 

~ . N/2 N-1 -~ 
(T/'2'tf) (2'TI' /L) (yi /p' ) ·(8.45) .. -

If now 2'TT S(E"- E1 ) is replaced by T 1 ~EIIEl in Eq. (7.45) 

which defines the operator !+J arid if Eq. (7.58) which expresses this 

·· operator in terms :of '>1 is used~ then the cross section formula (8.19) 

becomes 

(5 (D..'()'' I p'' (3' I ) ,.,. ,... 

- (2'1r) -( N-l) ( p' N-l /v' 
2)r' -· L .... l :c..., (p' £?- 'cr'~' ' X> ( -2e i 'Z' sin'!' l(E· ,X I e' ,cr{ 

N-·1 
- 4(2?1/p') 

~ ; . 

(8. 46) 
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The total cross section for: N ~.~can be obtained ~ith~r dire~tly_ f~orn (8.30) 

or. by_ integration of. (8.46) with use of ui';43) .. · .rhe ~esult is 

. . · .· N-1 ~, , \2 
.. cr(~',.G"') = 4(2~/p') 2;>--')lj>.'CE',.£!-', ~~)I 

2 . 
• "n I s~n . 1.. • (8.47) 

The case of spherical symmetrY. 
::::.·~ . 

. In praqtical cases the functions 1j >-' :· are oft err completely 
..• 

· determined by the s~etry properties of Lhe system H; Thus, for example, 

if the p~~rturbation ~l is a potential V(r) which is a function only of 

the absolute value of the position .vector ,;;.. of the particle, th·e ~>-' 

' ' 
are th'e N-dimensiorial spherical harmonics and are. therefore-independent o.f 

the energy and of the labels · () 1 
• In this case 'th€ significance of the 

operator .. tit_ w1ll be -seen by passing to the coordinate representation. 

gives 

Use of (8.15) and the equation . 

N . N 1 i p'·r 
_ (d r/L ) 2 e - -

Mo 

Here the labels rs 1 have been dropped. 

Phase shifts in one dimension. 

(8.48). 

(8.49) 

In the one-dimens,iorral problem \. I 
J\ is simply a par.ity label, the 

functions 'Y >-.' being given by ;, 

1J>-' (;i: 1) 
)...' = (± 1) /{2 . 

' 'A' = o, l (8.50) 

' . . i' 
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Yielding 
-. . . 

(dl.r/v1T')~ [e_i. P'~+ (:-1)>-.'e-ip'r]tj>.,(~) 
(8. 51) 

Now, in section 4 we discussed the a:symptotic behavior of the 

scattering wave functions in terms of a set of vectors \ret 1) , \ adv ~ 

and their di,ffer~nces \ rad ') Comparison of Eqs o · (4. 24) and (7 .44) shows· 

that 

= .-i R+ I P') 
·•· ,.,. . "" - i, . . 

~ · 2 i e . sin~~~~.) 

(8.52) 

(8. 53) 

Taking ·the coordinate representation of Eq. (So53), using Eqs. (8.42) and 

( 8. 51), ·and remembering that the vect?rs \ ret 1 > and \ ~dv 1 > . are made 

unique ;by the: boundary_ conditions (4ol2, 14) and the requirement that they 

-.satisfy the Schrodinger equation of the system 'H0 everyv1here except at the 

origin? one easily makes the identification 

~ i(p'r+~') . · i~. 
2i (d

1
,!/L)- ~X e . s~n ~'1Jx<·f:- )1j.x' <fi) 

(8.54) 

·The eigenvector \ ! +I) of H therefore has·the asy¢ptotic behavior 

.( 8 0 55) 

which shows explicitly the interpretation of the. ~~i_genvalu:es __ of ~ as 

. phase shifts induced by the perturbation · H1 in the ·so-call·ed "partial waves" 

out of which the plane wave <,; f£') may be constructed.· 
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The transmission and reflection coefficients are readily expressed 

in terms of the phase shifts: 

.. 
C-n'l p') I ~~ i~' 12 

R(p') - (J" = Z:x,(~l) e sin,_, -,... - """"' 

sin 2 [ ,o (E') 'ril(E')J (8,56) = ' 

T(p') = cos 
2 

[ ~ 0 ( E 1 
) ~l(E•)] ' (8,57} 

N> 

where . i 
~ ::; '>? 0,1 (E') for X::: o, L 

In·pr~cti6e the-phase shifts can be comput.!3d either by numerical 

integration of a radial wave function or by solving an integral equation. 
al"e 

. The pertinent relations in the latter caseAdetermiried by :Eqs, (7. 52) and 

·· (7 ~59). together with. the. conveniel)tly introduced functions 
" 
r I 

K ~.' ( p" I p I ) = ~Cv"T\-11 
Y' T')~11 1 A.' I K(E'),:E',A') 

l Hi;J E~')\') 

' . (8,58) 

, · --r." . ")a( \ ' ~(v" 1'· vtT' E", 1\ 

2 r= cos p"r V(r) C0.3 p 1r dr ' .. ' )...1 = 0 ' 
J 0 . ' 

. 100 2 · sin p"r V(.r) sin p'r dr , 
. . 0. >--' = 1 

(8 .59).~ 
·.r 

Use of the form.al relation ~ .. = / (T 1"/~'JT)dE' 1
' puts Eq. (7 ,52) wE 11 ,. l . . 

in the forriJ 

v,, (p"l p''l) 
p')+>l(proo " .. K~,(pl" I p')ctp"·' . 

.. . 'Tf J0. E 1
- E

111 

(8.60) 
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The solution of this integral equation yields the phase shifts in the form 

· .. · 

(S.6l) 

Two. dimensions. 

The two-dimensional scattering problem has considerable interest 

in acoustics and optics, but is of no importance in quantum mechanics and 

will not be discussed h~re, 

Three dimensions. 

In the case of. three dimensions the r~ >..' become the ordinary 

spherical harmonics 

. m 
1J 1(.£1)-+Y" (.D..) 3 
"J~ /WJ .. ,_ ' 

which, when substituted into (S.49)s give 

(S.62) 

(d3r)~ (2'11' )-\p' 2/v 1 T.1)! 4'1f i 2 
j (p 1r)' Y m(il) 

h>. . . ~ . t . """' 
.. (S.63) 

where the j?, are. the s~heri·cal Bessel functions: 

j~ (J?'r) = (S,64) 

(S.65) 
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may be used to put. the 11 retarded wE.\"C 11 in the form 

. 3 ~ l ~ 1, i_ 'Yi,_ (:..)': 
-· 2i(d,!/L::>) 2 Lt ~ i (2.~+j_.)•3 air:')'h, ht (r)~r) P'l(-£2-··..Q.' ). 

(8.68) 

Here the are t.h e Legendre po l;ploJlliah, and the 
,., ) 
\J.. . 

h 'L. are trye sphe.rical 

Hankel functions* satisfying 

(8.69) 

The eigenvector .·j £"+-I ) now has the asymptotic form 

X p'l (..n.. ._n') '. I.-,..... 

showing agaJ.n the i.nterpretat:"tcn c·i the 'Y/.1. as phase shifts, 

The angular and total cross se8tions 1-.a"J·e the fa.1niliar form5 

o- c .n I pi) 
,._ -

'"1 

I"'V' \ lt 
L 1 i t2.'L+ i.1 e . 

= 
The tangent of the phase shift. ma_y be ccmputed frcm 

. * 
For definitions see.? for example, L. L Schiff 9 ,9'u.antum Nechanic.s 

(New York, McGraw--Hill, 1949) p.77. 

(8.71) 

(8.?4) 

'• ., 
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where 

.. 

.. : 
'· 

(8.75) 

with 
·"·· 

v~ (p" I P') == 2 p" p' /(/;) j,
1 

(p".r) V(r) j (p'r). r 2 dr 
0 " z ' ' '( 8. 76) 

·The· revers.e scattering theorem. 

Even when· the scattering force is not:spherically symmetric certain '· 

relations continue to exist 3 which may be quickly demonstrated ;.dth the aid . . 

of the operator formalism. For instance 

6- <.n.''l P') = o C=n'l·-p") , 
,_ - - ""' 

E" :: E1 (8.77) . 

regardless of the spatial dependence of the force~ provided tha~ if the 

force has any momentum dependence, this dependence be only on the absolute 

value of the momentum. H1 then has the general·form 

(8.78) 

and its matrix elements are 

(8.79) 

where 

(8.80) 

Evidently 

(8.81) 
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and it is·. easily verified, by expanding Eq. (7 .2) and remembering that E 1 

depends ,only on · p 1 
j that 

E" ·= E 1 
, (8.82) . 

·which leads,·via '(8.19L t-o (8.77)·. Thu13t?e cross sectio11 for scq.ttering 

along a gi veri angular path is equal to that for the reverse path .. :In the 

one-dimensional case this 'reduces to the well known theorem that the . . 

transmission (o.r reflectio?) coefficients from the right and left are 

identical regardless of the shape of the potential. 

The one-dimensional delta-fu~ction potential, [:2.. I )4 ~] 

An example which il.lus~rates many of the features of perturbation 

theory considered in this ·articleJ .but which is nevertheless so simple that : . ; ) 

it is completely solvab:)..e. in .. all respect.s, is afforded by the system· 

g b (r), 
. /fl>. 

(8.83) 

.. 
where r is a one-dimensi-onal coordinate. t.lse of the r-elations -

dr/dr = r/r 
- 1M 

' . '·· 
(8.84) 

lead9 readily to the coordinate representation of the eigenvectors of H: 

( -1 1 )~ [ i p 1 ·r 
L dr e'"'""' 

~' NY< .• . 

p'r] ,. 

with 

E' r i2 v: pi = p = ' 

~ 

If g > 0 there is also one bound state \J'> give~ by 
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(8.87) 

. (8 ,88) 

The orthonorrna·lity of the 76cto.rs' is r~adily demonstrated 
; 

from Eqs. (8.85) 9 (8.87)o Of interest is also the demonstration of .their 

completeness.· After a little reduction one easily obtains 

~ I < -~ I I I I ) < ·i \ . ")' L· r p± P:~:,. r 
~ ~ ~ - ~. 

1 [ . ·1/ 00 1 -±.i p 1 (r"_.+ r 1 1 ~.) ·] 
_ d £ . s <;:..iII ~ ;;_'') = (2'fr )~ -oO g(g±' i:pi )~ e dp 1 . 

- br'~'r" ~.e+~g)<!._il'J .Jn)\··P\,l">,, (~L89) 
,_ ,.... 

showing that the vectors I:£,±') are complete when g ..:::. 0 and incomplete 

by just the amount of the bound state vector J J 1> when g > 0. 

·The S-matrix can be determined by in-spection from (8~85). Evidently 

<;: 1 ret'). 

<! 1 advi) 

0 I rad~) 
so that 

1 1 1 , • ' - ~ -~ 1'p·r = -(1 d r) g(g + i p 1 ) e - ,, ,.... . . 
-1 1 l -1 -i p 9 ~ 

(L d r) 2 g(g + 1 p 1 ) e _ .. 

< t' r s I ,r> I> = 8 pltp v + ( £." r rad I> . 
.' ,..,.,. ,.. 

. : -1 
C' ~ g(g + i. pi) ( s + (" . ) 

·op"pn· p"p'. o_pnp'. 

~- -- ~-

(8.90) 

(8.91) 

(8.93 
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-The unitarity of the S~matrix may be verified directly from (8.q3), 
.· 

The 5-matrix may readil! be dia.gonalized with the aid of (8.42) and· 

03. 50) 7 -the result giving for the phase shifts 

-l( ' ) tan g/pl ~-

(~L 95) 

and for the reactance matrix 

(EL 96) 

The transmission and reflection coefficients are 

T(p') - p'2/(g2+ o'2) 
J - ' . (8.9?) 

..... 

R(pi) -· g2/(g2 + p'2) -
Of interest also are the momentum re)5resentations of 'the eigenvect-ors 

/ E.. ±e) and ·j J,') ~ which can be obtained by carrying out ·the unitary 

transformation (8.48) ori Eqs·. (8 .. 85) and (8.:87): 

:;: 
. ~1 

c- . ·=t= i L 
0 pllpi . 

-·"" 
-------· l 
E 1 - E" ± i€ 

An infinitesimal ·damping _'Co~fficient, E 

in .the integrals which ev~luat.e (8. 99). ·. 

E;qs., (7.8)·and (8.99) allovl one to infer 

l ·) 
p" =1= p' ·- te v · .,.. 

. ,. {8.99) 

tg - 0"' \ : 
\ c. aL ·v J 

has been introduced 
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(8~101) 

This result may be .verified directly by expanding (7.2). One needs for 

this purpose ~he momentum matrix elements of ~1, 

. -1 
g L 

which give, with the aid of the integral 

the series 

=l 
g L 

o<. >·.o 

00 

:6 n 
( ± i g/p')' 

n::O 

(8.102) 

(8.103) 

(8.10h) 

in the limit € -+ 0. Expansion (8.l04) converges to ($ .101) when p' > g. 

In a similar manner the reactance matriX (8.96) may be obtained by 

. expanding (7 .51). In this case only the first term of the series is non- · 

.. vanishing since 

(8.105) 

'Therefore 

.. -1 
= - 2 '1r g L s (E" :_ E I) ._.(8.106)' 

.·which is equivalent to (8.96) i~ virtue, of the fact that ··.:. 

s p"pi t 8 -p"p' = :: 
,.,...~~v ,.,. ... 

. (8.107) 

where (8.86) and the relation L = ~'T' have been used. 

·-
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. 9. BOUND STATE PERTURBATION THEORY 

'· 
The use of contour integration 

The theory of ·perturbations for bound systems differ:> in many respects · 

from scattering theory because qf the discreteness of the bound·-state energy 

levels, This discrete.ness enables one to use a number of analytical devices 

· which are unavailable in the continuum case. For ·example? .. the singularities 

of the operators Go±<~), G:(E) are separate simple poles ~in the complex 
' . 

. . 
E-plane, and closed contours may be drawn which isoiate zero·, one, or a 

small finite number of them. We shall -make use of 'integrati.ons over such 

contours, following;~ method due to Kato. l_5"6J 

In performing: these integrations it will be noted that~ the presence'' 

of the imaginary terms · ± i E is immaterial, and therefore vie shall 

introduce at once the operators 

1 (9.1) 
E - H0 . 

(9.2) 

. Let each singularity H I 
0 

of G0 (E) be surrounded by a sep:1.rate contour G' 

in such a way that the regions enclosed by the contours do not· overlap one 

another. ·Then 

(2'1T i)-l £. G
0

(E) dE 
.C' 

where is the projection·'oper~tor on the eigenstate~ of 

have the eigenvalue. 

(9.3) 
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II < . II I H ) J . 
0 0 

(9.4) 

. The eigenvectors and eigenvalues of .. : H will generally depend in a 

, cpntinuous fashion· on the coupling constant -g of (5.19) in the neighborhood 
* . (1) 

of g = 0 •. The projection operator P 
0 

will therefore pass continuously 

m(')as into an idempotent operato"r ~ g departs from zero. In order to 

account for a possible level sp+itting .in· case the original level 

degenerate, one may write 

is 

:p {I) = ~, ~ O(H
0 

, (9.5) 

where (") P · .. is the projection operator on the eigenstates of 

h th ' ·1 H11 
= E11

: ave e'e1genva ue 

(") 
p 

H which 

(9.6) 

and where the summation in Eq. (9.5) counts each p(") only once. Here 

our notation assumes the existence of a one-to-one correspondence between 

the eigenvectors of H and an appropriate set of eigenvectors of Ho.: 

I ") II 

~li'> II 

Jo ' Ho , E (9.7) 

It is not necessary to know here how such a CQrre~pcmdence will finally be 

set up 1 because for the time being we may work directly with the operators 

(I) JY](/) • 
P

0 
, ~ It is only necessary to know that the subspaces defined 

by P 
0 

( 
1

) and .q1(') have the same dimensionality 

* This is true even for field theories as long .as the high energy cut-off 

is kept finite. The cut-off may.be allowed to become infinite only 

after all formal calculations have been carried out. 



: 

.. 

d! Tr Po 
(! ) Tr !P('5 · ~II "(r(/ y . = - · o . 'J tia . Tr ~ - . . 

(~ 

measuring the degree of degeneracy of the\:!.evel 
'.~: 

.. 

~('i) ·, 
f. (9,8) 

.. ·· .. If g is small enough so that' the -levels E" into which the ley.els 
.· 

H0 ' split (or shift) all remai~1 inside their respectivE) co.n.tours · C 9 then 

It is useful also to ;define the rela.ted operator 
,, . 

. (I) 
(2'Trif

1 
/:. (E H ') G(E) ciE Li. -- C' 0 

In virtue of the identity 

(E- H0
1

) G(E) ~ ~ + (H- H0
1

) G(E) (9.11) 

it is.: evident that 

where the ~E" are the level shifts, The opel~ators 
J'"'YJ (1) 
';.fi and ~(/) 

.. 
·play the basic roles in bound state perturbation ,theory. 

Series exnansions. 

For practical computations it is necessary to have series expansions 

of the operators ·Ji(/) and 

oO 

rp(/) L:, 
"' n_,.o 

00 
~(/) 

::: L: 
rl;:;:l 

wher-e 

/1(/) 

Pn 
< l) 

t6n 
(I) 

~ 

' 

Evidently~ from: ( 9 ._.2), 

( .. ~ '; 9 .. Ua; 

(9.14a) 

·,··· 
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( 9 ~13b) 

(9.14b) 

The integ!'als (9.l3b) .a.nd ~9.~1.;.b) .J'!!.ay be evaluated by. separ~ting out the 

singularity of G0(E) at H ·' · writino 
0 ' "0 

G0 (E) 
p (1) 1 ~ Po( 1) 

:::: 0 + ---- -----·-· 
E - H r E - Ho i 

0 

p (') ( I ' (l I ' = 0 1 -· Po J + E - Ho" ---, + ---·-
H

0 
1 

- Ho) E ·- Ho H ~ 7' Ho 0 

and then expanding the bracketed inverse by the rule: . 

One gets 

( i ) 

~n 

where· 

·-· 

(l - x)-l _ 1 ~ x + ' 1 -1 · n·• +' xn(l -· x). .,. +X ' 

. C, (') H 
. .) KJ . 1 

<j r( i) 
u. '· 

Cjk 
( i ) 1 - po(') 

= k ~ l 
yk 

~ ~ ' 
(H~' - H,y 

~ 
-.L 

. '(9.15) 
'. 

. (9.16) 

·(o·'-3 ) / .J. c 

c·cr: 14c) 

(9,1:7) 

., 

::c9.un -. 

-~ 
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It may be verified by direct ·:::amputation~ ·and use of p (')2- p (') 
0 - 0 j 

that expansions (9.13; 14) satisfy the identities 

5_JJ(1)2 = ;p<i) (9.19) 

;p ( i) ~ (!) : 
4

( I) ;p< :) :: c} I) . (9.20) 

On the other hand, the further necessary identities 

(9.21) 

::: 0 
' 

. H I -L H " 
~0 .,...... 0 (9o22) 

c~nnot b/l derived from the expansions.· They will~ however~ be satisfied 

by the expansions as long as the. smallness of g k~eps the perturped 

levels within their respective contours. 

·computation of the !J 1) and 8 E1 , 

The level shifts .6,.E 1 are deterynined by diagonalizing the operators 

~ ~ 1
) in their respective subspaces $ ·~ 1

). In ··order. to do this it is 

)'i'rst necessC~,ry to construct a~ orthonormal basis in each subspace o This 

is ni:ost. easily accomplished by'diagonalizing the Herynitian operators 

. (') m<') (') 
Po.. .,., Po 0 

With respect to an eigenbasis of H
0 

these operators 

are generally finite matrices, and .hence their diagcnaliz~tion is usually 
. . 

a manageable mathematical problem, In nractice one·computes these matrices ... ' ..• . ... 

apprOximateiy by carrying out expansion,(9.13) up to a certain ordering, 

and then one solves the corresponding secular d!'!terminailt by any one of 

a variety of techniques. Since these techniql!:es are not of particular 

interest in this article we shall simply assume that the diagonalization 

has already beencarried out and write 
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(9.23) 

being appropriate eigenvectors of H0 which effect the 

diagonalization, az:d the ';J' being the corresponding eigenvalues. Ari 

!r:J(I) 
orthonormal basis which is co~gruent to the subspaces ~ 

provided by the vectors 

IJ I> ()' 
I 

-"'i !11(1) I c7o I) 

is now 

The remaining task is the diagonalization of:the matrices 

b( Ho 11
; Ho')( if'' 3'') -i <do 11 I ~(i) l3'o ~~.· 

(9.24) 

(9.25) 

These are again finiteHe.rmitiar; matrices, and the same standard 

mathematical techniques as before can be, used~ The eigenvectors · .· \ J 1
) 

of H are defined, by the ~nitary .-transformation <;] 11 
\ J·,) which performs 

the diagonalization: 

= ·o 1::. E' 
.. JIIJI 

(9.26) 

(I ) If, in the approximate evaluation of fJ. , expansion ( 9 .14) is carried. · 

out to a given order in'g, this order of accu~acy will·be reflected in the 

computed level shifts f):. E 1 provided only that the accompanying expansion 

m (') 
of tt> is carried out to an order of·accuracy less by one. 

Once the eigenvectors !Jr) of H have been determined the 

one-to-one correspondence (9.7) with the eigenvectors of H0 can be set 

up by defining 

lim I '> g-+'0 .. J (9.27) 
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· · HoweYer > in the above corriputat'ion of the I Ji> and L::. E i the vectors 

~I_Jo ~) n.e·rer come into the picture; It is ~0 be noted that the vectors 
~ 

lc7o') ~re generally not identical with the \ Jo ') 

:I:rogressi·ve rem~val of d.egen.erac;r,_ 

If the eigenvalues of the.operator P ( I r H p"o "' ) = o· · 1 

· are all distinct in the subspace ( I' 
P ) .. ( . t . . . ... ' t th . 
0 ~nen 1~ 1s easy to see ~na- e -

11 i 

with H0 = H0 are simply the eigenvectors of H0 \-vhich 

d:iagonalize this operator. To lowest order in g the level shift.s are.the 

eigenvalue~ in question.. If these eigenv·alues are not all distinqt the' · 

are not completely determined by this prescription~ and a more 
(I) :. . ( l ) 

P1 and 6 2 complicated study is necessary J involving the operato.rs 
~ . . ! 

However, the observation serves as initial motivation for a procedure 0f 

progressive removal of any degeneracy which may happen tc. be present in.th~ 

system H0 and the development of a perturbation theory in which the 

vectors \ J0 

1
) · :play a more direct rcle, 

m (1) Instead of expanding the operators ~ 

diagonalizing, one begins by simply diagonalizing 

and then makit1g the replacements 

'H ~'-p (') 
• 0 ~ ii0 + L-- 0 

~( p (-) 
0 

(9.28a) 

(Here the summation 2: 1 counts eav distinct eigenva.lw~ :o.f rL only ,, 
. (•\ (·) •J 
P -' 11 .' p_-·- "J1a~.'re • ·' h"' t. 

0 w ..L (, _· !Oagenva_._ues 1N . 1cn are no once.) If some of the 

all identical (in their respective subs ~· ~· the::1 the repla•::cment ( 9. 28 3.) 

remo·ves some of the degeneracy. If the :",.. ·.ystem H'
0 

possesses any 
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remaining degeneracy thi~ degeneracy will net. be removed t6 first. order by 

the neN perturbation . Hl •.. To carry out a further removal of the degeneracy 

· :l..t is· necessary to diagonalize the operators P 
0 

( 
1 

)jj.
2
(:) .P0 ( 

1

) (defined 

. . 
with ,:re·spect to the new operators· H0 :~ H.,) and make the replacement 

.l . 

.· .. 
(9.28b) 

If the :·degneracy is still not eompletely r~moved one may go on~ 

this time replacing ~2 ( 
1

) by .6
3 

( 
1

) ;· and ::;o on. , Even~ually_, either all 

the degeneracy will be removed or el.st:! a degeneracy,will remain which is 

. * nonremovable. The origin c--f nonremovable degeneracy lies in special 

symmetry properties possessed by the pertl;rbation · Hv which leave it. 

diagonal in some of the labels J
0 

wiT-h the values·of its ponva.nishing 

matrix elements depending only on the remal.ning·labels. The former labe:s 

simply enumerate the states within the various deg'ener<l;te levels. Non-

removable degeneracy is generally very easy to spot. · 

When removable degeneracy is absent any set of eigenvectors of H
0 

may be used i~ setting up the one-to-one correspondence (9.7) . 

Po (;) :p ( i) Po (I) are then simply multiples of the operators 
. . . 

The operators 
(! ) 

P0 the 

f'a<:'.tc-rs of" proportionality being the normali'zation constants Z of Eq. (6 . g) ~ 

* 

( I) p \ . 
0 

All degeneracy could, of course, be removed at the very beginning by an 

arbitrary redefinition of H
0

• The present systematic method J however:. 

generally-insures the most rapid convergence of the perturbation 

::!al.e;ul.ations remainir.g 'after the removaL 
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The eigenvectors of H. are given by 
·.' 

,. 

are simple mul'~ipl.e~ ·of th·~ operators -:Jl ( ') ~ , 

' (9.31) 

so that. the ievel shift.s''may be·. computed from the simple formula 

1 . ' I -1 fYJ · .( 1 ) 

6 E = d Tr ,.p-
--. 

(9.32) 

The Rayleigh-Schrodinger. perturbation formula. 
' •, . . . ' ~ . ; . . .... . ·.. . . 

. If expansioz:i (9.14).is inserted into Eq. (9.32) then, owing to the 
.. 

cyclic invariance of the trace, the following-equation results~ 

' L\E 

C>O 
~l~ 

. I , ) 
d /. 

G.__./ 
ii::l 

(9.33) 

This equation may be further simplified through the observation that the 

factors occurring in the summand can be cyclic_ally rearranged in n different 

orders, each giving the same trace. One of these orders may be chosen ~s 

standard. If only the standard order is allowed in the summatiqn then the 

nurr1erical factor (kn - 1) in front of the trace must be replaced by ., 
. . 

~ i (ki - l) = -1. Suppose the standard order is one iri which kn ::.: 0 . 

This does not uniquely specify the standard order~ for there are Nk other 

-orders which meet this_ specification, Nk being the number of remaining 

ind.ices ki, i < n, which· arc equal to zero. However 7 each of these orde.r·s 

may be regarded as equally standard if a factor: (Nk + 1)~1 is inserted. 

Therefore 
00 

6Ec- L 
n.::l 

~-1<-::.o L __ . l-

< s· .34) 
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:,Here the ··factor d' -·l and the tr_ace symbol h<?-ve been elim.1nat.ed through use 
. . 
qf the factJ implied by the nc·n-re!'lO'.rability of the degeneracy~ that· H1 is 

diagonal within ·each subspace 

Eq; (9.34) is known as the Rayl.eigh-Schrodiriger perturb'ation fonnula: . .. 

substituting it~ together with the diagona1:: elements of these expansions~ 

<Jo ' .·1• A. ( ') \ Jo·.·.·.') ". A··E' into the equation ~ = ~ 
making -a term by term compafison .on either side. 

Connection with the adiabatic switchi!?g formalism . 

·The formulae obtained thus far have b~en based on a te~hnique of 
. 

contour integration which has little apparent connection with the theoretical 

treatment of the perturbati.on problem· given in section 6, base~d on the 

adiabatic switching method. That the connection is closer than first appears s 

however~ may be shown by constructing 'the operators and ~(') in 

the adiabatic formalism and thenapplying expansion (5.5). 

The operator .rp< 1
) is given simply by 

-ad · . .• · U) -ad · 
U ( 0 _, FOO) PO . U ( ~ oo j 0) ( 9.3 5) 

The operator Uad(O 9 ~oo) and its~ inverse are both p_resent in this exprE?ssion, 

so the oscillating phase factors cancel., ' The fo:rm ·of the operator 

follows from Eqs. (6.28), (9.12) and (9.35): 
-ad · · ( 1 ) -ad · · 

--· u (_o;:;::oo).6.H
0

P0 u (~bo~O) 

- ( ! \ 
~·) 

Insertion of.expansion (5.5) into Eqp·:-.(9.35, 36) leads to power series 

m(') ·U) 
expansions cf ~ and · 6 · ~ of which· the nt.h order terms are gi v'en 
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re spect.i vely by~~ 

n IS. (') 
·= L :rimE: 
. ., ~1 

. 1 
n ------

H 1 ·- H ± imE 0 0 

1 
Hl --~--~------~ H0 

1 -H0 ."~ ~(n.,·m)E 

( 9 ,.38) 

Expressio11s (9.37J 38) can be replaced by 'contour integrals: 

---:-::---1-::--- H1 -~-1- dE 
E- H ± iE: E ~· H 

. .0 . 0 

"· 
Here each contour C 1 ~consists· of. a pair. of line·s paralleling t.he irnaginary 

axis and straddling the sequence of poles at H0 j 9 H0
1 ±: iE ~ H0 

1 .:1= 2iE .• ¢ • ., •• 

* It is to be riotsd-that theE' in Eq. (5.5) are th~ levels of th~ referen8a 
system H

0 
and should· be replaced by H0 ~ here·¢ 

** 'The occurrence. of such infinite sequences. of poles along·the lines 

Re E :; H0 ~ is c·haracteristic of adiabatic swite.hing ... The even spacing .. 

** 

' . 
·of the poless however, is not a general feature, being merely a peculiarity 

- - E: It\ of the exponential damping factqr e . 
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In the limit E.-4'-0 ~g~. (~.39? 40) reduce to (9.13b,; 14bL g,e.<1;. The 

identity of \GX+') and 10(_ 1
) in the bound state case becomes thereby 

incidentally evident. 

A direct expansion of the level shifts themselves maybe obtained 

from Eq. (6.28). It is easy to show that [41] 

'<-II I I ') · · Jo 6Ho Jo · = 

where the ncta~.ion . [ picks out .the nth order term of a given quantity, ..,.. 

and hence that. 

·(9.42) 

· This equation·_implies 

One may verify by direct computation that the Rayleigh-Schrodinger formula 

is obtai'nable; when no degeneracy is removed, by writing 

1· 

H I H 
0 - 0 ± im~ 

p ( i) 
0 

±im€ 

1~ P
0
(') 

Ho' - Ho 

·,'j 

i i~ -,.). ~ 
1 

.• ' 
H . - H 0 0 .. 

expanding and inserting this into (9.42)$ and discarding terms of order.s 

E E 
2 

, ~ etc, 
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If} for a given unperturbed level H0 :; the expansions (9.13), (9.14) 

·and (.9 ,J4) converge a-v all~ they define functions of g \'Thich are not only 

continuous along the real axis but also analytic in the complex plane i'n the 

neighborhood of . g ::, 0, Thus far we have tacitly assumed that the·se expansions 

::.onve:rge for rea:);. values of g small enough so that no perturbed 'levels 

cross over a sui table contour · Ca. surro1,;.n:ding H ' 0 It is easy to :See that 

this condition~ when g·3neralize·o. to include complex values of g, doesil 

·in factj determine a low~r tound to the radius of convergen~e of, the expansionsj 
.· . .. 

and t-hat the possibility. of a convergence failure occurs ·simulta.neously with 

a failure of·the binomia:l ·expansion of (9. 2) to ;:;onveJ:•ge· everywhere on the 

cont.ourin question. 

For g ·= 0 the energy lev'els lie on the real axiS in the complex 

E=plane ,' For finite I g \ .the positions.· of the levels will describe slosed 

e:urves intersecting the re"al axis as the phase of g ·changes from 0 to 2 'ir. 
,. 

A plot. of the level structure in (E,, \g \ ) "":: space therefore consists of cones 

nav-1.ne their vertices J_n. the plane \g\ = 0 at t.he eigenvalues of H0 " 

Consider t.he coqe emmanating from thepoini.~ (H0 ''7 0)$ together with its 

adjacent neighbors" Intersect these cones by a plane . ·I g I = r. > 0 and 

project the pori:,ions of the cones lying below this plane onto the plane 

jg\ ~ 0" A lower bound to· the radius of convergence of the expansions 

·corresponding to the level H0 is :then given hy the largest value of r 

for which these projections do ·not overlap cne another: Th:is may be seen 

by choos~ng the contour c ~ so as to surround the mro;imurn projection 

co-ntaining Ho 
1 

without intersecting the. adjacent ma.x'imum projections more 

t.h<?-n t.angentially" ( C ~ rriay, if des:Lred, be left open in the imaginary 

dire•:::.tion so as to acc-:>mmodate the situation arising in Eqso (9.39i '-+0).). 
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If now is ~ncreased beyond the value rmax at which overlap occurs, 

the integrals {9.9, 10) will, for some complex phase of g, suffer abrupt 

changes of value arising from the fact that one of the levels has crossed 

over· C 1 • At the value of g for .which the crossover occurs the ·opera.tor 

function~ G(E) has a singularity on C1 This singularity must reflect 

. itself in a convergence failure of the binomial ~xpansion of (9~2) •. 

For lg\ < ~max' the func~ions .;Jl ( 1 ), . 1::::. ( 
1

), !.:::. E' have no 

singularities or'other peculiarities. Therefore if their expansions converge 

at all they must converge in this region. The actual radius of convergence 

is frequently rmax ·itself, although this·Js not necessarily so, since 

rmax is only a lower .bound. for it. A trivial example for which rmax is 

not the convergence radius is afforded by the case iri which H1 commutes· 

with H
0

• The level 'shifts in this case depend linearly on g and the 

radius of convergence is infinite regardless of how much the perturbed levels 

cross one another. Thus although the binomial expansion of (9.2), and hence 

the method of deriving the expansion formulae ( 9.13, i.4) etc., breaks 

down at /gl ·= rmax, the formulae themselves.may occasionally have a 

wider range of validity. 

Kato ts~has derived a simple theorem which provides a lower bound 

to rmax when none of the propertie~ of the perturbation H1 are known 

except its ~· The norm 

- max 

of an operator F is defined by 

for all normalized vectors liP> . 
(9.45) 

If F is Hermitian its norm is the magnitude of its largest eigenvalue. 

Norms satisfy the inequalities 

(9.46) 
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Now let the. contor..r C9 consist of two lines parallel to the imaginary 

.axis_, straddling the point 
.• ·: 

H 1 
0 

at a· distance ~ W 1 
J where w' is the 

. I 
:.; distance of H0 

from the nearest adjacent. level o • Then 

for E on C 1 (9o47) 

a.r!d cor:·.r<Jl'&,er.~e of the binomial ex-Pansion ,of ( 9 .2) is' assured if 

g < ~ vJ'/!V\ (9.48) 

where H- rr. ·gv o 
l. ' s.o tha~ 

(9.49) 

The quantity.·~ w' /J VI is the lower bound ·to rma.Xj and condition (9o48) · 

'quarantees the convergence of the Ra;yleigh-Sshrodinger perturbation formula. 

Alternative formulations 

Because the Rayleigh-Schrodi.nger forrnuta is a dire.ct and· unsophisticated 

expar:sion in powers of · g it has the poorest rate of convergence possible. 

It is therefore qesirable to·seek other computational techniques. Eq. (6.8) 

provides as ,good a starti!-Lg point as any. We first note that this equation . 

can be written in the form 

• ,.:... z ~ l 
(9.50) 

which is the generalization of Eq, (7.7). Multiplying (9.50) on the left, 

by < J 0 
1 
j , and taking note of the limit 

.... 
E --7 0, one infers 

f = ±~E:'Z'-"3:(2'-1')-----? o ( 9 ,, 51) . 
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whieh implies 
~ .. 

We now assume that re!Jiovable degeneracy is absent. ··--The operators : 

. (')JY:l(:)' (:) 
Po . ...P Po are ~then qiagonal in the I J 0) .9 and Eq. ( 9 ~51) may be 

generalized to 
. ,\• 

(9.5J) 

so that Eq. (9.50) may be rewl'itten in-the form 

P.o('). '7f ... I ,J'). + z i ·~~ . 1 - ~- . 
-~:;.--- .1.. 

.(9.54) 
E~ 'Tf" 

~ uuo 

( 9) 
The factor l. - Po . in the second. term on the rigt:lt allows the lim:J .. t 

€ ....,. 0 to be taken at once, the superfluousness of the ±.. signs becoming 

again evident. A more useful form of Eq, ( 9, 54) may· be obtained by observing 

that 

1 ~ P,., 
(;). 

1 - p ( i) (1 6H ) v -· 0 + 
.. n - ~%· 'E' - Xo · E' H 

G - 0 

. ( 9. 5.5) 

which yields· 

= 

. c,) ..... 1 I > 
(1 - g M ) J 0 ~ (9.56) 

··~ 

., 



: . 

where 

M(1) ( ' ' - l = -~ p 0 . ) . v 
;;-

E'.:.. H 
0 

UCRL--2884 

(9.57) 

Substitution of (9.56) into (9,52) then gives an equation for -'the shifted 

l.evels ~ ·· 

H ! 
·~ 0 

(
l·_l_ Po<;). )-11J '> . ---·-. Hl o 

E' - -H 0 

(9.58) 

Still another formulation cari be obtained' through use of the relation 

1--P(') 
. 0 = 

1 - p ( i) 
0 

in Eq, (9o56), This'yields 

= 

where 

The level shift equation is 

(9.59) 

(9,60) 

(9,61). 

0 . 

(9.62) 
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·Arty attempt to solve Eqs, (9.58) or .(9,62) for the level sh'ifts j,n 

. powers of g \·d.ll lead to·· the Ra.yleigh-Schrodinger formula, However, 

there is no need to solve them in this ltlay} for the possibility-is now,open 
l. 

_·of obtaining iter§ti ve solutions which have a better rate of coiwergenc.::. 

For example, Eo, ( 9, 58) is comprehended in the iterative scheme 

' E' 1im 
n~oo 

E ~ 
n 

E., 
0 

.. H I 

= 0 

H ( l - ·p 0 ( 1 ) . H., ) m 

.(9.63) 

H I + 
0 

n-1 
"'-' b 
rn.::O l -· --·-· 1 

~ . ' H · .t!.n .;· - o 
.t -·.l.. 

An llnproved version of this schem~, whicfJ consists of a regroupin~ of terms 

in such a manner that a gi veil matrix element of . , . . appears on.~..y. once J.n 

a giv-en term of the sum in ( 9 .(;) L has been given b;y· Fe en berg [s 3 to 5 S] 

Although:these iterative schemes generallj provide a 1nore rapid 

rate of convergence than the Rayl~igh-Schrodinger formula, the actual 

converg-ence is still limited, H_o.,.;eV(~r, the ·limiting factor :i.s now the 

_radius of convergence of .t.he blnornia.l e~pansion o~ (9,5>5) and (9,62), and, 

as \.rili presently becorr,e app.1.rent J this can often be le.rger t..hp.n ~ma0e· 

We shall "- " "- the discussion .l. ~ Eq. (9o58) and the operator M( '-) 5 as res~rlCv \J\, 

identical remarks !ll?-Y be ap~)lled to Sq., . (9.62) and the operator N( ! ) , 

The radius of. co:1vet;~ence of the binomia-L expansion of (9.58) is 

the absolute value of the smallest g for ~·lh.ich the operator J!) 
gl'J\ has 

unity as one of its eigenvalues. Or, said in another wa;:;r, it is the 

reciprocal of the magnitude of the larg~st eigenv~lue of M( 
1

) ~ Denote this 

largest eigenvalue by 

Then 

.-1 g• and the corresponding eigenv.ectQr by 

(9.64) 
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or 

(1 ·• P {')) H \1JI') 
. 0 1 . . . (9.65) 

where H1 = g!V. It is evident. that !1Vi> is orthogonal to the subspace 

Such a vector arises naturally when g t'akes on a .value .for which 

a.n accidental degeneracy occurs due to a: crossov~_r of the-level E'' with 
... 

t..nother level which ca.i"Ile originally (at 'g = 0) ffom a differ.ent position H II 
0 .) 

Denote by m ('t) the vector from the subspac~ ,p· which 
. ' 

corresponds to I J.¥ > in ~(r). Both. and will generally 

contain the. vector ·\ J0 u> as a component, However, a sui table l:i.near 

combination of .I .J".> and. )J'> can be found which has no components 

from P0 (') and which is an eigenvector of H >-.rhen the srossover in question 

occurs. This ·is the vector /"'fl > 
The reciprocal eigenvalue g 1 is therefore generally the smallest 

value of g for which a crossover takes place between -E' and another, 

originally distinct, leveL ·rt is clear t'~at such an actuar coalescing of 

levels may possibly not. occur until a much larger ·value of j g \ is 

reached than that for which a mere overlap of the cone projections previously 

considered occurs, Thus lg! I vd.ll frequently be larger than· rmax' 

but never smaller. It is to be noted that g' may'be complex since the 

.. )pe-;-a+.o-... M( 
1

) . ;· - ·· is not generally Hermitian. 

The Fredholm method, 

The expression 
(') =l 

(1 -· g M ) has singulad.ties at all the 

reciprocal eigenvalues of. M('). An analytic continuation which 'Qypassee 

these singularities and ~,herefore eliminates all restrictions em convergence 

is prcvided by the Fredholm methodo We shall content ·oGrselves here with 
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., 

a mere statement pf the Fredholm formula and,_refer th~ reader to standard 

works for ··detq.~ls (e.g··. reference [!o] ~ p. 1018 ff c). 

where 

and 

One rewrites·Eq. (9.58) in the form 
~ ,· .. 

E' = -Ho v +- < J o v \ H 1 Q (• ? /D ( r ) • \ J o ' >. 

( i ) . 

D =:exp 
•, (I) -1 

g M ) 

( 9 .66) ' 

d ]· g . · (9.67a) 

(9.67b) 

(9.68) 

Here the . gi_ are the ·reciprocal eigenvalues of M( 
1 

).· and n is the . 

· smallest exponent fo-r which. Tr M( 
1 
)n is finite. 

o< 1
) is an entire function of g having zeros· at th.e poles of 

(1 (I) '-1 . ( i) . 
g M ) .. The .. operator Q is therefore also an entire function 

' . ' 

of 'g, and o~e. may carry out an expansion of ( 9. 67 a) in ·powers· of g, < 

insert this into ( 9. 68) , and carry ~out: the expansion of Q ( ,·) ; kno~i~g · 

that both ~)cpansic;ms will· converge no matter ·how· large 

of the two ~xpansions is'then used directly in (9.66). 

* g-is. The ratiO 

Eq. · ( 9. 66) has still to be solved for the shift~d energy level E 1 • 

For this purpose iterative techniques may be used as before .. If other· 

. methods (g·raphical ones, for example) are used then care must be taken, 

since (9.66) may have many different solutions. It is necessary to cpoose 

that solution which passes continuously to the value H0 
1 as g goes to zero. 

* Closed expressions for the coefficients involve,d are given in reference OoJ •. 
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·. 
The .adiabat:tc theorem,. 

. . . 
The adiabatic theoremmay be regarded as haYing pee.h in a sense , 

proved by the ·demoristrati.on in the present section. of ~he e9-uivalence of 

the adiabatic constrti.ctictns of .. sect-ion 6 to other' more .straightforward 
( ., 

It is usefu;l.; hovrever J t.o ha:ve a proof· of this ·perturbation techniq•.1es '· 

theorem in its most general fo:nn~ a~ stated in section 6·~ in \vhich the · 

adiabatic sw:l.:tch:i.:ng is not restricted to the_ very special type expressed 

by Eq, (5el), 

The pa'ttetn of proof is classic. [63] One introduces a time 

·dependent Hamiltonian operator H(t) a:nd a set of correspondirig eigen-

vectors· I:JU(t)> o• . 

H ( t) I J !i( t) > (9:69) 

(9.?0) 

Setting J" = J 1 · in ( 9 o 70) and differentiating with respect to the time 

or1e sees that (J 1 (t)) (d jJ~(t)> /dt) is pure imaginary. E-vidently 

the phases .~f the eigenvectors can be adjusted so t~at 

'and we shall assume this has beeo done 0 

Consider now a Sc:hrodinger state vector bf the form . 

. ' t 
~ 1 -i )

0 
· E 1 (v.)ctv' I ~(t)) LJ e AI (t) / J• (t)J 

.,.. 

(9o7l) 

( 0 7r• \ 
/ c ~i 

Sub.stitution' of this into the S_ch_rc<i-.t'nger equatJ.'on (l,l8·),'·anld -t· 1' t' rr1uJ.. ,1 p .J.ca. :Lon 

of the result by <J 11
(t)l give:s th~ following differential equation for 

j:.he am:r::li tudes A~ (t.): 

,: 



. l 

·~. 

f t. [ ,· . ' .. l· 

L
. I· i E!i(V) .~ E' (t' )J 

0 . 
e . . 

' . . 

d;:' . 

A' (t}< J"({) \_(d \ Jt (t)) /dt) 

(9~73) 

On :.he other hand:. multiplicat-ion cf' the time derivative.:of Eq" · (9,69) by 

gi-,rea* 

· .. h · -in ~ ·~..... .._.p ( q ,.,.~ \ ana ence;, ... v~~·h..z.e v... , •• 1 .J..), 

L I -. ifot [E" ( t') 
J1::f,J11 

(9.'74) 

.E'(tl)] dV . . 

A'(t) __ (J".it) I H(t).l!'(t)) 

'E"(t) - El (t) 

If H(7,) varies.Elowly with time then its eigenvalues Ei(t) vary 

dt. ,. 

where f(t) is also.slowly vary:i.ng 1 is of c·rder f/w -in magnitude~ w 

being some average ve3:lue of the level separar.ion E"(t} - E 1 (t) in the 

interval 0 t.o· t 1 a,nd f a corresponding average 7alue of· f( t) .. 

Therefore, if only one of the asplitudes, say A;(t) 3 ·is excited at t _ 0, 

integration· of ( 9 "'75) for the other amplit'..ldes gives 
~ . . 

__ .:..._ __ .£-___ . -------

If the time variation of H(t.) lS regarded as due w a variation in the 

coupling constant g 1 Eq. (9.74) reduces) in tha case 
... 

,JH _ J 1 ~ to 

Eq. ( 9.43), 



.... ; 

'r:· 

! 

.. 

.. 
·' ·, 

•. !4 •• : 

.'' 
'· 

' ~ -. 

·•. 
1 

J ,, -J.. •• 
. ...,... .; ' (9.76) 

where E is tte reciprocal of a. length of. time o-:.~e:r vrhi.ch H(t) undergoes 

significant changes and is a typicaL (1[£-:liagonal matrix element of 

H(t) ,, , T.he adiabatic. limit. is expres6ed by E -i""" 0, 

Eq. (9. 76) contains the st.at-ement r::f the aci.iabat:Le theorem. It. shows 

that if there is no initial: degeneracy in the system, so that all the le~rel 

separations occurring in the sum (9.75) are fihite~ none of the ot.hez-· amplitudes 

get.s excited in the adiabatic: li.1ni~:. :> and the vector :::-emains a pure 

eigeb.vector of * H(t). On the other hand~ if initial degeneraey·is present, 

so that w ~ 0~ then the amplitudes 8an'~beccme all mixed up, unless the 
\ . 

degener·a:cy rema-ins unremoved, in '~hich case the operat(.\r . H(t) li.eVer has 

.. n.on.vanishing off-diagonal elements,. connecting states of· equal energy· and. the 

'· 
.adiabatic theorem will hold in ~pite of the degeneracy, E·v-en if the dep,ene:ra.cy 

is rem9ved by the pertu:::-bation:. howeve:r 9 the amplitudes can still be pre-vented 

from becoming mixed up if the vectors l_J'(t.)/ are chosen in such a way 
.,. 

IJq(t)> that d fat remains of order E ' 
·as t. ---?- G; for i~h·3 integral of 

Eq. (9.73) then becomes of order 

.i/o + 

/; t "~e t.~ dt: 
e e. dt -- 0( E /s )~ ~ G 

.for J
!'' .-J- J' . •J . . 

.,.... , the level. separation oei:1g expre.ssible for · 

simply as s' €. t where s. is some f~[I:i.t€ constant" 

requirement, whan appl·ied. to the adiabat.ie c6netruc·c-ion (6.12) :· d.e.~errnines 

t,he appropTi.at.e chc:ice for the vec:t.prs ·· \ (j, ·:, 
o I a.nd ;::an Dvid ently bE-

:::·atisfied if the eigenvectp.rs \."' .... '>. ·A~ c.re analytic f'J . .-,ct.icn~~ oi the 

. \~oupling constant.· g . in th'e neighbvrhood o:l' g = 0" 
~ .... ·· 

To be completely. rigorous 0!1e :·shcf,.lld aiso 8l"!GW t.hat; fo2 reas.::mable ope:rat,~'rs . 
H(t)_, the sum (9:75) converges for.a:1y set.of ampl.:I.tudes satisfying 

'2: 1 \A; {t) \. 
2 

!';: L (See .referenc~ [63} ~) 

; . . . 
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The adiabatic eonsti·uct.-ion 0.f eigem·ectors can also be co.rried past any 

point a.t which an a.c':":idental degeneracy occurs, prov-ided again 'Ghat the \·11 (t.)> 

can be· chosen in sue;h a 'tJay. that~ 
\ ' 

., \ p (t') ''ct~· c ...... .I l :... r·emains .of order o€ right 

through the time G•f' deg'3nerac;y.. Thi:=; condition e··.riO.ent.'iy ,.imposes certain 

restrictions on the tempora.l behavior of the operator ·H(t) s but. these are of 
* the mildest sc•rt and may usually be ignored.' 

The fact t.hat. any stage in the·switching process the vector liJi(t)) 
is an ei.genvector of the total Hami.ltonia.n operator for that stage is . .. .• 

. . . "t' E "c:. 5' h. ' h ~· t 'f coris.1.s·tent. Wl ·.n q·. \ _.,. .J w :1-::;n s 1C·WB .~na . • + ·' and are allowed to 

tend respectively to =F oo and 0 . in such a way that E It I remains equal 
.... i Hot -ad 

~ the result ·o~ apt)lying e U (t.J'Toc)· to lo<o') 

is 'f:,o obtain· an eigenYec:t..:·:r of the cperat.cp H
0 

-t-·xH1 

The cr~ation of ·oound states f::-om f:r·ef\ stat.es. 

An interesting supplement to t.he ad.iabahic· switching prc·ce·iure is 

suggested by the si tuat.ion oscul·:r:l. r:;g :iT; systems which possess bd.h bound 

and .free states 9 and typically by the ~it.be."t.icn . ci.epict.~ed in 'Fig,. 7? in 

The type of behavior which is not allov1ed is 1.11ustrated by the simple 

.. example. 

H(t) 

( 

l. 

. . E' (t. t~) 

., E '. "' ) 

.J.. + ·1. r, -- ~·o·· 

0 

E' (t 
t ))···. ,0 •. 

. .l 

.;:. 

\· 

0 

1. -· E (t .-

eigenYectors r.~hange. abnrptl;:r at t.he time c.f degeneracy t.· ~- t.0 

t<: .. 
"o ' 

. I 
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which system H has bou."1d states which have r,o coun.terpar-ts ~n H0 , 

Although it has been previously ryemarked that pertut·bation theor;-y- cannqt 

be :applied dir.~ctly t~o the constructl.on of the eigertvect.ors for the "extra". 

states, and that independent and generally rr..ore difficult means of construction - . .. . 

must be found~ one ~.nevertheless suspects that these states ought to be obtain­

able by some sort ·~f adiabatic process c•f '~peeling them off the bottom of the 

deck" of highe!:_ lying. c·ontinuum states.. It is actually possible to test this 

conjech;.re in a simpl_:e case .. 

:Before becoming sped.fic let us first consider some of the general 

features wbich we should "expect to chara.Cterize the r-esults of such a 

- -~ . 
procedure, Let. the -zero po"int of energy be taken at. the bott-om of the 

continuous part. of the s:pectrum ., · 'I'he lowest lyJ.ng contimnun .st~te of the · 

system H
0 

·will ~enerally be nondegener-ate (ignoring nonclassical degrees 

of freedom), and vle shall denote it ~by I 0) 
of the absolut.e value of a inoment;om p 9 this stat·e will' correspend to ,p _ 0. 

,.,.,._ -
0 

In case the lower bound 'of the continuum is itself nQt included. in the 

spectrum it is necessary to. regard 1 o) as a. sup'eq)osition. ·or states 

from:an infin~tesimally thin shell 0f levels at_the.bottom~ ·but this ·does 

not ;Cl.lter the fcllowing ·discussion .. 

:..ad( , 
i'le \vish to consider the effect of applying the operator .. U 0, -=F oo) 

to ·\o) If our conjecture is .correct then "'e shohld obtain a result of 

the fonn 
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where the \ J 1) --are the "ext:r.a" bound stat·es. The question arises as to 

the form and magnitude ·of the_ amplitudes 
1 

A±. o 

If the perturb<:tion .· H1 is ~ position dependent potential V(r). ,.. ' 

then the coordiriate·representation of a given \ J ') · must, ·in the region 

outside the range·of the potential, have the form 

where C1 is a normalizing constant and 

< 0 .. 

' 
.(9.SO) 

. ' E! being. the energy of the state ·I J ·.> . In this state the coordinate of_ 

the syste~ (particle) is more or less certain to be found "!::ithin ,_a di.stance 

of order )-J-
1 -l + d from the origin 1 where d is the range of the potential 

(which is assumed .to be centered on the oriigin) o On ·the other ·hand·, in the 

·unperturbed state \ 0) the coordinate has an equal chance of being 

-anywhere in the fundamental box of side L. The chance of catching the 

system in the bound state I J') by. switching on the perturbation is 

therefore of the orp.er of (,M1 -l + d')N L-N , and the amplitude A-1:
1 

is 
., 

~xpected· to be proportional to (JA'-l~ d)N/
2 

L-N/2 . ·Since a level shift 

should have as an additional factor 

· a: rapidly· oscillating phase. Summing up, we expect 

I A . 
:!: 

, -· -·1 N/2 -N/2 = f: (€) (.fA' -+- d) . L exp [ -llg . 
(:i€) 0 E'(g) g-1 dg] 

where the· f.,: 1 
( € ) are weight factors which depend on the detailed 

(9.81) 

structure of the system and which may also be expected to depend on the 

rapidity. E with which the perturbation is switched On, though in a much 
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,. 

less s'ingular ·fashion than the osclllating pha.se. .. 

Eq: · ( 9 ~81) ~ill now be verified for the casl'=! of the one--dimensional 

·delta-f~nctio~ pote.ntial considered at. the end of the pre·vious section. 

F, 1 1 2. Here there 'is only one bound state 5 and d = 0 ~ JA' ::: g 9 .... ·- -;;: g • Hence 

we expect . ; . 
., : *i 2;€. 

{ 
1 i 

A.-r.~ ·r:!:.<E:J . -~ g ! 

::; (gL) e (9.82) 

Using Eqs.-.·(5.,5).~ (8.l02).and (EL103), we fir·st 
. .. ~. . get 

;..: 

n oc 

= 8p'0 i- 2t L_;· 1 l (±i s
2y ·--

~0 p921= i 2(n+ l)€ ~n! 2€ '"' .. 

·' 

6 . + 2 g 
p'.O L .... 

1:{-.,.-----l __ ·. -;::::;::1=;::::' 
IIl.:::C _: P 1 2 =F- i 2(2m + l)G J (2m)! 

~ l. \/J..._·~ 2)m + ~- .} .. 
+ . ~-. 2 --·---··----~-

,P g ~ i 2 (2m t 2) € j ( 2rri .+ l) ~ '2 E: · 

(9.83) 

."· 

For very small. ES the terms of the above series which gi.....-e the most 

import-ant contributions are those for which m· is ·of order ft g2/ E 

Hence the Stirling approximation for the .factorial-may be u.sed 

giving 

I. x. 
x+ i 

X 2 

·~· 
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. ,, 

JC2m)t. . /"'V 

~(2m+ 1)! 

(9.86) 
~ 

. ** In the final.forms o~ Eqs. (9.85, 86) the extra factor· m has been 

replaced by its "peak value" (f; g 2/€ t*, in r~cognition of .the fact that 

the fractional width of the group of significant terms of the series (9,83) 

· becomes smaller· and sma:J,ler as E. tends to zero. Therefore, for very 

small E 

<
. I ~ad . .I ) Z' U (0, =Foo) 0 

00 

- s +-f_,_(€) ~ L 
p'O ""' . L m :0 -

(9.87) 

where 

(9.88) 

'. . -1 
If it were. no:t for the presence of the factor (p 12 =F i 4 m,€) , . 

(9.87) would be the serice~ for exp(± t i g2/t). However, this exponential 

(p' 2~ l.. 4.m )-1· can be maintained as a factor if we expand ,... in povrers;:. 

-2 
of . P'. and make use of the asymptotic relation. 

. . 2 .. 
2 2s :ef;.ig/E . 2s s ±~ig2/€' .. 

(- g /p 1 ) e · · 'V ( ± i 4 e jp 1 )(- E d/Cl ~ ~ . e . . ··, : 

-/'0. (. ~i.~ m•)s ~ .:, 
. 7 . p • 

(9.89) 
2 . -1 

When m is near·-its "peak value" the expansion of (p 1 ::f' i 4 m €) converges 

,. 
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in the same region as ~xpansion (8 .104) s. namely for p 1 . > g, and m<;y be. 

analytical~ continued to ~malle~ values of p'~· Hence we write 

l 
( 

• 2)m 
_:t:~ 

4E :, ml 

2 
-2 · 2 · 2 s ± * · i g /e 

p' (=g /p' ) e 

. ' 

= 
2 2 -L±i 2 

(g + p' ) e i g_/ € 3 .. 

(9.90) 

which~ in virtue of OLlOO)-~ lea~s to (9.82) with.the function f~(-E ) 
~ 

given by (9.88). In deriving expression (9.90) we have, of course, left 

many of the important mathematical steps unjustified, si1ch as the reckless 

use of the asymptotic forms, interchange of orders of sUmmation, etc. The 

derivation can~ however'. be made rigorou~ through the use cif proper 

analytical techniques. 

It may perhaps seem surprising that f±(€) t~rns out to-be a 

singular function of E at the origin. The singularity is, however, a 

weak one 
• <~ 

("'-'E. ). and, since condition (7.18) must ,always hold; 

lim 

€4o-O 

A I 
i: -- . 0 

This means that even though the bound state can be adiabatically created 

from the continuum it never has more than a transitory existence when 

constructed in this ~ay. This conclusion should hold generallyJor all 

systems, 
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lO. SIMPLE FIELD THEORIEs 

The ;honr~lativistic extended source model, 

''-_. The m_ost striking of .the special. problems posed by field theories, 

namely the problem of the renormalization of constants 9 can be illustrated 

by relatively simple examples. In this section we shall consider systems 

having. Hamiltonian operators ·of the general form* 

(10.1) 

Here we use the abbreyiations 

etc. 

(10.2) 

- The field 1}J may have several compone~ts <f fo 9 and the notation contained 

in Eq; (10.1) is then to be understood as.involving matrix-vector multiplication . 

i:"* If the basic commutation relations are taken as 

* This fol"Jll may be deri-ved from the Lagrangian density 

rf :: i ~*(if;+ met)-.~ ·LA [(\.7fA)
2
. -· .f.A

2 
+ fto

2 ~A2 ] + L-J Evac 
"/W>. ""' - . - ·• ""' . - . 

which yieids the equations of motio~ in the Heisenberg representation~ 

+ i{Mo+g, 2J,A[lfA' N;.'-sl.l;;•]TJA]:f = o 

g L ~ /p ,(r - r') '71)-r.- T .A 7./J 1 d\i; 
J J ,.. ,... . ! . J '·'""' ..... 

** The bra.cket.s t S denote the ant.icommutator • 
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i 8 AB ~ ( r -· r 1 
) ;. ·- -

(10.3) 

with the· corrnnl:.t.at.ors of all other pairs of field quantiti~s vanishing, then 

the 1/J A describe fixed fermion .so"Jrces of a set of real scalar (or pseudo­

s.cala.r) boson fields .cf1 A ·~ Followi~ custom we shall refer to the· fenriions 
. . '\ '" 

as nucleons and to the bosons as ~~· 

The last ·term of (10.1) is generally called the '!coupling t~rm," 

g. being the coupling constant, The Hamiltonian operator H0 of the i'n.atura:l" 

reference systell'\ is obtairied by setting g :::: 0." and involves .. only the. 

quantities M0 and )J- 0 , the 11 bare 11 nucleon and mesoti. masses respecti"el.y, 

The-constant. is inserted merely for convenience to cancel the vc..cuum 

oscillatior.. ene:-gy so that the vacuum state will define: the zero point of 

er:;.ergyc .. 'In relativistic .. fielC! t..heories the masses of the .. rea~ ri~cleon and 

rr;.esoh whe::1 g :1= 0, ~all ·t.hem M and 

The adju:stable constant must als.o vary with g in orde:r· 
• . 

. to keep the r~al ·.-acu~im at zero er.ergy. In.'the present no~r~elativi.$t~c 

~xample~ howeverj or,ly M .•'fill depend on g. A g-·depet;ldence for. J;-o. and 

E.iac .'requires the possibility of nucleon pair creation_~· and ti"~is '~ill be 

proh:ibited.by taking M0 as a simple positive real constant rather than the 

.m~r~ general.matrix having both negative and positiV:e eigenvalues. As 
. 

·partial compensatiori· for this restriction the nucleons wil2. ·be .allo.;,ed 

-to have a. finite extension thrcugh the presence of the real funet1.cns 



I 

l ,. 'I . -.)'-

;:J.(r-r'). 
l J ~ I"'· 

callvd nonl.oC<.!l chs.r·iicter. · The rt:J:Jlinin,r: fe,:;.t,;.n•vs of th~~ tntera.ctiop are 

des~:i'ibed by a set· of Hermitian mat: rices, the· T jA. 

A C\{l~ er~~-~E_£.!.Ot_~_t_hon_•_ 

Fer practical calculations. Jt is convenient to pass to the momentum 

. -rc~resent~tion. The nrecedure. is f?-miliar . One inakes a Fourier analysis 

• . . 4' 1_3 of the meson .. field var1ables •lith respect to an enclosing box o., volume 

.- 4\,p 
'"' 

= (10.4) 

7f A,p 
-J/2/. ·--p.r 3 

L , 'JT,(r)e-'""'dr 
. A. ,.,... ,_ 

* 'IT 
. A;-p ' 

( 10 ~ 5) 
,..-

~. · a.nd then introduces the operators 

a 
!A,p = (l0.6a) 

,.,. 

* a A -.. ,p - '. (10,6b) 

""" 

Chew (reference L=oJ) has considered s:y-stem:;; of the .extondi;~d source type 

from t~e point of vie'vl of ren6rmali;:.at ion theory' . srccifically. he has 

cdhsi<;lerr.;d. the charge. syr.unctric p;3eudoscalar theory _with 

f
.,. I . I \ 
"'.-\.r - r ,. J. hi hi 

:: L~ 0-l !C)O(r-- r')/";Jx.., 
r r ~~ ,--.· J 

1. ' = 

the Gj and 'f A being the spin and isotopic 

}.;uch v1orl5: has ·been done i·n the past-on systems 

of vie>v· of strong coupling theoiJr. c~J There, 

()j'T'A 

spJn matrices 

of this type 

however, the 

respectively. 

from the pqint 

splitting of 

H into a perturbation H1 and an unperturbed Hamilto·ni.an H
0 

is done 

quite, differently, and the phenomena of renormalizat.ion are for the most 

part obscured. 

S:!c~_, for exarrple,· reference [7] .1 chap., Il, 3 6c 

·, 
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where W is the energy of a meson of momentum p· 

w = 
2 . 2 ~ 

(p :t" )A. ) p I~\ (10.7) 
., 

In order to concentrate on essential features we shall suppress 

the indices A3 p by introducing an 00 -dimensional Euolidea~ vector space. 

Let the members of a set of orthonormal real basis vectors in. this space be· 

denoted by b A,p 
NA 

the dot· indicating the scalar· product. · Then introduce the vectors 

a ::: 

These vectors satisfy the commutation relations 

[a~ a] = [a*, a*] - ' 0 

, 
= ,_!b ' 

where .J:b denotes the unit dyadic in the space of the bA~p. · 

(10.8) 

·-.·. (19.9,) 

(10.10) 

It is als9 convenient to introduce another vector space for the nucleon 

field variables, with a corresponding set of basic vectors · f 
P.;;.. 

(10.11) 

.·. 

- * '<¥ 

The tf 1 s commute with the a 1 s but ,9 among themselves~ satisfy the anti­

r.ommutation relations 



,;·: 

<' 

.t. 

. '. 

·.,·, ·. 

UCP..L-2884 

-139-

t1lr,~} = '{~_*, "W*} - 0 

(10.13) 

tir ,w~} - L~,~ f. f lf ' 
p.;E, )J.~;.. -

where ··1 .,..f is the unit dyadic in the space of the fur . r:,,... 
If now the mes~n field.variables in (10.1) are· expanded, via 

(l0.4j5,6), in terms of the aA~p' and 1f the vecto~ notation_here introduced 
~ . . . . 

is employed, then the Hamiltonian operator reduces to the sum of the two 

condensed expressions 

Ho 
....; Mo "ffi"*. ~ + * (l0.14a) a ·W·a -

.. 

Hl = g ~*·(V0 ·a + * * . -ill" a·V
0

)·_, (l0.14b) 

where 

= (10.15) 

= f (T .A) f bA )-) r J p.v J~,r ,p 
',.,.. . ,. /1M. 

(10.16) 

(10.17) 

-
In the passage from (10.1) to (10.14) the vacuum oscillation energy has 

been removed by setting-

E = yac ~TrW - (10.18) 

The matrix-vector multiplication in expression (lO.l~b). involves, in 

an obvious fashion, the direct product of the vector space of the b ~,s with . 

that of the 
. ; 

is a vector in b-space.and a dyadic in 
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presently become apparent,. Its Herm:1.-: .. ian adjcintJ whi<::.h is indicated .by t·he 

asterisk in (10.14b); is to be understood as involving EJ. transposition in 

· f--space a.s well as a complex conJugation, 

The operators a and a* respectively annihil~£e ahd create a meson, 

and the operators 1J.f and 1J! ~ do the same for a nucleon. . The vacuum 

state of the reference system H
0 

is defined as th~ no--particle state 9 L e, 
.' 

the state from which no particles can be removed bythe annihilation operators: 

a l vac) 0 ~ . = 0 ·• ··-(10.19) 

It is evident from the fonr of the int.era•::tion (l0.14b)·that. '\v.ac> is 

an eigenvector of the total Hamiltonian operatory having the eigenvalue zero. 

H \ ~.rae) 0 , (10, 20)'. 

Thus I vac) not only represents the so--call.ed 11 bare11 var:u.um of the 

sy~.tem. H
0 

but also the real vacuum of the system H. In theories which 

al.low nucleon pair creation the real vacuu.-·n state vector is generally different. 

from the bare vacuum state vector" 

The bare one_:particle states are obtained by apply}.ng the· c:rea.tion 

operators to the vacuum: 

* a I vac) 

(10.21)· 

The quantities . ) 11
0

) and \ N
0

) are vectors not only in ;::,~-~~t.e-:;reetor 

space bu~. a.lso respectively in b- and f-,:;pa~::e, The sta.t.e-v'3c tor describing 

a si.ng1e bare meson of momentum p in t.he state A, wit-h no nucleons ·oresent .• 

i8 obtained by taking the scalar product c-.f \~o) S bni la.r ly, 
, .. 
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·the scalar product of f 
P~J... 

with I' No) describes a single bare nucleon at 
.. 

the point r ,._ iri the state }A 

Sinc_e '1]' commutes with * it. is evident that .if \rrr o) 0 a :: ' 
and hence that I rrr o> is an eigenvector not only of Ho but also of the 

.. 
total Hamiltorii_an operator: 

(10.22) . 

Therefore the single real meson state~ which may be described' by a vector 

is.identical with the single bare meson state j,n the present theory: 

(10.23) 

On the other handj the single real nucleon state 1 wliich will·' be ,denoted by 

The ·'ipa.ri~cle propagatibl'l. functiol'l.s 
'•. 

Of fundamental importance in quantum field theories are the-expectation 

values of the Green 1 s functions GO±(E) and G:(E) in the .. bar.e one-particle 

states. These are known as the unmodified and modified one-particle 

propagation functions respectively. In the present example the .unmodified 

and modified meson propagation functions are identical: 

:: ... -. (10.24) 
E-- wf.iE:. -

The two corresponding functions for the nucleon are not identical 9 .however, 
. ' 

·and a principal task in what follows will be the construction of the modified 

nucleon propagation function. 

Before ente:ring into ·the details of this task it is well to call 

attention to the fact that the forms of the mathematical struc~ures which 
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. . . •:' . 
. I , ~~ . . . ... . . .. 

····, . . ·:·:appear in the .dev!3lopment of. a given quantum field theory depend very .lar_gely 
. ' . -,, . ~.: ~ . . 

.·.::· .· .- ... :. . ,on ·.the. form of the .interaction between the fields. Thuf>.' in the present 
' _.(";~ '· .~·· r ' '. 

-~ple; the. choice of mathematical structures to be employed will ·be .... ~ . ' 

. ('• 

. . -- :. ~!~ .. 

' . ·~ 

_;· . ·· ~onditioned by .the .fact trrat the. interaction (10.14b) is linear in ·the meson 
... ' . ' . . .. 

field· and bilinear in the nucleon· field·.. Although interactions of this type 

·.·' .. are.currently.attra·cting mu~h greater interest than any other~ it is to be 
. . -·· ' ' : . . _. ' . ' . . . 

\ . :· r7niembere~ that ·other''types. can in principle exist, each giving rise to its 
.. ' 

.· .. < ;:o~ speci~l formalism. i Ho~ far the ideas .of ;enormalizatiori. (which we shall 
. ·. . . ·".-~. ' . ' . . ....... 

. ~. ' ' 

discuss pr,esent1y) can be applied in thes·e other .cases ,.is an. open question • 
• • • 0 • • • • ' 

~: 

·The orily other interaction which has been extensively studied; aside from.the 
. . . •, 

·•. '·. · ... ·.· . . : ' ·: ' : '* . . 
·.t·rivial .one which· is linear in each f.ield, is ·that Which is bilinear in both 

':~~ ~ ·: 

., :.fields. [II OJ. In this .case, although tt'ie appropriafe. forrr.alism has ,it!3 own 

. '~ 

· pectiliariti~s, th~ re~ornializati~n concepts can .still be applied·, at least· 

if the interaction is nonloca1. · About interactions which are still more 

complica;t.ed, e.g~ nonlinear me-t;.ric interactions in gravitational theory, 

nothing is knowri. 

In the present example the unmodified nucleon propagation function 

is given by 

., 

= ..!1' (10.25) 

The modified nucleon propagation function~ which will. be denoted by S :1:. (E), 

·may be expressed. in a similar form by making use of,the following identity~ 

-'Both. fields must tA.en have the same statistics~ i.e. both fe:rrr.ion cir 
•. I 

both boson •. 
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•· ·: .... 
. · ,, 

,. ·.·- .. ~--~·_,_, .. Jr. ~-' (N0·:\~~(E)(E H ±.ie) J··N0 )' 

.. · 

,· \ --·. -~: {No \G~(E) I No)· <No j (E 

.· .• :!· 

' . . ~ 

'. 
•"' · .. · (10.26) -:,·· 

.l: 

-.. · 'i . .. ~ " 

· .·where.· is the one-nucleon~one-meson state yector obtained by 
... 
' :£ * . ~ applying the, operator a 

. . 

.to the vector and ·where the dot product 

,, Jn-th.e second term invoives ·a ·sUIJUDa.tion_in b~space as weli as f-space. Here 

ess.eht'ial use ha.s bee:n mad,e of. the linearity of the interaction (10 '14b). in 
. ';i~i:"f;.,· -~:; (;:: .. '·~: . ·. . ·. ·. 
··~;:£ ~' ·~·,· · •. th(;l meson field, which restricts the nonvanishing off-diagonal matrix. elements 
:~---~:~ \-.- ..... ~ • : ·.~.-. < ' ~ 

J 

····;··,,;-.;. ·· . .··of ~he· ope;rator E ... : H ±:: i €. to those which connect states differing by one 

. -?<,·.·.; . .'~,<".'in the -ri~~er:"o{'me~?ons :present, tJie values of these elements being given 
..... l • ~ p • • • 

·· , · .. ·: by: :...g ·times the e~ell1emts of the simple vertex operator •. One may now write 

···:: F 

•·. :._' •.· 1 
_, · .. · ·. s±(E) · .- . -~......,-· .... ....;f;;._-'----
, . ~- . · · · E ·~ M 2; tE). ± i € 
.. (• > 0 •·· ... _. .. : .. ~ .. -~ -· '{ · . 

. . ::/: . ~ 

. . ·.··;h·' 
.:;, . 

. •. 
\-'•,•: 

. ~'­
~ . -. 

. ~ ·' 

::: 

(10.27) 

(10.28a) 

[ s~ (E - x:' ) 1 -1 . 

(10.29) 

, . Inte~c~an~e of the order of the factors G:i:.(E) and (E H ± iE: ) in 

: (10.29L. 9-;Lso leads to the same result, but with 

·' . 
. L:~(E) 

. 2 . * 
g V 

0 
·S:t:(E -;:] ) ·V:f(E) (10.28b) 

.·/. 
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~· .• 

: ·' 
!, ,,._ 

; .<; t .•• ~ ... :.: , ... "~· .-' 

.,: ·: ;:;_ _::_·--:>It_ -\s evident that .. 9~:1:(E) ~ -S*(E) and·· L:t.(E) 
,·, 

satisfy relations of-the 

'·. 

·-:' ·, .. 

'· ' 

. ·.•, . 
...-;-·.· 

• "l .. '.· 

' ' .... 
'.· ... 

. '· · .. · 

~~t~ (?.12~ under He~tian conJugation. ·' .. ·· 
~ ... ' 

-Diagrams . 
. ,- ··,·· 

·,· 

. ·' .. At fir~t sight Eq~. (10.27 to 29) look somewhat urihelpful; :. :2:± (E) 

_. a·eems :to be a more complicated f~ction than S!l:(E)· itself j involving~ as 

·it does 9 · both S * (E) and the matrix element 

I:Jowe.(er, these equations _can be g.iven simple pictorial meanings.· Consider 
.· 

first the procedure of evaluating S~(E) by a straightforward-binomial 

expansion of Eq. (2.16) 'and use ~f (10 .14), The expan.sion will consis~ of 

, .lin· infinite-number of terms, but it is· not difficult t<:> see that each term .. ' ' . . . 

will,: _corre_spond uniquel~ to one of the possible ways of putting togethe:r;-. .. 
·the three basic pictorial components illustrated in Fig. 10, each component . 

- . 

being used rep~atedly any number of times but in such a way that the resuJ.tin~:r 

diagram_consists of a single solid verticalline plus·an~ number of ~mergent 

artd tnen reentrant dotted lines. The dotted lines are allowed to cross each 

6ther, and the order in which the vertices (Fig. lOa, b) ·occur along the 

solid line and the manner in which they are paired off is significant~· .. The 

sole restriction is that only one. of the bare-solid-line components (Fig. lOc) 

is all~d betwe·en each pair of vertices~ and that the diagram must have 

just one of these components at the top and one at the bottom, 

The value of a given term can be read off directly from its· corresponding 

diagram: . Each vertex contributes a simple vertex operator multiplied by the 

coupling _constant,· each solid line ·component· contributes an unmodified. 
. . .' 

: nucleon .propagation function, and all these contributions are multiplied 

. togetherfrom left to right. in-the order in.which their corresponding_ 

. cqmponents occur fron\ top to bottom in the diagram. A given diagram will 
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... _ .. 

:,..:'._ ~.· -·--·~ .. - *--
gV~ -vertices (Fig. -lOb)o The conta~ ~s maey· gV0-verti:ces (Fig. lOa) as 

.... ·'· '. 

: ·· / ... ~n:ergy value a~ which a given S
0

:!: is evaluated will depend on the number 
. ' 

·,.1 .. ,\ ·.• . ~ .. 
'·· r, -··.':;.- :.1 

! ,( 

. ": ,;: . ' .. : ~ yp-e ~otted' lines are' called meson lines, and the. whole diagram may be regarded 

. .~ . i '. 

' .. · . 

-.;·' ", 

~u'' ' ' ..+ '~ ' • 
·~ ~- . ,.:, . 
;· 

,. ' ~ ~-

' -~' . . . ' 

as. ·P?rtraying a process of ·virtual emission and reabsorption of mesons. The 

:_ ar~~nts of, the unmodified nucleon propagation functions keep a tally of the 

amount o'f energy involved in'these virtual processesJ so that a given S
0 

·, 

. wilr·:be ~valuated· not ~t E but at · E minus the sum of the energies of the 
· .. ·. 

• ~ ' I 

, . . : .mesons. whose lines are intersected by the horizontal line in question. 
~ . . ..; 

Since each diagram ha:s a definite value' associated .with it~ one may 

. '· · · ,: ~~peak of "adding diagrams, 11 meani~g that one i.s adding the corresponding 

. :\. ·, 
.· .... ,.· . 

. ' ... ·•.-

· v~~ues. · The diagrams co.rresponding. to the terms of the expansion of 
.•. . 

inay be ~-C~:lled. real nucleon diagrams. Their sum, Le. S:.(E) 9 ·will be denoted 
, I 

. ·P_:r .a. heavy solid line called a real nucleon line.· A real nucleon diagram is 

said to-be irreducible if it cannot be separated into two (or more) parts 
'•' 

connected only by a single bare nucleon line and no meson· lines. If the bare 

·' nucleon lines are· removed from the top and bottom of an irreducible real· 

·nucleon diagram, the result is called a self-energy Qiagram .. The sum of all 

• self.:..energy diagr~s will be· denoted by a circ}e enclosing the symbol ~± , 

It .is easy to see that the value of this sum is just the function '2::r (E), 
. . : 

-~ichwill therefore be called the self-energy function; for a real nucleon 

.line ~y evidently be constructed by· the iterat:l ve process indicated ih 

Fig.·11, which is just a pictorialization of the binomial expansion of 

Eq. (10~27) . 
.' .'-

Next consider the matrix element 

diffieult to see that its value may be expressed as the sum of all possib~e 
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FIG.IO .THE BASIC COMPONENTS OF DIAGRAMS 
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. Eq. (10.27) 
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. ·' >: : 'w~ys of ·insertiilg an' extra,, yertex 'gv a· . into all possible real' nucleon 
t. . ··. 
'·. 

·diagrams. Consider one a,f, the.se .diagranrs with the extra vertex inserte~. 

It can'generally be split in~~·three parts connected:by single bare nucleon 
·~ .. ' . .. , . 

. I. 
· ·., .;tines:~-· a real .. nucl~<;m diagt~ at -'the top, another at .the bottom, and an 

.: ,.; .. 

.. ·.,. ,· 

_. '· . 
. ,, 

j. 

.. ·. ~-·' . 

•••• -~~. ; r , •• .''. :·: ':. 

; irreducible part contaiiTI,ng .t,he extra vertex in the ·iniddle. 'The· irreducible 
•. 

··. pa::h· :is· ~alled a proper vertex diag.ram. The sum of all proper vertex diagrams 
I 

will be·:. denoted by a circle enclosing the ·symbol V* , together with an 

emerge,ht dotted line pointing downward' and will be called a modified vertex 0 

Its .reflection in a horizontal.line will.be denoted by a circle enclosing 

'.. I * . 
. . the ·symbol V: , together with an emergent dotted line pointing upward. 

Fig. 12 shows th~ 'structure. of the matrix element < N0 l G±.(E) I N
0

, 9T
0

) • 

· The tnodit'ied nucleon propagation· .function corresponding to the· real nucleon 
.· ' -"· ' I ' ' ' 

line at the bottom of t,h..e diagram must evidently 'be evaiuated at .. E - ~ 
• 1•' 

' . '.· ... - .. 
o~ing 'to the i:>resence <?f the. extra meson lihe. ··.Fi"g. ·12 is therefore a 

. . ·~ .. . . c' ; 

... : pictorialization:of Eq. (10.29), and it is clear: the value to be associated 
• f • • 

.... •' 

' ..... 
'• 

•,\'. 

• •• :·. !• ' ' ,_. ., 

'with. a modifi·ed ve~tex is gV:(E) . * or gV~(E) depe~ding on whether the 

iextra meson line points dowmrard or upward. 'V*(E) · is logically called the 

modified vert¢x· operator. 

: .. There: remain Eqs." · (ib.28a, b) which express further, mainly 

.. -bo.pologi,eal, properties of. diagrams. · These .equations, which are pictured in 

. iii·.l);,, state' that. the' swn of ail self-energy diagrams is obtainable simply 
,· 

· by .~·connecting ·.a inodif~ed vertex and a simple vertex by a real nucleon line 

-· 
' 

. I " ' . ' ' \ ' • • • ' '· ~' : . 

·. , . .. ,Although th'e· practical construction of the modified vertex and 

· nucJ,.eo~ propagation furlctions and the discussions of renormalization to . ' . . 

follow <,\re convenientiJ..y·carried out in terms of diagrams, objections can be 

raised· against this. procedure on the grounds that diagrams are inseparably 
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co.nrtect~d with a somewhat artificial -expansion in powers of the coupling 
. .I 

·constant, upon .which i~_:i:.s unsatisfactory from a purely theoretical point of . . . . 
. : ~: · V:ie~ to .ba~e a· theory, particularly since practically nothing is known about 

.·· ..... ·:the COnVergence of the expansion ·Or the. validity of a defining procedure il) 
• : • ~ •. l, • 

'.- ... 
terms o~ analytic co.ntinuation" For tt.lis reason alternative techniques have 

. :-

bee-n developed ·which imroive. only closed variational. expressions a.nd avoid use 
•• 1· •• 

of 9-iagrams altogeth_er •. _. We shall .here present one of these techniques ..,.Jtli.ch, 

. · . .- . 1'11 ·addition to having an ability independent of diagrammatic structures to 

·. sugge~t_,iterative·methdds of computation~ has also the special virtue of 
• • • • # 

: .,. r~ndering the subsequent discussion of renormalization quite straightfor-v.ra.rd 

,···.and natural. It is worth emphasizing~ ho•1ever~ that v1e do not attach any 
"i 

· · .:special virtue to the avoidance .of .thinking in -terms of d:iagra.msj sinc·e the 
. ·. . ~ . .. . . . ' . 

··.form~ of the mathematical ·structures which will appear· have~ after all~ an 
,··.- . 

· · .:unambiguous ·correlation with the topological properties of special ·diagrams • 

,· _. .Tl1u·s ~ in the ·later discussion t;:>f the S-matrix ~re shall not hesitate ·to speak 

in terms.of diagrams when convenient. 

f . . ' ' . . ' *· 
A variational technique. 

·' ': .· ;~I We begin with a further slight simplificationof notation. It will 

·•. be observed_ that the 'tqt-a.llf.amiltonian operator (10 ol4) 'is d:i.agonal in. the 

label r. This is a reflection of the immobility of t.he nucleon in the present .... 
- e:Xampie. n··will be ·a convenience for the time bei~ to omit practically all 

"*· . For the general ideas contained in .the .fp~lowing ·the author· is·· indebt¢d to 

Prof.ese-er~Julian .. S~hwing_er. (Unpublished lectures given at ·the Institute 

' :::.'_;.for /fdvan~e·d ·stuey _in D~ce;rtbe~ $. 19.5·~.) To avoid_:_ mis:z-~presen~ati-on)' .. 

h~ow~v~:r:,_ it..·should -'be stated that" Schwinger bases his vari?-ticnal t.echnique 

di~ectly .on cthe .~~tiQn pri_nciple ~ wh'ile all traces of this approach 

'disappear here. 
1 ·: • •• •,. < 
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.•· · · re~erence to the nucleon, to replace the symbol .lf simply by 1, which is to 
; ~· 

• . 
. b~ ·-understood as the unit opera~or in the· space of the matrices T iA' to 

.-.... _- . ~ . 
· ·re·gard Y 

' . . 0 
'* and . V 
0 

· ~s matrices in this ·~pace (thereby ignoring their. ,;: 
• ._· • • ~.- • • ~· h 

' ·, .· : ·.;· .... · d'epepdence)' and 'to replace the symbols . ·. -- . . 
'; .. •::~ _._.:_. __ _._:· ~ -.-' 

and I N0 , ~ 0 ) by I 0) 

. ·Cl.l1d respectively, the numbers· 0 and 1 indicating the number of 
·:· . ~ -~-' 

mesbns .pre'sent in the states in question. 

:1 . 
We ne~. introduce the differential operator 

'' 

··.··.· .. · 
{;; .' ._ 
-·. ~ . 

1: ' 

. •.· .. · __ .... :' 

= i'd/oE (10.30) 

, . . -... ... ·. 
[E, t] = i ' I (10.31) 

\ 
·, .. . . ' . , ~-- . ~~~~ 

:'.; ·:; :<· .. ;.": ~· This ·operator, which has the effect of producing ·~ii~placements in energy, will 
.~ \ 

· , ... ·be ·used, in such a way ·as automatically to accomplf'Sh the .equivalent of the 
~;,.. . 

· · · ·~ -,. :. · ·tally kept by t.he bare nucleon propagation fu~ctions on the meson energies 

-· .. ."· '· ' dil1Volved in the expansion of 
r'; ~~ 

S:(E). Since a*·~·a I o) = 0 '· we may write 

* . * t -1 
·. i-~· . 

<o l (E 
. -11 < l ia ·~·at '-1a ·~·a 

1 
, 

:: H .~ i€. ). . 0) = 0 e. (E - H ±: i.E.) e .· 1 ·o; . . . · .. ·S' 
',· ' • ... ~. 

• f 

·-
I, .,· 

< o.·., rE 
-i<.U t i~t * ] -1 .I o) - * .- - M - g(V ·e •a.+ a •e ·V ) ±. i€ 

' 0 . 0 0 

(10.32) 
' . ..• . . 

·. Jter'e, S:!::.. i.s to be ·reg'arded ·as an operator in the vector space of E 
o o R ' o ' 

and t, 

and h.Emce th~ ar~e_ri:t. :E is omitted. 

··· . · · . ·tt wll1 now· be convenient to generalize the definition of the modified 
•·• 1. 

''".-.J~ucleon propagation function ·by replacing the ·operators a and a* in (10.32) 

respectively by a + 0( 

b-spac~- whose components 

for brevity the symbols 

. * * and a + 0( , where (j.. is a variable vector .in 

o< are ordinary complex numbers. We introduce A,p ,.. 
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' :, , ; , ~"' = : E ~ Mo - g r V o. e-ill! t . (a + OC ) + (a* 4- o< *) • e i Ill t . V' o * J "'i E 

. ,-.-

... ... 

. -~- _ .. 

., 

.. · ... · 
. '. ---

so that 

(10.33) 

(10.34) 

(10.35) 

It is not. difficult to .show~ though unnecessar; for our purposes~ 

that S* ·~ when defined in thi$ way, represents the modified nucleon propagation 

.:function when an external meson field 

wt) * -i(p_ or - w t)· ·...t> •ext ' . 
.. TA (~j t) 

~ · 3 -~ i(por 
- ~ (2wL ) 2

( o< e ,... ,... 
P A~p 

+ (/. e ,.._.,. ) 
A,p 

,... - (10.36) 

·is' present in addition to the quantized field <PA o The purpose of introducing 

this 'external field is to exploit the relation 

(10o37) 

· where X is any operator which; like c:J4:: and Cj: ~ depends on 0< onl;y 

thr,ough the comb,ination a+ o< • If . < 0 /3::; J 0) is a quantity '"'hich 5 for 

0( = 0~ is r.epres~ntable as. the sum of ,a •certain set of diagrams then its 

~ifferentiation with respect to ()( has the effect of inserting a 

siri!.J)l~ vertex gV 
0 

in all possible ways into these diagrams, t.he"reby 

pr~ducing the quantity < 0\ X\ l) o Although we have writt.::n the right. 

side. ·or Eqo (10.37) as an ordinary derivative, it is to be remembered that 

. ,the differentiation is rea~ly a variational one. since rx is a vector in 

an oo- Q.imensional space. The present technique is therefore called a 
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,, · variational techniqu.e. 

!. 

,' ,. 
•,. 

: .. ,'• 

;•, . 

t. ';' 

r:. '• < •• ·~ 

~' ·::-~ ' ..... '.'' . 

·< ,' ',~ .y. ·,;. 
' '. ~· . 

Eq. · (10 .29,)-'·ta.k~~ on a very simple expression in variational form. 
,. .., .. . i~t 

· Taking. ~are to employ an ·exponential e in such a way as to account for 
. .. ' * 

·the ~mergy ·associated with the extra meson 1ine3 on~ has 
'' ' 

·"'""·' . ' 

•' ·-··. -1 -i < I . l > v :t ::: g s± . _o ~ ~ 1 

!'• •• -1 · -1 - iw t;· 
- -g <_a s: larx ) ·e - · (10.3S) 

', 

,·;,. 

The generalized forms of Eqs. (10.27, 2S) are obtained essentiallyby 
,·•. . 

r~pea:tipg ·the· 'procedure of Eq. (10 .26) 0 Writing 

.. __ ·.·· ' - < l. ~ ·,I 

< o 1 9 ~ l o). < o 1 g; ~ 1 o > + < o I 9: \ 1) ·< 1 \ ~ = 1 o) 
(10 .39) 

~ . ' 

·-a~d making· use of (10.33), (10.35) and (10.3S), one gets 

.... . 

. _- . ·r· -iwt * i~t. * "" l-1 
_:S± :: E.- Me- ~(V0 ·e o ()( + 0( oe oV0 ) - L..-: ± i€ · 

' _!'· • 

.·r .• 

~ .. 
.~ ~t '. ' (10.40) •· r' 

·:with i~t * 
s ·e ·v == 0 

(10.4la) 

·. ·' 
(10.4lb) 

·-~ 
' " ... ~ ..... ,._ . '~ ' ··. . ' 

· ·._ 'Afl addit.ioriaLequation ~ay be obtained by combining Eqs. (1:.0.38) and (10.40), 
/ 

-iwt -1 
= V

0
·e + g 'Cl :2::/ao< (10.42) 

·. H~r~ the dots which indicate the scalar product in f-space have been 

.. omit. ted : · 
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-. ~.' This equation has an obvious topological interpretation in terms of diagrams; 
. •, . . ' .. 

':> ·. ~. ~ . 
• . • ~ t 

.. . - ..... 
;.-~ '~ 

,· .... :-' ··: . _·· .... -

··! 

' ' ·:.l· : .. 
•. 

- : .. _- --~.,: ·: 

••.. r-..., • 

'. ·:.;. 
.• .ot ',. 

::it states that a modifted vertex is obtained by adding. a simple ·~tertex 'to the 

··· res~t' of. ~serting a simple vertex in all possible ways into the suni of all 

self-=:energy_dia~rams. 

· . In the di!;icussion of renormalization a certain goal will become 

apparent,.namely~ to r.ewrite all mathematical expressions in terms of the 

'.~-.'·.-. . modified quantities· 5::1:. and Y~.. In particular, it will be desirable to 

r~?Ve~-the ·hybrid character of Eqs. (10.41a 1 b) in which both the modified 

and·.;urimodified vertex operators appear together. This can be accomplished 
· .. :.....· ,, . 

<.o • • •• •• ·by the· following theorem: .. 
, .. ". •'I' 

. :·. 

~- .i, ~ ... 

i•'' ••·. 

., . 

.• 

.·. 

. . : (; 

~- . 

< o \~~I o ) < o\ %\ o > + · < o 1 ~~ \ 1). (11 ~ \ 0) 

"' <o j~,j o> s* s.,-1
( o) X J o) -gV0 ·e -i);!?t • CJ ( o I~ J o> lao<* 

-. [<l - ( o \~*.)1) · (LIs*-/ o) Js,-1 -g~ a ·• -I ret. a ;a ex~ J <o )-x; J o) 

(10.43) 

Ifone'now applies this theorem to the res~t of taking the variational 

derivative of the Hermitian adjoint of Eq. (10.39) ~ and uses (10.38), one 

gets 

-i~t 
_ - gV 0 ·e S-± + g(l 

(10.44) 

and hence 
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. . ' \ ·,. . . 

<i:~:~\:.-.. ·: 
,I. 

'.: '\ '·' 
~. • ,;· 1. \ 

.. 
'-ic,)t'.' -i~.t 

'· ,.,.. ·. ' ~ 

-:V-0 •e .. , ·•S:i:: =' V:~e .. (10.45) 

~ ~ ~ . . . ~ :. 
·-:, 

:: . :· :. ; which: aiiows one . to wrl te 
. -. . ~ 

~.-!. ' . 

(10.46a) 

- .:.·· .. ' 

. ,. . :~. ~-. 

~- ' • ~ • - . . • ..."! • 
(S:e ·V~ ) S:b ·e ·v,. 

. . • ' ·' 

i~t * }T] -1 i~t * 

(10.46b) 
.,_·--.· ... 

r , ~ .. · ·where the superscript' T in the second fo·rm denotes tne transpose in b-space. 

•: I' ._·,' i . tn·Eq~. (10.46a.~ b) only the modified quantities appear.* 

Symmetric. theories. 
:"" •. 

. ' :~: . -~:::. . ,' 
·-The· 'discussion will now be restricted to field theories for which the 

• 't ••. ·-

.::!}:\ · simple· vertex ·Qper.a.tor satisfies the conditions 
-.. :- ; • . ' .t;;.• ·- ~ 

~.:: '. -~ .. ~\ . :( 
Pe.nn {-i f(pl, 

: . -~- '· . · ..... 

P2~ · ••• ) T[i V oA p V oA p *"] = multiple of unit· 
i9 i i~ i 
· ""' .... operator~ 

(10.47) 

.. .. e.:~ ; / .. _,.:-_ -· : · ... = multiple of V0 , 

l ~.;. r .. ~. ·. . . 
·,· .·: .. 

·.··-
i''f"_ •• : 

. ·, 

' .. 

(10.48) 

Where 

'• .; (10 .• 49 

·~. :------------~ 

· /*:: It is interesting to note that Eq. (10.44) may also be solved in the form 

· .which ·enable's one to express the self -energy operator in terms- of simple 

vertices onlyg 
· 2 -i~ J.... tt -1 -i~t iwt * 2:':t: = g (1- g V

0
•e . •5::4:. 'dtc;(j. ) (V0 ·e . S.:~::.·e - ·V

0 
) 

•. 
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· Th~-surinnat~on in (10.47) and (10.4~) is to be taken over all the ind_ices Ai}Pi-~ -
. t-he symbol "Perm" denotes an arbitrary permutation of ·the .matr~ces TiA 

·. · ~hi.ch :e1:re ~ontained. in ·the V0 ' s, and ' • 0 0 ) is an arbitrary function 

·.:'of the absolute values of the ·p 9s. \'lhen these conditions are satisfied it ,. 
'' is not .difficult to see (for example, by referring to diagrams) that each. 

-~nternal'·nucle~ state p. plays a role in the meson-nucieon interaction 

which -is symmetric ._with respect to ~he roles played by all the others. The 

· tneof.y' is· ·therefore said' to be syiili_Iletric •. . ', .. ...... . 

The conditions (10.47~ 48) are~ in practice· .. not excessively restrictive. 

· · All. fieid theories which. have been seriously consi'dered, involving only two 

·basic ~fi~ld structures such as -~ 
. . ' . * 

and ~.i are without exception symmetric, 

·In a s;Ynunetric theory the perturbation removes no degeneracy. The mass M 

of a. real nucleon; lik~ the mass M0 .of the bare nucleon~' is the same for 
' .. 

·--ali internal·· states Jl'- When t-he external meson field vanishes ( 0( ::: 0) $ 

·.· . 

. th-e: self-e~ergy ope·rator . 'L..:t: becomes _an ordinary function of • Es times the· 

. uriit. operator. Moreover$ the modified verte:r.: operator V:t: becomes an ordinary 

' 
function of two commuting variables 1 E and the ·energy w of the associated -

· .. ·' . nie'son~ times the simple vertex operator V0 • It is sometimes convenient to 

indicate this explicitly by writing 

(v) = 
. :. 0( :0 

(10.50) 

·(v.*\ ::: 
' . :f. )0( =0 

(10.51) 

. * r:: (E, E - ~ ) ::: I :f (E -;,:; ~ E) . (10,52) 

* The introduction of a third field (e.g. the electromagnetic field) can, 

.howeveri lead to asymmetries. 
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·The stru.cture of the modified nucleon propagation function. 

·:-· · ·Before proceed-ing to the renormalization p·roblem let us pause to 

·~-·~onside~·; on physica~ grounds~ what the form of the modified nucleon . 

_:propagation function: should be when t.he external meson field vanishes. It is 

useful to .. ·make_ an _expansion in terms of the eigenvectors of the . 
~otal Hamiltonian operator: [toLt 1 

(10.53) 

· 'Where 

(10. 54) 

the K.. and. E 1 being the eigenvalues of H. The coefficients . A(+<..) are 

Hermitian dyadics in f-space having positive eigenvalues and satisfying the 

relations 

- 1 . - -r (10.55) 
. :· 

·, 
. ·- (10.56) 

: ·Since pair creation is_ prdhibited in the pr.esent exarnple 9 only those 

states I~') in which exactly one nucleon is pr-esent are involved in the 

· · e:X:-pansion (10. 54). Of these states a certain set will. correspond to the 

lowest eigenvalue K. occurring in the" sum. In a symmetric theory the 

.. ·. : ·members of· this degenerate set may be taken as the components - \ N) • f . #-~J:. 
•.:-

. ·of the. real nucleon state vector } N) ·;,. The eigenvalue in question is M, 

the mass ofthe real nuclf30n. The corresponding amplitude A(H)· is given by 

(10.57) 
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.···:, 

where · z . 2 is the pro·babili ty of_[inding the real nucleon in a bare nucleon 

' . * . s.tat_e. If the vector \ N> is constructed from the vector \ N0 ) via 

, .. ·~_Eq. (6.8) ~ Z2 will be the normalization constant z' of that equation. 
•• lW. 

We may now write 

S,~(E) = + L -~i_K)_ 
'K.>M E ·- K. :tiE 

(10.58) 

· ·rn the renormalization program.l'~··to be discussed presently$ th:ls expression 

=1 
i~ rtrult.iplied by z2 so that the first term~ which predominates in the 

. . neighborhood of E :: M, will have exactly the sa..11.e form as the bare nucleon 

• ~ ·lr • 
. ~propagation function (Eq. (10.25)) but with M0 replaced by . M. The result 

... 

~ . ' . . . 

is· called the "renormalized" or "corrected" nucleon propagation function and 
~ . ' ' 

... : . 
. . ,,:·~ · .. 

· . If the ·coupling constant g . is not too large the energy levels of . 
. the .one-nucleon eigenstate's of H other than . . . . . \ N) • f;.vr- will generally come .,. 
. J.'rom a continuum. These states ccrrespond to the scattering of various 

......... 
• , '! 

,, ... · .... ~umbers of mesons by.. a real nucleon • For sufficiently large 

. >: .x :·may·· h~ppen that additional discrete levels exist corresponding to one or more 
. . . . ; -,:.. ' ~ . .. . . . . ' 

· ',: . · .. · ~t~bl~. nu.ci~on isobars.· The masses of these is'obars must be less than 

for. isoba;rs with greater mass w:Ul generally decay with the emission 

·.,.·_of. a· meson. It is to be noted that the existence of stable isobars will be 

· .··refleGted in the presence of extra poles on the real axis in the function 
/ ~: .-.::_.., 0 

* ·' 
Th~ S}lbscript · 2 on z2 has-no special significance and is mePely an 

. · his:torical accident. ·It di~tinguishes this ~~nonnalization constant 

·from the renormalization ·constant z1 which appears later. 
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. . ,. ~ ' 
; .. ~.· .. 

· ~ . ·~since the A( 1<..) 
. . . .. ~ . are positive :probabilities Eqs. (10.,55, 56) allow 

-~· 

·an:e· to infer- the rigoro~s inequality 
' ~ 

• .,. -~~- 1, t' . ' ~. ' 

. '. ~ : 
.. : ... · .. ·. ··M < (10.59) . 

.' .. ·i.···. 
'• .. !-'hat is~ .the nucleon mass is depressed by the perturbation, Another inequality 
~. . . ~ . 

can .aiso be obtai'ned for the mass M* 
' . 

of the lightest stable isobar (if any), 
. ' 

";. ' I ' 

~- ·. :. .. 
···,namely 

~ •. l • 

. " ..... i · . (10.60) 
. :.· ,' 

.. ':.:}'_;.,~. :·:·These. r~alq.~s· hold oncy for scalar or pseudoscalr theories without nucleon 

_;\_,: : \! ·.
7

~ • p~ir creation~ such as are .embraced in the pre·serit example. For vector meson 
c • ' •"~ •• ' • • 

. . I 

·;.·.·· . t~eor;i.es,:_or-meson:-pair. ~he.ories an additional· term (Which is .divergent when 
, ... ·. ~ :: .. -.:. ".· : . ··. 

· ~~e ::.tnt:erac;tion· is :lo.cal). appears on the right ha.nd side of Eq, (10~56) . 
• ·,l 

·"- , ·· ·• · .. · Renormaiization · · ·;:· 

. < ._. .- .'.F'r.oni th~ results-of· experiment we ·know·the value of M~ the real 
• . 

. ·. : ·: :nu-~1eoh ma;·s ,· 'but· not the bare ·mass M
0

• It ·is' therefore quite fortunate . 

~, •. ' • •• l • .. · ~hat 'the perturbation formalism can be developed in such a way that reference 
•· ~-' ... , . .. . 
' .. We shall now see how this comes about. 

•• : • ·..r .. 'for generality we consider the case in which an external meson field. 
': .. 

· . ; . ~- .:is present i· and we·. ·write down the first three· terms of a doub~e expans:ion ·of 
• • 1 ' ·: • '· 

·.·.·< .. ·· > t!he ·s·elf:-emh·gy_:6perator- ":2::~ in E · and. c< 
• ·-. ,v. - . . 

about the points 

':,.. 
'o<. :: 0 g" 

(10.61) 

.. · •. · .. · .· 
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:~ ' ·. 

. . ... ~ ', :. (10.62) 

}_·· 

·_ .. ·,_ 

. ~' 

· .. •.' 

·.:. 

·~. : ' ~ ,• ' •. 
!: ·,,', 

-:- ·.;:;>· ..,. ;··· .• 

. ·•'" ' 

. . ~ 

•• <:' "· 

(10.63) 

(10.64) 

(10.65) 

.. ..... _ 

· ·and ·where "~em"· denotes the remainder after the constant term arid the terms 

IiJlear in . E - M -:e i E' and 0( have been separated out. 

_ ·: -~ -~-~ord _of explanation is necessary about.the coefficient '!
1

. When 

-~ E~ ·.·is differentiated with respect to o<. ~an extra factor V0 ·e-ilt.>\ .-
which. i~ not cancelled out by another corresponding factor~ remains embedded . . . 

< .- ·_ .._ ' ~: ; . "" ~ . f 

. ':: .. :: .. . . 'i;n ·each ·tenn of· an expansion of the resulting ~pression. The simple vertex 
:. 

i 
r /'.-

· :. : ~pefator · V
0 

.. can, by the symmetry condition (10.48), be taken out in front 

. of each term provided certain numerical factors are inserted to take into 

• . . 
. ~- : -~- -~-' ·: ~ '•.".- ' 

... ·i 

. . . ·'~-. -,· '-, . 
·' f' 

. __ .,., 
' ' 

.,. 

·. .· account the algebraic ef'fect of all the other paired vertex operators in these 
··:· :_: ·.· .... ~ ' -i~t 

. , terms. However, the result of similarly displacing the factor e 

.. . '· thro~ the various functions of E ~nvolved leaves an: expre·ssion. which is 

.. : ~- .~dependent .ori ~ 

_:.:':M • i ~, . and ex 

. '. 

as well as E, or on OJ alone when E is set equal to _... . 

to zero. For definiteness one must evaluate the factor 

Eq·~ (10.64). · The .choice of o>0 is completely arbitrary, but once it has 

·pee~ made a term of· the form 
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; . . :-i F~.~~i~t. ['S(~)- )J· ex,._- 0(*. b (~) ~ \J./~t .vo*} 
(10.66) 

·,' 

.. ~ .• . . .. . . 
. ; ~:..--· ,.''\ 

, . ... ~: , 

' ' I !• 

.. " ·-. _., ~ 
. ·.·, 

.. ··. 

,. It is customary to make ·!;,he choice 

= 0 

·. · ~ The. effect· of this. choice. may be ~xpressed compactly by writing 
'&"• •• .... ·' 

-1 (~ "r' ; ) . .. = g -- o ~ 'aCX. . . _ · 
· . . -CX· :::0 9&:M ~ i.E ; 5:J ext·""O 

(10,68) 

':" I .. ~f /,: • :· • <the inst:ructions··~·'!·W· ... =· 0 11 in_di_catin,.g. that the energy associated with the · -· · ,_ext · · 1. 

·• .. :<.·.- ... :-:·:·:·:exte.~ri'a:l.·me.son·field is. to.be_~et equal to zero. 
~ .. -.. : '. 

... ~ .... 

The assumed· reality: of the constant.s 

: ~!J:On_,'dependence on the =: sigris. can easily be checked by referring to the 

, .. :valu~s ·_of the various d~agrams _associated v.rith Eqs ._ (10.62 - 65), Since E 

is :s~t ·eqUa.l to M ~ ·ie: the bare nucleon propagation functions involved 

~ ;.. . 

are,:all real, having the. form 
' . ~-1 

(M ~ M0 ~- W ) where Owing t.o. 
,. ,-

.·.,,. ·t~~:-~~~.quality (10.59). no pr~blems arise of integrating around polesy and 

~;ther~fore all the int~grals involved in evaluating i:.he diagrams are real· 

. . · · :- :an~-_indep.endent of the ± signs • 
:., ; 

.'·· 

. . ~ ·, 

~ ·. 
( -';. 

If expression (10.61) is substituted into (10.40) and comparison is 
' . - ~\.. ' .. .. ' . . . . 
. riiade .with..'Eq.· (lO.SB)· for. the case ·ex ::: 0 ·. and-. in the neighborhood of 

·'·: .:c :E;:·= :M~, the folloWirig identifications are immediate 

t . · .. 
'.- ' 

~ ,_J • 

.:.r. :~ ' I ., 

. ... · 

. , .M = .Mo ~ .6 M 

.'· 

(10.69) 

The constant fl M is evidently to be interpreted as the nucleon self·-mass. 
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"S 
2 

is· necessarily positive since z2 < L 

now introduces the quantities 

zl = (l + '$1) 
-1 

' 
(10.7~) 

., 
-1 

gc = z2 z1 g j (10. 72) 

SCi: = 
~1 . 

z2 s-: .' (10.?3) 

vc-:r. = z1 v *' (10.74) 

(10.75) 

'• ·it is easy to see that _one may rewrite Eqs. (10.38), (10.40), (10.42) and 
··. 

{10.46) resp~~tiv~ly in the forms 

. '~ . ~ -. -

~' .. . ·:· ... ;t 
;--; __ · ..• 1_:··-·.·\ 

•.. j ·:·: •••• 

(10 •. 76) 

· [ . -i~t . iwt * l-1 
= .. E- 'Jlt:t.- gc~V0 o.e ·o( + o<*·e .... ·V0 ) :1:: i<:.J (10,77) 

-~' . -

;··. · .. ,~':. ..:·- . :sc± 
... -~-·. _ .. 
.. ··,.X. 

' ! ; '-~ 

', .... · \ 

'· ' .. . ~ ,. ~ 

.. ;· ' 
' .. 

' . . . 
• ··,_ t-

••. J 

' " eJ,'·. 

. ,, .· 

... . :-

l -- .. i~t 
= v 0 + ·gc- (a 'Jit:~/'dcx ) ·e (10.78) 

.. . · -iwt · [ 'd -iwt ~-1 
: ·M+ g

0
2 Rem Vc:t."e ,... Sc-±.• 2;b+.gc ~ (Vc~·e ,.. Sc~) 

0( 

·iwt ,.,.. . * 
•e •V · 

c~ 

(10.79)' 

·. ;' · The quantities 
-~ _- . 

Sc ± and V c :t are the renormalized forms of the modified 

, nucl~on propagation function' and modified vertex operator respectively, For 

· C( = 0 and ~ext =·a they have ttJ,.e property of reducing essentially 

, . : t~ the corresponding umnodified quantities S
0 

± (with M
0 

replaced by M) 
. ~ ~ . 

~~ , .. ... . 
, ·~· ·and v .. · in".the neighborhood of E : M. 

'--':· -,:.. -.-~.. . •. 0 The quantity GJY(,:I: is the so-called 

... mass-operator; Which contains within it a description of all the complicated 



UCRL-2884 

virtual processes which go to make up the modified nucleon propagation function • 

.. :; ·In the neighborhood of. E = M~ with·· 0( ;; 0 3 it is equal simply to the real 
'. :, 

· .nucleon mass" 
'•:·· 

The constant .. gc is called the _!er;.onnalized coupling constant. We 
.. 

s_halt see ·lp.ter hew its value may be experimer1tally determined. For the 

. present Vf.e simply note the remarkable fact that its introduction into the . . . 
l ... _ .. 

formalism· allows the various renormalized modified functions to be calculated 
'\ .· ... 

solely interm.sof the experimentally observed constants. Eqs. (10.77- 79) 
. ·. 

, ......... .'' '·' form togE7ther _a closed system of equations in terms of which this calculation 
. .. ~- ,. 

; ' . . 

,' .. ··. ,·:.can·. be carried out. The physically unobservable constants 
.;r ~. 

-:- .. 

never appear. By using .the variational technique which led to these equations, 

therefore~ on~ rnB;:r be said to have dev~eloped a pre=re!lormalized, theory. We 

may.of course, at any time we please~ evaluate ~Hj z2 and z1 (at least 
,· 

. appro~tel;) iX: terms of M,9 gcjl )"- 9 the TiA and the nucleon structure 

fimcti~ns' fiC;) simply by examining the terms in EqG (10. 79) which are 
. . '• ' - . N-

. . . . 

. disc.arded by the symbol 11Rem," and thereby determine what the "bare" quantities 
. ·, 

· M0 ·<i!-nd · g actuallY were in the original Hamiltonian operator. But such 
. ... . . . . . 

. . * an .evaluatio.n will have· theoretical interest only • 
.. ' . 

. Eqs. (10.77 - 79)~ being _nonlinear variational integra-differential 

· .... · equations~_,generally cannot be solved in anything even approximating closed 

· form. Recourse must be had to iterative methods of computation. For example, 

* .For 'local interactions~ in which the functions Pi(r) reduce to. the delta -ruil,ction (or its derivatives) 9 the self-mass /::;. M is generally divergent, 
·while z

1
·. and z2 may vanish. In theories which permit pair creation 

a~ditio'nal renormalization constants come into the picture. The one 

·which .. is necessary in order to renormalize the modified meson propagation 

function is general~ ~alled z3• In the present example z3 = lo 
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' ·. ~ 

_:· .. ' 
One ~Y begin by setting H and v = v C± 0 and then calculate 

No .:-~'~-':;,.,'·.cyclically e)cpres~ions (10.77), (10.79) and (10.78) in that order. 
' ~- ''I> ,·. ?. • '.· • . : • ' • • '. .. 4 • 

~~ .... I~ 

. ·' ,• . 'i 

·analYsis in terms of diagrams is .ever necessary by this procedure, bu.t the 

. ·resulting expressions rapidly become excessively complicated. f<ioreover, the 

. bracketed irtverse·in (10.79) must·generally-be expanded, and it is never 
: .. ~l " . . . ' 

'' .. . ·~" . . ' ' 
• ~ ' ' > ._ o ' I ·. ~-

.,., 

• ~-' '. :j_"· ·-' • 

-, .. -. 

·.;. ~ - .-. 

... ,, 

practical to retain more than a term or two" · For systems of the t;y-pe we are 

considering Chew (reference [92_] ) has used a purely integral iterative 

'-' .·.: techtdque in which the effect of the variational differentiations is analyzed 
~-.... . . ' ' 

.. · i11- terms of infinite families of diagrams, the families becoming n<ore all 

inclusive the higher the .level of approximation. Nothing is known about the 
. . . : . 

· convergence of any of these iterative techniques nor about the accuracy of 

. ·- \ 

~ey_giV:en level of approximation when gc is large. 
• r "'" 

·The same mathematical structures appear in the expressions for the 

. 'ittatrix elements of .the scattering operator as have appeared :i.n the discussion 

. ·ot the nucleon propagation function. · In particular the value of e. given 
..... 

' .. 
.. ••. i ~ •. 

'.!-.··· matrix element can be expressed as the sum of values associated vtith certain 

' ' ~· 
diagram~. We shall now investigate some of the characteristics of these 

We fir'st deal with the operator CR.:. of Eq. (? .19). In order to 

·c~nst.ruct this operator we must redefine the unperturbed Hamiltonian 

· ·. ·· artd ·the p~rturbation operator in the manner of Eqs. (6.4.- 6) o Since the 
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* is ·to be taken -as 

· Let· 1i's _·.suppose that this redefinition has already been c~rried out. 

From Eqs. (2.15) ·and (7~3) we have 

' ··.; '··,'•', 
I 
~: . . ,. . ~ .... . ' 

. (10.80) 

and G
0

± (E) 

(10v8l) 

-1 
::: (E -JC

0 
± i ( ) . 

.. . . . , .... 
,· . 

. : ., '·. ~ ... · ~ . 

' . 

.. .. . 

. · 
:,• ,( 

... .. 
'; '··.?: 

·. ;· 

"Taking the expectation value of this expression in the. bare nucleon state 

-. ·j N0 > we ~et 

(~,'~ _M ± i€ )-
2 

<N
0 

.\ lR:(E) l N
0

) ::: S;e(E) 
. . ~ 

. )-1 
(E M ± i~ lr 

· In. virtue of (10.58) this ini.plies·, in the neighborho-od of E ::'M; 
\. 

1) (E - M F iE: ) Jr , 

.from Which we may infer 

.. 

... ·. 

(10.82) 

(10.83) 

(10.84) 

(10.85) 
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... Substitution of ·(10.e4) into (7 e25) les.ds again 3 via (? .22) ~ tc the identity of 

. ·. 

~2 amd .Z
1 

for the one-nucleon~no--meson state • 

vfue11 mesons are present i.n addition to the nu.cleon we shall see that 

the r.enorma.lazation constant is still z2 •. This :is because the iritr·insic· 

properties of' the mesons are unaffected by the perturbation in tne present 

·ex8.mple. For -definiteness we shall restrict ourselves to the scattering of a 

single meson by a single nucleons wh.h' no accompanying meson production (e.g. 

low energy meson-nucleon scattering). That.is; we shall investigate the 

matrix ·element . < N0 .9 '"'f 0 l <R :!:: \ N0 ~ 'Ti 0 > , 
·· The diagrams which. contribute to this matrix element can be divided 

into .classes which can be put into one-to-one correspondence with the members 

of a certain set of- simple scattering diagrams (constructed out of bare nucleon 

lines·and simple vertices) called irreducible. An irreducible scattering 

diagram i~ one which contains no self-energy diagrams nor proper vertex 

diagrams other than simp~.e vertices in any of its parts. If, in a. given 

-irre~ucible scattering diagram» all the bare nucleon lines are replaced by 

_rea:l nucleon lines and all the simple vertices are replaced by modified 

~ertic·es, the result is equal to the sum of all the diagrams in the associated 

class~ If all the irreducible scattering diagrams are modified in this 'iTay 

and· the results· ar'e added together then every possible scattering diagram is 

correct],.y accounted for. 

~n Fig. 14 are shown a few of the irreducible scattering classes" The 
• # • ' ··-· real .n~cleon lines at the top and bottom of the diagrams ha.ve barred ends, 

:.This is to indicate the fact that scatter-ing diagrams actually begin and end 

· Wit.h vert ice~ rather thafi bare nucleon lines. The value of a barr-ed real 

nucleon line. is S0 :t::~l S~ or S'!I:So±.-l according as it is at the top o~ 
bottom of the diagram~ or 

ends as in Fig. 14a. 

-1- ~ \ ~·1. 
S0 :k \S: - So:t../So~ if it is barred at both 
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· Fig. 14a 'represents the "singular part11 of the opera,tor CR.:t 1 which 

'determines-the normalization: constant of the meson-nucleon state. In Figs. 

14bj c, d the extra mesop is attached to the main body of- the diagramp being 
.. 

.. involved in· absorption and emission processes. The. two vertices of juncture 

-in these case~ ea.cli. contribute a part containing a fa~tor. L-3/ 2 (see Eq. (1.0.16)) 

which. ·1s not absorbed through a momentum integrati_en. These diagrams are 
- . . . - ' 3 . 

therefore ·o-t_ order· L- and contribute to the nonsingular part 'R:t:. which . 
. -- . . 

describ~s. the actual. ~cattering.· The meson line in Fig. l4aj on the other 

harid;. is unatt"!-ched __ and has the.- value .lb indicating that the meson doe·s not 
.. 

change its state. This value ~ultiplies_the value of the accompanying nucleon 
.. -.. _ ·_.-·_~-, * **' 

1111e 1 . so that· the c·orresponding matrix element· is given by 

·'.- *;_--. ~ -~::. ' 
_When' a single dia;gram contains two or more. anconnec'ted pa_rts the general 
-rule is that the values attached to these- parts are to be multiplied (not 

_·added) toget~e~ -t'? obtain the v~lue of the total diagram. ·rn theories in 

- -which·. ~ir creation is alloweidll ·every diagram can have disjoint accompanying 

. ; Pa.~s,_..namely tho~e parts in. wqich the vacuum 11 plays by itself~" .the 

so...:called vacuutn-to-vacuum diagrams. Since these parts are common to all 

diagrams they are generally ignored, it being assumed that a_ll state 

.. vectors have already been multiplied by the vacuum renorrnalization constant. 

** One may wonder at first sight. why the operators in Eq. (10.86) are · 

,. ~~valuated at E = M rather. than at E ::: M + ~ ~ ~ being the meson 
.. -

·ene:r;:gy 0. It is simply necessary t.o refer back to the original. energy 

. , ·denomi·nators E - 31;
0 

::: i€ • In these denominators E i~ set equal to 

-~ + ~ ~ but t~e operator ~0· now must also account for the meson as· 

.' well a~ the nucleon, a.nd the net result is as indicated in· (10.86). 
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Fl~.l4 SOME IRREDUCIBLE SCATTERING DIAGRAMS 
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, ...... 
~ '"" ;.; . ',, .... · (10.86) 

.,·-.-, 
... : . .,, ~ 

. ' . ~· ... 

' ·· .... -~. . .. -

:. •· ...... . 

..,. . ·~ ' ~. ' 

.. ,, ~ 

• A ' 

• ~~- t · .• ~ • 

..:"".·: . '. 

. The normaliz~tion c9nstant is ·the.refore again z2 ~ the same as for the no­

.. meson state. 
< . 

. - .: ---~--:·.: ,,-· 
In g~neral, when one nucleon is present the renormalized transformation 

9perator · .'Uc:(O,:::Foo). 'is given (see Eq. (7.34)) by 

(10 .87) 

~ . . 
·· . · no matter h:OW many m_esons are present. (If N nucleons were present the factor 

· .·· ·.:· · .. ·' · . · . -N/2 
. :. "' ' : . . . . . would . be. z2 . . 0 ) The renormali.zed (and hence uni.tary) one-nucleon scattering 

... 
'I 

:\'· ·.·. 

· -• ,.operator is ther~fo.re given by 
...; . 

,. 
.. ; 

= (10.88) 

where S is the operator whose matrix elements are obtained by direct 

·· .' ,· .. calclilcition from Eq. (7.40). ·This operator we may immediately write down. 
·· . .,.· ... -. [· ' 

.·It i's1· however, now necessary to treat ~th care the contribution from the 

.:. singUlar··part of; the operator . CR.: , and to include the "derivative ·terili11 

•• f • • 

·.··; .. 
. . 

",• I 

.. , 

,in ('7.40) ~ ·The ·v~lue 'hr this. latter term follows just as in Eq. (10.85), 

nB:ni.ely: ·: 
.-.'· .. · .. 

(No, ~0 ] [sing d !R. . ._(E )/<> E l F..M+ ~ I N0 , '11' 0 ) = 1) 2-r h . 

(10.89) 

·(The ~on~ingclar part does 'not contribute in the limit E ~ 0.) · Since 

Sing at :1: is completely diagonal in the_ \ N0 ~ '1( 
0

) - representation its 

-~trix elements· vary abruptly across the energy shell!' and use of the identity 

(8.27) is forbidden. Instead, the factor 0 (E11 - E1 ) multiplying the 
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'" ·•· ... ·. 
' .. · 

. -~ .. .. 
- ··~ '/ .~ .. 

. ,. 

_:,' ___ .-._... . .::· . 

_singJl.lar contributions in (7 .40) must be replaced by 
_,.• . . . 

Therefore, · 

~Sing, (l0-.86) and (10.89) we have* 
.... , :·' 

-. ~- ; ; ; ',' • : l' : ... 

- .. 

.. ~ . 
. ' ;, .; 

"1." • 
• ·t .. , 
. ' 

. ~ ', ' I . ,; 

'"i' •. -~·. 

'. ~ 

.. : .. ·· .. 
~--. 

·.;·~ . 

' ·.• 

"•. 

-. 

-' 

. -. 

; . 

s = 

= (10.90) 

where .R -:t is the operator obtained by taking the matrix _elements of the -
honsingular part R :1o. on the energy shell. 

The decomposition of _]: ±. into terms corresponding to the various 

irredilcib+e classes of scattering diagrams is as follows 

.. . 2 
R:. ~ . T _ g_ 

" .... 

+ ~ .. c1o .. 91Y 

:Here T. is. the ·'constant of Eq. (8.27) ~ and the- notation 11 Wf = w1 
11 

;- · _indicates· that the init~al and final meson energies are to be taken tbe s&1le. 

', ·The first_ :term _inside the curly br~ckets in (10.91) corresponds _to Fig. 14b., 

._;_-: 'Th~ second. term corresponds to Fig-.·.14c E~us all the diagrams obtainable from 
. . .. ·.·.. . ' 

' .. ": 

.·it by ite~ation. (The first term is not similarly iterated since the 
~- . . . .. ·. 

iterated f~rms of Fig. l4b lead to redundancies.)- The unwritten terms, 

·.corresponding to; the remaining irredu_cible classes beginning with Fig. lls.d . .. . . \ 

·- . ' ' 

. '· : .. · -~ · :a~· its iterate's · are infinite in· number hut of higher order in 
_, . '• --·/ . , .. ·.· ' . 

. h ..,_.;.._ _______ ----'-_ 

:·.'.~ . •• < 

:: ·':':' ·. '·Rere we use the symbols S and· R ± to denote what strictly speaking -. ' ~ 
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(10.'9~) 
E::M 

"" ' · ·. ·:: · . .One .-6~tain~, usi~ Eqs , ( 10 ~ 72 
' ·:.- -~ ·. 

74), (10.88) and (10.90), 
·, 

~- \ : .. :. · .. 
. ·-:...:. -~ ·--,~ .... _;. · .... · / .' (10.93) 

. -··· 

.: . _. 

' ·. [1 
.-b 

.. _ ... 
:- ' •. -~-- '.. -.; ~ 

~-. 

: i 

~- . ' . . (10.94) 

,··:..,•.· ...... 
. ,; .. 

.'The r~riormal-ized unitary .s.-matrix may therefore be computed solely in terms 

.: , · ·of the renormalized coupling constant gc and the renormalized vertex and 

. ·· f!ropa.gation. functions. The same result holds for scattering in which any· 

·numbe~ or_ nuc;t.e,on~. and liles6f?.S. is involved, . 

The~ .reactanc·e ·operato'r .. · 

."The r~normalization theory of the. reactance operator is very similar 

'' . 

· to tnat of·the,S-matriX.• We shall first give anoutline of the main ideas 

~nd ·theri·verify"'that they fit properly into the framework of. the theory given 

. . 
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' ' .... . , ... ,. 

E.~sentially what one does in dealing with the reactance· operator is 
. ' . 

. . ~ ·. . 
"' ... ' .... . t.·o ·follo~ the same procedures as have already been introduced in the preceding 

.. -·,..· ., 

~ . '. .. 

'• .. ".· 

-~~:. 

_,··. ' 

discu~sion, omitting, howev~r, the imaginary terms ± i€ . wherever they 
:·"'.· 

-.appear and. evaluating all integrals in the sense of the principal value. Thus 
.... · 

·:~. ':_ ~-·: ' '- o:ne'. ·works with a: ba-r.e nucleon propagation function of the form 
-\ . ,, . ... _,_, 

" ·, ',. ... _ 

l:f 
E-M 

0 

(10.95) J > ··.: 

'/ ., .. ' 

'· ,'. 

'' . 

-·· !. ·• ... ~~ .. ' 

.. ,·····"! ' 
:-· ... 

· .... 

,; . 

.. ..:· . . ~ 

' .. 
. and .:a' real nucleon propagation function of the form 

., ... 

. . ·.· 
1'.·:· -S(E) = lf (10.96) 

., ·where 
'-t • ••• < 

...... II' . ..~.,. 

6(E) = 2 * g V(E)·S(E-~)·V0 -

(10.97) 

. -

· · ··These functions are real everywhere on the real axis and not only for 
< 

E.< M+ ;;.· _, 

The variational technique may again be introduced, permitting the 

'modified vertex oper_ator v to be defined by 

· -iwt 
-~ ~ v·e . (10. 98) 

· -·· The renormalization constants are evaluated exactly as before with the. use 

___ of the obvious modifications of Egs. (10.61-:- 79). 

.~om~rison of Eqs. (7.2) and (7.51) shows that-the evaluation of 

·. ·.: :· . · the .unr~normalized reactance operator K 
''· - ' may be carried out in terms of 

· · ~: ·diagrams identical with those used to evaluate the operator ·!-±: ; An 

important 'difference appears~ however, in the actual expression which one 
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'WI.'i t~,s do~ ·for · !$l. namely 

K 
,··T 2 r·S_· -1. \- i~,t * -i~t 

.g . 0 .. S l e • V S V • e + 

(10.99) 

. ··... . ' . . -1 '_Here the factor. S S
0 

which, by analogy with Eq. (10.91), would seem to be 

requ{;e_d on the rlght hand side of this expression, is omitted. Th'e reason 

.. for this is· that the instructions·· "E = M" now demand an evaluation directly 

--r, 

,· 

' ~. .... ." 

' , 
.; ' ' 

,· I 

lit the pole of-.the fun~tion ... -&- in this factor, rather than innnediately above· 

. ( -1) or belo~ it. Now, the expression S S0 . may also be written as 

.. ·. J l . o< =O~E=M 
z:::·. (M) - ~ Wh.en :i:; signs are inserted this quantity has the 

' --"··· 

.. 

\{ 1 ~ .S
0

(M) 

v~lue · z2 . · However, when they ·are-omitted, as in the present situation, it 

is t'o be interpreted as having the value 1, because · 2: (M) : 0 owing to 

·iterated 1 self-energy diagrams which this quantity revaluates are to be regarded 

as making no contri1mtion sifice the nucleon self-energy·has been adjusted to 

zero . 

. The factor S0-l S on the left is, on the other hand, retained, 

since it must be treated as a smooth function across the energy shell in 

order to justify the use of-the formal symbol 

facto·r is evidently to be taken as · lim [ 1 
E~M 

T in front. The value of this 
. 1 

L (E) S
0

(E)]- = 

The foregoing rules may be described pictorially as the omission of 

the real rtucleon lines at the bottoms of the diagrams in Figs. l4b, c, d, etc. 

and the omission altogether of Fig. 14a. The omission of Fig. 14a implies 

that · K, urtlike lft;; , has no singular part. Furthermore, since expression 
.. -.. ·· 

{ib.99), now has one factor z2 less than expression (10.9l), the operator 
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* .£ appears _t9 b~ ·already properly· ncrmallzed and. e:x.pressible in tha form 

E:::M 
''r ... · ·'. Ai -' 

. ·· .. (10.100) . 

( • • i"' •• 

·"··· . Th~ correctness of this inference n:ay be readlly checked with thE; aid- of 
. . . 

· ·. Eq. (7.49) •. One first collects the results of Eqs. (10 .. S3) and (10.86) into 

. '· . 

'·.' : . 

.. :,.· 

·,,. ·,._ 

J. ·, 

~ •' 

. th-~ sta:t-ements 

(10.101) 

. ~:t: = ]: ::.t":F 2 i(l - z2) (10,102-) -
and then sU:bstitutes into the gener~lized form of (7,49), gett-ing 

:: · K(Z,.. ~ ! i R ... .) • tG ,...-. (10-103) 

·; ·,. . . · tn taking the matrix elements of this equation on the energy shell one must 

. ~- ' ... ~; · .. 
remember to regaro-K as smoothly varying across the shelL The Gingular 

-:;·,: . . 

term ort the left must therefore be dropped (which :i.s equivalent to taking 
I 

·the limit E ~ 0 before th·e energy shell operation is carried cl:t) l:tr;d 

·~me gets 

K -· lic-t (lO,lOh) ,... 
1 ~ ~ i !c-1:. 

and hence 

sc = 1 ~ ! i K .. - (10 .. 105) 

l.+! i. K -
* . ~or· .the more general treatment -of the reactance operat,or in' relati:vistic · 

field theories see r~ference c~~]o 

'• 
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. . . . . . . ... : ·>A' word of caution ·must ·be :inserted regarding the use of expression 
r ~ ' .,.,. 

' .. 

.. ·· 

> ) 

·. (lO:.lOO) in fc>rmula (10.105.) to describe the one-meson scattering problem .. 

. If-. t~e init;taJ. meso~ kinetic. energy is. greater than )A so that the production 

. of· .extra real mesons can·take place, then expression (10.100) must be amplified 

t.6 irtciude matrix elements' inVolving two or more mesons,' even though only the 

• . :o'~e:::.meson matrix elements of (10.105) may be of interest. 

: : Experimental determination of ·the renormalized coupling constant. 
~' 

· · . . ·In order· that the ren9rmalization program have a genuine practical 
' . ~ ~ " . .,' \. . . . ' 

' ' 

. ut,;i.lity, ;there must exist ·a method whereby the renormalized coupling constant 

can· b~ measured experime.l).t.~lly in a reasonably direct fashion. We shall first 

shc:M: hoW: it could be meas~red ··if· a known time independent external meson field 

. could be provided in the laboratory, and then we shall briefly mention the 

pr~ctical_ difficu+ties opposing such an arr<;mgement and indicate some possible 

'. alternati v'es 0 

If tne ext~nal me·son field is f'A ext(~) then 'the· average value of the 

·en~rgy of ·a. real nucleon in 'this field is M + <N I~H\ N) where 

' 
(10.106) 

:: 
· ! -3/2 (' ext .. 

(2w) L J fA (~) (10.107) 

' .· .. This average .value. c_ould be determined by observing the scattering of very 

. ·•
1 

. ,'slow nucleons as they pa~s through the field in question. 
·~· . .. ' . . 

It is only 
.• 

... neces,sary .. t~. show. that the value of gc follows immediately from it. 

_Rememb~r~ng ·th!lt 

(10'.108) 

· one has· 
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,· 

... 
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.. ·' 
.. ·. 

•; )•·. 

·' . .. . 

= 

l' 

·'!'---~·· 

.··-: 
... ;. 

... 174-_,....._ 
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Go:;(M) @..:.(!--!) l No) 

(10'.109) 

··/·. ·.·. , · By building the appropriate diagrams it is not difficult to see that the 

.. ' .. · :··: ,; ·,; · ·. ·.se~~nd term of (10 .109) has the value 
. ' 

i
2 
~1[' .s

0
,.-

1 s,. (d~,_/aoc ) s,. s
0

,.-
1 ·l"nj-

. . . . . . . . . d.. ::09 
,., ;_..· 
;'· .. 'r··· E::M -;::. i€, ~ t=O . ex 

..... 
' .. ~ . 't' V ·¢ext 

z2 g ~ 1 . o (10.110) 
-.... 

· :' :\',.~ ·'. ··{Here the instruction 11 W = 0 11 reflects the fact that the external . ··· ... · -ext 

·. · . :> m'eeon meson field:~ being ·time independent, feeds no energy into the system.) 
"; •· ,· :~· 

. , . Using. Eqs •. (10. ?i)' and ( 10. 84) one therefore gets 
~ 

···. ;- ·,) 

. ~ :. ....; ,.,. . 

(10.111) 
, ... A 

Since the structure of.the.ma.trices TjA.s and hence of V0 , is assumed 

·. . ~own, measurement of (N I AH \ N> for various .internal nucleon states 
, .. 
. ~;·· .. a~i'ords a ,~irec.t determination of gc. 

fhe great difficulty, of course, is that meson fields have extremel;}r 

short range, owing to the finite meson mass~ and therefore cannot be produced 

.'<?n a macroscopic, and hence classical11 sca.le in the laboratory. Never more 

than a smafl numbez:- of nucleons (e.g. those in a single atomic nucleus) ... ' . . 

·c~~tribute ·effectively to a given meson field at aey point. Therefore the 
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··, · ._-.,_ ><iuantilin .. character of ·the mesori field is always dominant in any physical proc.ess 
< • \ ... ;_, •••• ""~:,.. • ~- ---:--: • ... > • ••• 

. 'in_ whi~h it takes pu't, . ~nd the calculation of the average value of. the fif:l~ 

·:. · ·~··_'is generally insufficient to so~ve the corresponding theoretical problem • 
. ~:- ,' 

·This ~s unfortunate~ because average values are easy to compute. 

~ , . -~ . . .. " ... . A.s an illustration of the difficulty, consider the average value of 

•· ·the meson field prod~ce·d by a .. singl~ real nucleon. This is given by 

ip·r ... ,.. 
e ) l N >. 

(10.112)' 

· ·. Iri' b'ro~r···to evaluate this expression first observe, using (10.10) and (10.14), 

' .. ' 
r;:-' ~· • 

..... -
that 

'-· • '! 

i: 

r-. 

' ' ·' . 
. ...._ ... 

. ' / ., .. 

.. 
':.;, 

~ . . . ' '' 

'(10.113) 
',, 

:The;refore., rewritirig Eq. (10. 108) in the form (6.8), namely 

-~ 1 
± i € z2 (M - H -± i e ) - l N~> , 

'. (10.114) 

a~~ ·,r~memhering that a I No) ' - 0 ' one gets 

a.j NJ .. = .±: i €. z2-! [a~ (M- H.:!= i€ )-l] /·N0 ) 

·- ·.. -1 ' ...,,.,.* * ··iT.- I \ (M - H .t i € ) ( S!;? • o. ..._ g 1M o V 0 o '::t! ) N I 

', (l0.115) 

Use of (lO.lil) then yields 

-1' * 
: - g ( w =F i €) oV .• 

c ""' 0 
(10.116) 

'' ~·.' 

>The ·:J=. 1:-€ .. in:this expression plays no role in the sununatiori over meson 
•. 

_energies·and. may·be ignored. Therefore 
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, r' ,,:.. ; 

- .. ; 
, .. 

' •. .., .,(, - \ J -: . ; 
_. c_ ..... •·• 

<~ (r)J . 
'A-

,~ Re ~t.,L:'P (2w3 L3)-! V oA,/ 
-

= (T~A) . 
,J p'V 

Y(r - r 1 ) 
"' .... 

t· •. • -~- •• ' ~ ~ . • • . • " 

I t >-

'< ·. ,: 

-where 
! . 

' .. 
:_ •. :.': : _< • • • .· · ·_· Y(r) · 

.... · . ·~: .... 
L w-2 

p . 

±ip•r .. ,... 
e = 

-1 
(4'11" ) 

-}A..,.. 
e _, · /r (10.118) 

f ~: ... : .~ . 
. ' 

· •, • ~ , r·· ~--· 

~~:-.:·~·:-- ...... ·.~ '-,'• .. 
1·,· 

J ' • ~: . ' .. 
...... . _. 
·•.' ... :. •' 

,· . 
',-•,v,< :· ',·'. 

'. 
'. ,. 

·' 

,· . :':· ······ 
·, ,• 

.... ~ . 

"'\ -~ . ·,,_ 

.... ,_.-. 
~- . .. ) ~ .. 

.. ( 

.. 

. . • ,. ~ , . . r, 

, 

.--,... 

If now on~ were to regard <~A(r)) as the external field appea:--ing 
<· . · _ · - ext 

in (10 .107),. one would obtain ¢ If this o-;ere used in 

-Eq •· (10 .111), one would get for the potential energy of interaction behH;,en 

~ nucleons;; the expre·ssion 

,2 -1 * 
2 .g · V • w ·V c 0 foJ'A 0 

;;; 

where the sUI!llnation is to be carried out ov-er all visible indices.'r This, 

how·ever~ .is only .the first term in a series expansion of the exact expression 

in powers of If gc were small this first term co-:..:ld, of course., 

reasonably be,expected to give a fair approximation to the exact expression, . . ~ . . 

· · ·.so<that the interacti,on potential t>-10uld be basically classical in spite ·or 
•' 

, · the microscopic dimensions involved, and an experimental investigation of 

* . 
The dot products on the left of (10.119) are meant. te imply b-space 

·summations only. Therefore the expression is a double dyadic in f-spacej 

which allows for all the possible pos·itions and internal states of both· 

nucleons. 
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rro:ciear two-body forces (which innnediately suggests itself) would give direct 

. \' infonnation on the value of gc. Unfortunately there se.ems no reason to 

. .' ' -~ 

. .:... ·_.-,.,_-

. . '.• 
·. ': 

. • ~! 

.,. 

. ~. 

., .... 

' - -~ 

'' 

. ·- ·.:· 

.. ' ~-; -
.··:~·· .· 

. ~ .. 
• ~ l .. 

... _. 

. ,· 

! • -~- ' 

· . believe· that 
' . . is small~ and therefore the purely quantum effects in the 

~~two-body. problem must be det13rmined. This general problem is so difficuit, 
: : ~ •• • -. .• • • '· • j • ~ ',/ 

however·,. that no .simple exact· solution comparable· to (10 .119) exists with 
•· :i • • -~ • . :_.~- '.- ·: ·:- • ' •• • : l . 

.· '.: ·wh~Qh to correl~te .observed nuclear binding energies, moments~ etc . 

... 

~ .. 

The next thing that s~ggests itself therefore is to investigate the 
• . • ~ l.. • • 

possi~iltties inherent in the somewhat simpler problems of meson-nucleon 

scattering and photo-meson production. The results of this investigation have 
· · . . ··~sto~~ 

led.to the so-called 'threshold theorems. A The threshold theorem for 
·,,!' • •• :" 

·.scattering will now be derived.* 
• , • . I 

"-..'· 
.One f~rst obt~ins:the equation involving a* analogous to (10.115). 

.. <·Using the Hermitian adjoint of Eq. (10olt13) and remembering that 
' . 

..... \ N0 .9 'Tr o), ~me gets 

(10ol20) 

where 

\ N; '1T , . ± > . ~ 'lll
0

.( 0, ·:F oo ) \ N 0 , r:tr 
0

) ~ ± i € Z 2 -~ (M + ~ - H ± ie ) -l \ N 
0

, 'Ti ol 

(10ol21) 

··Use' of the Hermiti'an adjoint of Eq. (10ol20) allows one to write . :-: <~, trr , ~ \ N /'li' ~ ±. > = < N \ [a + g (\I* o V 0 * o i:fn o ( M + ~ - H :t: i E: ) -l J \ N ~. 'Ti' , ± > 

(10.122) 

*' The present derivation is essentially due to· F. LoVJJ references [<13] ~n.d [9'11, 
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.·., 

:·; - ·< ./> ... 
• ,1 .•..• ,. 

. '· 
·- :· ... .where 

'' . 
(10 -')'}\' 

' II .l.. .... _..; / 

: ,' '{ -- ' t • ·::_ .. :. . - •. -~ 

·. :·., ' ·.The operator R ; obtained by taking R _._ 
·:- · fW'. c:t c.~ . on the e::;.ergy shell, 

. '-''} . · . ,. ·identical :with the.: ltc: of Eq. (10.94), and hence differs fi_"o:n ~ :i:. only· by 

,.<"': .. ' ... ::_:, ·. the n~~rical.factor z
2
-l The opera.tcr R .. ;±. itself~ when def:i.ned by 

.•. ·, .. 
' .. . . 

., . :~ ~: ~ ..... 
. ... 

, • • ·, -~· ~ r. ~· • • 

,' '• 

....... ·.:. .. 
.... '•'. ·-.. -. 

. ' . . . 
• I I I# 

.. _.; ·. \: ;'; ·. 
... 

-·~·· . ;, 

·, 
' ,<"' • : ~< • 

• 1 •• 
'•· . 

. ''·' 

. ·, . 
. ...... 

. ~~ .. 

·~· .. 
' . 

. ·.:· .. 

. - .... 

. ·I' "\,. • 

(10. 123) i': is however not a sunple multiple of R-±. (the nonsingul&.r part of 

. (f(
2
)' ·a.s !Jlay be seen by examining the bare nucleon propagat.ic·n functiom> in 

· tpe expansion of (10.123) and noting that» except on the energy shell, they 

· ·do not ke~p a proper tally of the meson energies above the. vert.e·:~ introducc~d 

. by the operator if* ·V0 *. 'W, 
Using both Eqs. (10.115) and (10.120) ~ and remember:l.ng that 

commutes with '"Yf*·v0*•1$' -~ one may reexpress Re± in the form 

. . 

Rc ±. ·' = . g < N j ~ * · V 0 * • ~ [a* + · g (M + ;::;; - H :: i ~ ) ~l • ( -£* . V 0 .1J[)] /. N ) 

·' 

" i <N L{[cil!* -v~·'W >. CM - ~ 
.' 

H)= l'ifr~- • yo*.~ J T 

,: ': .. 
) 

+(N I1Jt*·v0*,j \ex) (M+~ = E'±id-l,~'liJt*·V0 "~~ N> 1 
(10,12~) 

where the are the eigenvec.tors of. H"' Keeping only the term 
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· -1 * T J ~v 0 • W v 0 ) . + ... .(10 .125) 

(!he: d~ts indicating dyadic multiplication in f--space hav.e been omitted in 

· · thi~·.·~~ressio~.) This result may be ~ubstituted dire~tly irito.Eq. (8.19) 
.. ~ • .. • - • • c ' 

~-."_ ···.· _, .·-.. . .·. ·. 

: ·"to Gbt'ai..ri' the meson ~c'attering cross section. In this case 
. . ., ~ ..,. . . ' . . . v' = p'/w' 

~ • • •• t •• ' " '· 

= (g/ /4'Tl )2 w'-2 \' L'i,j -v j; ,l?.P' * vi •.!:' [ T jA"' T~A 'J 
(10~126) 

,<, ,, 

'• • ' ,·.;, "L' ' 0 ' o 0 ' ; 

<~~: 'y····. • ·· .. ·.Here ·a' summation :is implied over the va~ious· pos'sible final· states of· the 

' •' ., 

'. ·'· 

. ,-', 

. -· 
. ·. ·nuc,1e'on~ · · 

* 
. ,. 

···. 

- ' • < • ~· ·' ' ·' • : • .·'· 

If ~he .. n}lcl~on is locat.ed at _the origin~ then in many theories the V~ ... ·. *'• . . . .. . . 
~nd ... v~ iri, the' first term inside the curly brackets of (10 .. 124) may be 

rep~a.c~dby V0* ~nd V0 respecti~ely, so th~~ if one includes also the. 

· term.S · I o( '> = j N, '1r , -:1: > one obtains a nonlinear integral 

eq~tion ~or .Rc: , riamely 

= 2 ,-1 [v v 1 gc · W oA" ,p"' oA 1 ,p 1 
,... .... 

·.+ 
-. · .. · t · II ·w . '"" 

-W·- W 

.. ~ ' 
No. ' ..... ~~~ 

w - ().) 

To shift the nuc:}.eon to an arbitrary position ! one_~imply_multiplies 

· this_.·expression by ei(E_' ~ £_")·,!. If still more terms are included then 

,it. is necessar;r to derive further equations, analogous to (10.115) and 

(10.120), involving the application of the operators a and a* twice or 

nio:re to the vector 'N) , and leading to a series of coupled nonlinear 

integral equations. 

2 
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... ... ( .. ··~ : ,· At first s'ight we: seem to be no better off than in the '::.>::)···body 

· ~probl:~rit,. for expression. (10~126) .is certainly not. :a good app:roxj.m.c.t.i.on t'J +J-·,e: 

.. , ,. 

•' ,. .. 

···;. .. 

. / . 

;:. ' 

•'I : 

.. :· ·':·. 
· .. :', ' 

·.: 
' ' ., .. ~ 

-·,· .. 

. . ~ 

,exact cro.ss section if gc is no·t. small. ·Hqwever; if one is wiJJ.ing to 

ass1,ime that the exact expression is a smooth funct.~.on cf . w ; in the 
: ( 

.. . ' 

then one may extrapolate the experimental results bach'i'lar'd from the lo"~ 'IT<€$0!l. 

kirietic energy re_gio.n to w' = o, at which point the tarm (Fi,1.25) completely 

·domi.11ates all the other terms in (10.124) ·so· that the crosB f:ecL.on formula. 

:··(io.1.26)-:does ·be~om~ ex~ct. 

~~~p~nding on··.· p.1 = ( w 1 2 ~ 
Formula (10.126) may contain, of c .. :;11T3e, ·a f:;ctor 

~ ' . . 
2)... . . ).). . and havJ..ng eJ..ther a branch pd.nt. o:::· a :~ero 

at w' = }J- which prevents a direct extrapolation of tbe experimental results 

to. uJ 1 ,.;. 0~ However, the observed cross section nay be multiplied 1.::y :.he 
.. ~ ' .. . ~· ·' 

. recip-r~-cai of this factor and then extrapolated. A direct dcterm.in.0.tion c-f 

. i~ ther~eby' achi~ved," provided the assumption of smoothness is '>J'-3.iid ~ * 
.\.:' 

In the psetid.ovector coupling theor-.t considered by Che·w ~ [9 :~,"] int.egra.tion of 

Eq •. (lo'.l2~) over all angles· and averaging over 11li initial. wucl$:.n 
. . . . I .Lt /! 

leads-to a tot~l cross section ()(w') = (4/3'TJ)(gc/ ).i.)'+ P' /L•J1 · 
( 

', .. 
· .. The renormalized coupling constant is therefore det.er:nined by 

' . 

lim 3 1'fr 
w'~o 4 

Here j(;'- . · .. inust refer only to observed P-wav. e scattering. sinc.e v obs '" ' 

S...;.wa\fe scattering· is not described by the pseudovector couJ:.ling .. 
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·The· substance of the thr.eshold theorem is contained in the following 
. . ·>·· 

.:s~a~ellle_rl.t: !he cross section for scattering of a meson of zero energy is 
.,.,.,. 

·· ., .:iiven eXactly by the lowest order perturbation expression, with g replaced 
.,._, 

;:_ -:·:··; -~ . g0 , :(Eq. (10.126)). The statement is rigorously true and depends neither 
. ., 

'> . :. >·on .th~~ masses of the virtual mesons nor on the magnitude of gc. 
'";' 

' ~' . 

-,_ .,Fourier t'ransforms. 
~ .. ~ . ... . . .. . 

-' .. 
• • ; ·~ • 0 

·, 
_The particle propagation functions are frequently introduced through 

'· . ·:,;· th~fi-: foU:~ie·r transforms, as the; then have a more direct connection with the 
,,~...· ... 

·:• .. • 

. ' 
.... ·i 

. ' 

~ield_ variables. This connection may be seen by defining 

= 
' -1 I' CtD -iEt 
(2'TI) J _00 S:{E-) e dE (10.127) 

·and making use of Eqs. (1.15), (2.9), (2.13), (10.20)-and (10.21)~ and the 

f~c~- that V(O, t) = U(t, 0) when the total Hamiltonian operator is time 

;/· ind~pendent 0 Evidently 

. ';r 

,, ' 

· ..... 

S:i:(t) = <No I G:t(t, 0) \No) ~ ::;: i e±(t) (No I U(t,O) I No) 

-· T i e:=(tL<v~c l U(O, t)'t U(t, 0) I No> 
. . ~ ' 

~ :f.i ~\: (t) (vac l !(t) I N0> (10.128) 

·.· ·.-where 1f ( t) is the nucleon field variable in the Heisenberg representation 0 

"'*' 
~xpression (10.128) may also be rewritten in the more symmetric 

.. >form 

(10.129) 
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::; 0 one may further- modify· +J~5.::: 

: ~ i < vac j [ -~ ( ~ 11
) !~~ ( t:) J :': f ·rae) 

.iG"(t" -·t·) (_vac I r ~(tH;j,*(tz)l_ 
L - ,.. _I :t: 

\ 

vac') 
. ' 

(J.O .1.'30~ · 

.. Time-ordered expressions like (10.130) have a useful forF't in the 

intera·ction representation. First consider the general e:x:pre~-~n--;r, 

\tlhere F and G are a rei trar·y· H eJ. r5,mber'g 
·,_. -

opf;lrators_ arid 
.,.__ .. 
eigen,vectcr 

. I O(t 1 ) is an eigenvector of H 

/o(0 
1 > ·--of'·· JC . Remembering that 

0 

one may write this expression in the form 

correspond~_og r,0 the 

F(t) ,. ... ..,-, (C, t '-·~ l ~- ' V.-- r .. 
0:: \..A~ '· ~ ." ~ /-L' \. :. '1 -.. '· !,' J 

.-, 
_., .<O(~i \ r<tl) 2_(t2) r~ ~ '> 

z,-l ( rX.
0

: J U(-:oo, t 1 )F(t1)'U(t1 , t 2)G(t2)'U.(t2 , ~-O<? ) I cJ. c i) ·-. ' . . ~ .~' 

,., ;-• 
. ., •;I f •. 

'-~ ! :·~ ~ ;-
!, •• ,.. • 

, ·- c ., ,. '. ) 
I ' d , \.l. '·'-.1--. ,, . . -~ . 

'~';· . ~ ~- ;'• . ' ....... ~. ' ,' . ' 
~ .. -. - ::.: 

.·• ~"- . .-.. •' 
The combinat_~.?.!l of this result with Egs. (1.31, 32) e-.ridently gbe::; 

·. ~ - : .. 

. •,· <~~'-)'[!<tl>~<t2)] ~lex±') ' ·•.· .• o,, 

- z,-l<rx'.o' I r F(t.'l) G(t2) exp(-:riLOooo:Kl(t}dt)J± llo:o') 
~ . < .. -;-. 

. ·-:" . 

The renormaiization constant z; cf the state ) 0( %.
1

) may be siJ1lilarly 
.. -·. '' ... : · ~xpresse~ ~ 

.r;· ·~ • 

Z' = S ~ng \0:0

1 
{ U (±.co, :r:ao ) I o(/ > 

= Sing<rJo' [exp(=F i/~ooJC1 (,t)dt)]± J~o') (10' 1.33) 
•,' 
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\ ' 
\ . ·.In .the· present example Z 1 = 1 for· the vacuum state~ . and therefore 
·.) 

\ 
, \:. ·s±(t" ... ~'):: :..i<J(t" 

. " ' . \ 
·, 'I 

(10.134) 

: /. - · 'l'l',tis equ~tion is also correct in theories which allow pair creation~ provided .. \ 
\. a,ll vacu'<ml.~to-vacuum effects are consistently ignored. 
'\ 

~ >' ·, • • i .· · ·. '. In relativistic field theories the traditional development proceeds 
t 

. \from· expressions of the form (10 .134). The nucleon propagation function is, 
. ' 

, .. · ', 
·---...--!:-~. (10.135) 

in which thedpace and time coordinates are placed on equal footing: 
.. 

1< 0' 
( X. 1 ) ·=· (r1 ~ itt). In the present example this function reduces to the 

.r'- l IN... 

.. nonrelativistic- form 

(10.136) 

The analogous structure for the mesons~ on the other hand, is relati-vistically 

covariant. The Fourier transform of the .meson propagation function defined 

};ly Eq •. (10 .• 24) is evidently 

. 
::·._~ .. ::{ ::F- i ·< vac l (! (tit) ! *( t' )] :1:. ·\ vac) 

t') 

(10.137) 
Ther~fore 

~-1-<v~c·J[ fA" ( ~t") fA,( xv)J% ) vac> 

·~ :t:"' i V'"' (213 r~1( 0) II W i ) -i <Va:; - .,- · -~P v ~p" . . . ., . . . 
ip"·r" e ... ,.. 

= {10.138) 
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'Where: 

L 3-1 ~ i(p•r wt) -H~ ·r = w t)J 
=Fi . p (2WL ) 6:it(t) 

,... ,..,. 
-1- e~(t) P. -= e 

,... 
' -4/ 2 2 -1 ik,X. I 

= ~(2'lr) (k + ;;. :r:- i?-j) 6 d~k (1G.l!9) 
-·· 

· vtith 
and 

Som:e remarks, 

The operator formalism finds probably its richest e>.."'Pressiot1 J.n "its 

·.application 'to field theories. ObYiously the foregoing discussion ean be 
.. . 

. _carried. on into many. other ramifications of the subjectc To take· just oml 

. example~ thS"-'-¢encept of. the propagation function can he applied not ouly to a 

· .. single particle but to any number of simultaneously· interacting p::trtic~es. 

:One simply introduces. str1,1ctures similar to (10 .130) but invobring arbitrary 

·numbers of operator pairs 'W :J iJ[* :J plus an.,y munber of repet.itions of the 
,.. -

":operators a and a*. 
' - - The resulting functions inv·olve separa":.e "emission 

~imes 11 and· separat.e "absorption times" for· e11.ch particle. If e.l.J. the 
G.\"e 

· ·- · . .. .emission t4£tes are set equal and. all the absorption titnes,\Bet equalj and if. 
. ·' ',_ 

< 

.the F<:>urier transfonn is taken of the result~ one obt.aSns essentially the 

quantities ( nll mn ) G:t.(E) I nll m') j v1here \ n~ m) denotes the state·-· 

vector describi~ n bare nucleons and m bare mesons. Owing to the 

.simple connec~ion (Eq. (10 .81)) between the Green 1 s f~.4'1Ct.ion and the se;.qtteril'J.8, 

-opel"ator; discussion of. scattering can be carried o'.lt solely in terms of these 

· ·· ; · fu~~tions·. The many<-particle propa.gat"ion functions also provide the 

appl"o.prl:ate framework in' which to study bound state problems. Moreover 5 if 

the various emission and absorption times are left independent~ as is· 

especially appropriate in a reJ.ativistic theory~ they provid-e a method of 
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", .. ;, r . .' 

.·.·.:·-J:carrying·ciut.the renormalizatiori program (in particular the proof that t'lle 

•/# .. 

· .. ·. 

.ine>re natu'ra1 ·fashion than that outli:Tred ab.ove, ·Lack of space, however, 

. ·prevent~ ~hese applicatio'ns from being described here. A few of the pertinent· 

:' ref,eren~e-s· are included in the bibliography at the end of the a'rticle. 

' .. 

itttdther topic about which sil;,ence -will be maintained is the question 

.,of.the. llr~nortnalizability" of a given theory. ·This is the question of· 
.. '. 

·· ' -_ ·-whetlier or· not the various integrals remaining after .. renormalizat:ion has been 

· ·,· ·performed are all convergent. This question arises only for ·local theories 
., . ' 

. \-,· -~' :_:,; . . -·. 
· · ·. ·.;·:·.{infinite c~t-off), -and-th~- answer to it depends on details of.. th_e interaction. 

I. 

, .. .,.· . . . 

~-· ·':;:. ·AlthOUgh .of practical importance, the subject is highly specialized and has 

rio _b~aring ~n ·the operator formalism. 

We shall also say nothing about ·radii of convergence for the expansions 

: _:of ·renormalized matrix elements. in'powers of gc, nor about the question of 

._ ·, . :';lhether. .·or not· the expansions might have some meaning even if the radii happen 

" 'to vanish; 

'. ~; ·, 

. · · .· · The rieutral scalar. field . 
. . ~ .. 

·.:It,~ is well ·known that the coupled field problem can be solved exactly if . . 

. ;; .the tn~tri.ces T jA ?CCurring in the' vertex operators commute with one another.* 

. ·It>'is of-interest to sh~w this within the context of renonnalization theory. 
,t' • •.· ' . 

Qile ~mus't fir~t -recall that· the functional dependence of the operators S:r, 
.. 

through the combination 

Therefore, if the vertices commute so 

..._ ..... ......;..,.....-~---- --·-· ___ ...__ 

'* c{. Wentz~l~reference (7].For other interesting field pr?blems vthich can be 

scrltled exactly see ref.erences [1o8,109.1110] , 



·,,·.: 

.·. 
... ,· .·.·· .. ,· 

·I" .. . . .. ~ . 
•, '· ..... •· 

~ . ·--···. 

;·., 

' ... ·~., ' -: .. 

' ·. ~ . . . . ' 
\""' .. 

UCRL-2884 

~186-
·-·~~-

that the numerical factors appearing in various terms, under the operation .. 

inv.~lved in Eq. (10.65)' are all ~quai to unity' and if the energy associated 

with the external meson field is set equa.l to zero, then differentiation 

with.respect to 0( is j3SSentially equivalent to differentiation with 

respect to -'E. This implies, for example (see Eqs. (10 .38) and (10 o 50)) 

. ·._ 

(10.140) 
. .. ·· 

rh·'p~rticular (setting E = M =r i €) 

:·. ·. (10.l41) 

~- .. ~ 

·'. · .... 
,> ' 

·.'·. 

1·· • ... _: .. · .• 

' ,; '· 

'.· .-.. 

,. 

and hence 

(10o142) 

Eq, (10.140) can be generalized to include the useful case in which 

. the e:x;ternal meson energy does not vanish. The reasoning is <as follows: ... 

/ ~ ·.~:·If the vertices· commute then to any function F(E) there corresponds a 

-i~t * i<.Vt -!:· 
·unique function · F:. of. E -:- g(V

0 
•e o 0( + t:X oe _. ·V 

0 
) from which F(E) 

., 
can be obtained· by setting ()( = 0. One may therefore define the following 

. _; .. :.·. 
·operation: · 

r:'• 

'. iwt '• 

(oF/aD<) F ,<X (E) 
/1M 

= .e 
0( :0 

(10.143) 

·For e.?Cample: 

If F(E) = E then F,cc(E) - - g v - 0 (10.144) 

The general result of performing this operation on an arbitrary function of 

E, which is analytic in some region, may be obtained by induction from 

(10.144) together with the following tally-keeping rules for the meson energy: 
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'. -18'7~ 
--~--. 

.. ,.· . .... . ~ 

• ~· I ' 

.. · 
... ·· ...... ~ . 

-· ,::'.:.· _· .: F,"(x(E) . ~. -G-\E) G.~O( {E) ·G-1(E -:-~) 
(10:146) 

'" •, .. 
' .-.... ' ·, . . ~,·• .. 

' ~ . 

. --~· 

" .. , . '. . : 

I-

t :'.t. ~- . 
-:-\. 

~- . . 
• - '<: 
• , • 1 ,~- ,._· ' ' I • 1 

··. ,;.·' 

... 

''' . ·( 

·~ '· ' 

. -... ·' .... 
·-· .. •, 

-· ,· l I 
·:__. 

.... 

are presumed to have a region 

of analyticity~ and hence these rules apply to them in particular • 
·.~ ·~ c ' • ' .. , • • • ' • • • ; • 

Using rules (10.144 - 146) one may easily prov~ the following theorem: 

F.~ 01 (E) = - g V 
0 

• [ F(E) - F(E - ~)] • 0_-l • 
(10.147) 

f ~ • • 

lf F<in·::: E the theorem is obvious~ and the general case follows by in~uction. 

one may therefore infer 

(10.148) 

... .:· . 

which reduces to (10.140) in the limit w_,.o. _,... Inserting this result 
. . . 

toge.th_er with,Eq. ·-(10.50) i~to (l0.4la) for the case ~ = 0, one obtains 

the.folloWing'expressi~n for the self-energy-function 
~ . . . . 

(10.149) 

~h-~ch~' ;when stil?stituted into· -Eq. (l0o2?), yields the simple integral equation 

: _,(E: ~-::M0 : ±. i£ ). s:!:(E) = 1 + g2 v 
0 

o [s:~:.(E - ~ ) ·_ s*- (E) J o ~-1·v 
0 
* , 

r . 

,,. . (10.150) 

f~r the nupleon propagation function.. (Here we replace lf by l ·for 

· . simpllci ty. } 

. : Eq. (10;150) may·be rewritten in the form 

(10.151) 
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: the_ self mass bei_ng ident::i.fi'ed as* 

2 -1 * g V 0 uJ _,lf 
0 ,.... • 0 (10.152) 

....... 
,.'•· The renonnalization constant z2 may be identified by passing to the limit 

' .'.; 
~-- ~ ... "'" . ~ ·. · ... ' 

. ~ •.; .. '-
·, ·. ~ . 

'.t • 

•I .'f J,' 

.. _ ..... -
·-· -· 

·, ~ .. __,.. ' 

'_., ··: 

·- ... ' 

z = 2 
-1 * 

l + g2 
V0 •S ..... (M - w ~ i £ ·' • W ·V = ,.,.._ . I ,;.,. 0 

(10.153) 
~-;~1 ~~;:.;;·~.:-_;.' ~- (•' ., ' 

'· ._ .. ,~ ·'' .... ' .• I •.Multiplication of .Eq. (.10.151) by z2-l then gives 
.r '· .· "'• 

1 •.• 

.: . . -
·'··'. 

·:-·-.:~- ·-:~.- .. : ' 

'. ·, ·~ 
,. ·, '''., 

.· • .. ' .. -.: 
. . . . .. ~ ·-~ -

.. "•';-:.; 

. ' 

'· 
: '.•. 

.·_.. 

'1 

.·:. 

'.· 

w:;:: - i£)] ·r£!-l·V·o* 

(10.154) 

The. sirirplest case in which the vertices commute is that of the 
. .·. ' 

·neutral scalar· meson field for which the vertex operator has the form 

· .. ~ 

(10.155) 

' Using this form it is easy to show that the solution of Eq. (10.154) is 
(" 

given formally by 

(10,156) 

. The integrations involved in each term of this series converge even in. t.he 

limit of infinite cut-off (vp = 1). The renormalization constant z2, 
. -

'however~ goes_to zero as the cut-off becomes infinite.~ showing that the 

* . ,Eq. (lO,.i.52) may be compared with Eq" (10. 119), from which it differs by 

the .characteristic se1i;-energy factor ~. In Eq. (10.152) the dot 

products involve sununations over f-space as well as b--space. 
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.. ., ~' . ,. . ,' ~ . ·· " .. > .. :<;~~~?Orii!;B.lized qua_ntities th_emselves diverge. Substitution of' (10.156) into 

. ',:~ .. 1_. ·- ~: . 

~.- '' ·>·-'·,~.'(1:0.,153) gives, .in fact, 

. ·. !:! 
. ;-

•·. '"/• .. -~. : ~' -~ 
;· ~ -.. ' • ' ,.\;- ;: c 

.. ·.: . . ·, 
• ~ • • .J. I • ~ ". • -~ 

,-:. 

... . . -.'.·,,. ·, ... -

OJ .•• . . ~ . 
-_,· .,_ 

. .. :.· 
' . .. ::·, .. ·:Where 

exp {.~ (g/2'11" )
2 

[log (2Jl/ )vl) - ~] 1 
{g/2'lT' )2 

- ( .u. e/2D.) 
/ 

is the high-energy cut-off. 

. (10,157) 

--. ·:·~-
·It. is of interest to take the Fourier transform of (10.156) 1 which is 

• . ..: • f 
, · · . :: ;. easiiy ·seen to be 
. ' . . . 

-iMt 
:~:. _.::.·:.~~C£{~)· ·.: .. =Fi 8:(t) e 

~~-" . . ':: . 

.. . 

(10.158) 

. . ~ . -. _. . . 
< . ""' •' .. ;.o. ~' -l~ ~ . 0 • 

: · '- o' · · .... W~th infuiite cut-··off the exponent on the right has the form . . . ~ . . 

r ·-:;~ • .. 

(g/2'1T ) 
2 

[ log(2/ 1 ).J- t 1 ) as t ---""" 0 :; 

.• ;_> ... (10.159) 
t ~. ,._ 

· : : · · : where . "( = . 577 ••• ~ and therefore 

•. ~ .. 

(10.160) 

as t ~~o. From the behavior of Sc£(t) near the origin one sees that 

the ·series (10.156), wh.ich is it's forma:·l Fourier transform~ can converge 

. . · . >:~.only -if .g < 2'1f. ·For larger values of the coupling constant the nucleon ,. 
i ::pz_-O.paga~ion fiu:ction. S c~(E) must be defined by an&l.ytic continuation. 

; .. -
Although these results are of some interest~ the neutral scalar meson 

problem is othend.se quite trivial. For example~ the mesons are not· scattered 
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,:by t~e nucleons: . Thi~ followl3 from the circumstance't.hat. the operators 

·!~ ... i: ··'~c(o,:· ~oo) and U (o, oo ) 
' c 

are identical~ being given~ in factj by 

' ..... \'. •.. . 

exp [ g i"*·.(Vo O.,~=l·a· ·= e~· ~=l.;j·o*)' jr J : (10.161) 

,·,. 'r~ ·:shw. that thi~ operator diagonalizes t.he total Ha."'liltonian operator, first 

· . ·take its·_ commutator ~th H
0

• · Slri:c.e the·· vertices comnr.1te the nucleon. field 
... . . . ; . 

variables play no role in the commutatian procednreJ and one finds 

(a~-~~ ·a~ Ue<c~ ~~)] 
; ' 

g['U.c(O, +eo), 'ID"*·V0 ·a .. r}·l 

ar;d hence (cf. Eq. _(6.29)) 

. . ': ~ ' ·: ···, 

'·, . . . ~ ··. ,. 

: - . 
.... ·,... 

,. 
··r-

'' 

.· 

· 'lr .,6..,) 
\ :,.J,,.J. "' 

The'second term on the right gives the interaction energy between. nucleons 9 

.· .• ... · •,' 
piu's the nucleon self--energy which ha.~: already beer1 identified by Eq. {10.152). 

The renormalization constant z2 may be obtained directly fr-om eJ~ression 

(10 ~161),. We have 

: ··z·} : ... \N
0 

IN> 
,1, •• ,. 

l.i 2n =2 * n 
(-1) · (2 nH·. ~. (V0 " ~ "V0 -) 

•: 
2-r:. ri~ . (2 nH. 

whi,c~,leads iJn!n~d~ate;t.y tq (10~156), .Here·the factor (2 n) ~/(2n n1) indicates 
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the nuniber of different ways in which n creati.c!ls can be paired. off vdth . . . . . . *' 
.n annihilations . 

.,_·,: 

.. ~· A still more trivial example~ which ·is nevertheless not tlithout 

,'_:·. 't· . 

-~ -~- ; 

dens"ity .f.or the system involves the time derivati.ve of the meson field: 
,._. :.{·· .. l 

J 
I 

t., '· < -~. ~··'· 

. ~ "~. . ': -.... 

'., 
-. ..: 

.- .' ~' ..... 

-: . ...... · 
'; ' 

.... 
' " ' 

. :*. 

~ r < \J<f ) 2 . _ ~ 2 + )A 2 1'2l + L' /WI ,.,, ""' ...J 

.•. :~ 
L ... I~V" '" 

!'"lo\..,.. 

(g/~) / cf>' p ("£._' ,.,.,. 
3 I 

d r (10 .. t.' \ 
. 'J..\...4} 

The same type of procedure can be used to compute all the other matrix 

, ei~~nts of '?...lc ( b, "F oo) • 

. <m·r·:rrc(O, =Foo)·l o) 

= 

For example 

i -1 * m z2 (- g uu .v0 ) 
NM sym 

~r -1 ~- m--lJ 22 lb(- g w . v 0 ) 
. IW\ NW\ sym 

! -1 .·* m -1 + z2 (- g W ·'V0 ) (g V0 ·.W ) , ete.J 
,_. sym ,._.. 

. ·~ ' . . . L ,' ~; '. ,.. ' . 

where the notation "sym" indicates_that a sum over all permutations o.f the 
.-

' : .. '·. m ~final mesons is ·to be taken. Here only one nucleon is assu.:ned to be 
"' .· . > ~- r· >: ~- ~ . "· 
·· · ·: · ... , . present. It is easy to see that all matrix elements involve the fact0r . : ... . •.. . i . . 
.. ,) ::,-.·~2. · o.r power·s· of it. 

• . .... I· , 
When the cut-off becomes infinite so that 

.•.. · : . . ·: .· y:artish~s, this would seem to imply that all tne pet·turbed state::> are 

· · >'·~·:·:;.···~:· :· :: .. :9rtil1 .. 6&fona1 to all~ the unperturbed states (with the exceptior;, nf r:ourse~ 
. ·" .. · ·· .·~ ·~~ t.he. ·vacuum stat·e). This .. circumstance has somet.Lues led to the 

' .... 
·assertion that H0 and H operate in different vector spaces [ 113, l14] 

Such an interpretation, however, is incorrect. The operators 1lc(O,~oo) 

. , ,. are always unitacy, and the phenomenon simply shows that when the cut-off · 

is infinite, the switching on of the perturbation spreads a giv-en ~3tate 

infinitely thinly over an infinite number of other states. 
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· · ·:.,_: · ;·.: · The Hamiltonian operator for t,his system has the form 
.·,,, .' .. ; •"·, :: ' ' ' 

.-_: ..•. '·,I _.,',' 

.... .. :. 
'" ~ I :' 

...,+ ; . 
.... ' > -~, • 

( - (1 lf.,i') J...,.. • .. ) ·.· ........ ',- .... 
i'• • . • _r''. 

: :,:-

0 •••• . ,. 
'' ··~~ ·,.' 

and is diagonalized by' the operator 

. . -.~·· · ... ~.·. 
. ' .. )..·.'; 

. ~:.~. ~---~- (10,166) 

... · 1'fh:ich ·.gives 

: . ' (1.0 ,167) 

.~· . ·-· ... 
~· '!..; ' 

· · · !n thiS case there is not even any interaction between t~1e nucleons then~serveG. 

-.:.,.·- ... '··::._ ·:.·· 

.'. " ~ :_.:·i. :. 

-.:; 

.. ,_,,: 
' ... 

;_ I ·~ 

r'.' 

; .·' 

,· ... ..... : 

~- . ~ . 

., ,' 

' ~. ; ,, 
\. . .-.-. 

:' ' . ..:. . ~ . -~-
' ~; . 

This system, in spite of its trivialityJ may be a.naJ..yzed in a nontri-. .riD.l 

fashion by the methods previously developed. It is only necessar<J to replace 

* .·the ·quantities gj V0 , V0 , everyv•here they previous~y cceurred, respectively 

by g/j-A ; -iV•w_, 0 ,... In addition~ since t.he self mass now 

vanishesj it is necessary to add a term (g/;~-) ~ v 0 '~. v 0 * to t.he right hand 

'side <?f Eq~ (10.149). The renormalized propagation function is given again 

· 'py· ·Eq. (10.156) with the functions replaced by 

The interest possessed by this example.ar;pears when the cut-off is 

·aliowed to become infinite. The in~ividua.l terms of the renor·maJ..ized series 
; ' 

.. ·" (lp. l56) n~ longer converge on account of the eXtra factors w 2 
in the 

numerators. However, its Fourier transform is still. well defined, being 

. givim by 

.·, (10.168) 

The :exponent on the right now has the form 
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•'. 

; ..... ·~ :' .. 

.. ·~ as t ~o 

' ... ~ .... 
(10.169) 

,·. ·. ~ .,. . . .. · ~ 

. ·.~,l:'. ,. ' (10.170) 
. " . ·.-·, -· 

·;,·;:· '·; -·::-:;·~_a:s· :~ ~\0·.-:~he f~:c~ion .. SC:I::(t) evidently has a perfectly respectable 

·.J·: ! Fouf.ier transform. However, this transform cannot be expended in powers of 
. . . .. . . . 

... :~:'/ · · -'_g2 ~- _:sinc_e ~- g'i ·is _replaced by -g2 then s_c:~=.<t.) does not vanish at the 
~- '({.'1! .~L-~\:··~-~ 

•' . , 
r' 

;_. ... 

:: '• It 

,·--, .. 

,. 
' --~ --~. ~· ~ 

l ,. '· •.•• · ••. 

' . .:-· '· 

·origin but . ..: has an _essential singularity there instead. This is the reason 
::· ~ ,; ... 

-for the p~esent· lack .of· convergence of the terms of the series (10.156). . . . . .• 
,(, ,; ,· • '• ;. 'I '"'. '• 

The present example perhaps throws some light on the situation 
.. · - . . 

1• .• ': _l 

:·o:~ctirring in the -so-called nonreno.rmalizable theories, [ill, 112] which 
.· .. 7 . . _ ... _;.- '· . 

are characteri'zed; as here, by "derivative coupling11 and by the lack of 

-~.. ·'?;:;. · convergence of even the ind.ividual 
·-. . . ._. ,._ .. ~ -·.:. ... . . 

terms in the expansions of renormalized ... ·: · .. · ..... ·.·. . ' . * 
: · .. :·-:·.quant-ities • 
. •• ·j·r·­

. ;--· 

_, .. _, 

: 

The dep~ndence: of the renormalization constant on the cut-off is given in 

this exatnphi by· ·, 

.::. ._-. ·.exp .[·-(glil_).-2Y •V ~] .-,··~2· · .· .· · lr· ·. · · o o 

, . 

2] 2 ·[ · -en; P-) ~(g/2'li ) 
~ 2(fi/).A )e · 

., ' -



' .• 7· 

UCRL-2$84 

. ' -194-
! ,. ' 

,. 

' 

11. DECAYING SYSTW.S AND RESONANCE SCATTERING 

. . . ~· : ':1" • 
~ T !. .. Unstable states .. ·/ 
' ' ·'. •" 

·."' ~-~· · Suppose the system H is known to be in the eigenstate of 
'.,. ' . '. . . ' : ~ .. ·.· ~ ........... 

·,.' ~-:- c ' . ~ . - . • . . 
. . .· ::.( .. ·,;.·. ~. :· ., · H0 at· t-he time. t .= .. o. 

' . ··.· '· ... ,. 

Then the probability that it will be found in the 

' ·' > ·. -.. >·:':·_-··same sta.te at a· later time t is The state 
.- ',·· :, .• ~ . " . . 

-L >1 . _,·· .. '~ ·. : ~". _.'_ '~ ..: is said· to be unstable for the system H if .. ' ·· .. · 
.•• ~ ~-. .~ f 

,·'· ·:. i_,'. 

, .. 
. ~ ... ; 

•'··.;>. 

. '. 

•,. :-· 

= 0 ' (ll.l) 
~1' : • 

:; : • ·' ~I . '": •: ,: ; • 

· , ·tfi;e ,l~t being. taken in a straightforward manner independent of an_y special 

· . .'; . ~ .. ':~· . conV:entions. · Otherwise the state is said to be stable. A system 11'rhich 
. . ·.~:.. '; ., <: ' . 

,\;, " ,> :.:is initially in an unstable state .is said to undergo a subsequent deca;L_ 
• I;"~-- ·,;". '~. • 

An unstable initial state is often referred to as an excited state, 
. .,,.; _. 

. :l:,he implication being that some kind of previous excitation process has taken 

• 'place which puts the system into the' state in question. 
. ' ' 

In practice it is. 
r ·,.,_ 

·, . · .:. ; usually a:n experim.Eimtal impossibility to put the system H into a pur~ unstable 
'.' . " 

:•, "· ... : .. . • 
~ .. ~-... · · ·~igenstate of the most conveni--Emt reference system H0 at a given instant of 

: t.~e • .'However, the subsequent behavior of tl-e hypothetical initially pure state . . . 

"" 

. ' 

''is. generally' sufficiently descriptive of the actual· state of affairs, at least 

· · · ·. after an :initial ·"settling down" time has elapsed, for the adjective i'excited" 

· · ~~;:·.··_~·to ·pe applied to it directly 0 

',·,· 
:' 'f .... 

:·· If t~e average value of the Green's function G~(E) in the state 

.\ 
~~. f 0( 0 ') 

-1 'l - I ') .\f.X
0 

·. ·U(t, 0) -~ 0·-

is known~ then the time dependence of the amplitude 

~an be determined from the relation 

' 



/ 

·,·; . : ·~ ·-. ,· 

_ ... 
;' . 
.;. : ,> ,­.. ~ '\ ~,-

J" • .. ·· •. '.'.'·.· .'• .. ;, 
.. 

. . ·. ;. :- '"<~/ )· .U(t, ~)I 0( .o·i) 
: .. ' . . .. 

I~ - . 
'· . .;: ' .·,, 

r:r ... 

' 
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t > o.~ 

t <. o, 

(11.2) 

· ··, :, ··· ·. (Here Ei refers to the spectrum of H
0
.) An examination of the diagonal 

-,··· .·1; '·., '• .;{- . 

' .. , -~ ... 
> ·;',_" 

-·matrix 'elements of the Green 1 s function therefore allows one to determine the 

< ·~ · ·~tability- for H of .the various eigenstates of H
0 

and the decay rates of 

those states which are unstable •. 
< ·.-~ • - • 

' 

;· ... · :rhe· damping· operator. 
... .. . ' . ~ -

'·. ',:.- The special significance possessed by the diagonal matrix elements 
( .• ·-

· . ~ ·· >_'or' -~he ·G:reen 1 s function in 'decay probl.ems is analogous to that possessed by 
. ; ~ . .-... ~- ~ 

. .. ~ /' ·:.: . ·.<the·:patti'cle · propagati.~n ·functions of. field theories . One may exploit'this 

. _-' · .... ' analogy by introducing a generalization of the self-energy function (or mass 
" •• > • ,·. • • 

·_operator) which has be~n called by Heitler the damping operator. [6g-~69)8G] 

·; .: · .... Fi_rst, ~eno~e by Fd and F od respectiv~ly the diagonal and off-
... . 

·. diagonal parts of· a given operator F ; i.e • 
. ~ ~: - ~ ~ . . . ; .. ' . 

. . ,.· 
(11.3) 

F = F F . od.: . - d • (11. 4)· 

·. Then, using this notation and the fact that G
0

:1:(E) : [ G
0

±:(E) Jd , separate 

. th1e· r'i.ght :harid side of Eq. (2 .15) into' diagonal and off-diagonal parts as 
. . \ . ~ 



/ 

' . ' ...... · ..... 

.T· ., .. 

., .. 

.I 

.. 
., 

'I 
-·'.: <" 

··• :. ; · ' · '·where 

' . ' . "'' ~ ' 

t .. ·' 
. •, 

-

-~ . G0 t.(.E) { 1 + H1 [o~\E~Jd + H1 [ G*(E)] odJ 

: Gos(E) { 1 + D:t:(E) [ G:_(E)] d}, 

D (E) 
---.::t:. .. 

UCRV-2884 

(11. 5) 

(11.6) 

',. 
_:D;~:,(E) is the damping operator. Comparison of Eqs. (11.6) and (7 .4a) shows . '· ·' 

·:.·.:·. · that. it .is closely related to the operator Iteration of Eq. (11.6) 
• ' ~ ; . 'I• 

. ~- .' .: 

: '.·gives . . . . 
.. ,. 

' 

(11.'7) 

The self~energy function is the diagonal part of the damping operator: 
.. 

. . ..... 

L:t: (E) = (11.8) 

.... 

·, 

. . 
.... 
'• '':-· ... -

.., . ,~ ... ~ I ' 

J, !I' 

tn· t~rms.of it the diagonal part of the. Green's function may be written 

. :' :.. . . )~;' : . . " 

·.·.·.' 

~: . (11.9) 

... ;: ;·} \ 
'·'. •·: • '.By rea,soning identical with that of the preceding section in connection 'l>.rith 

.· -~. i' -~ ·.' ~. . .. . ' . ·. _.: . . 

· \ ·t:,'.·:: ·:~.··:.the nuc.leon p~opagation function, one easily sees that the spectrum of the 

i 0 ,_ ... , 

,:.,· . 

·,operator · H is given by the poles of on the real axis in the 

limit €~ 0. That· is, the eigenvalues E1 of H are the real solutions 

. . of. the.' eqUations 

where· 

lim ··[E- Ho' - L:, v (E) ± iE:1 = 0 
. €~0 (lLlO) 

(lLl1) 
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·.: When dec·ay problems are involved_, some of the equations (11.10) 

s:tates of· H· . .' :,-.> .• ' . . . 0 
are.the'unstable states and have5 therefore5 no counterparts in 

. /' ,/ •. 

.. :..:•: 

;the system H o In S.ection 7 we briefly considered the situation presented by 

suchstates in connection with the S-matrix and 

· .. The .reiD.~i.ning (stable) states were denoted by 
: ,• J • . . . 

denoted them there by I '!' 
0

) 

I (3 
0 
') 0 We now proceed to 

; ~ _;; • ·.' \ :· c . · iil"{estigate the'se two class~s of states in greater detail. 
;;.,_· o-

. \,.· 

r , 
t 
e.',· 

,f 

'.'•,t ... 
' . ' ./Real solutions o 

We consider first the stable states \ n. 
1

) for which the f-.J 0 

. ".'· .. :· .\ .equ~tions (11.10) have real solutions Prompted by our experience with 

... ~--· ... _., ,· 
.· : . 

! •. · , . :':'.' . pro·pa.gation functions in field theories~ we expand about the 
~ '~ .\ ' 

': '"'".<. ·, .• ••• 

•.· 
' ·-~~ ··~ •. ·• e·. ' ,-1' ' 

··.··· ;_ ." 

'!..'·· 

.-·· 
·.:i·:.· . :' 

· .•. ! . . 

·point E1 -=t= i€· 
;. 

"£±'(E) 

. ' 
~E~ . 

!' 

- ~E'-
i 

.3 (E - .EI :1: i( ) Rem L-:. I (E) 
~ 

= [":?: '(E) J 
. -:1: E-_Ei =F i~ 

- ·-.[dL:t.
1

(E)/dEl .. - E:E • :;:: 1E: 

.. _-. 

,The constants. ~ E 9 are, of ·course5 the level shifts 5 satisfying 

' . ~- ... ' ... 
• ,t' 

· .. ~-: : 

(11.12) 

(11.13) 

(11.14) 

(11.15) 

.:.>~ich mAY' .. be. compared with Eq. (9.58) of bound state perturbation theory • 

: The 
. ·, 
1 · are related to the normalization constants 

I 
Z by the noW' 

. · .. .fanuliar equation 

'.··. ::: (1Ll6) 
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It :i..s instructive, in the present section2 t-c. rederive Eq. (11.16) 

. -
.. ·· .. -A-- by methOds_employing_the damping _operator direct..Jy, AdrJir.g the .:·f.f·~d:'Lagonal 

part of Eq. '(11.5) to the identity [ G±.(E)Jd ::; [c~:t\_E)1~ ·' Oile get:3 
..... 

. . 
('l"l ''1\ ._._ (_·· .L I ; 

. ,.· 

.Use of thi-s result together With Eqs. (11.9) a!'ld (lL_!_2) ln Eq,. ((,.f3) ~~::_-,.8<:. 

for ~he eigenvectors 

.: . . ,. 
'·, ,, 

' --

_, 

r ·• ~···.; 

en J 8) 

-:~u;).;tipl:ication pn .the left. by- ·cads to Eq. (1Ll6). 

"·.. . ' 

:' :;_:;~. . ' -· , _ Compl~ solutions. 
It' •. ~ . ._. ' .. ,_ 

'· 

If one repl~ces \70 
1) in the first. line of Eq. (lLl~) 

then one obtains an explicit s-t,atement, d' t~;e fact. that the unstable sLl>:,e& 

.~ ~ ~ ' .• "h .. ~ .. ~: . :' . . .. 
·· .•. _:• __ · :.-;.undergo a mathematical as·well as physi~al decay when the perturcat.icn H-; :2..:. 

~ . - . ' ~ 

- . . .··· ,. 
:: .. : switched on,9 or·in other words that Z

1
::::: 0 for the j"t0

1>. For 'Lhere is 

... ~ ' ~ 

. · ... 

-. 
·, , ... 

I, 

no real value of E for l'lhic;h ± i £ G :~e.( E) -I ~ ' ) doe~: not. vanish in the 
0 

fiimit- €~0~ since such a value wo11ld be a real solution of Eq. (11.10) fo1· 

. ' the .state 

-One may~ i.'1 fact, infer-that_!:here is not even a complex val.1e <)f Z 
' . 

· for ·:Which ::tiE G,:t::(E) I 'Y~ ') ·remains finite in the limit. Fer if thert 

-were; _then this value would have to be an eigenvalue of H_9 -v..-hich is contrary 

t? the hypothesis that H is Hermitian. This means tha.t Eq. (ll.lO) f6:r an 

··unstable state \7'o') has no solutim1 at all, if the quantities at.pearing 

in ·u.are' evaluated in a ~traightforward man!ler, Thi3 fact will subseguent.l.y 

be seen to be the greatest single complicating factor in the theory of decaying 
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··~. ~~;- . --.·· . > 
· ·: :. "';' . _ ·~yst·ems) -~a1-lsing, us in many cases -to be able to speak only in approximate 

- . ·. . I ..- • 

_:··. -;f :~·::·_. terms .. anq ~o write only approximate equatio~s valid ~nder restrictive cpnditionso 
~.,; .... • : ' ~~. .. .. .1 • • 

-. 
~ . ' " . . ;. 

' 

. Th.e ~~ct that Eqo (ll.lO)_ has no solutions for unstable states may 

·actua.liy be- shown in a direct manner o We note first that the :± signs become 

, _' · ,: .. :superfluous when E takes on complex valu.eso (Their original purpose was 
' ..... ' 

' ' 
.:·~- .. _ -~ simply to distingu,ish .between values of E just above and just below the real 

.. -·:".-,;·; ': .·_.a.x.is·.'y Therefore we write simply 
•. ·ol .••• -

., 

•I '.-." ." '. ,., 
. .,_:· t 

;' ~ ..•.. 

' . 

. :-; · .. · 

'Ei - H I -
0 

· assi~Id,ng the existence of an E 1 

.. -.. this_lea_ds to a contradiction • 

'& 1 (E 1 ) :: 0 ~ (11.19) 

. 
satisfying this equation, and then show that 

Using Eqs" (lL5) and (11.11) (without the ± signs) we have 

-. 
'· -,_ :~_;\: :. --~ Im E1 - . 2 . Im ~ , (~~). -·. 

4 ' ~ - • •' • . ) . '·. ··~ 

-- - i 
... 

- - i 

. . ' : - 2 Im E
1 

(11.20) 

.' ' 

I-n- the passage from the third to the fourth line of this equation H1 is 

· replaced by. 

··D.(E 1 ) :- H1 G
0
(E') [o(E')]od - D(E 1 )*- [o(E 1 )]

0
d* G

0
(E 1*)H1 o 

. ,-If \Je ·iiow divide Eq. (1L20) by Im E 1 , which is permissible since h' 
0

1
) 

is an unstable state, we obtain a positive number on the left and a negative 

quantity ori the right~ ·which is tpe contradiction sought for. 
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'" . ,.,. The·situation is clarified by considering the classic example of the 
~ . ' ' .. 

.. ··:, nonrel'S.tivistic radiative decay of an excited a. torn .. The unstable initia.l 

\ J
0 

1 > , describing a bound electronic config-Jration . 
,-;..._ . 

, I · ·~ta't.e may be denoted by 

... _.; . iri the absence of p~ot'ons. The perturbation H1 is the usual electromagnetic 
" ,. 

;· ·c·onpling which can emit or * absorb photons only singly. Its on1~:1 non~:anishi.ng 
' ' 

+ •' . 
:matrix· elements connecting the state JJ0

1J ar·~ <CX
0

11
, 10 "/H1 jJ

0

1
) 

~.' 

'l" n ' " and their comple,x conjugates' where the label J 0 describes a single photon 

,. ' 
·~ . tJ II 

and the label \J\ refers to the electronic state~ either bour;d, ra1xed or 
0 

' ... , 

free. Since electromagnetic coupling is \veak the diagon<~.l elements of Eq. (J l. 7) 

. . ~re given to good approximation by 

". 

. ' 

. Y .. ,. 

·' -:., 

( - J "'1' L _.. ~ J 

·The· behavior of tpis function off the real axis is easily infsrred in te:cn<S 

of··a physical analog. Dropping the ± signs one may 1>1rite 

Re 

- -G (E) - y 

(11.22) 

_' where Gx ~nd G.), are the components of a 2-dimensional electrostatic; 
' 

field produced by a ~barge density of amount 
. \ 
. '\ 

(=>(E) : ~ L "·s (E - Ho") 

* . 

{11. 23) 

,' · ..• ·: .. We omit the term quadratic in th.e electromagnetic field~ which occurs in 

, ' ·~he nonrelativistic theory, since it is of 'higher order in ·the electric 

charge. 
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' . 

1.. distributed along the real axis. Since p (E) is non-negative one has 

i • 

L;' (E) Im < 0 for rm:E > 0 ~ 

c, 

Im # L' (E) > 0 for Im E < 0 ' 

(11.24), 

which . shows again that Eq • (11.10). has no solution. 
.. 

. Eq. (11.10) can, however, have a solution if a process of analytic 
. --

:continuation is carried out on the function · 2:: 1 (E) 0 This function 

"' · ·· ~·evl:den.tly has a branch point at Emi , where E :· is the lowest lying of n · mn 
; ' .. , 

"·· 
n· 

the levels ~0 ·for which the. numerator in the sum (11.21) is nonvanishing o .. , 
Eq • .':(11.21) defines this function only over one of its Riemann sheets, and ... ,. 
although Eqo (lJ,.~_],.O) has no solution on this .sheet it generally has solutions 

on the next adj.oining sheets. Use of Eq. (11.21) to define the function 

..... -

·· L) 1 (E) irilplies a cut along the real axis starting .at Emin •. One can get 

·.onto the adjacent Riemann sheets. by displacing this cut either upwards or 

d¢wnwards 0 The ± signs will now be reinstated so as to refer to the 

· •· .. appropri~te adjacent sheet. The function ~+(E) is obtained by displacing 

th·~ .cut doWnward, or alternativEflY by crossing the cut from above. Similarly, 

the· function . ~-(E) is obtained by displacing the cut upward, etc. 

The rear part of Eq o (11.21) is usually diverg.ent o In terms of the 
. . 

'electrostatic analog this means that the total cha'rge ~p(E)dE is not 

·- ·OnfY infinite but also distributed at large distances in such a l-Ja.Y that the 

component ·6 x of the electric field is negatively infinite. We shall avoid 

t~is difficulty by the usual procedure of introducing a high energy cut-off~ .. 
. which .we _shall call' Emax• Ekax is evident~y also a branch point; For 

. 
general-.systems there may be other branch points on the real axis, particularly . ' . ' 

when the exact fonnula (11. 7) is ilSed for computing L; 1 (E) to an arbitrarily 

high. order. In order to avoid extra complications in this section, however, 
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we shall assume that E .. 
IP.l.n 

and _ E:tr!&X G.re: the or.:y ·cw-o trancn points and that. 

··the Riemann cut connecte. -them" If. forrn'1la (1:!. .. 2:) 12 u!':led as ex."'~t th:Ls rP.e2.r1s 

that the charge dens1.t.y p (E) .1.::> irdinite1y d:i.ffer-ent.iable ever~~where a:J.cng 

the cut. 

Fig. 15 sho1"s how the cut L3 tc be ch3pl.<-!.ttd so as to obt.siu the 

:func_tion 

deformed into a contour -Cmin + C _ - Cm.:.x Simi:tar1y F:i.g ,. l(, shcMS t-he 

_'displacement of the cut which def1n.es UH~ fm:o::.t.i<:,n :f._;~E), 

lying just belo;.; the 'real axis is deformed into t!'t'=' 

Since the functions "E:t:.' (E) are analyt:.i-:: c~er ~heir re~pecti~~ 

·sheets one rrJBy write 

.-. 
'·· 

since 7 by (1:~ S 1. the equation holds cr. the real axis, The solutions {'t:h5.cb ., 
now exist)'t,'a the equations 

0 

thel'-efore satisfy the conj:;gate relat::..onship 

E' .-:. 
E H!­

=F-

(lL:.:f>) 

generally~ howe:ver.9 be a principal on.: HhJ.C:ll L.e:· :;lcsest to thf; rcn~':. azis 

: and. passes· to 

_the rest 0 

H I 
0 

E+i and E .. 
1 

lie in t.he l.ower and upper. half-planes respecti-:e~.v, 

and one may therefor·e write 

where r 1 is· a 't · pos~ .1.11e constsr1t ( and 

. the shift and \1id}:-h of t-he perturbed energy level c.c·rresnondinrs to the state \'Yo), 
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(15) 

·----------------------~ 0) Emin. Emox. 
• E~ 

-Cmtn. -Cmox. 

------~-------e) 
H' 

• 0 ( ----;------
b) 

c_ 

(16) •E~ 
Emin. Emax. ·----------------------· 

O) 
c_ 

E' . -
~-~--~---;-----·) 

b) Cmin. · 
C·-----Z-----

Cmcix. 

F1(3S. 15 6 16 SHOWING THE DISPLACEMENTS OF 
CONTOUR AND CUT, WHICH DEFINE 

THE FUNCTIONS !.~· (E) · 

MU-10088 
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.· . 
. alth6u~h there is now no strict mathematical ,justification for this 

·: nom!=lnclatu.re .since has no counterpart in H. However, there .1.s 
·.' . . 

.· ·.· :· a.inple physical justification 7 as will presently app.;ar, and it ;.T.LH be 

.con·~enient in the subsequent. discussion to introd:;':-:: a redefined perturbaticr .. 

. • .. . :··:·:.·operator ~ (see Eqs, (6.4? 5, 6)) such thA.t the eigenvalues of the modified 

-··, #·_,, ,: 
·''I • '( 

• ·\ . i , •• 

t· .. unperturbed Hamiltonian 

I· ' • 

are given by 

• 
H··· + AE 1 

0 
(l~ ')Q \ 

l. 0 ·-' } 

;·. foi- the unstable as well as the stable stat-es. In the 5-matr.:i.x discussion 

.·· .. of Section 7 only the stable~level redefinition \vas considered . 

. ' . A 'remark should be made about the level redefinition procedure. In 

· : a relativistic local field theory involving only free particles the level 
. ·. 

, .. .:· .. ··~shifts are both infinite and unobservable, In a decaj' situation~ however~ 

'·: .~:·';· .. ! 

• ~ ~l ;.,~·. f' 

'. '· ~. ' . :·- -~' . 
.. ·..; 

·,. \ ·in :which a nonrelativistic feature in the form of an external binding potential 

is p;resEmt; there. is; for states invol.;,.ing bound particles, a finite part of 

th~ 'level shift which is obse~able. It is important to remeii'ber that. the 

Ie'vel. redefinition (11.29) includes not onl.y the unobservable contri.hu.tion · 

:co::rresponding to the ~ree particle situation but also the observa~le pari:, 

:r· ··arising from the passage to a bound (or mi."'{ed) state. 
,· 

. , . ·:. ·:;Discussion of instability . 
.... :. ·~-

. ,•' ... 
for unstable states, jus.t as for stable states~ it is convenient 

- .... ·. 
.· ... 

· .. · :- - _, ·.,·':-to 'expand 'L:, ~' (EL Remembering that the perturbation operator has now 
' • I ' 

·been~ redefined so that ~ E 1 - 0, one has 
·I·.: 

..... 
··;· 

:2'::~:.' (E) = ::r: ! i r ' . !:.' (E ~ E,.,_ 1 ) + Rem 2:,:1:. 1 
(E) (lL30) 

.. 
. ··whei·e· 

[ 
""' "" 

1 (E' /?; E ] . 
Cl L-: ) I E,.,E.:t.' ( " .. ....., ) 

J..l. o)..L 

, .. 
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j.. • •• 

.. 
; . 
···, 

. 

.. 

'The ·quantity 

Z I 
:i: (11.32) 

Will be seen to play a physical role analogous to that of the renormalization 

constants for stable states, although here again the strict mathematical 

justification for an interpretation along such lines is lacking. 

Evidently 's + 1 and :s- _ 1 are complex conjugates of one another, 

.and one may write 

! .' :t:· ~ ,_, (11.33) 

whei,"e -:!' .and 1'1( 1 are real constants. It is useful to introduce also the 
., 

·:quantity 

zs = (1 + '!I) -1 
' 

(11.34) 

· in. t·erms of which one has 

I I I -1 
Zz. = Z (1 ± i '>'lc ) (11.35) 

,c = z'~' (11.36) 

The , Z1 . here is not to be c~nfused with the strictly vanishing normalization 

.constant which expresses the fact that \'Yo') has no counterpart in H. If 

·the perturbation H1 (or JC1) is weak then generally 

' and the 

,. . . 

Z I 
±. 

\ ~c.'l << 

are nearly· equa:L _to Z'. 

1 (11.37) 

Now, set E = E 1 in Eq. (11.30) and take the imaginary part~ getting 

= (11.38) 

Since. E 1 is real it lies on the original Riemann sheet defining the 

furtction . ~ 1 (E), an~ hence the left hand side of this equation may be 

evaluated in the straightforward manner of Eq. (11.20). Reinserting the ± 
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. .. ~ ' · ... ·.·• • -~ i •, ... 
', \, ~ ~' ... 

: ' .. 

· .. . ;··· . 
.... ·. .i_.:_ • 

' ;: 
" .. 

'1. ••• • ... ---' ~-<:: •'u .• ' 

-.~: ... -.. 
i. _··~:· .,._ 

. . - ~ 

r--. 

... ., .. 

· .. signs intp the latter equationy and using the fact that 

.;' : 

·r'·= 2'lrZ' $ (E 1 - E") 

.·.: .;-__ ,; 
., 

·where (cf. Eq. (10~75)) 

If .the perturbation is weak then. 

·2: /.(E 1 ) (which are of order 
C::l 

l I is small and the terms in 

")' I ('i' I i 
.r-'c:r. l!J ' 

(11.39) 

(11.40) 

·r' 2 
and r' 3 respectively) maybe 

neglected in (11.39) .. Comparison with Eq. (8.12) then suggests t.hat r·t 
have an approximate interpretation as the total rate of transltion out of the 

st.ate . l.ro 
1

) o. · This interpretation ,..,ill subsequently be more full1 confirmed. 

Eqo. (11.39) allows one immediately t0 infer the characteristics vrhich 

.·/· ·/·r. ·.··•. ~." 1 , distinguish the stable states from the unstable ones and which have already 
' . . . 

,; .:• I • ,• 

· be.en indicated in Section 3 0 First of all, an unstable state 
·-:.·: ... _ 

,. cannot be a free. state 1 for the ~atrix element 
·.1_, ··• 

·._·. 
' . 

<~o'J [n:{E')Jod* S_(Ev -J-Go)ln:t(E')Jod \rro') 
-. ·. 

~ • : ' :_ • : ... _ 1 

· ·.would then' be inversely proportional to some positive power of the dimension 

··!{; of the normalizing box and hence vanish in the limit 

Secon.dly, if l-Y
0
') is a mixed state representable .• for example, as 

_ .'- · ·\ J 0 

1
, · ').

0 

1 > ·, then the operator· [ n,.(E' )] od must have some nonvanishing 

. matrix elements of the form <0(
0

11

, '"$
0

1
1 D:~o(E 1 ) ·jJ

0

1 
.• !

0

1
) which depend 

11. 
· on L only .·through the labels 0( 

0 
0 That is, th.e bound subsystem ciescribed 
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, ... ·, . • ··- QY ·the labels '-J0 must play the essential decay role, for only then can the 
II 

0( · in Eo, (11.39) remove the L dependence of 
.. · 0 . • 

.. Final~y, owing: to the J?resence.'or the delta function in Eg. (11.39)' "the labels 

r' •', •. 

I 

.f. 

.. . . II • 

0( ·. which give rise to. the significant contributions -'in the sum must refer 
· .. o ... ·. . ... 

1 • ·c_.: ·.to. ·a set of continuum levels engulfing· the energy .. level _of the· state . 

·; .,·obvi_oU:sly, the cla-ssical radiative decay example fits all these requirements, 
,·· 
I • 

. " -· ·.,,: 

; · .. · the·. e~lfing continuum being provided by the emitted photons. 
•. • ~t. ' 

One sees in 
.. .., 

generalthat, of·the bound electronic levels, only the lowest lying are •,' . . ' . . \ 

I '" :~ /'!!:;,_ ._· · · s't.a'ble-. 'fhe free· electronic states, on the· other hand, are stable, photon 
i'·. 

... 
<·pr,pdU:ction in this case giving rise mer-ely to inelastic scattering processes.* 

~ ·. ·:-: The decay process.· 
(_ .. ·, .. .. 

. . . ,·· -~· .. · · To obtain the temporal behavior of. an exqited state one 

(11. 41) 

has been _mad~.) Using Eq. -(11.30) and 

ignoring ·~any poles in the lower half plane other than the one at '· E+ , one 

. . ha!S· 

. '§0' IU<t, 0) I ro) ({- i- j )YE' E)t 
1· dE 

2'Tr i I 
cmin .· Cma.x E - E - L./(E) 

;,. .• ' 

, .:..~r't 
-. z+ e "+ Vc~n T ~max) 

i(E' E)t 
e c!£.. 

E E 
I. Ll!+' (E) 

(11.42) 

*·· The relation between r I and Im I:':t: I (E I) is obviously a generalization 

of the relation, in scattering theory, between the total cross section 

· and the imaginary part of the forward scattering'amplitude (Eq. (8.33)). 
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The first tenn on the rTght of this equation giv% the familiar exponential 
.. • . 

·' ' ' 

;,· 
.... ' ' '·decay'l?-w, modified however through the presence l)f the normalization fact~r 

., ' 

.. ~ ., .. 
·'' .;, 

·' 
, . .... ' 

·::. 

•J, {., ' . . .· .. •' 

,,- .. .; . . ·. . ~ . 

• \' + '·: • 

. -. 

'-~-' 
Z+ .- Since the entire- expr_ession must equal unity at t :: 0~ the second term 

on· the right mus:t describe va:rious transient effects·. This term starts out. 

with the· value l - Z+
1

, and then normallJ'· drops quickly to very- small ;ralues. 

The "settling down time" depends to a considerable extent on the details of 

the sp~_Cific system inVolved~ and onlY: a ~er;r crude estimate of it can b0 

given .in generaL The estimate is obtained by writing one of i:'h~ ~ontour 

integrals) the integral over Cmin for in:;tance, i.n the form 

( ll.L3) 

·.> ... · _..where · . 2:.;,'_., · and L+ + 1 are the values of the function 2:/ respectively 

. .• ~ 

' ~ 

: ~~. ' . . 

· ... 

',' ... 

.. ·:.· 

..... 

' '. 

· · below and above -the cut from Emin to - 0o , and e.x:a'llining the breadth of 

the range. of- values · E over which the integrand has significant V'al,J.es. If 

~-++'{E) is ·-:8:ppr_oximated by Eq. (11.21) i which allows it to be .intery:,ret.ed 

. in terms of an electrostatic analog, it evidently .beco::nes negligible J.n 

v~lue' wh~n · ·Emin .:.. ·~ 
. ' .. ·~ 

>> Ema.x - Emin • -The s,a.me usually holds .1. by 

·.:·analytic ~ontinua.tionf for L+_1(E), and ther-efore 

regarded as a r6ugh estimate of the sett1:ing down ticne • 

. :...1 
~in) may bE 

Fo·r large values of t it is often convenient to make tr.e trans-· 

formati-on of' _variabl~s E __,... x , -..mere x.2 ... Emi.n -· E·.! which c;ha.nges the 

bent cont·our Cmin · into a straight line.. It i~ then scmetimes possible to 

make an approximate evaluation of expression (lLI.a) i~ terms cf complex 

error functions. The chief characteristic cf such funct:i.ons ~LS that their 
. -~---. 

' ' . 
asymptotic behavior follows not an exponential law but rather IH'i in·.rc;rse 



' 

/' 
I. 

UCRL-2884 
<.·' ' ·, :~ 

_ .. ,. 

. 
-209"":' 

--
' , •J>dwe~ law in t. This means that although the second term on the right of 
' ' 

',_ . ·Eq,. (11.42) may drop to a value smaller than that of the first term it . . ' . ' 

:·.;eventually predominates again. This phenomenon has been termed a "straggling 

effect •. 1-' • .[ 9 .I] 

In trivial c.ases' the straggling effect may dominate the entire decay 

process • For example~ if H
0 

describes a simple system having bound states 

. '· · .. :·':.: ·· ... ·. :as a result of an attractive potential, and if the perturbation H
1 

consists 
.• •• • ;M ~·- ,·:.~ ; • • 

· •. ·:. · of .a mere sWitching off of this potential. then the disinherited bound states 
. • If . ;·,f • • ~ ~ 

,_-:-.... ,, 
_ .. · - .. 

: · · · . will decay by the ordinary wave-packet diffusion law, which is never ex.ponentiaL 
: ~ . ' .. ~ 

. ·) . -~-~ ~." 
, . This may be illustrat:ed ·by the one·-dimensional delta-function example 

-
, , . c~n~idered in Secti~ns 8 and 9. Here the roles of the perturbed:and unperturbed 

. '. _.: ..... 

. ·~ys;te~s are inverted : 
' .·_ 

'" ·'. 
; ~- .... ; . 

c'.: • ·:···· 

- ~- y ~ 
: _j~_ ' ...... : • ' 

H- -.L -
g S (r) ,... . (lL44) 

:-- .. 
-· ~ 

Expres::>ions (8·.85) and(~.87) ar~ now the "unperturbed" wave functions, and 

.· ·. · · ·, :one· easily finds 

.. . 

'•" 

. . 
', : .. 

.·. 
' 

. <!~" \ Hl1.2:
1

.) 

.. ·.<2±" I Hli.J). 
< J! ; rr. . J: 

\ ' J .. 1 .. - • 

,.· 

-1 II . -1 -1 
g L p (g 1=- ip11 ) p 1·(g ± i p 1 ) 

/ . =. G 

Suhstitu:t~io~. of these matrix elements into Eq. (11. 7) gives 
' 

"~'(E) 

(lL45) 

+ () 0 0 



/ 

. •'. 

•, .. , 
'· 

' , .· , .. ' ~ ,·; 

'' \~:I' 

'( __ · ( . 
.. · . ,'_t' 

.-_,. .. '' 
: -· .~ 

+ sign 

sign 

Here the.re is only one branch point at E - E ·· -· 0 - min - • 

UCRL-2854 

for Im E > 0 

for Im E < 0 

(11.46) 

If the Cl_,t starting 

is deformed as in Figs. 15 or 16 P :.then th~ choice of sign in 

.(11.46).corresponds to the choice of function 

· . 
. '. . .. . Remembering that H0

1 
_ -~ g2 ~ one finds that Eq, (ll.26) has hm 

-~ .. 

-~ _i ~oOts., namely 

. f, • .. :-~-· :..-

/"' ... ·- .. 
/ ... • . " 

; . 

E' ± 

,. 
F) 
J 

1 ,2 .. 
= 2 g (lL47) 

·: . .::: \'· '· .·· .·. The level width .is evidently zero~ wh.ich shows already that the case of 
·'.\·--·· ·;'/ .. 

•'.,)~ ·--~.!' ·'·>i ·:,.-

( ;· '~··-~ ..... .... 
·simple nswitch-off" is not an ordinarjr type of decay .. ~ It is however .':1. 

. ·-:,· '.·· 

- ...... 
, . ,, . · .. d_E,~cay as·· may be seen by carrying out t.he integration of Eq; (11.2). 

; ' ~·- . 
· · : : .Introducing £he variable p2 = 2 E ~ one may write ..s for t > 0 , f .. , .. , . . 

,I • I L~': o • 

.,-; .. / ...... 

(li.M) 

~ 2'1T
1 

i (r + r)·~ 
ioo 0 ~ 

. !- 00 j' l':J .. 2' ig(p + ig)t I 
·(g/r-rr )tf..

00 
dpJ

0 
dt!(l + g V)e 

.::<;.: .· .... '-• . : ·. · ·· ! -i'ii i ( ~- o 1 oo ) 

••. :, • . • ;. ~ _!"'. ,· • 
. ·. . . >: . ~. ~ 

::. g(2/"rrt) e Jit + J 0 i(l 

':• ...... .;. 

. . . :..· . ·: :',\ ;-=~_... __ ......_ ______ _ 

.y Th:~·.variishing ·Of Im E :.
1 

is doubti~ss related to the fact that the ·bou.ncJ 

·' 

•·.· . 

: ,states of H
0 

·are not entirely without counterparts in H; that they pa.ss 

eve~, in a serise, into the bottom·of the set of continutun states. 
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: Deformations of. the .int~gration contour. are involved in the passage from the 

first to the .seeond line and from the third to the fourth line of this equation. 

'l'he variables t. 11- = · t 1 + it- and .x = -it" hav~ also been·introduced, One 

-easilY gets f'o:r the asymptotic behavior the expressions 

't' -_ ..... () 

(11.49) 

As .f-ar ~s· simple systems are concerned' a case'of greater :interest is 

-
that in -which the decay is due to barrier penetration. '·For simplicity consider 

• ·.a nonrelativ,tstic particle of unit: mass which is initially trapped in a 

potential V which has the form indicated schematically in Fig. l?a. Here 

-· the wave ·packet diffusion takes place by leakage through. the barrier which . - :- ~ . 

forms · V. If ~pis barrier is sufficiently thick. the onset of the inevitable - :.; 

.straggling_ behavior will be deferredto a time _in the_ distant future so that, 

to all in:t~rits and purposes j the decay will now be·· expopential. The 
. . -

unperturbed system for which this initial state~ is· stable may be obtained 

si.niply by placing an infinitely thick barrier B (se~ Fig·. l?b) around tl:te 

particle. · This bal'rier must, however, affect only the bound state a_rd not 

the free states. - Therefore the choice of unperturbed_ Hamiltonian "Inust be 

\ somewhat artificial, for example 

(11. 50) 

where h is· the. }j..eight of the barrier B . and 

Hpo ·_:: i -p2 + V + B • (11. 51) 

Since the _Hamiltonian operator of the actual system is H = ~ p2 ~ V, the 

perturba_tion- operator is 

(11. 52) 
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-... ,/o· 

\: .< _ -, _ D~noting- :the b~und 
: .... r:>~-·---~-- \ _- -: .. -~. ~ ,.· -. ··- .. 
~-~', · · / ·-~;y':the;r,efore:. write for !;.he self-energy function the expansion 

state by I J0 

1
) ahd the free states by I :r- II\-

. o / ., :Or.le 

_-::. , .•• J·· 1 
-' . ~ . . .-

_.. 

f ..... :. -, E - E" ± 
. .,.. 
1<.. 

i'- , •. 

• ! " 

:-
I J til\ ()o'" . ~ ~",IIi, 

I It 
B l (h B) I r" 

+ 
\Jo I I o )_ ·0 

'· E" ., (E E' I I ± i( )(E ± i (:) -

I .· ·~ .• 

II ,· 1 ·4 

.-, ·-. 

(11. 53) 

If the barrier which forms V is 

. '-;··. quibe. Urick, so that the wave function_-_corresponding to - \ 
J 1\ 

0 ) ... 
Et.' (E) is small.*· 

. . 
, · :-" :·· ··,_: ve!7 little into B, it is evident that 
l: ~ 
!I' - .. ~ ~\_ 

~~ :..> ;_. . ' . 
. By propex< ch~ic e of · B in the above example the initial transient 

-:}" . 

··.: ';'<~ : :~:tfecit_s ~y be largely eliminated, Wh],ch means that the normalization constants 
I,.- > ' < ~ o • ' ~ ' 

_. '- .:- ,_-' .:, . : ' . 
:<. - :"; \::::Z:~:.·. ~ maY be:.brought close to. unity in absolute value. For radiating atoms, 

' . :- ·. '.·- . . 
,t" • .• 

: · :: hQw~ver, such elimination .of the transients is not feasible. The unp.ertui'bed 
'i 

. : .- ·sfa:~·( is .one in which on~ or more bare- el~ctrons are bound in an electrostatic-
~ ... _ ,.._. 

· _.'-~·::_'.':/::~o~eot:ial.~- The transient behavior cons.ists in the electrons• cloth~ng 
, ;-, 

., ,· 

t..hemselves with virtual ph"otoris, and the non-unitary values of the Z .1 reflect 
±: 

-if 
In·"~ome ·ca_s~s of importance the barrier is so thick that decay is extremely 

.slow, a_nd only the level shift is of physical importance. The level. shift 

~:.··" ;·is th~n -cu~tornarily. computed by. the. Rayleigh-Schrodinge:r= perturbation 

formula (Sect~on 9). The formula, however, actually diverges as a power 

serj:es .in.: · g since the shifted .level E 1 -= Re E . .t. 1 overlaps the continuous 
-· 

_ spe·ctrl.ltri. . This. mathematical situation is well known, for example, in 

·· the theory of 'the Stark ef!ect. (See reference [3], Pe 403 ff~, and 

"·also ref ere nee [8 2] o) 

', 
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·.(. .. 

· 'the usual r:enormalh .. ation problem _for ·quanti zed field theor:\.e.s, 
· .. : 

Evidently :U~ 

is not easy:to define in a precise manner just ex.acXly v1r1at conr>t!.tutes an 
(' .. 
:··>'actual physical e:x;cited state·. This depends on he~ the state v.ras excited 

· ·· .and can. be giveri a rigorous definition onl;y in te:t'm;) of s;::atte:rl:1g proc~~~;::es o 

_..,,,t'' .rl":' '! • 

The s:..matrix will be discus.sed below~ but at thi:3 stag-:: of o1x;• R.na.ly~;l!:; t.he 
. , .• ,· 

Dest we can do is to introduce a rendrma2.ized \,are sta.t.e YP-c-c.c;r ~ 

., 
' ~'· 

WE;i· cannot j f.or· example 9 allo'IJ the ·ext.:Hed electron::; f:i rst to be::or>me elothed 
·.•· 

.•·-· 
<,·..: • . .-~ .. ' 
.. and then l_ook at them~ be'cause the contplete clot!ting procef,s reqJ.i:res an 

. ·· 
infinite. amo;t.l.nt of time-~a.s indicated. by the ·applicatim; of the (,pera,:w:c 

,· .:... . ··._ . ·.: .~· .... 
. '. -~\· ... 

.. ~ .• U (0 9 ..:09 )_ ~-:-and by then the state will have decayed., 
,···. '• .. 

'. ~Using the vee tors l rc. '> . one may· wd.te. 
.. 

·.··. 

.. ~ ·e I 11 ,.. ··) \ ... ) / 

·. fo'r ti!Iles t · after the transient' effect-s ha.ve mostly <>ettled down and be.i\:.,re 

... _. 
··,;,,_7 ~:.f.'. : 

the straggling effec~s take over~ (In practice· thi=s ineludes 

are experimi:mtally of interest,). The avera~e lifetime of t.he 
: .. : '.' ·-~-- . . . ... -----· 

. i \ ~ 

sta~e j')'c ): 

";' 

, :··fS evidently 1/ (:"I. , and on a statist ... ical basis this conf:l.rms _the pre;:vioUEI 
.·'!" •. ,.. 

. , ~ ~· .. 

~ . ..·: ··.~' 

_, .. 

'··. 

.. i~terpretation ·of t 1 as the rate Of transition <JUt of tiH~ i>Vi~.E;, 

., 

,Natural-.·· line breadth • 

It is· of tnterest to know the df,i·cay produc.ts cf the state I :' 
l_'il' c ) 

. .. 
·aft-er an inffnite amoun:t of time. has p~_ssed o Obvi.c,usly ~hese can co:1shi: 

··ofiiy br ·stable st<?-tesjl and henc.e one is· led t.o .. cm'!sid'f.:r the matr:ix el~~mo~'Ls 

<. ·. ".1 U(oo G") \ T '). (3 0 $ ;: .. c. . With the insertion of norrnalizat/c on conbt,::wt, =, 

dpr the states ·. <·(30." .. 1 and u"se of Eqs, (6.8) and (1Ll7)$ these matriJ: 

r · . 

:. 
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;, "'" 

." . 

. < .· 

. . : ~~ . ... 

(11. 56) 

(11.5?) 

* • ' 
·. I 

When . r is:smal.r one may write approximately 

. (11. 58) 

,• .. 
. ;;/ ... _ When the· system _ H0 has only one exctted state thi1:3 equation may be used 

r~t-: ·. ::..:: ·,>.:~~diat_elY i~· a.n:'·a:~azysis of the probability distribution of the final 

;~;,;',/' > st~t~~ . (/3 
0

" I artd the lOvel width J ls seen to have a direct 

;"-::j· ·. · .:;-.: inter~retation_ a~ -~ line .breadth. \A/hen other excited states are present, 
~<~~~:-... ~: ~~ . . . . '. . : ' ~ . . - . . 
·" ·,5:- - .: ! · ho-W.ever, the analysis is not so simple since the description of important 

.• ."J.····. • . . . • . . 
' _. ··~: . 

( .·''.'>.·': .. ·,processes in which the excited states themselves act as temporary decay 
<: '~-...·~-' .,_:·: .. ~-~""-· -·.·/ . : :; .- . . .. 
: '.(';:.2';':::-, ::_': .. <:prodhcts. is .hidden i~·\he·-niunerator of (11.58). The most clean cut example 

' • . ~ :· , . ': • ' I ' :;; . ~, :. ' • ·' . 1 , ' 

.. :' ·~·':?- ~ · bf·_.this is provided by. th~ radia~tive decay of the hydroget~ :atom, for which 
. --~- ':. :· ~ -.~.. ,· .. ~ ~ -~ . . . . . _. --~ . 

1 .-~h~ ana.ly-si-5 .is easily Carried out ·in terms of diagratns:' 

'.· .. •-·, -.I.e~ the initial 'e:icited. state of the hydrogen atom be denoted 
1•' 

. ·.·· by .~.::·1·-~l>: ;'an~·~~·~ the: fi~al decJ3_y· product be a stable state r J'l' !1' "J2> 

in~WhictLthe atom·is in a gro{,nd state (denoted. by J
11

) ·and. two rea],. photons 
... \ 

,.-·c '··• ·:•. 

are present having moment'~ . PJ_ ~nd p2 r-espectively. (For simplicity we 
: !" ~ • ,. • 

omit labels re:ferririg to the polarization of the photons.) The most 

.. 
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iniportan:t irred~cible diagram leading to such a final state, p~ctured in 

,·. · · l"ig;. is, _involves an inter~ediate. state in w.hich only one real photon is 
\. ::.:·' -· 

·, 

.--,. 

· present.- .. (Lin"es. · :r~spr~~ent-ing the external impressed electrostatic field . ' ~ 

' ' . 
_of the .proton have not .been included in the figure,) 

. -· . 
Since the rr:.omentum of . 

. . th~ ·iz:t.e·rm~diate photon may be. either 

diagram to expression (11. 56) is 

or the contributJ.on of t.his 

e2(22° i/l i z2+' -~ < J'' I [ v . .* <.E2)S~ (E" + w 2)V + * (_?l)S+ (E" + wl.,. w 2) 
- . . . ·' 

,-' ~rf . ~ '" ,. " ' (ll, 59) ·,C • ... . ~-
~. -~ / 

.. , 

'f<'' 

.. ' 
'. i ~· ~t ~' . . ~. 

<' 

•, 

., where the notation is obvious: 
. ! 

E" is the energy of the electron in the 

· state· J" ,_ i~cludinB the. electrodyna~c correction, Ujl and w2. are the 

' ' " pb6ton energies' ·z2 is the electron normalization constant for the final 
.. . 

stat~; .z2+ is that for the initial state, z3 is the usual photon norma.lization 
. . . . . . * 

<;onstant, e is -th~ bare electronic charge~ V;._ (p) is the modified vertex ,.. ... . . . " . . 

~-ope~ator ·for the emission !(f a photon of momentum 
t:., • . ... . •• 

., · inod'ified electron propagation ftinctior1. 

p, and ,... is the 

In the_ present example, with an impressed electrostatic field, the 

classification or· ,electron states based on the bound state label::: J possesses 

none ·of .the relativistic invariance properties of the momentu;·n classification 
' . ' . ' ' 

:. , used for free particl~ problems. The electron-photon coupling is therefore 

; .- .not ''sYnunetric 11 in the sense explained in _section 10 Y and the propagation 

. ~ 'f¥~ct:i:on S+(E) is here not diagonal in the bC?und state labels. Eq. (1Ll7) 
~~ ' ,. 
- -~shows, however, that the off-diagonal. elements are of higher order in the 

.electronic charge .than the diagonal elements, and therefore one may to good 
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' . * 
appr?ximation consider only the lat·ter. With the abscrption of th,• 

{~-~ 

· ·normalization constants into the defi"nition of the renor:-nalized C' 11arge, 

** prqJ)?gation function a:nd vertex operator, and with the ret'lA::ef1fmt of t.h~ 

-latter (as a second approximation) by the simple· urJncd:.ned ve·t:""t,~.': ope;~:tL·'r 

* . . 
V

0 
» expression (11.59) then: takes the form 

~-.2-L.-- '''~(J_ul.v *(p.) l o("). <cx.''~l.v *(p.)\ . ee . . o ,...2 . _ I o .... 1 . 
~- ' . fl · . 1 t I ""'""" 1 I t If 

_ . . E -t w2 -E.;- - .c_,~t- (E +W2) -

., 

. . 
1 

X------~----------

.0( I I i the labels 

.._.. ' tt 

Let (E + 4)1 + (..))2) 

referring to the intermediate elect.r-onic st Cites. · :;q-.;1.rin1~ 

the -absolute value of t_his expr.ession and neglec"Ling :he rerlormalizlld self-

· ·.e.nergy f.unction "" · one gets for the two-photon decay distributicn 
L..c+ ' 

Fol' estimates of the .. errors introduced by thi.s a.nd subsequent. e.ppT'oXi.Jr.&tJ.')P3 

. see reference [ 99 J ·. 
H ·v = c 

constant for the free ·electron. 
·c ." I ,. 

_~qual·to Z2. 

where is the renormalb;ation 

" and z2 are !'approximately" 
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, . 
. ~ .• < 

.. 
-. . . , . ~ ' 

I·. 

..... , ' .......... · ~x-: . J v._o <22> o<-. -r <-II , * , ,, ) * . < o<"" J v 0 * (~1) I J I>* 
- ~- 1 r'!" . . " ; . ' . "" . · E + vv2 - E 

~ ' .: ; ( ... 

.. 

. ., .. -

.• 

.. ·,,r. •"" 

- . 

•. 

' 

+ 

...... 
•. (11. 61) 

· .. ·In pract_ice (e"g. ordinary spectroscopic. work) the two photons are 
.. 

never- observed s~ultaneously. The quantity of primary.physical. interest is 

"therefore 
~· ,.-­.· 

= . L P(.(, p1' P21·J') 
. ·lp2 - ,.. -

(11.62) 

.· 
whfch .is· the t~t'a:1 probabil-ity -of finding one of the photons. in the state . .. 

p1 . no matter what state the other photon may be 
'* - . .. -

,4 • _ ... 

distribution', When integrated over the. solid angle 

in. This probability 

£1
1 

, gives ·immediately 

the line structur·e generated by two"-step decay of the excited state I J') 

.-. 
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, · ,·.:; ;.. . : .. : 'rt,.·.:is .?~· oo,';~s-e d·oes: not include the direct one·-st~? line struc+,,,ra which ,_!'.:; 
·~· -r: ' ' ..,. . l, 1 • ' 

.... , ···< ::.;;·,·.::·;· :--"g~Vf3~·1.b~, 
., 

•': ' ,o a• ~ ~-(' •'' ' .. - }- -~ : . ....... _ ·. 
-.'If··.,·.; 

..: ~ ' 
•,c." 

·, . ( ~- ': . 
,•· 

·•· .... 
. I ~ ~: r _ +' • 

. · ·- ~ ' . '- ·. 

. I ~· 'i ;. ' 

' .. '' 
i:•. 

. : p 1 ( J'\: Pi I j ' ) 
.. · ,... 

, .. 

• .. , - I. •. , 'i 

'· .L. .L .. ,.)_ .. .I 

. In the most general cases expression (iL61) may lead to very 

We shall consider. only the simple _standard 

. r • • :r i ·'! 
·, · .case in which the l.evel.l'tidths · a,r·e all very small compe1:red tc 'G!'1e 

· lev~i. sepa,raticns. E 1 
.... Ei ' 1 ~ E 1 9 ~ ~ E

11 
.. and in which norie of .the discrete 

. ·~ -. ' --------.... 

::·lin~$_1.'. to which these separations give rise, overlap one .?.nother, . . . . . ~ . ( . . .. First cf 
,-,. 

:.··.-. · ·:.:··. :al.l;.·Utid.er.th~se c;tr.curnstances the cross terms in·the product under the 
:· . . . · . ...,_ -;. . . . . . ~~ . . . . 

·.:::· ~·:~···.: .,·· .. :.-~~t.ion .. :L~ ,(1L61) are· easily seen to give· a negligible contribution. 
• ' _· ·.:, • ·~ -•• ;_. .' . :' ' . • ~' t~ - i. . . . . 

->:: \ . < Si~nce_.~· ·f."'·.· · is small t:he factor out in ·rront is essentially a delta funetion 5. 

~; . -. . ·\ . 

. . ··· 

· ... ._· 
;' . .' ' ,.·~ ' 

;.>: .• 

.·,.' ....... 
•.,: 

'·, · ... 

... 

. so th. a.t orie ma.· y set. {J) ·= '. 2 ' 
I II 

E - E in these terms,, which then bec·:>me 
. -;, . 

·,. · ... · 

~ · \t '"' ,;;]< J~ I v o *~2> I o<"' > < o~'" I v o \~l, l I J ·) < J 'I v ,/r:2~ "") (c<:'l v o\r1) 1 J'') 
~· f.;. l [ W~- (E' - E' ") -~it'' %:ul- (E"" E"j ~ ir'"'] 

·!'.' 

' . 
·• ·:·"· .. · + 

. ~inc~:>· w1 >. 0 and since are bound states with 

. ,·.r ....... n· .:: .. :': :. 
E· > E ,·the·faetors in the.denO'minatoT of (11.64) become small on~.y for 

· .. st.a:~~.s :i .. -l~'")·~ .. ~nd:· .. 1 0( 1~';,> ·which a.re bound
7 

with E 1 > E 1 11 and 
.._,· . . ' . . . . 

:fill . . . . It- . . . :· . ·, . '. .' . . . • 

· E ') E -;· Bo.th fa:~tors cannot become small ·simul tarieJusly 5 however, owir1g . ~. . . . . . . 
'· . 

.. · ·t9, the· ass~pt~on that the discre.te lines. do not overlap; theref'ox·e (11.61.) 

· .::: •alway$ has values· n:eg.ligible CQliW13.red to the peak values of the other terms 
'/ ·: ·- . - - . 

·t~.·. be :discuf)·sed next •. 
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-.~ 'ttiiterms in.'the-~p;~d~C"t vrr:ich involve only w
1 

refer to a 

• .P~~ica:i sit~ation 'in, ~h~ch ·the .un:obsez:v~d photon of momentum p2 is .,... 

.. ' .~t.ted .first·, ·'follo~ed. by direct decay of the resulting intermediate 
' :. ' . . . . 

· -excited s,tate \o< 111 > . to the gr<?~d st~te. Here the assumed non-overlap 
' . 

-A • • • • • ., ~ • • • 

. . . ·, . •' - ~ " ; . . . : . . . . 
· .: .. of .the: discr~tE! li:nes effectively ·reduces the .double sUliiiil<3.tion to a single 

:· ' .• ~ 

,• . •'".. . ·. !·; '.: .. ' "' 
.. ·. · · "Summation,, namely 

< ,' 

''· •:. .. . . . ,, ·.· ... ·lj'" 
(11.65) 

.. , 
/ : · :Th~:~~eit~. fiihQt~o.~. cp.aracter of the· fa~'tor. in front in (11.61), combined 
.· . .., ··.·· .... . . ' . . * ·, 
··. _W'i:th·:~he· fa,c~~that.',·W 2 > 0, . leads to the r~quirement 

·.' ,.· ,. . ' . . . . 

I II 
Wl < E - E 

· <The .~;:~ati·o~ in (11.65) therefor~· need .b~ carried out only over bound 

: ·.:.':'.::.st~tes .. · }J.'-' ')· .. ~ith. E11 < E1 
' ' < E.' •. The vatidity .or' the omissio: of the 

. . ........ : .. ' .' . . . . . . 

; c,ros.s' t'~J:'rlis i~l the product in, ('11.61) and of the off-diagonal terins in the 
• ' ' • ~l. • • ; • ,_ •• ,._ •• 

). . . ' •.. 'doup~e 'stumnatioh expresses an important physical fact' namely that the 
• ' .-· .. f • • ; . ' • 

· · '.iuc::eessive ... emis.sion processes for the two photons are ~tatistically . . .. . .. '. · ... 
' .; . . .. lfidependent . or' one an6ther. . 

. :. .. :' .:· .~ ' ~ .. "" ' . . . 

· ... ,_:·. The~e ·r~~in the terms in~olving . W
2 

only. Here again the double 

. s-ation· reduces eff.ectively to a si·ngle .sui:nma.tion, but the integration 
• ~ • • • •• 0 " • • 

· .ctv'e~· ·: ~2 .·_wh-ich 6cc·ur$ -in ·dL62) i~ no~ ~~re ~omplicated than before . 

. · ·The $nia.).lrl~~s · o·f the~ .level widths, however, ~llows the integration to be 
' . - , .. 

will generally have negligible 

', .. :. 
. t ... 

. 'ih:i~·. ro.l~ciw~ from the fact. that the elec_1t.Q~amic vertex operator 
'. ' .. ·-*. . . ' . ~-v '(p. ·). van:ishe.s. as · ·~ 0 

. o_ .. "" . -e· 

. ' . 
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, .. ., 
" .. 

variat;i.on: across each peak of the fUnction (11.61) and may therefore be 
! .. ' 

· .,: .. ·:i-eg<:l.i-d.ed. a$ .a constan~. (evaluated at the peak) in the w
2 

integration. 

I 

I 
i 
I 

i 

-··'_, ,·, 

,. . S~con4lY, if. the: sun'!ll{a.tio:h is .restricted in advance to bound states I J; 
1 
') 

' ~ • ,· ,· • ~ I , 

"', . . ·:· .. 'n . . . t 1"1 . ·, . . . • : . . . . ' . ' 

lrl,;t.h E < E . <: · E1 ~ th~n negligible error is introduced. i.f the :range of 
·;r_·. t · • • • '• · ... , .···,:. 

: ··:· · :· .. ·i.ritegration i·s ·alter.ed from 
... : -.-:·· _,: .. ·· ..... '. . 

-~ -: . ..- . -. 

(0, ~ ) ;J.,o (- oo 3 00 ) • Hence 9 using the 

cirttegrcil .identity 
. -··. -... ' ··, .· .. .. 

I' 

tyro c + d ----
~d ( )2 '( )2 - .... ·a-b + c·-v-d 

., 
''·.'· ' .. - (11. 66) 

- . . . ~: 
,· _ .. ~~-~~-.-~--)· ... ;,_-

. :<· ·_i'or . c·, ci. > o; .. and the fact that ~·~1·::: one gets 
..... ~- ,.'.< 

····· ·p ·Ur".·· · ·. · I J' )·. 
·2 ' P1. · . . . .,.,. . ~ 

·, .. < 

,; ' 
.• . 

·' . ~. 

/, --> 

~ I r . 

·.·--
'·. .. ' .. ,<· . "I ..... ·. \ i ~ ')' I' ·2 ' ' i I i .. 2 

+:~.· ' J ~o: (,Pl) J . . (E - E. ) 

· .• [ w
1 

~. CE ~. ; -~ _ E" >.] 2 ·+ t ~ .u i 2 . 
. . ·:· 

' .. 

. ~- ' x.f l<j"'lv0*«E' -E'"l£ll\J')/ 2
ct

2£1] 
'.·: .. 

(11.6?) 

·.The ·po~~~·· ·t.o whi'ch one may npw call at~,ention is the well known fact that 
., . 

the; breadth of an ·emissi-on line resulting from an atoml.c transition bet\l>•een 

two excit-ed states (e.g. \ J ') anti is equal to the sum 



/--· 

UCRL-2884 

. ·223·· 

. ot the -widths. :of the in<iiyidu-9.1· levels. In f~ct~ the simpler result for the 

transition :from an ~xcited'state "t.-o._a ground,state may be re~?,arded'as a special 

caf)e_, i'n.:Wh1·eh the width of the. lower level vanishes. ·The sum in question is 
,·., ·-

· kho~n. as' ~h~: natural line breadth. · For. atomic· systems the experimental 
\ 

arrailgetnentis usu~ilY'such that the natural line breadth is completely non-
~ . . . 

measur_able because of the effects of collision and Dop~ler broadening. For 

nuclear··tr!ln91ti~ns, however, the natural line bre<,1dth can be quite significant, 
·;, .- · .. -

· and 'the ·equations ~it ten above 'may have useful appncability, subject to the 
,_,! 

r £_ • 

restript:i.V:e· assumptions m~ntioned·_at the outset. The modific_ation of these 
-- .. _ 

e<:luations _.for c.ases _in _which the emitt-ed particles are other than photons is 
. I 

obvious and· straightforward~ .·. 
· The _consistency· ~f 'the approximations which have been made in the 

., . . . . . . . 

· · .~bov~ ·equAtioris··_ca:n be_ ~eadily' checked. One needs for· this purpose an 

·.approximate :eXJ?re.ss.ion for· the ievel widths. Eq. (11.39) ~Y serve as a 
•' . ,·. 
' ', 

-· basis tor discussi-on-.. O'~tortunately -t-hi-s-eciuatioh is not easily written in 
. ' 

' ' 
a closed ro·nn inv.Olving r.enonnalized 1uantities only. Therefore one must 

. ' - . '. . . ' 

., '. ~ . 
. . fall back con: a·· power sei-ies wcpansion in the . renormalized electronic charge 

'" 

~c·. ari_d ~how-that all, .. divergendes cancel to any given order? We make no 
- ' . . ; 

_attempt _to Ca..rcy. out this program h. ere, but res-t 

order result. Rememberlng _that- z I = 1 - 0( ec 2) 
.. 

f'ind · 

r-·~ 

where· 
' . 

content with the lowest 

. . 2 2 4 
and e : e0 + 0( ec ) , we 

(11.68) 

r(J'' \ J') = 2'1rec
2

(L/2tn-)
3

(E
1

- E
11

)
2/l<J11

lvv*((E'- it');Q.) I J') 12 
d

2.£);. 
(11.69) 
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If one sets 

r (J" \ J') : o II '-
for E· ~ E' (lL 70) 

then the instructions ''.J3n < E' 
11 

. may be omitted in (11.68). 

If one removes the angular dependence of the functions Pl(J", pI .T') 

by defining 

then one may write 

L"' ·r<J''I J'")r(J"'I J') 
r, r ,, 

n = 1, 2 

r 

-
(11. 71) 

.. ~ ' 
(11. 72) 

(11.73) 

X [
. r' + r'" 
~- (E '- E'' ') J 2 + !Cr' + r '") 2 + r"' 1 

[w~(E'''- E")]2+ ~r"' 2 

(11.74) 

Similarly, the line-structure functions for decay processes involving thr~ 

or·more steps are given, as one may easily show, by 

(11. ?S) 
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' ~ ' . -
1 .. , and 'so,on~ ·Sin~~·- a permil.tation of th~ --ri ~ l unobserved ~hotons ,does not 
I 

I 

f 
r 
I 
I 

. ./ ·. 

... 

. ' . , ~ ~ ~ . . 

.... cpan:ge' .the final state one must -.remember to define .... ' . . . . . . 

'' . . . n 
' ' : p (J ·~ ' ., J ' ) >.• · .. · .·. n _, !1 

-- .. 

'' 
., 

·~:...,._ .... (11. 76) 

. . . !rhe. consistency .of the various appro~tions '.may now be verified by 

.. : .. :·iriV:oking th~~ condition. that \ /) , be~ng ~n ~stable, state, must have unit 

' - .. ]>rohabllity for decaying .. This probability· may be expressed, however, as the 
t ._.·. 

,; ' .. ·.. _·· ;~tim: of-:the probabilities for all'the va·rious single and multi-step decay 
··, ·.. ·, 

··· ·· ·· :·~ . p~ocesses. Taking irit? accoun~ photon indistinguishability one should therefore 
. ri' have·· - ,"'fr. 

'AI' • - ... . :·.:, > ·~· :~; ~·· ."· . n-1/p (J",' ~ \ 
, ,. , .L ~n n . ' J )<i Vol 

: 

...... 

) -~ 

.... .. . 

. ' ... _ 

. .. ... '~ 

•. I. ~ I 

; ': t'· • ·.' ' 

·-· '. ·--~ .. 

. .. ~ 

+ 

· · ~, "~!''' ·r<l'J J"" )r(J 11"-I J"'>r(J"'I J') 
. + ~ ·. r' r m r '"' 

·,, 

T •• ·l 
.J 

(11.77) 

- -~-.. ·. ~--." ·-where the summati9n t..;., -is carried out only over the stable bound states 

· • :·.'.lei"} ;· Equatlo~ (11. 77.) indeed 'holds exact1y, as may ~e proved simply by 
_.... . , ' 

- ~uct:j.<;m t~om _Eq. (11.·68). together with use of the fact that r (J"" I J''') 

lJ '' ·>· if i_s·a stable state. 
.. 

· ~ vaJ4shes for all ' J 1111 )-

... If we return now·to the exact equation (1L56) we appear; at first 
-~ - . 

: ·sight·,· to· have been led .to a contradiction-. For what we seem to be computing 

<fJ.._" I rye') ·summed ih' (11. 77) is the square of the absolute· value of I"' o 

) (3 
0

11 >. But since the vectors ~~-") form·.a 
• 

' ' over all.final states 
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:cornp1t3te·set.~e must have, in virtue of the renormalization (11.54), 

(11. 78) 

The disc"repancy lies in the s\lll!IMtion over intermediate and high energy photons. 

·It.· is tQ~be remembered that the approximate fonns (11.63), (11.67), (11.73), 

-. (11_."74), (11. 75), etc. for the line-structure functions are valid only in the 

vi_cinity of the peaks. The high-energy tails as well as the r'valleys 11 of these 

f~ctions are incorrectly given by the approximate fonns owing to ttJe neglect. 

of 1) "t,he self-ene:r-gy functions which appear in the denomin.3.tors of Eq. (11.60) ~ 

2) t~e. cross terms, and 3} the summations over the ccnt:i.numn electronic leYels 

. (as\ well· as bound levels) having _energy greater th~m E' • To be sure, even 

the true values of these functions in the tail and valley regions are 

negligible compared to the pea¥: values, but their cj.eviation from the values 

.· 
of the appro~imate formulae is significant when integrations are performed 

and is;' in fact, just sufficient·to account for the discrepancy between 

_Eqs. (11.77) and (11.78). 

It is evident that the 11 approximate" expressions have a c_loser relatlc:\ 

to. physical reality than the exact ones. Neglect of the self-energy f'uncticr.s.­

c'ontinuum levels, etc. must correspond in some sense to ignoring the "clothir..g 
.. 

pro~ess" of the bare electron, which is unob.servable anyway. 

, · · The S-matrix. 

In Sec1 •• ·10 we sbow'ed hd>W' a renormalized S-matrix could be defined 

Within the context of a simple field theory with symmetric coupling. We nc'tJ 

. ·.must d.o. this for "the general case. Eqs. (7 .23) and ( 7. 25) provide a 
·~ / 

.c·onvenient starting point, if rewritten :lh the forms 
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• 

Z I ~ s (~0 II J f3 0 I ) (11. 79) 

. SE~,·:<~~" j Sing ~±~~o') - (11. 30) 

··:·· . . ' 

Her~· only .. t~e .. stable states I ~0 ') are considered, and the symbol 11Sit;gn 
I 

·ha~ bee~ ·inserteq in (ll. 79) so as to generalize Eq. (7 .23) which was valid 

only for discrete-spectrtiffi (bound state) theoryQ One will recall that the 

s-Ymbol "Sing" separates out that part of a given expression >-;hich is 

independent of the dimensions L of the normalizing box. Thus for example, '. 
il'.the frt?e states of the simple; syste~ described by Fig. 17 are involved 

then si.ng~0" .1 (3: •) vanishes eicc~pt ·when (5 0 " -~ f3o 1 since <~o" J (3: 1 > 
i~f,afl~o~eroe:iri~~ for (3

0
" #= f3o'· • <rrftii~ example~ of course, Z' = 1 

"' .... 
· · for the free states.) If stable bound states (if any) are involved then 

· (~o.n ·) ,(3-J;'). h~s no nonsingular part, and the diagonal character of 

OE~E' (~o" )··.A!:') depends on the nonremovable nature of .any degeneracy 

which 'persists as the perturbation is switched on. For complex systems 

involving interacting fields the singular part of b E"E, < ~0" \ f3t:') 
c~rt afways, just as in the. example of the preceding section, be correlated 

\ . ' ' ' ' ' ' 

pict~rially with diagrams in which the individual real particles invoived 

uhdergo self-energy interactions with virtual quanta but do not interact 

·with each· other.. Again the diagonal character of this singular part depends 

on the ·nonremovability of any persistent degeneracy. 

In the'preceding section we h~ve seen that the correct definition 

of the renormalized S-matrix depends on a careful evaluation of the 

"de'rivative term11 in: Eqt (7 .40). Only the singula~ part of this term 

'contributes in the limit €~ 0 and therefore all that is needed is a 

straightforward generalization of Eq. {10.8~), namely 

8 . Sing <fJ. nl d~(E' )/o E' \ A •> : E~' I~ l ~ · (Z' -- l)b(/.3 II A ') 0 

~- 0 ~ ro (11.81) 
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. ·This equation, in fact, follows from Eq. (10.81) 1-1hi('h :rrte.y be v:Titt(3n in ·.:.!1.f, 

matrix form 
' . 

- . ~ ·~ .. - ·. L
ilt (B II I r3 :11><(-, 'U\ P. 1\ 

:: (E -_En !I: ie)(E - E t ± i!) . ' o I' ± i± ' r--'0 I 

. E -- E111 :e iE: 

.-. 
--. · .. 

.._ ~ ... . . 
• 1 

(lL d2) 
' t' • :1 • 

· Differentiation with respect to E gives 

, :;. .... c. ·<p. "/· ~ ,0 (E' )/a E' I A ··) , · . . · OE"E' o o tJ\.-: ro 

; . , , , .-, .. - 8 ·. \"' rl (E' - E"' )(E" - E"')] /~ ~~~5 111)/e "'!A ~\ 
.;·. · . - E".Ei._,_ L (E' _ E'll ± :l£)2 . \r-o [ ± \J,-±. ,f'O I 

S· ( ~ II~ f'3 I ) .'• 
{- 0 . (' 

. 
' ·- - (11.83) 

, . 
. - _.',·':,. -the's~rigular··part·of which leads, via (11.79), to Eq. (11~81). 

·-,.. . ~ ' - ' . ·' ~ -.~ . ~ ': .. ~ 
.. 

·_f. 

Remembering that 

. ' 

;, ~- ' - .. .. . .. ~. (1' ~. ) \ ~ l.. • . ')4 

'. 

repeatini the derivation of Eq. (7 .40), and using Eqs~ (11.80, 81) clnd th0 . 
-' ' ' 

... ·-
-~ . ; 

i~eriti1W · _8( ~0-i•., .(?>
0

1 )b,(E11 .- E') =· ('Tr€)-1 £( ~ 0", (3
0
'), one .finda th2.t 

renormalized S-!1latrix: is given· by [321 . 
- .... 

<-~-~·· .j 5c~1~:~o') ~ ~:;; n I ~± ') 

. ;Z"~' l:"~ { ~ "' 2;s-l(± i£ "' ~ic) (Z' ·- 1J 8 ( (3 
0
", ~ 

0
') 

··~ . . =F 2'Tri 'S(E" - E') <P~". I R:~:.j ~0 ')} 
' . ~.. . 

I ·' • 

, . .. 
' · . 

. ' 

. · . 

. ·. 
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-where 
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(11.86) 

. 1\-i: be1:ng~ as one will recall.9 the "remainder" of' @... :1:. after the singulaT 
,;' 

pa~ has been subt.racted. ~~± is the r~normalized transition operat0r. 

;Resonance scatteri~. 

·. ~e shall illustrate the use of Eq. (11.86) with the hydrogen at.om 

prev~9usly cpnsi.dered. Suppose 'the unexcited at.,m scatters a. photon r..•f 

" . 
. . ·1Il9merit~ ,!'l so _that the system undergoes a transition from a state 

,·to~ state '\Jnll p2) 9 both· .IJv)· and· . .· ,. being ground states 

(pcissibly identical) of the atom. The irreducible scattering diagram whi.ch 

gives th~ pri;ncipal contribution to this process is pictured in Fig. 19: and 

one may write 
, .. 

.. . 

.. :(J~ 1 .)2 L~c + \ Jv ~ ;£1) 

-·~ _.2tn' S (~"+ w2 - E• - u.~\) e
2(z2" z2' z3 

2)~ (J.") v+ *\P2)s+(E 1+w1)v-r<,e1 )jJ 1> 

.··~ 

(11.87) 
·. 

We shall consider only photons having energies less t.han that r·equired. 

: · t6 ionize the atom. ·If accura.c:y is desired only near the resonance peaks the . . ' . . 

summation in Eq .. (11~87) need then be carried out only ever the bound atomic 

~tates. \~' 1 i) < Moreover~ when the square of the absolute Yalue of this 

expression, is taken~ the resulting double summaticn may be reduced to a single 
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. I . ; 

summation tn the. familiar m:anner; and; using Eq. (R.12)~ one may W!"'ite ths 

. tra:n.sition rate as, 
., 

/ \ ( }.1.,88 j 
. . 

iroin which the ariguiar scattering ;:;ross section may :iJP.media.tel;r 1)e oQtai.:;<Jd. 

which the cross section becomes anomalously large when the initial pho~c.n 

_enel'gy . wl has a value in the nei.ghborhood of one of the level separutions 

. . ' ' r. .E1 . 
. E .. · - ~· 

·I ' : ·AS a check on the consistency of ot:..r approximations in the present case 

lte.·maymake use of the probability conservation theorem e:icpressed by Eq. (8.J:3L 

.In ·order to apply this theorem~ however.9 \v-e need matrix elements cf the 

·· · tl'ansition operator which describe processes in v<hich more than one phot.or1 .ls 

present in the final state. Thus we compute 

I 



• ,I •' 

. , ... 

UCRL-2884 

-231-

\ 

I {J"l Vo'\~:Jll J'm) I 2 I<J"" / V o* <.!!2) I J '" )/ 2 I<J111 
/ vo<;e1l I J •) J \ 2J ~ 

[(E' + wl·~ ~-2 - E""u )?. +! r'm ~ J [ (E' + w 1 - E w )2 + ~- r'" 2 J ) 
(ll. 90) 

·,.._, -

·and so on._ -· ~ere the notation 23 indicates that the same expression is to 

be repeated but With tne two final pho~ons interchanged .. 

Eq .• · (8.33) may, for. the one-initial-photon case, be written in the form 
•, 

, - 2 Im ·<.J • Pr--1 R ·\ J' P ) 
. '-It{\ . • .. C+ , ·.w.l / 

w-·:·... ·• 

(11. 91) 

·_, - ·' ~ere ·-.L !'· . denotes a suinmation_ only over the stable bound states l J11). 
··' 

· 0~-th~ other hand, from Eq. '(11.87), 

,.· (ll. 92) 
• ~ 0 '-· L ' 0 - • 

' ~ . . 
·The ·consistency i~ now evident si'nce, from Eq. (11. 77), the right-hand sides. 

•' . 

. of Eqs. (11. 93, · 92) a:·re equal. Conservation of probability may be similarly 
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verl!'ied ·fo~ the many-initial-photcn.cases. 

The phenomenon of resonance scattering may alsc, occur fm simple 

systems_of.the type described by Fig~ 17. Here there 1s no ren.ormalizaticn 

problem and using. Eq. (7 o3), one may write directly 

{scl•)a+\1/'> = <1/")[Ii1 +.Hl G+(E")H:]I-s,,n> 
. . 

~ {~o'i'\ Hl \ Jo 
1

) · (Jc; \ G+(EI!) \Jo ') < tto 1 I ~1 l ! 0
1
) 

z' (S~"~\aiJo'\(Jo'\!Jr,,~~>~ +. l. ~ (ll.93) 
E" E 1. '"' . l (En 'J - + - Llr;+ 

andi since ~ne has . z ... ' ~ 1 if B is properly chcsen_. the t.ransi tior. J"d.tG 

in the neighborhood of the :resonance psak-ts·given.by 

\(s~11 \B I ,Jc'> 1
2 I<Jo') B \ 'So")\

2 

(E'I - E t) .2 + ~ r ,2 

The probability_coriservation theorem has here the fvrm 

and the coz:isistency·or the approximat.ions made in Eqs. (11.93) and tl~.94) 

follows from the .equations 

- 2 rm {s:'l a+ 1 'S .') ~ r, I < J o' I B I ., ·" > I · 
(Eu - E')~+! rl2. 

(lL 9f>) 

~Ill r-' -~ 2'1T' L s (E' I 1 (lL97 ) 

The excit~tion proc.e~ .. 

Tfie $-matrix having been _properly defined, .we are now in a positj_cn 

to give an. acceptable mathematical treatment of the excitation of a give~ 
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unstable stat~ by me~ns. of incident. particles. We shali restrict the discussion 
: • ~' ,"' • ' ' • : .'·,._ .II ~ I '~ o·. ' • ~' ' ... ,• ' ' : 

. 'to the . .ConteXt o.f hydr~gen-atom-piU.s-radia.tic-nJ so t:hat the incident particles 
. r' • ' 

. ' . .· ~ 

wili -~ "phof.onss bl.rt the conclusions "wiil he qu~.te ge"neral. 

. , s'~ppo~e the atOm fs \~nersed··in in :!.~~tropic ."bath" of nearly 
.. ' 

The i.ridiv:idual photons ·~onst:l.tutir.g the bath will 

be soatter~d. by the ·at~m and. produce other photor.s hav·ing a distribution gi ;ren 
. . ' 

· ... · •''" 

~ ... ·' '. . ' 

·,.'· ·, 

D(J" 1. p2.) . 
,, 
,· • . Ht\ ' 

. . · ... 

(1L98) 

(11. 99) 

wherec:"·t(W)·. ··is a pe~ked fun~ticn which characterizes the radiation bath. 

Let' us~·a:ssume that· ;<0....>)-, whic;h may be .t!e.ll.~d t~e ~xdtatior! functior!, 1) is 
.. 

'peaked around. tile energy" value w :: E1 II ·- E'.s . 2) .does not sensib1,y mrerlap 

·· ·' ·.· -~ne-.rgy' v"alues _:corresponding to any of the other le;vel sepa_rations 9 and 3) has 

a· width laz:ger .tha,n the level width r 111 so that it i3 essentially constant 

Then.9 inserting 

J>qs •. (11~88) and (11.90).into Eqs. (ll.9Bj 9S)., and using Eqs. (li.61) ami 

Cii.6J)_, :we. ~asily obtain 

(10.100) 
. '. 
'.·:f.', 

. . . 

::· ... n(J0 , Pz.; P3) -~ P(J", £2r· !3 \ JF H)r(J 111 \ Ji)I(E'!; - E1) II etc.., (lO.iOl) 
t.. ~-: .• i j .,.. .: • ":""' 

tnese formUlae being valid in the peak regions" 

. ·.:The dS,stribil.tion of. &catt,ered p!'l.t.-f:.c•ns :s seer, to be directly 
··;: 

'·•· .... ,, 

p;t•oportional to ·the s$.mple decay .distr-ibution which we have already calculated. 
. ' .. '.: . . . 

The physical interpretation. is obv:i.tJus. The radiation bath excites the at.om 
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·:from tne ground ~tate. \ J'~) -· to the unstable state \ J'rr) J and then ~ht>. 

atom undergoe.s a subsequent spontaneous decay. The "scattering" is essentially 

·. incoherent~ _at ;Least in the· peak regions~ since the emj.~sion process~ 
·-. 

described by the P-f_ Unctions, ·is statistically independent of tte absornt.i:m 
~. ·l·:·· 

proc·ess,' deecriped by the_ factors r (J I " I .J,) r (E I " - E') . 

Whe~ Orl~ speB:kS of a system's being brought into an excited state 

one is speaking,_ acc.ording to customary terminology, about a. st-:tte which is 
. \ 

.. well defined in ~tsell and· independent of the 'preCise details of tho exd.t..a.ti.on 

process. It is important to note .11 therefore, that the energy sprea~ in tb !'! 

radiati_on bath must be greater than r ,,, in order that the bath be a true 

excitant •.. For i~ :the width of I(w) becomes less than r"' then, because 

energy is conserv~ under a collision, the distribution of scattered photon~ 
.. 

Will begin to dep~n'd on the shape of .I(W) instead of follov1ing the natural 

line. shape·, which simply- means that the scattering will no longer be incoherent . 

.. 
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l2u · PROBLEMS INVOLVING SEVERAL PERTURBATIONS 

·Introduction. 

-In many pr~blems of great practical importance it is convenient to 

split a ~otal_perturbation into several parts >~ich may be considered 

separately.or in v~rious combinations. This circumstance gives rise to a 

number of further natural developments of the operator formalism, to which we 

now turn our attentionQ 

The total Hamiltonian operator will be written in the fo~ 

(12,1) 

the operators . Hi referring to the separate interactions which make up the 

total perturbation. The mu~tiplicity of these interactions leads nece&sarily 

, to a certain comp~exity of notation. We shall wish to c.onstruct complete 

sets of-eigenvectors based at. one moment en one subset of the operators H0 ~ . . . 

Rf and· at another moment. on· another subset.. These various eigen or basis 

VectorS will generally be denoted by symbols Of the form 1 (X I) 
cijk... ' 

the indices 0$ i; j$ k ••• indicating the operators H0 ~ H19 Hy Hk·•• 

included in the subset in question·. The operator H0 .? usually representing 

the ldnetie ·energy ( 6r simply the remainder after all expli.cit interactions 

have been switched of!)~ will be common to all subsets of interest. If . . 
.selittering is invol~ed it will be necessary to include ± signs as subscripts 

in order to distinguish between advanced and retarded wave vectors. When .. . .. 

the subse·t includes·!!! the Hi then the ·indi~es will be omitted, and the 

ba.sis vectors, being then eigenvectors of · H~ will be written 10( I~ or 

\ 0( :t. '/ as usuaL Urider special circumstariee·s ( e •. g. for the system 

described in Figs. l t_o 5 .of· section 3.o which will be analyzed in detail in 

the present 'section) the ('j., may be replaced by combinations of the symbols 



•'' 
. '. ·~ 

1JCRL-288,. 

-2:36-

. ~ 

·; ,r'l· '':5. 'j ~ J ·.in ord~r. to indicate. more explicitl;y"• the Spr:::::ial char.:.V.:. te!.··· "bCul".d .> . : ? . . . 

·. i·.mfxe<i, or.~free--of the states under ~cnsidera.tion . 
• ~ it . . ·• . • ' • 

' ";.' 

. ,-··;· .. :·]:~'.each physical situation which comes up for study :i.n t..h·:~ fcllovr.~.r.3; 
. • .. ··· 

centr·al problem involves the construction of tht- o~ .. ::s:o,.,., .... t ~rs 
~ . . . 

on,. one .of the subsets from those based on another. As ·.,.e hav3 2e:n ir1 
. :~ ;.: ..... 

·' all ~tte previous sections such a construction rr.ay 'be expressed fc. ~n:-:.lJ.:v- .3 '"'" . . . 

' .. :· ·' . . . .,.. . 

·: ~ex,"ms of the contl"\lction of an operator U(O~ ... oo) or 1; ·~ ' t\U. CO). 

. ·~· '. ~~ . ,:. . . -
· to· d'eal with .. a number of such operators, and to avoid a.rrtb!. ~.:::t.t.y W€ ·.rr.1::.:1-. ,;: . 

any given mome11t ~ to be .r.·c~2.:. .i;:..~ J.. 

ithe "unperturbed" eigenvectors and v1hich the 11 perturbed'1 elF.,er,·.rs~t"~~:. 
· ~r. · 1!._~ .~ .. \~·: .. 
. , ·fi'et· the operator sum of one of the subsets be dencted by A a.nd that 0f· i:ne 

,, ;-··;:~'{ ';: .. ·.. .. . . . . . . 
· >"· :· ·oth~r. subs.et by a:. If A. is regarded as the "unperturbed" Hamil:cnia:r.. ar1d. 

~-- • ' .J' ' ·_;•, 

·. :::.,:.:, B .. ~s thE:; riperturbed11 Hamiltonian·, then the transforuat:i.on operator ir; tt''~ 
~-~~~~ .; ·. ::,: ~.:>~: , .. _:.~. . '·J ' • ' . 

·~ interaction representation defined by A · and B will be denc~.ec l:oJr 
~: ;."~ ~;:··r....;.. -· . . . . . . . 
;::;·~·~:I:U·[B'I A}(t11

9 t')~ ·From Eq. (2.20) we hav.e 
:l -~ , • I 

i.ur. 
:: . e 

~·iB(t.'1 .. t.') 
e 

-·iAt· 
e 

deg~ee ·of detail is desired which requires A a.r..d B to be rep..:..3ce0. 

-expll}citly by their. corresponding sums~ a slight abbreviation can be ar:h:..eved 
"". _'., ./ ~· ·. . . ·. . ' . 

""""''·A·'·_·,,:'"'',by.l;i~ting only the pertinent •indices on the left side of Eq. (12.2). ~~f.:) 
. : .... ;_~ . '~ :'. . 

.1· 

; sh'All, adopt such a convention. Moreover, in order tc' eonform to previo·,::_, 
• f • • 

,;· •,· ~' I 

;!u"sa~e!. explicit reference to A and 
. ,\' •. • y·,_-, 

B will be oinitted entirely in tte 
. ·.;· -·· 

.·•¢9,-13~ . ;4 :~ H~) B = H.. · 
.·. \ t::-:·. !. ' .._ :- · ... ·. . . . 

: : •. . ,::, ·~·~ · ;,. : In accordance with these notati.onal devel0pms,pts we_ shall replace 
• -: .. ,;· -; )--:-~:.~-~~' •1 

.. ·. .~ . sYmbols. such as u(t", _t 1 ), U(O~:J:oo)~ .R±.(E),]:!:;) s.l et(;.~ whicrl havF. be-:::-· 
. \ . .f: . ~.;' :; . 

< ::,i.ntf?pp:c~4.:in.:prerlqus ·sections for the various basic operators j respe('t i·:rely 
. . . :'?-·· :.· · .. ~). .:' .• •• . ''! . 

' .-... 



··~.· .. 
£:. 
,~c :. 

~~'1 

' 

~ . 
•• ·'i· 

l·_.~.·· ..... ' 
·i . 

.. i"'. ~ .• ~' 

UCRL-2884 

.. 

by •u'IB}Cin~.t 1 )~ u[BIA] (O;=Foo)~ R:[B\A] (E)p != LBI"A]; s[BIA] 
etc. In order to avoid excessive clumsines's, however, the operator 

'il r~ } A }{o·,7 ~oo )., because of its frequent occurrence 3 will be abbrev-iated by 
• - f ' 

The combination of perturbations • 

From Eq. '(12~2) one obtains the combination law 

iCt -iBt iBt ~-i'At 
e e e e 

:: u [c I A J (o.~~ t) (12.4) 

for finite t. The question innnediately arises as to whether this law 

r$ins v~lid when · t becomes infinite. · Mere precisely~ can one verify the 

equation 

(12.5) 

tne ·operators being defined by the standard limiting procedure of Eq. ( 5. 2.2)? 

' · ,In order to ~how that Eq" (12.5) is va:.id we may simply verify that 

both sides of the ,equation give the same result when applied to any member 

p£ a complete set of eigenvectors of A. We shall begin tr.r considering only 

fre.e-st~te. eigenvectors. of A, which we may denote b;y ·j '!A 1 > . r1oreover, 

· we sha:ll ~ssurite that A, B, C have identical spectra in the continuous range 
' · . 

. and t-hat" the normalization constants ·-involved in the passage from the eigen-· 

v~ctors of one to the eigenvectors of' another a.re all equal to unity" Then; 
• • .# • :- ' • 

'usi;ng Eq., ,(6.1) and r,emember:ing that the only role l?layed by € , in the 

limit < e~ b~ 'ra: that 'of detennining integration contours.9 we may write~c 

* For comments on the analytical theory behind the passage from the first to 

the second line of Eq. (12.6) see th.e next section., 
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11m -1 I~ ') _ (E 1 -C±i€)' (E 1 -A±:i€)1~A·· 
E~ 0. 

= lim (E- C)-1 (E- A) l !A'> 
• ~~E' ± iO 

--· 
-1 

(E - C) (E - B) 

where \1 B't-
1

) and. J 'S C±
1 > ar.e free .... ·state eigenvector-s of B and G 

respectively, and E1 is the corresponding. common eigerwalue of A, B and C. 

Eq •. (12.5) is thus proved for the free states. 

It is to be noted that Eq. (12.6) may be written in the form 

(12.7) 

The important point here is that:the ±. signs must. go together. This means 5 

for example, that in order to construct the retarded (advanced) vl~Ve solutions 

of a scattering problem one must use "unperturbed" solutions which contain 

retarded (advanced) waves only, if any • 

. Eqs. (12o·6,. 'J) may be generalized so as to be valid for b.:mnd an.d 

mixed states as well as free~ and for interacting fields as well as for 

simpler systems, if level shifts are compensated for by a scheme like that 

of.Eqs. (6.4.- 6) andif appropriate normalization constants are inserted" 

: . * The resulting ·g@neralizatidn of Eq. (12.5) is obviously 

* It may be.noted that Eq. (12.5) actually has perfectly general validity 
as 1t sta~ds 1 although for states in which level shift.s are involved i.t 

r·educes to the triviality 0 = 0 
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(i2.8) 

' . 
.. we_ shall, in the roiro~ng paragraphs. make rrequent use or the generalizations 

.. . .• 

of,Eqs •. (12~6; 7) fo~ ffiixed states. However~ the simple examples we shall use 

~or .illu$tra.ti ve pu:J;pos'es will s_till be ;;:ha:cac:t.erized by var.ishing level 

13hifts and' unit normalization COUSt&n.tS (both properti.et1 .tO Qe Ye:rifi.ed in 

ea.ch individua.l case 9 of cottrse) 0 Therefore we shall simply ignore leYel 

shifts';a.nd normalization constants i leaving it t.o the reader tc ir4sert them 
.. . ~ ., ' 

into the· mathematical scheme it: the nattt.re of the partic·ular applic:at.iot1 of' 

.. a formula.in which he is interested demands- it., 

The p}1ysical c·ontent of Eq. (12.5}.(or :Eq; (12~8)) is obYious. To 
•J . 

. obtain :the effect. o.f a t'otal: perturbati<>n~ one may either' ·switch :l.t on all 

at ~n~e or ~lsa switch it piecemeals one part after a.~'10'(.ner * The order of 

s-Wit_ching, mo.reover, is immaterial. _-S.imilarly~ a switch-off process can take 
' . . . . 

· place eith~r in a· single step ·or in any number of permutable smaller steps. 

·--·--14--' 
The,- comple:t_e symmetry betw:een "switch-on an.= 11 :::·wit~h-ofr:' is emphasized by: 

tha ·equation.· -

(12.9) 

~r .m~re · generalzy 

(12. ::i..O) 

·.where the··-:-: \(i '>. are all the idgerNectors of B which ha•-re cmmter-· 
·. B:t . 

parts among the eig'envectore c.f C) .and . vice Yersa,. 
. . . 

·* ·This is. at'r1ctl.Y true· only with r:-e.spect to states wh:::..:~h tave counterpart::. 

:at ea.cb ~tep .o,f the· ;'SWitchir.g _prCC•9SS. 

•. 
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Scattering bY .two :Potentials. . . . - .. 

Simple scattering theory provides the most obvious illustration c.:.f 

.· 'tne utility of t~e stepwise breakup of the '1switch-\:.n" and switch-off" . ' . . . 

processes. Cons~der-the scattering of a particle by a 5tmp1e p)tential 
.. 

which is eX}:)ressiple as the sum of t-wo parts H1 h::tb H
2 

sc1 that 

:~.- ,,) \.1../.,...__ 

gqs. (12.5) and (12.9) then allow the scattering operator .:o be wTitten ir; 

.the· form 

. s±1 - u(±~~ o)u(op T'co) · = ·UT [o \ o·l, 1~· 2]\r:t: [o, 1_, ; I o l. 
- --·-' . 

_ ·uTLo \o~ 1] u=F[oj) 1\ o, 13 2] u~ [o~ l.v 2\ cj 1] u~[o; 1! o] 

- u~[o} o, lJ s:U [ o, 1, 2 \ 9, 1 J u:r. [o3 1 \ o J 

_ ·u.~[ojo,:l]{i~i!:[ojl 1,.2\o, 1]} u:r.[o, 1\oJ 

= s*-1 
[ o, 1 I o 1 -=F i u -:r L o \ o, 1] ~ ± L o ~ 1, 2 l o J 1] ti:::. [ o) l \ o 1 . 

..:±1_ '_ Sill,ce o 

therefore gets· 

(1 ,., . ~\ 
.<. 0 1.~) 

(12.13) 

Etf. (12;13) finds its chief application when the opera. tor H
0 

+ H1 

· is suffi~iently simpJ,.e ·so that its eigenvect~r s a~e ei the~ exactly or ~re-::~v 

accurately krtown. Introducing an obvious notatlon for the various free-

state eigenvectors.P and ·remembering Eqs. (7.1) and (7.45)~ one rna.y writ-e 



... 

.·' 
t ... • .. ,~ .• ··~ 

daecribes·a state of ori.e 

denotes a one=·electronJ 

. I , 

,_ 
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which can occur when several 

two-·potential· exampies alone, 

system· described in Figs. 1 to 5 of section 3. We 
. .'. i . 

Or • • 

0 

,', ', ... ~~: ...... • ,;, -<", ~ : 
0 

: 

0 

• ·, ' - ., • 

~~;\':;,•·.:h<=•""<=''f'"'. ,... ·;:.;·· tutri<next- to,a ·mathematical description of the possibilities 
. . .~·--:..:::' -~ ·~ ~,' · .. 't ~ L. • , , ('.. ' ' · ·•. • . 

""''"~"''"_T_~:;"~·i:Jh~s-~~yst~~:·e·speci~l).y the situations described in Figs. 2, 3 

..... ::;~·y·~r•tJ.l_r __ .ilfA•\t~:~·:.U. -.. ~ : . · · ·. ·· · 
; ... , ~;, ~.·F-ig-~.~2 '•ca.n be .disp6sed of quicl_dY. It represents a simple scattering 

·~~r}~~::\?!'·~..::::;,::~:.· .. :·~··:.·> .. : . -:. .. . . . . . . 
~ua~;9n· ·~{· th.e .. ·~andai-d .. ~ype, ·the only' new feature being that. the unP,erturbed 

~ ·~ c'/7.;•,}'\: '; "::~.· ·~.· <··:- < '; . , . ·.. . . , . . ·. 
:~i!~~!iJ11~:oru.~~; ·i~.take~ .~s. H0 + tJ1 . ~ather than simply H0 • T.he transition 

•• , ··~ . •.;,

1 

.. ~~$-t·n~ :stat·~·~· .,-_.0( ···,_.'. ·>· ·· to the state I~ .· ") is given by-
. '; ..• ~: '.<'' ~· ·-~~ ... '.'· , :. > I, , . 01 . 01 ' 

' . ij;~~\l'~~Yf>' ".~~ s (E~ ~ E t ) < rxql" l H2\ 0( '> 
' J -11 '\ 

Golt:(E'} H2 \C{ 01. ) 

-- (12.15) 

of states given in section 3, 

(12.16) 

.. 

•' 
,,"!> • ~. 



siffi,ply describe the internal states 

A multiplied, together with complex 

by·.~ potential H2 of (as must b_e assumed) 

JBC' J R ::i: \ j A~ ~ J BC ~ ) has no 

. . . 2 

I «ol'> I 
Ct'i, o) ·u [0, 1, 2l oj} 1] <o, t') 

2 

·' (12,17) 

.. 
' .· . . ·' ;'"', .. 



~ .· 
'I 
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I~ is to be noted that there is 

2 

the potential · H1 • : An alternative 

0 

lp. . II> 
..> BC=F , 

one obtains imrilediately the folJ.mdng 

(
"'I" •q\ 
.J..G,l,) 



~· ', 

~:'., 

', 

-
.UCRL-2884 

(12.20) 

1~ 'since. the pertinent matrix elements are 

(12.20) or (12 .19) may .be. 

The reaction envisaged is 



. ' ., . 

,. 

. I 
... ·: . 

,, 
.(7.6)) 
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·.'! 

is the electron-photon couplirig. Vert accurate 

B 

is a mixed state with particles 

G ~ (E i ) H2] I ~ 01 i > ,? 

[1 + G=F (E")Hl] )c<o2H) 

21 o, 1, 

(12.22) 

(12 ,21.,) 
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'' 

(12.25) 

(12.26) 

I H1G (E" )G (E!) H I 0( ') I ± ;±;: 2.1 o• 

E' ).· 

··, 



_,_ .. ,' 

,, 
~- _., 

· .. 
·• ·'-

'. 
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·z~02" 

± ~ it [1 H1'aG ... (EI)jo E 1 H Jsl \ D( i/\ ... 2 01 

(12.2.7) 

€. . in the final expression plays a role in 

terrn may be ig1,1ored since the 
·-N L . 

. ' th.ere are no "singular pa:tt S::' 

(l2o28a) 

(12.28b) 
2 

(12.28c) 
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,. ·, 

(12.298) 

(12.29b) 

The. states associated'with the 

will be said 

'.· i ... ' 



UCRL-2884 

-251-, 
··: .:. ':;,·'• 

';·. 

(12.30) 

' 
(12.31) 

(12.32) 

(12.33) 

',. i = 1; 2, 

'· such as that 

One must 

(12.35) 

(12.36) 

can'be.carried out explicitly by a 

(12.27),:but using the identity 

instead of Eq. (12.25). 

~. ,. 

'. 



.•. . . 

. ,. 

. , 

.. . ..-
ll .· . . "":\ ~ 

J ~ ... • ~ ·' . 

., . ·' 
t. • ... 

pJ .. p.' = 
. . l. 

the' operators 
~ .. ~ 

0 

•'1 * s .. ji . 
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, . 

(12.37) 

(12 .38) 

(12.39) 

(12.40) 

(12.41) 
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' . 
?'.· 

.. .. 

I .... ~ ·. ~· -=·.,,J.;~.: -~-, [;· ··.:.'"': -"·*1 .... · ~ ~·:~:r ·· . · .. z=·· · ·.·

5
:rl 5~1 * .~~ ....... ~)")'"v...., ... ",~.~.;io\""*''" ,: -S" .. l\r,.,s~·- .. :.f~.~ ~ ... · k. l·k·· ... ·r" -~~ ...... \ .. , ....... ,.~ .... !.i-t;..._ t- ~r·t t~·--,~ ,~ ki . 'ku: ·~ . ... . j~, 

~ ~:·~:~f;:.::!~::~"ih::? ,; : ... ; :-. -~~: ·:!: ;~· ·, .. : :~;~:-: :.;;, ~ -~": .. > • ._.:. \, f . 

~.:;~:"·,l ... ~- ,.1 ... <t~ ·t,: .. ~ ~~ ... ·1, .~ J "' t.. ~· ... 
q it • • < ~ • ; ' ,, , , "' LJ ' I , • • , . 

~41· .. ,~}"-····"' ... ']:''· ~ ·~, .. -~"'J .• • -:: .............. - ·*··- . 
• ,t / •• ~ ..... .-. t:-,1;..., .... ) -.. ,< .... : .... f, ..... ,.~ ~ ~ -::-~\ ..... lr.:·, I , tL. . u· . u ... ·.· .. = 
,. /:'~~-::~~;.~.~:::~;~,.'~'·/.";! ~::;_~~- .. ::~~~-~·-~~·~ ... 3.\ ~K~. k¥ ... jf 

,.,..~ ....... 

·I· ., 
. , .: .. (12.45) 

.' 
:,... 

'.l• ~ !.·~~-· 
· ... 

;,· .. 
'i'J ~· V: . ' . ! 1;: if r,. ~ ...., ., ~~, ~ ,< • .t 

~I•I • , · :..• •)>"'~ .. ... " ', ··'j~ i 1
.' t~ ; •?' "' • ~ .ft ; 1 ··..ot :o: ~. 

r~"''l.of'~ ~ i\t~"._'" "," ,~ ""~it .. ~··~ '!!' ;~ Y ... r'"'t .... 'i.e ~ :._!J. ' ... ;· 

~
HI• • ~ • <·., • ., •· > · J.~• «"' .;;(" ""i:- ,MI J.,.. " --
:'~•" /·.e-."A.i,;\.(-1" '\ ~~-;.;f" :_·*-(\'_,., t.:,-( .. .. ·.::j.·~· · .·_._ ... :.~,· 

:~&~~;:fi~'~,:~i'~;j f~<:bi/; '' , . 2\t! ·jEt A{; )~ i) 6:; J:; \ 
-'\,<•",:)~~·~~~· 'f"o~l;~~ ~::,\~:"'·.~~ .. ~{:-w '\ •,;•:i!: ·.,~>.:~·.·" .. ·~.·.: -11_,;, .. • ~ ·.i~•,' •"~,'f-,•• ,. t. 

~ ;.,• .. ~~II,., .. . J:o~t." ... ~ i.-it L ~~; '·'\·•({ ."'!", .',. ,....~ • 

~~~··~:~~: :~\:·.·::·:-:;:{~;.:~.< ' .· ..... _.:·. ; . .. :;: i' .. ·: :· 
~;:>_~_:;~~:·,:t -~:.\·~:::·~? .. ~·:;>:·!22~~-·: .... ):,i~ J?A ~,_ ;~'}.11' . 4 ·~ ;r~> ,..., .. J...,.., ••• r, --t~ ... "' ~. -~-1""' ·~ · ..- ,.- , l • l 
,-" >'-'\l~.l~';)l->_.. •"••y%'7i )t J,..; ~, •' ._ ~~>.#'!:i!!i/'sr¥i'';;r ~·., ,) • '..,r.A• \• ·.~''. •: 

'!' :, r•,._ ~-l-~ ~ 'f't . .f.: t.--!otGI.', •• ~"'~ ,4"",~':1'~$. ) ~·~· .~~ .. ~:,·:~· .Jr:!, 

·,. "'·~~}~;:~\ ~/.) :-~~·.~~,_,~· .'' '. . ;. - . : . .· 

. . 'J'NJ... ;;;.··,'. ~ r.. '· "~'"" •• : ·.. E· ! J·:s:· I t) ·< ,, I . ' . . . . . '• ' , . . l ' ' -- ; • . . ' J . .,.. . 
·<tt.:.~.: / ':,' :::.~'· ~ (' , .<' ;;.3.3' 4. .· . ' '1( $· .• R .. ;·. ,J-1' ) . JR 
:~~~ :w~/f;;.,.,_"•\ .. --:f' ' J-:) \.,· ... ~: .{. .~ ,I~ •t ~~'t.... ' : 1 ~ 1-. ~~ ,.., • • 

.~11 ,.,:, ~fV. ~., ~f-~ ·~ ·<; "'t "~ .P "'-;J'· .·~.) ~:., ~~~~·¥· . . ¥ .... 

• :11 .... ,,.. ' ( .. ~~~jt-... ... ~. ~"""' .. ~-~· '., ~.' ~ • l 'f'·.' •. ' -

•,..,:/b~;~· :,,_~·;_.~?witn·:;~p~:Cib~ti;ate generalizations tor mor'e compiicateQ. systems. 

~:~~~;~.;~~~~A~~;:::> /?· ., . , . . ... 
:tr, ": ,'i£,• .... t '•··"- .. ~1',·... .•. • ',,ttl' '""'h b f ).h 1 i 1 . f th' ' t . th ~:<~',?-').;:-~~r·;·c~>~ .. ~·,; :i,'?i:~;,: ... ·:~~·~u~~ .. :·, ... e n'IW e~ o ·u anne s s arge,. or J. · e sys em J.s ra er 
~?~'>;.i),<~~;~'w:,_;);~~J.'f't:~*,t-:: :"~'./''"' ... :r-·~. "'~ -, ' ~~ ·. 0 • "w 
'1~ ·;r ~ ... ~Y~.J- ~ \•. J ol. ~-;,)f ~,..:.''.,.• i': • 1 ' / • • "' ' ' .,. • ' . . 

~i::{:~:;·:<~.:~·~.:j:~~\~~~;~ ;~:r ?l ·~h~:: v~ri~u~ i~tera~t~ons a~e not all known explicitly, then 

l,;,::.;.~;.t;"'~"'·<,,'::'~;~t.:.,~s':~.C)t ;f-easi'bl.~ ~.o· comput~,the superS-matrix direct~y. Instead, a 
·.~··' i); ~: ; ·: ·f:r;;;~:i>::: \:;. ,..;·~ :i;}·; . : ; .·... · , :: . . >· · . · :,, · " · ·. . :. · · . . . · .: 

... :~;:.,,r·.·:;f~,.:.~~~.{\~!iei;i:ey~~p¥s~ "6n~ thii :exfst:ehce (<observed: or assumed) of metastable 3 or 

~';.!,J:tf:;;~~~thtJf;+~~)fted'~:~ri,l. !• theol7. of this type, known as th.e 

... '·:::::: ·-~::/4::t:14d:@~i~ii$~nbud'~th~'ory [134 'to' 1'.39]·~ . is one .. of. •t~e· prj,ncipal tools used 
,'< :.'/ .. .'~::·~i·,::~-~-~.~ff:;~:-~t~?J,;~I·I'. ~ ,'13t~J~{.>'.~ .. /··;-.~ .t• ,•J~~:··~~'Z···.,..:,f ·f~ ~- • "'·. ·, ' 

.:,~:.~~J,'"' .• ~··'··id' ·<th~':~Mi.atisrs ~.of. nucleaf reactions~ 
~ .. -.. :'· ;;~'" ",( ',·.~ ... ~~~~·(:;t·~·;:.: .t ~ ··.:-·"' ~ ·,. :.. . , 

• , >· ,;·;t~~-;: > ·~:~~,- S·,:,[the ph~n~meno~ ~£ e,xcitation and subsequent decay is frequently 

. ~~;f~~i~f~l~:,~~.~~~~~~Q~.' tog.ethe~ ~ih all that. this impUes in regard 

·.::"'"~'-:t<>":level'''~~ljlcti1fe~·:1eyel ~~dt}ls and lifetimes. It is natural to picture 
'_-t,. I :· ~ ,:l;' • •"' ·:., 

i * j (12.46) 

,. (12.47) 

JBC
1 

\ ' 
. (12 .4$) 

, (l2o49) 

The motivation .. behind it is simple. 
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·~t··.fj;;(;_~~::~/~ . . ' ·. -254-

. ·· · 0;"~the pli~'sieal process involved as ·one in which th~. initiators· of. a reaction 
~.t~-~ . .;(0 ?•fA,.'}··>~~:~"'\J;~{/) .. ~ ·~"".· .• ~. ~ _J, • ' 

·· 'i\tl::!;·~~<~h~:·thd:t.Yid~al·' particle groups which initially coilide with one another) 
.... '' <;.:/.:;-:; __ ·_(''/~-·:.;'~ .. _ ·f_ ~·': - : - --:-----=-~ - .. . 

j;"'.:.".•.··· ·{::come< together .. to form a single eompou~d· nucleus. Since energy is consen~ed 
; :\2:~S ~i~t~~, ~i,·~:. > :' :· ;. " ~. ,.! _. · • · ·· ... . • . 

~,.y·,.~.;.. .o,,.t; :,tn' a collision the arguments given i,n secti.ons 3 and 11 imply that the 
-~~v~,?~ ,;~~\·:~~; '><t : .. ~:;,., :· . · .... . ·:. . ~ ·. ·. · 

· ·:· ~, ·.,.~·l~·;·f· ,; ~~;¢0'mpourid. nucleus. can only be formed in an excited state which m11st then 
• 

0 

' ' ')~~~~?.;t:J;:::i.f.'':):~:;.•t!~~}~: l~: "'\:, ', · .. · • ' ·, • I 
·?i'.d~·: ·p:;~!f:;;.:pro<;e,e4. ,to· decay. ·:r£ the decay rate is slow enough the decay process may be 
")::·.·:·(~~··5:':sr·.·;_:·~>.; >> . ... . . . . . 
j,, ;·:,.:, .. ~··.~-· ,..d.tz:ect~ opseryed. ·. Many of. the level widths, however, may be large enough so 

(';. .:-~·~~~-\.'.~""-'. ,r -~~-,..-~ .,; ,-~·f-:. ~· .. . • --~ . 

.... ;,~: .. 2 i}_~:. ~tta.i'~' thideca.y· p~oa·e~s·is completely unobservable. The existence of the 
(' l···· > /~·: :. .. >·' '',' . . .. . .. . . . .· . . . 

· 7,:'.L · c:orrespcm41ng .excited levels ean nevertheless make itself known through 
·:·.-,1·'" ~/:. ' .... (_::.7~ ... ~- : ... ·• .· ~ .· <" . ' .. ~~-; 

/t~·.·~. ;Jre~~~nd~~·.i~; ~ti~ :cr~ss s~c~ions for various nuclear reactions. 
~ · ;._:-·~:·>~! "_-;---"!!~ .. ~~r· .. ; -~:·;.d·1-i"~~~~~- ~ · \ .. _· _. . ~- · .• _ :· . · __ . __ , ... - ~-- -
. <~}~\;', :. h · :; f •• :.'l'h;~· methOd ot approach to a mathematical description of nuclear 
}.:.~·~·.,,.: .. ·'<.\,, ,:.:·,'. :,~~ ~·:·~ . .: . :,~. . .• . . . . . . 
•r ~r:.,::;-.-::'resonarree.·pl:umoJil.ena is obvious. · One places around the compound nucleus a 
: .. -:.~~·:_.;~-t~~~--~~~;:~-~·-~--~J·::.:~.~~~~~-"';·,-'_~---... ,·· ·, < _.: ~ • • • :.·. • • • • : • • • • -

(:>!,,;·;~ficti:tious \potential barrier, the r~moval of which is regarded as an additional 
.:- .'~~~}.~:hf;_:-:);,c:\1 ,·)'\ ·~.:-. '~v~~ ·. ~· ·.• · . . · . . . . 

:'h?)f >·~)ii pert\lr'batiorf/. The general fonn of the traf!,sition matrix. for the various 
. !~-~---";':.~~·.·i'J··.~(t~' '~ '-=~·- . .' . i:· ~: ~ ..... :r'. ~ .• /:. . 

>;~_::•;'. • ~···i:~:~~seible prclcess~s m'a:;,. be infer:ed from.th~ simple example considered ir.. 
.~::.:···, ~,.;::.,:Z"~·i;?r.· :r:··· .. ~·.· ·\.·· ·,_ · · · · ·· 

. · '·' ; ~e.ction .u,i n~~ly .. 
· .. ··"~i~::;:~~~:f5<}·:. ··:.'{ ~~ .. 

:.;,:··t~"~;},:f1fli~;~~·iJ ':;: ·,~R.~ . ~ 
... · ~· ~ t · -~ ·wh&re · · ·· · ·· · 

(12.50) 

'• . t: _:·2trr 
.. ({. ~ ' .. 

; ~· ' 
·.t 

(12.51) 

~ • ~I 

.. ·.,.~;~""·f.;;.., :. .. ,~~~ .. tne.~_laoels ·a, b refer· to states in various channels, and the index 
-; .-<·j:l;> .. ~'~-.:~~v~~;:~,~ < ::-.',.··,;r :o .· ".~' :~--~ :~,· .. ;7-;_.;./,t .. ~·~· ' . . ' ·' ' ~ 

.· •. . ;;"'';'\'/.!~"~ .:,;.~~f'•~s·t$).,the excit·ed levels of the compound nucleus. The Xa'Y are parameters 

·•· ·)~·{~05~~~il~ ~·l~ ~~reo~ ~he eXtent to .. whiCh the compound nuclear wave function 

,,·)·:··:·;F ;\vy~o~~z:laps'·t~~·:~.;irious channel w~ve. functions in the region occupied by the 

/-~j::··:'\~}~~ .;~r~\;.;·· ·~ .· .- ', ~ ;·_, .. : . 
~ .. ,_ . . .:. . ~- . , ·; .... 

,"1 .. • 



are small compared to the 

·-~-
. ;, 
~ < 

•r • 

.,·: •. -.. 



.; 

.. '\ ,--

~l;lr~~~":1, ~ : ., :.~ ·. · · .·. 
~~- (L r ? ~, ,, ., . , · · · · 
~· J~ ''•tti ~ "! ,J •• ~~J/" 1 't ' . 1. ·. "... ' 

~~~~;. 1"t'-'/' .' -t:}·:_., ·~._ l : •• 

t J. • • ~·-~! ~.;:~~1 .. :~~~:.·;~.~. ~~·........ -~~-:. .. f:~ 
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. ,.. . 

h >;:::~}~:?·;;::>~ >< ::.~}~~,,~.: .:~.:~ •• ~ 
:;i-~}}~~~~:~~~·;;~;~<~:~:5~~·.:;.}. :;_~n ~v~n instances the ~values of some .of the parameters x~.,. C8r. 

,:"b;t~'~.:"·:~··· .:.:: ~ ·· ~ .aftuall.Y'~be. estimated on thEp basis of knm.fledge 0f nucle,ar struct.l~'e 0 !t. 
~~-~ 't,'!t'<;..~_.{1..o,~ ,·, ,j ~ ,' ... ~- O. / O ~ 

0

j •" ~ 0 

O A 

0 

., .... !!;;: ... ~ ,.'!;.~"" _,f'+.j .... ""'" ~- ~ "' ~. • • ·' ~ ' . 

1
·~.>~~;~1~~~~:-.~,::~.:·:·:~(,.~~':;t:d,·c~t:ry us _tq~. far afield, however, to go ir,to t-he deta.ils of such 
~;''" ;f_ :t<'''-;;. ~¥~·,._ .. \I·· .• .· . > · .. ' ... 
• 

1 ~1.} ..,~:r", ·,~ ··~:: < .c~l.culations •... E1rez; when the Xa'r cannot be comf.AJ.t,ed Eq" (12, 50) :is qai't: e 
..... ~"\~- • ,, ~ ~(t\ .. · .. ~ ~ • '"'.. '1- • ; ..... • • 

t~,<~~{~;-~·'.~·r.,t:;.: __ :l.-ii~~-~rti.i in th~ .oorr~lation of theory wit-k'i experiment .. If obvious facto:r·s 
\..~· ·n .-I: ,If •!'~'r""'. ·.. A- ·;: I! '1', ". ~ ~ 
~~"..;;i:t~~>' •.ff/'•: ,·· • '' .. ' .<.~ .·, ·. .. • •• . . . - .. 

~{ ::.r-,~~·:<~r."'.~\·£,~ .. • ~· i):l.V,;>~"P-Ilg dens:r:t,-f--es of states are C:?rrect.ly account.ed for 3 values for t;bese. 

~~•t :~;0}:'~if':1]~~~!~S maY;oe :nr•rred from t~e obsmed behavior wit.h energy of ths 

·:.'¥~{:,'~~-?'*~'1!~;.·-.. :;·;·v~tto~~;\~;:-os;S :·se?t.1ons.. It turns ou~. tha.t Eqo (12.50) ha~. a wide range of 
J!~~'1··~~;:i; . .i.~:~~~~-·; ;~r. ·.:·~ ~-~ =· ~:-.· >' ·. >· .... , ~'-,.; . . 

k~~~ts~. -,,,z;:~~?!,"\'t:~~n th
1

e level widths cannot be striCtly .regarded as smaLL 

_ ,i;p :~;t }:: t ::: · ~. Mal M .. pre·· s ca tt,erin,g . . ~~f~f~f~tt;::r· ~.::'·:>. ,~lihOugh rOr the problems just considered the multiplicity of varieus 

!:- ,;'n ··,>~,;- .J.nteractions makes a direct approach out of the question,q. there in a clas;: 

~~~t~:;~·:\::~'; Qf :P.,p~~- involVing large nrunbers of interactions Hl in which exact. 
,1t't'fto;:-:~.i:·:~,. · ~.> .• ~/-·~.lr. ,. ·.· , .. · r 

~p'ressions ·:roy; the transition amplitudes are· usefu.L These are the prob:ems 
' '( ; ~ . 

~i-
. ,in :which a single partiCle is scattered by several diffe;.~ent center<> of :f o·r·.:;e. 

~-~ . 

'\na; sllrtpJ,;.ffyin.g features of such problems which ·make t!1e exact ex:nressions 
~ :"' •. • . .... i. .:, . . . 

~ ,,. . '" .: •.lsep
1

u. aregene(rally eithert. t1h1atttt:~e s)catte~lingJ ·,cet.nt:~s are arranged in a 

.•''\ ~;.<Jf;c:,;;...~:.,,~;.. .';€ .re~ ar,, apray, e.g •. a cry.s a a lCe or e se c.r,a. ,,.,e scattere:r3 sat:l.sf'y· 
~-· ~---~~!·= !~·:~ ··,·:~~:_~. -~~--- t-~~-:~~.. ~< : ~ ., ' ~~ .: •• _:,, _! .•. ~ ., - • ' ... ,. > • •• 

·~,·~. \:.:: ··'':~·.,. l ·,:. spec.ial. statistics (indistinguishability)" Sometimes the exact e:x:presc=>im1 

t;: .. tt(·;~-~~~;h~·, ~:x~·l/d_e~~i;:~: not to .make· use of 1i in an actual ~aiculation but simply to 
,·~:t;,~:-~~~·r:~;~>~· ·., .~ ::·· .. >_., . : . . . . . . .· . 
·, ~"::,; f;:;:·. ::· ·:..; :ohta.iri' an. ·est'l,.mate of. :the'' error involved in replacing it by an approximation 

'1i~'}~~:: ';i~;if,'\he er:oi invOlved in ignoring nuclear opr;d\,y in th€ <alottlation of 

· ; 1::~jf.~?:.: ~. _\}~.th~a···:-~~~tte~ini of particles· by nuclei) , . 

· ... ,.~.,~:{\,'\~: .~ ';·: :.t: -Tpe :~5ta·~f t'ransitiori·· operator is the solution of the integral eq·v.a.tion 

. ' ... 
! ·_;;· 

-~· 
. i 

. ~-· , ... 
·- ''\ .. .. ". :} . 

··', 
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··.· ..... · :..:::::.:t .. ·r;~ ... _ ·,~· _ . . .. _ . . . _ 
. ;t{er!~-tli~f.~Hf~.'';:r·~pr.~~-erit, ~he ·~nteractions between the scattered particle and 

.... ,.:,·~-~< .. .'::>1--:·;\"'.·;~~· .... ·'-~,-~: :··· •. ~,· :· .. _:·:. ··.. ' ;: ' ' . < 
·loris scatterers· .. I.f the scatterers are held fixed the unperturbed 
-~·; -?:.;;,: .: :··) .. ~" ' ~ '~::;' :. ' ' ' .,: l ' ·" ' ' ' 

ttam~}.;t·c ·:m·j :a·Ln· .•• .. JL · is simply the kinetic energy of the scattered particle~ but 
,!~~.:~.~-l~l; '

0
',:' ', -·.' .:.. ' ' ' > ' ·._ 

v :~J4-~':;~ .. -·~'·;::\s~~~;~~~~r~·",ar~ .n~t· completely rigid ·. H0 must include their kinetic 
} :~-'1-:tr~ ·..:. .... 1- ···'-' .'\ ~ ;, .. -~'/- ; :;r. ·1;. '· \' . -:• < •• 

·· ~:<t,· :\:e~e~gl~,EF-i>li:i'ft;.the'· pot'eritial which binds them. 
<;~~J<~· :; ~::r.' ·~ ::::~~}, ' . >. ' ' . ' . ; ' ' ' ' -.. 
·,·~i .. 1 l''. ·~ c;,'.Wlia~ ~:is de~i-red i-s.' to reexpress R:t: (E) in terms of ·the transition 

-~~~· :.~~1f,'·.:-::. ··~-: . ' . . . ... 
·.·. tt~~,,~:,\ __ ~;_' :·,:~:(~)·<~;.'Hi [1+_ G0±(E) Ri~{E)]. (12.54). 

•''1-11""' .. ; t·,,··~·· ~ ·. :~·~,;- .·,~, . ' .~ ',' '' ' . ' .. 

. . -~e~~f¥p~>i~;js~~t·~~ri~g pr~duced by each individual scatterer [140, 
J "(•" - .· .• , ., ~ ~- • . . : ," . 

';f·4j]:.:~~-;\·::t?6r,:t.his--purp6~e it is convenient to introduce operators 
,· ·~--~~-~~-- '~ -;_· .. : _>t.f;::~ -/~- -~-~- -~~-:·-~ .. -. ~~ ' __ ··. -~ _· . . >- • ' ' • • • 

~N7_:.}~'t~~:lJ'A;'la.·<E);~:(1a~tAsf:yi;rlg-;tne ·follo¥~ng s'et of coupled integral equations: 

., --,~~i~t~~:·:>·;: ··::~.(.;· .. _~; .... ···. · .. ' . 
;.'''t'+ ;Gri~(E} ·<· Lj. Rj···c.L{E)!).jJE) , 
~ , .• ' ' ' ' ,.._:, ··'>· ' •. 'j i .,.. ' .• 

. .. :~:::·I~~}:~~:-;;.;_~·.,·:: ~ .. ···t~·:: . < :*: .- . 
~ne·:,:jt;;'()t;ai:o:,.;.t, .:t.l:n-is.'': '··\bper~l.or m~y then ~e·_~pre~sed in the form 

. ,;i~.~~~,·J."'·'zS ~1[.1 ~ G
0

,_<Ei L:j R,JEl12j. <E>] ~ 
;y:'- ,"' J I ~ ; ~ i f<' ~ ' a • ' d- i:. 

i = 1, 2' 3 .. 0 

(12.55) 

(12.56) 

-~:-F r:; ·:c.\~~ :._. · ·~ · · - · , 
, 1,;-.J.~~: .. :w.c•; >'·b~.:xver!ffed.;.by· ·showing that the expr~ssion. on· the ·:right satisfies the 

;.,-::'~~:.!t_,,~·.: ... ··:.;;·,. (";, _. . ""~·. . 
· -{i~. 53). Thus · 

. _· ,~ ·_ ·:~:.· .-.. -~.< ~:' ., . :~ ,, ·: .· :.:, .. -: '. . . . - ' ..... ·~·~, .· '•.'. : 

· :,i ~:~0!~~,~;: ~j [1 ,+a~.<ET Lk ~:<Elnkt (En } 
· · j'~~:, • £~~t·yT a\"'(i> ·S:j ·Hj [ 1.+ G"*(El •• · L k Rk±(E)I2h<El 

·;" 'r. :, ' · 1~~:o:z·~,;:t'? ·, :- ,, . ,' . . .· + GoJg),Rj:(: ;1) j: (E) l } -i· . . 

-~,~j~/~·j[ ... "·: .... :~.::r.-'/:~~::· .. -~.<f· .. ~ .. · ·__ ~ . ~· . ·r· . -. . . l J. 

\~S:}~_';~:::~·-:::·.:.;,;t~ .. ~~~-t~~:(t•l ~+· .. ~0±,(E)-'~, ·L j .Hj_, -i + G0i:~j':t:(E) J .Qj:t:(E) 
.. ~~~\:'·~~.~-,:·!::.~:\,·.~· ·:~:,·:~,,:;I.·~!~··~:.~~iPi;_: :" G0~(E) .. -·L:·J~. aj:<E)nJr.<E:>]. 

·.:· .··:~.···· .. ~. -/.·\~-··· .. ,.,=.··i -.... , .L :·.- ... _ -.. . . _ . . . · . 
. ' 

(12~57) 
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'! •• 

~~J;r;i;:;::?Jfi~~":t;: 'i!,' ~: ~t a , pot:nt:~.u ~.r the ordinary type. rt~ aPproximate existence 

~''. ·-. }! ·, ·.:t:> · .~ ... ·•dep~nds:;critica+lt ·on the fa·ct that the scatterers (i..e. the particles 
~ ...... -.. ,, . .. . ' . .. ' . ' . . ' . . . 
~,:~~':}J·:.~.~-~:,:::~·~.~ ~:E~o~~~~i~;the. n~·cie~s) ·~~~{·s;~ Fenni .statis~tics. Absorption effects may be 
~-,:.,,:;;:\j·:t:'~:;~:~ .. ~:_><: :.: ·:·~ ... :' '; .. ~ ;'.' . ,. . . . . . .. . : . ·. ' . . 
~'l~:t,~~~~s~i;7);l:·,.,~ ;;\~~~n; .. in~? ~CCQ:t:_by givi~ · 0V(E) an ~aginary part. 

' ... ~t~(.A;~;r:~:~.~·>::- ,,.., .. " Attention ~y ala~ be called to some work of Brueckner [145' 146 J 
. -: r~~~~£-~;:J:>_·i·. ~--~7~~·: <::. _ _.;~_~: 1~_:- · -~- i . .': ~- • • • -~~ _· • • • . · • • • • • • -

. ··};~t;it~'·Y·-r:''·.:whi~h ~11·a:s cerlairi. formal similarities with that of Francis and Watson . 
. t )' ... ·:;_:{' ·.:\;:{( :~.> ·. . . . . . . . .· ' . 

. 1,. l<j.:.:· · Bl-UecKn.e'r.1 s pr'qblem is. thtit ol' determining nuclear binding energies from 
...... ~:·. . .,...,.~· . . •' ... ~ 

<rF., .... .,,·· ... • ~:'; ... ~~-'- •• Jiu~l~dl,l~n~cleori :scattering data 0 

.,.,.., .. ~ .... , ... · ~-:h·::-t:~ih'e::Z'$tabti·:hni~n~ o~ a r~~rkable connection between bound-state or discrete-
·,·; s·.~:~ .. "· <".:~·;:. :'~ . . : . . . . . -. . * 
;:·:~~~;:'<;d~v.e:l.·th'eory and continu"lllD: theory o • Again .,the Fernii .statistics of the 
.!-~~~t. ~~: .. ~<:; -~-~\ ._~;: ~ . _. ... _. :··. \.~ ., .. . . ~· ' . ' .. ~ '· .. . 

.:r.;_·,,; ~···~C?"l,ear ,particles,.·are. crucial. 
", -. ~· • < • •• ' '• ~t. . . ' 

. ,~r~·~::, '::~, ::.: .,.,,:-'·;} :: . ,. : .. -~ ·. : . .. . 
, ~""J:}<c· "'·.-tlnfQi-ttritately the ·rigorous derivation or this connection is not properly 

1'.;_·~:~·~~"!('~:~-,·,i.."J'~.l~'·•· .:~~ "'•o;; ·.-· -~· ' ,,J~ · .. •• >" <o. 

· _·:·::.;,\!l;.~: '~carried' oua,y- Brueckner · See,. howev-er, A. Reifman, B . ..S. DeWitt, and 
·;~:~~ ... ;,; -~~. ~~·-.:. ~ .. ~---. :Jf' ~ . "'- .·. . . .. : . 0 .• 

~~-\:f;;~Jt':·.a;~Newtdn,;PhyS, ~· Rev. (to be 'publi-shed)·. 
'·'~-~-\t;_~ ... \ ·~ ·t·. ~ · .. t:~. ~ . •.• ' ·f,:;{N'. ; ; . . ·· ..... , . , . 

,:, ,..)' .' 

The circumstances .of his problem permit 

~'. . 

. , :-:.. J 

•r•;·_ 

1. 

;"' 

.;~. \ .. 
·. 

·>. 
.(:': 

,;: .", .... -:· 

\ 
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-': 

. .. ... ~ .. · ... , -~~ ... 
. ·. 

' ;2, ~:j,_.~i:'::;:';.,· ,,: ' ' > ., ~-- ' . . ~262: 
· .:~~~~A:~~:~-.·:.J:'r\~<~::;:··}·.-; .. :;:-... ;. ,: .. ::-< ,.·:-_ • _· ·. · .·. 

. . ... Th~:; 'cihapte;t>\ on Variational methods· in _refer~nce [10] provides probably 
';. ""· .:..,.~~-/-~:~-~~ .. ;~ ~-~~·~?~/ .. ·. ~-~·:~' )·: . *~ • _1': - • . ·• 

·,;' ."·::th~/best.. ·iril;.ro~uctiori t.o the $"-bject as far as moder-n applications go. 
:,~~-;~-~· ... ·. : ~-~· '\. ~-.. . . ... "!~ .. --~· - :· ~... . ..,. • 4 ' • .' 

, :r;:~~~f·'<fliiie>rever.~ai i -i-ih~h ·res's serious is the omission from this· article or 
•: ?~.~1~·:1 ·; ~._} ;·.;·. < ·~_;; -~, :~•:'·:·. ~ ·:~.. ·.r, , 1 , • • ·f 

. ~;)~f1Yt9-J.~~~s~i{n'r .. o.f ··tl}e. extra. r~iations that can he derived between ba~dc 
.~ .. ~i:;~ .. ~~ . :: .. _,~. _'!-.. : ~.· ..... ·• .... ·: l'' ·:..· .. ··~. •. . . ··, ... ~ --. . .. 

,/iJ;;p~r"itor~ .. ~~Uch as.· R'+: and .. R_ when the condition of invariance under time 
... -~r:.:._ •. ~ f1- " ... " • ., • ~ : • • 

· ·_· · ' ·."··... ·is: i.Jnposed on· the -~perators · H arid H
0

, .A v~r;r compl'ete a.~r.:o1.mt of 
·_;_~~~.t·,-~···.-- .. ;.~.-:. ·:: ... ··;; '.· .. :.·.:. ·_ "' ·· .. ·.. . : . ,.· . 
. 'tn~ ·~o:t~hn~b'bect ·can be foUnd in :the article by Watanabe [154] ~_and a 

··~:'t;·t''C:.:r.'~ ;·\· ·_ .. _· . . : . . . . : . . .· . 
. g.09<i:·,·sta_t.ement ... .in::.;,a...:.:nut$he11. of the application to scattering can be found in 
.)~ ~;: <J.. ... ' 11 ... ~.. . .,{ . . -~- ... \ 

.· · .. · ->. :"~~~~f.~?~~a·~. b/ c~e~ :and Goldberg~~· [ 15o] . 
·. · • .,_ ~; .. :l(J):.G~hs~~~liction ·of a. p~terit~al· from the PhaTe'"'"shift [1$6 _192]. · The most 

~;-::·:··1;.tr:: ~·,:;.·: ._.·'··< -.~:~~- . :·-.: ~· · .·· ~ .. · ·• ~ _, ·_ - . ·- - .. - -

~~·: .. ·:"·:f~~~ri~r.ai~tatement o(this problem is: Given H0 and the S-matrix.9 find the 
·• . . . ·~ :.~;::\- .. _~~-~-~-~" ~ '~ 1 ~. > ~\. . . _!·\: ' . . . . . . • .. 

;.:p~:M:-ilz:batiotr• · Br. ·Its interest obtlous;t;v iie-s in the fact that scattering 
•""~~~:r':";:' ,:,.~· -~ ·. ~ ,! .,. -~ .... , -- •• ,..._ -- ·: : 

.,,:~~ei-~~nts' often pr'ovide the only means we have -of deterndning the nature 
'lb "''"'······~- '.I.:~~~-~~.;;~,.;~,~/':-::?~ ?· '. ~ .. , . .. . ' ·' . ·. . ' . 

. ·;'f~,o~·i.t!t~;-actions·'f:?etween elementary particle?. It is evident, however, that 
.. :~f-.;_\_i<~·~i~Y.~ __ _. .. ·-.. ~:·:-~:-~~ .~~ <·>~. ~.".;· ... · . ~. : •. . 
;.;'tp.~;,~dluti.on; or·, this probleril' is highly underdetermined. A knowledge of the 

-""\;..'•) ... ..... I)'~; . .'~ > ~. .. .. : ... ' - ,,t ··. - > 

=-·~~ .... -.....· _gi:V:~s'}nf'ormation only abdut the asymptotic behavior of wave 

UCRL.:..2884 

_"~- ~- . 

'"-'f"•'"''M. · , ... · :/~~;.i·:':'l'~~i~ .. l?ehavior 'in~ th-e-~tter~ng region must also be known in --
-. . ... ~ ~ ;:·"";~{ _.~ · ... ~-~\: . "/' .. ( ... -" . :~ . ;: . ·._· ' " ' ' . . 

• ~ofd.'e'ii·.t6~i~~i'e'it;<ernrl.rie the ·~act form of the perturbatic:n. Stated in ariother 
-~.~-.-:f.!: l~:~ 4~:.~--~~~~ ~:.·:~:.-~t:· ~~ .. ~ " . . · .. ~ . -~ 

·... ·~~Y;;-:~;H1 .';~has~/htany.m.ore.ilonvanishing matrix elements than S. (The nonvanishing 
' ~.;'":,.>~-~~ "40,-K''" ; ' ' ~·.--. ~:;~· .. ;. ·-.~~.-' ,·;:, ·."7:~.-.Y•o•:~~-~-·; + •,• '. :~.~ Tt ·~~-~ .~' .' • • 

0 
0 

• 

~ :!·q:_:r~~J' ;!:t~"t\;._,;~;:rt)a.tri'Jt:'•element.s of S .. all 1i.e on the energy shelL) Hence the number of 

' ·:{~~~i.~~;"/a{.::eeds/~h~ number of given quantities. 
. :.- :;. "'l • 1,;_~\ •.. i;·:; ·••· ;,.· .. ·:",'':It is :theref-ore remarkable that · H1 may still be completely 

.:~::;; ."'::.<: ~~·~.rf;·.:.;;~;::D.;,.~·>:;:~~~·?. >;, -;·· · { • .... ·-. · . . . 

; . ·.~~· '
1 11-<\. ~, aet-~rmi.n:ed~·Qy ,S· or at~ l~a$t r,!3duced to a member of a finite-parameter 

'··~f,~}tt:J~~t~~~1it; +~~:::::i:~o:::i::::ti:e t:::go:~li::~i::::::l:: are 
... ;t·:r·. ·:·~hsual!J.y: .. t~ken. to be tp:e configUration coordinates of the system, and only 

: ".~:.·F,'.•·'',~i·~<·~
1

,:,:·r:•., ·. ~~.;:.( ... ,: ·.. ,.,· 
1 
'" 
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t·:;~~i~~~~i~;~ .. )~: '::~\ : . ' ·. . . . . ~263-
~ .~· /.~~l~r,tt(tf':tne··s~matriX. 'is·asSUIIJ.ed knOwn; eogo~ in·three dimensions~ the s-phase 
~~i ... :~t·::_~,·~t::t.~:: .. _:!<'~:~~;~ ·_;·-\· ... ~ .. : ... ·,~·': ;~ ,! .. <• >~~~' . ' r- . ~ ~ 

~.:if;.··~ shi'tt.:at,. all en~rgies for scattering by an assumed spherically symmetric 
, ·~ ~;'-, ~ tH5"'•~ ~~,,: • t{"} ' \-"~ + { " • • , ' 

''\~ ;".'. '\.;. -.._ 1·.- :~:_: _·. ;;,' ;_. :'". -~. :·· ....... ·_: •. ~ . .!.,.;·_, . ·~ -~ .. -t . • . ~. • ' 

, \\;., 1\•,\\pot.ential•·; ·If. ,the· phase .shifts· are also known for other angular momenta . ~'~;~~~·~,;. ,~~::;;;;;, ::< ~K· : ~;· ·_:. .,· </. :· . . .. . . . '· . . ·. . 
. >>:~~.;:f4,5~J;:•~tteJr;~:fi1_: :~y. a:c~ually be: ~verd~termirted; Leo j the form of the S-matrix may 

-(~,'--~·_·"l~~t.';', ·. f'fl' .. _. ~-~0-.:t-.... ; .· • ... . ' ~ ..., 

&J~';:~,~~~f,~:·t;ti~'inc~ril~atibl~ wi.tp the:. assumed identification. of the variables which 

~~~~!~~~\~Zr. H~i·:~~X ~~me erldenc~ that the knowledge of the ~ase shifts 
. ""~ .o~·'':..~4~ ....... .~ ... '• ,, ·. ·. - .. ... 

/;;;,. ... ;.-v-·.:,~'t'."~: s.i~gl~ -~nergy_ only_, but for all angular momen.,ta~ is sufficient to determine 
'.,.\\ ';,...,. . :,~t~~'t~.~.._.'L' ~ ~.1f .· ~. '· ~ .. ' ..... ·~. +.¥. r: ~ .. :t' .. 1" ~J "- ~ • • ' 

~;~-:.,, "..+l·tH{ ·.:,. again.: .proVided · H1 . is· assumed diagonal in the coordinates. 

~:-.2~@:\:;;:~~ass~~·i~~ of a particular set of d~nalizing variables is, 

.~~.~·;·:~h?~~}~~:i·:~b~'i~~· ·~ 'pririctpal dr'a;back of these investig~tions as far as practical 
''.: ~~!~f~~~~~f:.".: '.L·' ;·:.~· :.·.·:. ,·,.•, ;,_ ..•..... 
'')~·:;: :\,:.•:-:fj:~p;pl~ga.!-ion:S··are· ·c?ncerne~L I~· thus draf)tically reducing the generality 

lti;_ .. ~~!:2t~~~.:~t,i,·~~rit.;it .. of 'the .,th~ocy- the a~sumptio~ 'also for~es .an inescapable 
~,:~~~Jf:~]i X.·::·./':.· : ';t . : ·• ' 
·~· A::o;;.<:,~;.'·~P,e,c:iBt,J,.i~ation .in: the;Iriatheinatics used •. Details~ for examplej concerning 

0~~1:·~h~;gi~~~.ji:f ,:~boundary conditions on simple central-force potentials 

,c. t;.o} ;_' k'}'ec9nie, o~. iinpor'tanceo .These. investigations have~. however~ revealed information r· ·;;;!\· ... ~·~ ·~J·t~ . ; :;: i._r ,. " .. . . . . ·. . 
·~;;. :;!, ,;, , :':,of. ~r.general interest ~m the role played by bound states in scattering theory. 
_,:~f··~1;~~{-~'t _h,:;. ':: :~ ;·' .' .- ... · . ' ' . ___ ,_; . 
:::Y .:~;t~ ,j;:':Also~~the use made of complex fuflction theory shows .that much additional 

,~~~:~~':t;:fBd~'\'"\ .. ~:··~ -· .'· .... · 
:,:. ~s· •·~£~; .. t'ri.form:a:.tion ·about the ·consequences of general. perturbation theory may be 
.: .t-t.;~~~::·){;':i::;:.~J :~ ,:': .· .. '. ·:~ . . ·. .· . .. . - . . . . . . ' . 

·:<:~f';i&f~J$~i.n~d hi in~·roducing. th:e met_hods', of mathematical analysis in new wayso 

,_,,:,"':4._,.·:;~t!/4?:d~J~ittii ·~~~~ai~p~rsion·· relat-ions U93 to2ioJ ~ 
~'\(:;i~jtj,:'~!;~~.;:~~'~/~h~ ~ost fruitful application• of mathematical analysis, in 

\~~~., .•. : ·<;;:~,~·aif.ordihg.'iilsigl:lt.into ·the actual cont.ent of a given theory~ has been the study 
!'• ~. --.. ; .·.·.~~)~·~t·.·,~~·::~~':~ .... ::~:., .. ~~: ~ ·::~--~-~· ~::··1 ,-- ~-. :~.. _.... - .1 .. ·.; . . . . 

':: :··>:·,:l~o{:it~~~: behaV;.,o;r· or .operators· such,a~· R::~:;(E) and G:(E) or of functions such 
J?f ... :. :,. _ .3 -: ,. • ~ : ·, ~~, r . ~ -t . ~ • ~ ... .. .. • . ~ 

;!/~; --· . ~·: ;a·~:~:;~g'i_'ll~ ~'.'\~''\ E1: '>f.}"· and (Ei ~'A'}., K \ E', >..') . in the complex energy plane. Some 
l'./~t .. " , ~ r .. ., . ; ~ """"' 

~~~: :._ . ,.fb~ ; ~~~til~ : ~ompl~ E~~l~ne has already been m.>de in this article, in the contour 

');,, -' :*·. Priv(lte corinnunication from P:rofessor J c A. Wheeler. 
( : ;-Y::i~ 

., . . ' 



L. ' ~~ :, ... 

~- .• -· 7. ' ~ '· ., 
~ ,~ ..... r.,~ -~:· ~- _-.,. ., 

UCRL-2884 
. ~- . ' 

~ .:~j- i:~- . ' ~-,~ 
..:~. 

··· .. \;~~:,n;.;·_ :< ~· . . 1ntegrataons· of cSElCtJ..on 9 and in the characterization of excited states in 

~t.~{~~J;}~·::)·~~ft~~~~~:i}~ fact, the operator fo-lialn could have been generalized at 

::~~·;~·:.·f4}'rtJ~~~-) :. ; ''~the ·o~t/s'et· to·. include the whole complex pla_ne, the perturbed. stat.e-vectt)rs 
t:; \_,.,~~~< ;~~:t : ~1~-,~ l .~' .. :~t :..- ; .. 1,. .··.~; •. -· ' . • 

. ''"i''•••' ::rv•• <" •. ' ·• "' I~··.·-:;> 
:,!f,~f};:-~:~~,:~~~~t~y,:·~,"':'; ' ... . ·.~~:~, · · b~~n,~r:definable as follows~ ·• 

"c" ·~, ~,::,<:.:~/.- <·.:· .. , . . .. l . 

~:4~-~~l\,\ ~, "'"'~ jj,. ~ :.. ••. ,.. 't ..;.;g. .. ~ ... •;'f'JJ...,~ .. 4 ·~"- , •. 

~~ .. _ ~: •••• •""'.....:;t .... - "' ',"' ·• 

M;~ •. ' 1'ti .'1 ~ . ·:· ... '-; • ·:. ' ~"". • 
~ ~-·~,r{t~}·if:: ::~ ~- ; ' \'. ::· ,, 
~~s (l ~::~.~, ~~~" !l. '~~ ~T) •• 

lt 'il -· ··.ir· .\ ·Y' . ,. ,, ' , .. : .,• )> 

i~ ·s.-:.; -~i.:' ' :0 '\ ' 

r~~~~~If~:'f~:.c:; :;··. : >• ' • 

; . 1' ·!t' .~~~-t'~~t~t. 1\~ .£ 1~ .. ? : .7:,1.. •.{ :·· 
).l>)' ''"¢·," (, ~~ .. : '. J • i.;., 't; 
~ . 1 ' ...... -.1 • ~;,r :t ·' 

.. 

. ,. 

·.G (E). = ., 0 ... 

= 

(E 

= 

f ~;t; ;.r~~~~,~~ ~ '"-."\;~ ~4,~-t ... ~ 1 ·- ~: 

~i1Wl~~~;~d;~~>;;.:' •' , ~(E). - H
1

[ 1 + G0
(E)R(.E)j 

\:·'· ,4~J:.t~ >:, ,,, ; -1.: ,,,.This pos·sibility has already been pointed out in connection ;v:J.th the 

(13.1) 

(13.2) 

(1 ·:1 ·~;) 
.. ) '_.• I 

( 1 ·::, ... 
\ .. .j .h} 

;~:>,~1:;4~{~~&~1\~,.~~ 1.-~··-::~~ ~~'.y ~~~~ 

~~-~~~ ·s·. :.~. ":~ :·,, ,deri:va:tiqn of Eq. (12.6) of the preceding section. The advantages of this f: :',·1~~::,~,;.;·:_;..>~ ~~~: ...... ;'" .. :: ·.:· : ', . 
\' _,. G;.;~.,. ;·,~,.·.,.. > app:raa.ch ::l~e in an improved treatment. of· the limiting process involved in 
··':,~~~:.~j;~~:t·~·':J:~;,:_.:{."c···,.,;: > •.. ~'_, '··.'': · · . , .. 
··i~: \:f·.;,:t(:'~;~.~' ~~R~. ~(6.$)~·a:!:ld also in a more comprehensive analysis of the solutions cf t.he 

(;13 ~4). ··The kern~l H1 0 0 (E) of' the latter equation 

E and 'the ·coupling constant g, B;y considering 

the complex plane importa:nt·relations between energy 

f~·" ·: \.:>'.r ..,,,_., l~vel'sJ phase shifts.,, and coupling cons.tant may be inferred. 

ti':T;!~?;~;:~;J)· .. :~j.:'~~~ch work has Peen done in applying complex function theory to the 

~>'.,, :< ··: ;i'::e····,,t·.:~·'siudy ·of·th~ .cons~quence.s of certain very simple and plausible assumptions 

~-, y.~?<<' ; ;. a~tJ~\l,; na:t~re ~f 'the iriteracti on H1 in Various special systems. The" e , ' ' .. ' .. 

~~; ,·~·~ ~·:· .~ aSs~~16~s -take the fonri of stat.ements that the interaction satisfies 
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On the ~ther hand; to take an example from 
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for an 

(13.7) 

G(E) to be expressed as a variational 

(13 ,, 8) 

that, Eq.: (13.6) may be forrna)._ly integrated to give 
.• " 

knCE) = Tr ( '1"1 ·-;\ 
.J..,_J ,, i 

·.• ! det 
... (13.10) 

·, 
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(and hence also its variational 

D(E) 

(13 .11) 

G(E) .,_ (13 .12) 

even when D(E) is not. 
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~~~:,~. ,\'~/ :: references is given. :u~fortunately the ·operator formalism has often been. 
~·~·.· (;:;;.·:~~·- :·: _·. <~f. ' ,{ ' '_ . . . ' . ' . . ' ··. . ~ 
~~i?~· ,.. <;:t;.,~misus~;~q 1n.articles appea'r:ing .on this subject. Even. setting aside the 
!;~~-:} ·;·,··~*·::;l':. " . _.. :; ·.· ' ' .. 
~~;!:· , ,.;,:;£~:'9.1i"e~~~on."of 'the validity o_f·the. whole Tamm-Dancoff approach to f~eld 

f~> ~: ~'{~:'~·,:~h~9~~~i·ca;i -prob~ems, one frequentiyL finds in the literature that insufficient 
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~~·:"::< ~',:.:.~·-9~-'~~ransforma~l.~ns, _energy_ dependence of computed potent1.als, and consl.stency 
k?';. ·.- ·~; J~~~,-~._t. <::<.,.:~_ .. :~.. ~ .... · ·. ",• ,·· ·,.. . . . 
~:,,:_>~ ;'-,\~~\~!,Ar~de.~~ of ~pproxirnation. For a. dis-cussion of some of these points and a 

t;j[.··f ,. ,;·,·.·:---J;~J:ecteq l;>ibliography the -reader is referred to an article by S. OkUbo, 
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