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ABSTRACT

The behavior of an ionized plasma is discussed in an approximation in
which an individual particle is assumed to obey a Fokker~Planck Equation, and
where its interaction with the enviromment is incorporated in the coefficients

of the partial differential equation. It is found that if the interaction of

.the test particle with the medium is divided into a ™"nearest neighbor" interaction

(which manifests itself in "large-angle collisions") and an interaction with

the rest of the medium, then the latter can be adequately treated by a
perfurbation method, If the nearest-neighbor interaction is neglected; the
coefficients of successive derivatives form a rapidly decreasing sequence,
pro#ided the average kinetlc energy greatly exceeds the mean potential energy
(which is usually the case). Within the framework of this approximation the
coefficients of damping (dynamibéi frictién) and diffusion in velocity space

are calculated and the higher (small) coefficients are estimated.

%
This work was performed under the auspices of the U.,S. Atomic Energy

Commission,
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ON THE DYNAMICS OF IONIZED MEDIA

S. Gasiorowicz, M. Reuman, and R. J. Riddell, Jr.
I. INTRODUGCTION

The state of a gas, or any group of particles regarde& as a complete
dynamical system, is governed by the Liouville equation, which expresses
the conservation of extension in phasé, as the system proceeds in time
according to the equations of motion for the individual particles. As the
classical mechanics involved is deterministic, the only stochastic element
embodied in the solution of the equa§i9n is an uncertainty about the
initial conditions. In principle the distribution function for a single
particle is derivable from this equation, together with some assumption -
concerning the probability diStributiqn for various initial_configurations.
In the study of actual problems asso¢iated with gases, one generally assumes
that this exceedingly complicated equ;tion may be replaced by a simple one
in which not only the initial condit@ons, but also the dynamical process
itseif, as viewed by a single ﬁarticle, is of a stochastic nature. The
Boltzmann ecquation represents éna method of specifying the latter. It
proceeds on the assumption ﬁhat the‘dynamicai history of a moleéﬁle'may be
analyzed in terms of a series of discrete, relatively rare events (collisions),
involving only one other member of the system, using the rigorous solution
for the motion of two particles which are only interacting with each other,
and not with th; remainder of the system. This picture, corresponding
closely to a stochastic process of the Poisson type, abpears to be quite
adequate whén the gas is of low density and the range of the forces between
molecules is quite short, so that such idealized two part1319 interactions

closely represent the physical system.
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In an ionized plasma, however, the latter conditioﬁ'dées not obtain
~and the collision picture ié thereforevmuch less applicable. The ionized
particle is never cuite free either before or after the collision, and is
moreover always subject to the long range force of other iohso It therefo;e
seems worth-while to explore in this connection the opposite limit bf a
 stochastic process pictured in terms of very frequent (almost continuous) ..
events which individually are insignificant compared to a "collision" but
whose cumulative effect ma& be gquite large. The very small-angle collisions
would presumably be included here, but the large angle ones completely left
out, it is realized that ideally the two pictures should be combined because
larger-angle collisions are not always negligible. To avoid complicating
the treatment, and to bring out more clearly the features of the method,
however, we have entirely neglected this "Poiss@g; aspect" of the problem.

" The problem of treating particles which undergo numerous weak
interactions has.been extensively developed in connection with the Brownian
motion of macroscopic particles interacting with microscopic ones. For
this'treatment:the Fokker~Planck (F.P.) equation was developed, and we feel
that this ecuation gives a natural starting point‘for the present investigation,
In choosing the F.P. eduation to describe an ionized plasma, the assumption
is implicitly méde that the time variation of the one-particle diétributioéj
function is approximately a Markovian procéss (one in which only the present
and'not the pasf determines the future distribution). The most general
form of the F.P. equation may bé considered as a differential characterization
of such a brocess, in which there are an infinite number of coefficients

dependent only on the instantaneous state of the system. These coefficients

QJ
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are in principle deducible from the solution of the Liouville equation if |
the motion of a single particle is indeed Markovian. However, there is no
reason to believe that it is rigorously true, and in any case it is not
possible in practice to solve the many body problem. The F.P. equation
must therefore be regarded as a new point of departure for treating the
specific problem of an ionized plasma,; and the coefficients must be arrived
at from physical considerations. This paper is primarily concerned with
the determination of the F.P. coefficients, on the basis of a certain
physical picture of the stochastic elements that enter into the dynamics of
an ionized particle. That the physicd4l picture is adequately exnressed

by the approximation scheme will be scen from the fact ﬁhat the higher
order coefficients calculated acéording to the scheme are relatively small.
From this one must not infer, however, that the method itself, which is
limited to the weak, frequent interactions,‘is entirely adequate, and that
the effect of the large angle collisions is negligible. It is precisely
their exclusion that produces the extremely rapid convergence.

In spatially uniform systenms, uﬁiﬁh which we shall be dealing in
this paper, the F.P. coefficients take the form of "averages'" of successive
powers of the change in velocity AV , in an infinitesmal time interval T .
In Section II of this paper the coefficient of damping, 2;7}/3 (3 c(“’)
is calculated. This damping (commonly ealled "dynamical friction") is
considered as coming from two sources. First, as a result of the interaction
between the particle under observation ("test particle“), whose distribution
function we wigh to calculate, and the rest of the particles of the system
("field particles") the average velocity of that particle relative to its
environment goes to zero. This is a statistical effect resulting from

correlations of the forces on the test particle at different tires, even if
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ﬁhe average force is zero. Secondly, because of the reaction of the test
particle on the field, which modifies the distribution of the field particles
so that the average force is not zero, an additional effective dawping occurs.

This "polarization" effect is calculated in Section IIA, while the

statistical effect is calculated in Section IIB. In Section III the diffusion

coefficient ZSV’Z/AC ( cx(z)) » is calculated, and the higher moments

X Yt
are examined. To order 'L

) the‘polarization of the medium does not
affect the rate of diffussion or any of the-highér terms, so that all
coefficients from the second on are of a purely statistical origin. Certain
formal divergence difficulties occur in these estimates of the higher

| coefficients, and in Section IV a method for circumventing these difficulpies
by a slight reformulation of the expressions for the higher moments (based

on a closer examination of ﬁhe physical effects involved) is suggested. The

higher F.P. coefficients are then estimated, and are found to be small within
the framework of the physical assum.ptioné.made°

The polarization calculation, which only enters in the damping
coefficient; differs fundamentally from our treatment of the statistical
effects in that the former explicitly takes into account the average effects
of the many body forces and thus leads directly to the existence of a long
range cut-off in the two‘body force. On the other hand, the statistical
effect is treated by a method of successive aporoximations about rectilinear
motion in which effectively only two body forces contribute, Effects of
many body forces are included in the statistical treatment only insofar as
they produce a long range cutoff in the two body force and provide a natural

mechanism for avoiding the formal divergences in the higher moments.

«
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IT. DYNAMICAL FRICTION

The Fokker-Planck ecuation describing the one-particle distribution

X
function ('t

X
°> in phase space is*
ta

For a discussion of the assumptions involved in using this equation, see

Appendix A.

o h n o
Bw(il§:)=z (ﬂn d [.,(“(x,‘t) u)<3(t io)] 1)
N

>t T dx”

where the ™  are quantities of the form ZBZF//TT (where AOX is
theudisplacement”in time T ). Now the position of a particle can change only
through its velocity, and therefore for times T short enough so that higher
order terms in [ may be neglected, the coéfficients of the derivatives
with respect to position are trivialiy zero (except for n = 1 where the usual
streaming term obtains), so that we may restrict ourselves to the velocity
coefficients. In this case O((U is generally known as the coefficient of
dynamical friction, and CK(Z) as the coefficient of diffusion. Since the
dynamical friction is thus defined to be the averase change in velocity,

over a short time, of a particle resulting from its interaction with the

field particles, it may be expressed by the relation

T

oy e = T fog[gmjat> - Flz ()]

where [ [g,(t\] is the force on the test particle as a functional of
its orbit, and < > ' denotes the ensemble average over the initial

conditions. It is to be noted that the ensemble average must be carried out
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over the initial conditions since when the test particle is singled out by

2
having its velocity specified, the remaining system is no longer in equilibrium.

J. G. Kirkwood, J. Chem. Phys. 14, 180 (19L6).

The time interval must be chosen short enough so that the motion of the
particle is effectively unchanged, yet long enough to allow the particle to
undergo many interactions, so that fluctuations about the average damping force

are effectively eliminated., HNow
t ]

Elz®)] = Elz vyt f;t'pt" Flz @]

and since we are interested in times for which the change in velocity is

small, we may expand about the free particle motion, so that3

Flz®) =~ Flz+wt]s fotcl’c'jf’dt” Flvt' ] VF [zawt]

(2)

After the expansion of F [égt):] » the dependence on the initial values
appears explicitly, and one is then able to interchange the time averaging

with the ensemble average (integration over the distribution of initial
values).

We shall first caleulate the termlji [?& + Ve t J . This force is not zero
because the distribution of the field particles is modified by the test

particle.
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A, Polarization Effect

As a particle moves through the distribution of particles, the latter
becomes polarized because the test partiéle attracts the field particles, so
that they tend to concentrate behind it and thus the force from particles
behind is larger than the force due to those in front, with the result that

the test particle is slowed downoh Since we are here concerned with the

For repulsive potentials, the force from particles invfront, which now tends
to decelerate the test particle, is larger than the accelerating force
due to the particles which have been dispersed behind it.

 effect of the test particle on the field particles, we need an ecuation for
the distribution of the latter. For this purpose we use the integrated

Liouville equation,
9":1 . 4 e '
ﬁ*er‘F'*mE‘Vyﬂfuz (3)

= f‘{t’c‘x’ VUG YD fule v, v,

where fl is the single-particle distribution function for a member of the

field, £2 is the two-particle distribution function, and U 4is the inter-
particle potential. ,Eé here is the Coulomb force due to the test particle,
Although we deal with a medium of one type of particle only, the tacit
assumption is made that a uniform static chargé density of opposite sign is
present. It is of a magnitude such as to neutralize the whole medium on ﬁhe
average, Results taking both types of particle explicity into account can
be obtained by a simple extension of this work, and are stated later.

To proceed, we now make the approximation of neglecting the

correlations between pairs of particles, so that
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telry,el v )z £lev)f (v v W

—~— J Wf

and further, that fl(r, v) departs only slightly from the equilibrium

distribution due to the presence of Fe, so that we write

'Fl (,‘:,,\Z> = 'F»(D)(X) + -Fl(') (’t,y'\)’ (5)

where fl(o)(x) corresponds to the Maxwellian distribution at temperature T.
In addition, instead of ?testing" the field by means of a particle with a
fixed velocity v, we find it more convenient to allow the field particles to
stream by the stationary test particle (located at the origin), with average
velocity -v . Substituting Egs. (4) and (5) into Eq. (3), we get, to first

-

order,

of" “ o) _
5%_+~\/~er€‘+#\(EC-—VCM“VVF.”: O, (%)

where @(r) 4is the potential energy at the point r due to the field

particles., Thus5

o~

P(r) = fLA(:,L’H.M(f’,v’)difdxu (7)

° In this equation only the quantity fl(l) appears under the integral,

since fl(o) does not contribute in a medium of total charge zero. v

Since U(r, r') = e/ |r - 2'l , we have

vlcp(r):__zrﬂ'ez S‘.Ff')(\’, \/)d’\_/_. (8)

-~ — ri

We are interested in the steady-state solution of Eq. (6), which would
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suggest setting 9 f (l)/B t =~ O there. However, as has been pointed
g 1

out by Landau,6 it is more convenient to perform a Laplace transformation with

L. D. Landau, J. Phys. (U.S.S.R.) 10, 25 (1946).

respect to the time coordinate; which helps to unambiguously define certain
contours arising in integrations appearing later on. The velocity Vv appears
only as a parameter in fl(l), and it is therefore sufficient to perform a
Fourier transform with respect to the coordinate r only. After trans-

formation, Egs. (6) and (8) become

-tk r

(5412 ¥)q (k,¥.5) = = (Vns) [ F*. 0§07 T r
S+ Y (Yvwfnw)'f%) (k. s,

and

k' P (R.s) = qTe’ f@ (k. v,S)dy,

' (10)

R oQ :
. - Lkx -st oy

were g (£.v s)= Jar € FF {gr €T 4 v), amt B(hs) s

the Fourier-Laplace transform of ¢(£ , ). In Ea. (9) the contribution’ of

the initial value of g(k) has been omitted. The justification for this

is that the final ("polarized") equilibrium distribution is reached in a

time very short compafed to a Debye period,7 The resulting algebraic

Landau, loc. cit. Although the small k waves are not rapidly damped,
they contribute but little to the force.

equation for g(k) may be solved, and the result substituted into Eq. (10).

One then obtains

I\ r _"
e e (TN T(eO[- T Tev) |
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» u),
T(ev)= T (pov) =1t deu ke %4 (e Y))
S+ ilk-v. - (2)

where [ 4s the cosine of the angle betweek k and v, and use has

: 2
been made of the fact that the Fourier transform of _fe is just —hTTiez_g/k o

To obtain the steady-state solution, we compute the residue of P (E;§> at
= 0, making sure, however, that s approaches zero from the positive
direction.,6
Using this steady-state solution, we are able to compute the force

on the test particle due to the polarized field. This force is
(" v(p>k_o = L D_TT\) ER $ () dk . (13)

Cleérly the only nonvanishing component of this force lies in the direction

of v, and its value is

F—T - ue d;A,» I ;A,V)fia dk [R-40 7 (T
= ° / '

The integration over k 1is divergent for large k, which corresponds to
small diétances. This divergence reflects our inadequate treatment of
dynamical correlations between two particles when they get close together.
To secure convergence, we will cut off the integral at kmax—“l 1/d, where
d is the interparticle distance. This cutoff procedure essentially

excludes from consideration the region about the test particle containing

w7
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one nearest neighbor. In this exluded region the test particle effectively feels
only the force due to its nearest neighbor, and here & two-body collision

treatment is indicated. Carrying ou'c\. the k integration, we get

L2~ (4me’/m ) T (b))
-—(41’[@7/m YI(pv) - (15)

Fo= 28 fdMAI H' ){ocg

Here the M. .integration has to be carried out numerically. It is possibles,
;;‘i however, to make an approximate evaluation of this term. It is easily seen
“that the force is a real quantity here, and it is therefore sufficient to

take only the imaginary part of the integrand into account. Writing

T (M .\/) = R(},\, \/) + i‘ J (}A. \/) » we have approximately (since
kmix >> L}TFQQ]'S\"! = wTe' [T l /m for cases of interest)
2
26" f'l {]—( | \/) Log R =+ R'l( ! _J/ }
~ = d . o , . an

Now from Eg. (12) we find that

L4 \’/L\

R (/l’"\/) = - pmn [l" v/“ /2ﬂkT>/? deu &XP F’” P /2] ]

and

T(p.v)= pmnT (m, /”KTWVP e*P[‘@mvw/Z])

= |
where ﬁ = ( - r—l_‘) . For large /LA Y , we see that
-2 _
R ~ (\//’\ ) * , and so for large v/,\ , 4 £< R .,

This also turns out f.o be to be true for small \//.,L
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( VH‘ << (&m Y '/2-5 Vo > s so that we assume that we can always

neglect J in comparison with R. Then we can write
! o
F, = (zez/nﬁ J' d,& M T ()u, V) Loy [ Rnax /(4TTe"lRl/m)J.

Since- J()J\,V) provides a sharp cut off for large MV , we can use the

small MV limit of R in the logarithm. Defining

Ap = (aTre*pn )

we get
F’\J’:_ns}- '?'mx>\>fd}'\ )A:)_(}A V> a6
16
- - (5000 du /(R dw) e ke 2.

This friction coefficient must be added»"‘bo a similar coefficient coming

from thé statistical effect, which is céiculat.ed in the following section.

’Beforé going on to this calculation, hov;ever, we would like to point out an

additional consequence of the polarization, namely the well-known Debye

screening of the Coulomb force between two charged particles in the medium.
If for simplicity we consider only the Vv =0 1limit, then

I(}A, 0) = .,,.P m n , which gives (Eg. (11)):

' 2\ n '
B(rs)=- L (7€ p ™ (17)
2 g ms ( R* ) l+ (aTepn /R? )

This is the Fourier transform of the potential due to the polarization

(charge separation) of the plasma, as is clear from Eq. (8). To obtain the
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total potential due to a charged particle in such a plasma, we must add the
unmodified Coulomb potential due to a point charge. Thus

@*""(k S) _ qme” { . = 4Tre" o
R S K+ umepn S N (18)

- -r/Ap
i.e. the potential in this limit has the Yukawa shape e /r . If the

'vglpcity V does not go to zero, the screening will be modified by velocity-
dependent terms. |

B, Statistical Effect.

In the preceding section the average force on a test particleAdue to
the modifications it makes in the motion and thﬁa in the distributioh of
field particles was calculated. In the present section the modification
which the random fluctuations in the distribution of field particles makes in
the motion of the test particle is investigated, That a damping may arise as
a result_of the interaction of the test particle with the fluctuations is
ciear when one notes that the test particle starts out with a definite velocity
and as a result of random interactions its direction will be changed so that
its average velocity with respect to the medium decreases with time. Although
the modification in ﬁhe distribution function as caleculated in Section IIA
acts to produce a potential, as far as the average density is concerned, it is

negligible,8 We can therefore confine our discussion to the case of a uniform

As can be verified using the results of Sec., IIA, the density change is
of the order of (% et kmw, s which means that in most plasma
problems, §f/p, << 1 . '

average density f% 3 deviations of the density from fo have as their

sole consequence the polarization force calculated in the last section. As
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Just indicéted, there exists a damping force even in the case of ﬁniforﬁ

‘average density. This force arises as a result of correlations betwsen the

motion of the test particle and fluctuations in density about the mean (eogo, e
as taken into account by the second term in Eq. (2)), so that an additional |
change in velocity is obtained. The leading term of this damping force is

juét _

t ) rt! i | M
Jodt’ f7at" Bz vt]. V.

Flarwut] =

v

(19)

t 4!
<t S fav[ge F 2wt T Flzrwt ] >

To perfbrm the ensemble average we nsed a probability distribution function
for the forces due to a system of pérticles distributed in svace with a
constantréverage density :fk , and having a given distribution in velocity

space, Such a distribution Haé been obtained by Holtémark9 on the assumption

7 See, e.g., S. Chandrasekhar, Revs, Mod. Phys. 15, 1 (1943) .

of equal a priori probability for finding a field particle anywhere in the

total volume S:Z . However, since the effect of the nearest-neighbor inter-

actions is to be tfeated.by coliision methods (which are outéide the

considerations of this{paper),.we wish to disregard these interactions and thus

ve need a modified probability-distribution function that excludes nearest-

neighbor effects. If this separation is not carried out; difficulties appear

because the Holtsmark distriﬁutipn has divgrgenf second aﬁd'highef moments, v
refiecting singulariﬂies at short distancééo

We outline here a simple derivation of this modified Holtsmark .
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distribution for the case of one nearest neighbor.lo Since the argument is

independent of the velocity distribution, we ignore that aspect of the problem.

10 A general discussion of the modified Holtsmark distribution excluding h

nearest neighbors appears in Appendix B.

In terms of the probability distribution for a set of particles

W(xy, X5, X3, ««. Xy) , the probability distribution for the forces is

N
WIEL)=F | = de.mdf_r« Wlx. x]S(E -2 F (>_<;)>) (20)

where the prime denotes the exclusion of the particle nearest the origin. We

~ assume that

N ‘
w [ X\ ngj'] = 7_Ti W (><L) )

(]

where bd(xi) is the probability of finding a particular particle at x4 . In
the light of the work of the preceding seection, this assumption is equivalent
to the statement that except for providing the screening of the Coulomb force
between particles, the interparticle Correlations are negligible. Since the
integrand is symmetric in all its vafiables, we may arbitrarily label the
particles in order of their distance from the origin, so that the nearest

neighbor is the one at x;. The characteristic function, defined by

(koF

Cf’(.'&)=§df e Wff(o):f]) (21)

therefore is

\

1%+
where the factor N comes from the number of ways in which the nearest

neighbor can be chosen from the N particles, and the lower limit on the

integrals for the "external® particles insures that particle No. 1 is
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-nearest to the origin. Now

: ) Ix: 1. ' had ) ) ‘ N -1

. | | - x |
—Lh'r ! . ! - E'F,~I .
jdﬂ)g'w(,&')e ) ";(5 )) = (l - Jw(é’)dg‘ + l(dﬂg wi(x") e “{x)_|))

%]

~ . . r~

since /o , d?." w (2‘{') = | . Writing ( (x') = Pa/y\l- , where f£,
is the particle density (which for the purpose of this derivation need not

=~
be taken as constant), we can let N - o©, and using bi_:ﬂw (1+ “/nu) = @

we obtain

. oo ' X:)

- -L x')
CP.(”E\)’JPdX GXF{JF dx’ JF dx'( bt —1) (22)

1X) .

Actuaily‘for .the calculation of the average in Eu (19) we neced thé join_t
probabili;oy %, [F’ (K')= F, F (*m): Fm] for the force to be F; at

Xy and F2 at Xps the force at x2 being due to the "external“ particles,
and that at x3 being due to all particles. By including the nea.rest
neighbors in Fy, we take approximate account of the_fa¢t that in Eg. (19)
the term F [ 2o " Vo o ] represents the é.cceleratibn of the test
particle that is due to the acti§n of all the particles‘. Thigs.g;:encr;alized

distribution function has as its chara‘cte_ristic function

G (p a)- J&dgg e

o~

=~
o
iy
e
—~
<
>
N
—
©
x
-
’i\
—~—
(N
[
X
N
3
c
0
T
—~
<
]
x
P
N’
)
)

X e - -

where SI and S aré the regions interior and exterior, respéctively,



UCRL-2997
~19-

to a sphere of radius x about the point x,. Since this function is the
Fourier transform of W [E (xY=F, ; FX:)+ FLJ , the averages are directly
obtainable in terms of the derivatives of the characteristic function with

respect to p and g evaluated at p =~ q = 0. For aia.mple s

Fo (x) Fy (x2) = — ( a/ap; 3/595 ¢ (Afﬂ»‘,_qo
The quantity in Eq. (19) to be calculated is

- ? -f V(x) = . D . /y!
FLio) 2 Fix) = pfdx e [-p fax o (x-) 2 Fy (x)

d] Ix1 P
XD
- pFo (-0 dx' 2 Eox)
Ixl ’axi' § -
o0 o0
, ) (21)
- .ffctz’ﬁ(es'-,r:) dx” = F; (x"):[ ‘
X1 ix) oK :
where r = X, —’)\(} , V(x) =4TT x3/3 and a constant f’o is

2
2x/

i

being used. We notice that in the last two terms 'f Ea& F; (x') occurs,
The angular integration ylelds zero unless i = j, in which case the integral
becomes /3 J:lvl' Fid}ﬁ' . When F is replaced by - V¢ ,
where @ 1s the screened potential (taken in the static limit for simplicity)v
V+F  becomes — VAR /\;7' P , the contact term not
contributing because of the finite lower limit on the integral. These terms
are eventually to be integrated over time. On interchanging the final Sd_g_c
and Sdt one finds that only the force in the direction perpendicular to
the .relative velocity does not disappear on integrating over time. The final
S gzc, however, then gives zero on grounds of symmetry. _Thus we need only

calculate
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2SN 2 0o
~p fdxef J o H()ﬁ'—ﬁ\,axz F(x1),

which upon interchanging of order of integration gives

"'PDV(K) . 2
I(x-x)=-f]dx (i-e ). (oxe ) 2 Fy (x), (25)
[
The exclusion of the nearest neighbor results in the appearance of the cutoff
function (| - expéﬁ,V(Y0> . To avoid complicated numerical integrations,
we shall approximate its effect by using a more tractable function, which

also has the feature of approaching unity for X >> P;J/Z and vanishing

for X «< f,'—”/s - Finally, the total expression to be evaluated is

£ ¢! : ' ‘
t
J=Jorfoe Tlut-)] = [t (bt I{ulemt))

where U  1is clearly the velocity of the test particle relative to the field
particle under consideration. To evaluate this integral, we Fourier~transform

with respect to x to obtain

E kmm ' .
_%TL o(#'t..)dt.' jo Cl’\}i la’l_k.: (’l1+).4.1)-2 .ex,)[-—l.'}f',l{f“'”’t>])

-1 : .
where /LL = )\D ., and where the effect of the nearest-neighbor exclusion
/3
is taken to introduce a cutoff in the k-integration at Rmay ~ f@l . Performing

the time integration, we get
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kmm
2 R* ke
ok

d ‘
(k2+).ﬁ)7' J}" (ng(X)'t-'- P;"‘] (26)

>\'= E-’b}‘ )

. 10
where P stands for principal value, The angular integration shows that

10
In performing the time integration we have taken the limit of t —s oo .

This corresponds to taking ‘T large enough 80 as to average over the
fluctuations (see Appendix A).

a nonzero contribution appears only in the case for which ky; 1is parallel
to w and only the S - function has a nonzero integral. Thus one gets,

for the component of the force parallel to W ,

9 = om0 [ 26 Aok = (ke 29/ (15 e A3) | om

In most cases of interest the second term may be neglected.

Finally we recall that the velocity distribution of the field particles
was ignored, since all effects leading to the expression for 9' were
independent of it. However, to obtain the complete statistical effect, the
ensemble average must be extended to include this distribution, so that we

want

4 2
F =M ) [ S0 gy
m ] 2 ~ )
ly-V) ly-V]
where v is the velocity of the test particle, V 4is the absolute velocity
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_ _ ) .
of the field particle, and(y‘ lf)/ﬁgr-)[) appears because the forces
due to the various members of the distribution in velocity add vectoriélly,
1r { (]f) is spherically symmetric, the angular integrétions can be -

—

carried out. In this case only the component of 'f parallel to v remains,

and yields
= 4Tre“Po j ‘C VMV
Fo=-A4Te ey (o hMA (29)

mveEe 74 (V) dy

. —“2 /2_ . . b.
In the limit of V|>>(V ) the integrals in Eq. (29) cancel, and we

are 1eft with the result

- 4TTe 6.

Fv _— = e N ( >\D '2 Mo Y )
M ’

independent of the form of the distribution. Assuming a Maxwellian

distribution, we can also calculate the low-velocity limit V << Vo :

—— i o - '
F - _ Qﬂ)z 4efs o
Y (o 3T V. e (Ao ke ).

Combining thé.results‘of Eq. (29) with those obtained in Sec. IIA (Eq. (16)),

we get the total dynamical friction:

[T(v)dV.
[Trv)dVY

We have distinguished by labels "t" and "f" the masses of the test and

— 4 .
= - ATe P = )00 s B

ND (mt m (30)
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field particles, the former appearing in the co‘ﬁfribution from the statistical
effect, and the latter in the polarization damping.

Before closing this section we might remark that strictly speaking,
this result is limited to a case in which there is only one type of particle

present, so that m,

Me. However, if two kinds of particles are in the
field, the preceding analysis cafries through for both the polarization and
the statistical effects; so that the total force is given by the sum of two
terus, in each of which mp and £(V) correspond to the different field
particles. It is to be noted that in this case Ap = (4]'\'61 B n’ );h

where n' = electron density + |ionic charge density| .
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III. THE HIGHER MOMENTS

To proceed with the calculation, we must now calculate - Av® and
examine the higher F.P. coefficlients to see whether the sequence of <X ()
converges rapidly enough so that the general F.P, equation may be approximated

by a diffusion equation. The diffusion coefficient is given by

T T
2) B
o =TT AV Ay = (/mit )X&t' Jdt" Rz F (2 (t“)}) (31)

where, as before, the limit of T — o0 is to be taken. Using the Holtsmark

(2)
distribution and the rectilinear motion approximation, we can write X, j
11
as

11
As previously, the effect of nearest-neighbor exclusion is expressed as

a short-range cutoff, and again we do not take the velocity distribution
~of the field particles into account until the end of the calculation.

T T

o<§j)=(ﬁ/m1@)LAt’ L&t" fd’ﬁn Fo(X-2.- Ut)F;

r~— o~ i

(x.-2. - ut"), (1)

where }} is the velocity of the test particle relative to the field

particle. Fourier transforming, we find that

T
(2) Zeq Po kh'
Xy = A tde! L ~ n_t!
| . Ldt [‘Jt f‘i‘f WEXP[LE'H (t'-t )J (32)

Introducing the relative time S = t" - ' , we notice that | T
-t/

becomes Se' ds 5 which, as T 900 , and for T >> L'ss © s



UCRL~2997

-5~

can be replaced by J _ ds . The remaining t’ integration cancels

the T in the denominator, so that we get

@ _ yedp,
oty = 2Lk ki (KPS (ko) (33)

Clearly only the components of ,l;& perpendicular to u contribute. If we

(2) (2)
choose u in the z direction, only X, and X,, do not vanish:

2y ) m o
X, = Kyp = ﬂr—n——e—f— [eM >\ kmax —-—()\ kmax)/|+/\ hmax ] (34)

(Again we shall neglect the second term.)

To perform the veldcity distribution average, we must transform the
tensor X fj) to the coordinate system of the test particle. We find
‘that the coefficient obtained above, Sij (1-S:5) » becomes §; - U Ju*
Taking Y, the absolute velocity of the test particle, in the 2z direction,
we find that if the velocity distribution 'F ( V) is spherically symmetric,

the azimuthal integration removes all off-diagonal terms, and leaves

2) \ ‘ |
O(:J (V>=<4n‘f}oeﬂ/m1> @,] (V> &A(ADhmm)) (35)
_wﬁere

SN ET)

Qj(vx:sg(%f}(v av-s—gsf,r VY
v Ay ) e

)

wiN

Si (3 [FO)VY + NNV
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. .
and fo f (\/) J'Vr = 1 o For large v this reduces to

()

o<ij' = ‘”TP e SLJ (81,0 +8L2> @M (AD rnoux> (352)

v

while for a Maxwellian distribution we can also compute the low=velocity
limit

4 | S o
dfj)-— —I-é—\/_: nf.e ScJ' bn ()\D kmm> _ \ (35b)
2mt Vs ' _

As in the treatment of the dynamical friction, these relations are strictly
valid only for one type of field particle. However, it is clear from the
derivation that if‘ several types of field particle are present we simply
add their effects. | |

, _ (2)
The next coefficient in the F.P. equation, o<£jk » is of the

form T~ AVL AV AVk . In the exact expression, analogous to Eq. (31),

we again make the rectilinear motion approximation to obtain

o<LJK (Po/m t)jdt\.. fdt3 j‘dxo x 2o-ut) -qzﬁ,,—g_,t;)Fk (ﬁo-zo-ngts)

%) T
—~ / } /
= (/) S8t (36 (4l F (e F(x-ut SR (x/-ut'),
-_— 0 - o0 ~ fd ~ o~ Are
where we have used relative times as before, and one of the time integrations

has been cancelled against T, Fourier-transforming as before, and

performing the remaining time integrations, we get

B _4pe’ () E A |

cl = s Jarkdhs Sl ko k)SGew) S (00)
x B ke by (Repe )" (B2 4 p0)T (24!

Since k,, k2 s k, are constrained to lie in a plane perpendicular to u,

3
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() _
if we choose u as 3 axis,o(n-K=D unless i, |, kB +3 . Also since

ro-

'kl, k, and k3 form a triangle, only two azimuthal angular integrationa
are involved. If these are carried out, one readily'sees that C(HK° O in

all cases., When corrections to the rectilinear motion approximation

. () )
analogous to those in Eq. (2) are made, CYﬂn no longer vanishes, but

involves the correlation between forces at four different times, and thus

is of the same order as (ASV’)" le Thus instead of calculating the

This is equivalent to the result that the statistical part of the
dynamical friction is of the same order as the diffuaion‘coefficient.

3) :
modified Ol jK s we shall examine the next coefficient. This can be
set up as before, and if the same manipulations are carried out, we find

that for a particular relative velocity u,

()
Aijre = 4& fdh. o dky S (R 40 v Ry >g°“9*)3(°"’9355(°‘°a‘).

'xk.;mku (ke (Rye )] 0D

The integral is just a function of ,u. >\p and kmM , and therefore
C*?Xn.k , when averaged over the velocity distribution of the field
particles, diverges logarithmically for small relative velocities.

Physicaliy the reason for this divergence i that in a rectilinear motion
appfoximation)particlea of small relativa'valocity_ihteract with.each'other

" over long periods of time, thus producing a very large effect, In the
complete system, however, two such particles do not stay together indefinitely
but rather diffuse away from each other, a8 a result of interactions with

other members of the system. To obtain a more realistic result this effect

has to be taken into account, This is done in the follcﬁing section, 1ﬁ
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which it 4is shown that the effect of the spatial diffusion is to introduce

an effective cutoff at low relative velocit.iesb Using this result, one
can-make an estimate of the higher coefficients, and one finds that apart

from numerical and ioéarithmic factors (which.cannot amount to mo;e than

one order of magnitude), the coefficients decrease in the ratio (ezf?ol/B/kT)z,
i,e;, (mean potential energy/mean kiﬁetic energy)z, which for most physically

intereating conditions leads to extremely rapid convergence.
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IV. HIGHER APPROXIHATIONS_

Generally speaking, the determination of the F.P. coefficients

hinges on the determination of the values of expressions of the type

Flz.(e)].... Flz. (tn3J . The work of the last section indicates

that the rectilinear motion approximation fails for n » 2 (and even for

n =2 1in the case of a gravitétional potential for which there is no Debye
shielding). It is thus necesséry to depart from the rectilinear motion
approximation in the direction of taking into consideration the correlations
of the test particle with more than one field particle., Clearly, as long

as one considers correlations with only one. field particle, the motion is
determined completely by the initial conditions, whose indefiniteness
introduces the stochastic element into the theory. This determinacy is
present whether the motion is expanded about some unperturbed path, or whether
~an exact solution of the two-body problem is obtained. However, as soon

as one considers these two particles (both of which are now considered to be
"test ﬁarticles") to be in the fluctuating force-fieldbdue to the remainder
of the field particles, their motions no longer are determined, and the

"path" of a test particle is now to be considered as a stochastic variable.,

Since the forces in F [2, (t)]..... F [Z~ (tn)] " are obtained
additively from forces between pairs of particles, the distribution required
to calculate such averages is the Joint.probability distributionufor the
paths of a pair of interacting particles. This distribution is assumed to
be governed by a generalized F.P. equation, in which the coefficients serve
to eliminate the interaction with the remhining field particles. Since

these coefficients are calculated from expressions of the type

Flz.(t)) ..., F Lz (tn)] , ideally this presents a complicated
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set of équations for the coefficients, which:mﬁst be solved in a self-
consistent manner, Such a generalized two-body F.P, equation represents a
rather complicated picture of the diffusion of two particles interacting with -~
each other in a common random field. If as is the case in-most—problems of
interest, the ™mean" kinetic energy greatly exceeds the "mean" potential

energy, one expects that the mutual interactions will play a small role in

the diffusion (the particles behave essentially as if they were free), and

under these circumstances it will be a good approximation to decouple the
"paths" of the two test particles by neglecting the effect of their mutual
interaction df their motion. Thus the probability distribution for the

"pathﬁ of each particle is given by the solution of the one-body F.P. equation.

In this case, the nth F.P. coefficient obeys an ecuation of the form

d(n) - _;n ((><m d(n),“. > | he o2,

As can readily be seen by cutting off the divergent integrals in the previous
Q) ‘
section X decreased rapidly with increasing n , so that such an equation

can be solved by successive approximations.

(2) v
Since CKLj as calculated in Sec. III is small, and suffers

from no divergence difficultieé, higher corrections to it are small. On the

| , : ()
other hand all higher coefficients are divergent if o =0, and

-

therefore its inclusion, which (as will be indicated) removes the divergences,

is essential. Replacement of the rectilinear motion by the "diffusing" motion,

(u)
calculated in Appendix ; in the expression for c<i¢KL results in a very

untransparent expression. Since, however, the same convergence-producing .

{2)
modifications arise in a second-order calculation of _CXLj for the sake

>

of clarity we shall illustrate these features by a calculation of the latter,
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If the motions of the particles are now to be governed by a

probability distribution, Eaq. (31') is generalized to

Folz(eD]F Rl = jdﬁo dxi dx. dz, dz.

xR (2-X)F (Za-%) P [35.,,)5.,39 - - é,u]
- )(38)

where P [Xe,. ;2. 0 £,, k. ]  ‘is the joint probability that the
field particle (which is also a "test" particle from this point of view)
initially is at x,, and at X1 and x, at times tl and t2 respectivelj,
and similarly for the test particle. Decoupling the "paths" corresponds to

writing

PIxe, .3 2o s b b ] = PIx % b IP [ Ix, b~k ]

< Plzz., t )P [zlz, k-t ] PLx)
(39)

. 13
for t, > t;, and a similar expression if t, <ty ‘Here P(xj x5 tq)

15
If no diffusion is taken into account, the probabilities are replaced by

delta functionsj in particular, for the rectilinear motion approximation,

PIxix b ]= 3(x-%-ut),

is the conditional probability that a particle arrives at X after a
time tys given that it started at Xgo Strictly speaking, all these
probabilities should invelve the velocities, but since the dynamical

friction and'the diffusion in velocity space cause extremely small changes
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in the velocity over the time intervals of interest for diffusion in
coordinate space, we can neglect such changes. As before, one time

(z)
integration in the expression for CK;j can be removed, and if relative

coordinates are introduced, two spatial integrations can be carried out

imrediately to yleld

i = 2 [at fgq dy. de P210,t JPIx-x. 1o, £
| ["ZE-} Fi[ [z - X1~] .

AAe Ll

Fourier transforming, and introducing the solution of the diffusion

equation (Appendix C) we get, after carrying out the x integrations,

= A jdtfcne ki ki (140) “exp { k- (v -V )k - 32 K2

)

e

where K is taken to be the low=-velocity limit of the differential

coefficient in Eq. (35b). Performing the angular integration, we find

kmNK
@ _ qp.e? @ , -2
O(i,' = @ . Y t r
] m” S‘J JDOH-" J;C“z k (}Z +P)
l
. - ) . Sin‘e) "‘"2
- Jdoo)evp[iktlu-Y ] emb- 22k (10)
-\ 2ex?B, (=3

If oK were zero, the integral with 0052 © would vanish, and for small
= it will be small, Thereforé, for the purpose of discussing the
integral, we replace sin® @ by 1 - cos® ® and neglect the integral of

the second term. The angular integration then yields
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fimtﬁx Ly w
S LIy
. |“ﬂ A (kZ + "’l ) k JC l l 3 -
- _ Foe 45‘ j B .( 5 S . ) .
o 4 dk S n Yt ¢
mt |- | gl S0 4 N S R
. (w TN e
(41)
: | ‘ — 3
An examination of the integral over QD shows that for  >> k |v- y \

- 2
the integral goes to zero, whereas for << k |'Lf‘* \/ ) it aporoaches )

15 ~ . -
m /2. This provides a cutoff in the k-integration i.e, k= ¢ lﬁf‘ v \

1 _
g The @ integral can actually be done exactly in terms of Bessel functions

of' 1/3 order and related functions.

in order that the integrand in the k-integration not vanish, To estimate
this integral, we replace the @ integral by a step function, and obtain

approximately

L‘
4TTf. € tog — kan T+ '
m1|1,_—\/| D(L‘,g_\_/l' ' }A1 ) =" X

3

Thus the apatial diffusion provides a natural cutoff in the velocity

integrals.
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This feature persists for higher order F.P. coefficients. It is to be noted
that in. the a‘b'ove. expression, /u » the large-distance (Debje’) cutoff, may
“a'ctuajllfbe'i set equé*l to zero without de'svtroying"jcon.vergence . This is of
interest in astronomicel problems, where all forces are a;ttractii?e and no
natural "screening™ ‘d1stance exists. 1In such a case one would assume the
existence éf an unknown diffusion coefficient Oj » and solve the implicit

equations obtained above for this unknown %4 .
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V. CONCLUSION
In this investigation a form of perturbation theory (p.t.) was used

in a treatment of the dynamics of an ionized medium., Although for the
purpose-éf calculating higher order F.P. coefficients a departufe from the
original p.t. was necessary to avoid fonnal divergences, this departure
merely indicated a natural minimum relative velocity cutoff, which could
then be used to make the p.t, convergent. That the p.t. is well suited to
the examination of effects on a particle due to the medium excluding the
nearest neighbor is evident from (i) the smallness of the corrections to a
particular F.P, coefficient and (i1i) the rapid convergence of the sequence

of successive F.P. coefficients which for practical purposes reduces the

~general F.P. equation to an ordinary diffusion eouation. Of course, to obtain

v-the correct expressions for the F.P. coefficients, the effect of the nearest

neighbors must also be consideredvby a collision treatment, which contains
the exact dynamical path of thé two (nearest) particles in interaction. One
can however extrapolate the p.t. 80 as to include the nearest neighbors,
which corresponds to working with the unmodified Holtsmark distribution

(cutoff at the distance of "nearest approach"). It turns out that this
, ' : 1/3
extrapolation corresponds to replacing kg, ~_ f:’o / by ~ K.'l‘/e2 ,

the minimum impact parameter., When this is done, the results can be
compared with the calculation of these coefficients using the exact solutions
of the two~body equations in a Boltemann type treatment which was carried out

by D. L. Judd, W. M. MacDonald and M, Rosenbluthqlé The "extrapolated" p.t.

16 . .
To be published. See also S. Chandrasekhar, Ap. J. 97, 255 (1943).

coefficients agree with the results of this calculation 'y from which one can
conclude that the perturbation approach is valid over wide ranges of relevant

parameters, and its ease of handling may make it particularly useful in more
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complicated problems, such as that of an ionized medium in a strong magnetic
field, where the smallness of the Larmor radius relative to the other
"lengths" would make 3 collision treatment very difficult or even meaningless, N

The authons ould like to acknowledge interesting discussions with

Drs. D. L. Judd, Wr. ¥, MacDonald and Marshall Rosenbluth.
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APPENDIX A

To clarify some aspects of the use of the Fokker-Planck eguation in
this paner, we now give a formal derivation of that equation. Let W [E izﬂl
be the conditional probability that the system be in a state x:{fy.~f§~,f:uAfé}
at time t, if it is known to have been in the state x(o) at time t,,

(0)
Since Hamiltonian dynamics represents a Markovian process, W [ﬁ \ﬁw ]

satisfies the Chapman-Kolmogoroff eauation,

w S = Jw el f oo w [T 1]
W[fmlz’}zm-m + RKoox k) (a-2)
K. (xox', £) dx = O e

" this becomes

AW ¥ T = w X ) -

[Ketex Eyw (XX ] ax, (o

—
X
a X
® <
[S—

!
It is convenient to separate kft (X , X, t ) into a diagonal and

a nondiagonal part,
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Ke (ox ) = =5 (-x' 1 (ee) + T (xuxd, k),

where, from (A-3),

JT@ (X,x',t)dx = \/T(ﬂ(x’,l;). (4=31)

loy
Ir Vg (X't)= O , then

jT’C (X'X’/ t)d)( = o) i (A-3")

and we can proceed by expanding rﬂt ( X, X', t > in terms of the

elements of the set. of improper functions

n
-1) (n)
.h\-l/'n(x): (-—r-]—r S " (X) (l’\:’,i,,.,}, (4-5)
that satisfy the requirement (A-3"), and which together with the set

oy n

Y, (x) = X | (n=1.2,...) (4-6)

- form a bi-orthonormal base,

qun (x) W, (x »ﬁvdx = Swn . (A=7)

Thus, writing
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N

=) S |
7}(&xﬁt>=:ZL(H%~S(Wx—xﬁ\ﬁ\[x,t),

(A-8)

‘where by (A-7)

VP (xe) = fdx (- x) Ty (%0 %0 k),
we find that

R

2, W=7 ;gé”d-ex*-} o) W

x(")J
to o (a-9)

We may remark that if T —> O the difference equation becomes a

n=

differential ecuation, and furthermore, as long as we are dealing with the
complete system subject to the laws of Hamiltonian dynamics, ‘V,Lf"),-v ’CrL s
s0 that only the first term in the summation remains and we obtain.the
well-known Liouville equation. To obtain a corresponding equation for

()

w ( i' Xt‘ , the conditional probabilit.yfor one particle to be found
[~

at x; {iu, E.} at time t , given that it was to be found at
)
x{o) { ’Ci,( 0), Efo } at time to, we integrate the whole equation over
(v) ° . o
di d8 (E d¥%a O|XN dX; ' d )(,f,\ ) after multiplying both sides by

W [§(°’] XL, } , the conditional probability distribution for the

(o) (0)
configuration z s given a certain value x at time t, .
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X, | X
Then AQ\ ( ' E'o >

Y, W & e v W W g™ kL)

e

N : n n (o)
: - d (n) X, B Xu
S5 e 4 e v ner, mw[
| , nt dx,

. (n)

“For small T, V¢ (X,. gt > depends very strongly on { , and will
exhibit large fluctuations. It is expected, however, that as T is
inereased (but still kept small enough so that no large changes occur in
the system in that time interval), a secular component in \Aéf) tends

- to become dominant compared with the fluctuations, and over that range

2
(the "plateau region" )

B L)) tn) ’ . |
\/.,: (X.;g. {:) ~ TA (X; t ) ~ smaller terms of_O(t") depending on fl

- for the physically interesting distributions in § . Equation (A-9) then

becomes
T"A&)( xt.‘:’>? i (-_ﬁ\_')“i_ [ ™ (g, £) W (x}’éu)J (10)

Since we have specified ‘[  small enough so as to preclude significant
- changes in the distribution, the lhs can be replaced by the time derivative,
It is this equatlon that forms the starting point for the approach to the R

problem of ionized media used in this paper.,
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( ,
Note that if in Ba. (&-3'), V.0 (X t) doses not vanish,

condition (A-3") is no longer satisfied, and (A-5) no longer forms an

appropriate base for expanding tr(x, x'; t). A differential representation

) {
of form (A-9) is then no longer possible. Since- \/Tf>

(at least as T— 0)
may be interpreted as the rate of depletion of the initial state, a non-
vanishing \/éo) suggests finite discontinuous changes in the system, which .

may better be described by a collision treatment. Thus if one writes

Kt (XNX’, f) :-A- S(x-x') \/'[SO)(X‘{:>

.Z’(-'? S x=x) VI x E) 4 Ry (XX b)),

the first énd last terms of this expansion correspond to direct and inverse

collisions respectively.
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APPENDIX B

We shall now derive the probabilify distribution function for the

force F on a particle located at the origin of the coordinate system

whose action is due to its distant neighbors. The J\p partiéles located

closest to the origin are regarded as close neighbbrs° The positional

probubility of all particles (both close and distant neighbors) is governed

by a Poisson distribution function. This choice of a function is intended

to reflect the fact that

1. the gas is rare. As the volume element dV(r) shrinks to zero

the number of particles dN(r) contained in it also approaches zero.
2. the total number of particles contained in dV(ri) is
statistically independent of that in dV(r-j) (14 3.
The distribution function for the force W(F, N° ) is readily

expressed in terms of the joint distribution function

\J

N | R )
w' <dr;(rll) = D115 o-o di\l(rlv) - nlv ) dN(er) = Dpys eoe dN(I‘Zy) = W;zv)

- for the position of the distant neightors by means of the ecuality

W[E,u’\f’] = Z_J S<E "emﬁ?-; Mi= ,C""‘/r]s)

(nix) '

M .
W [ e Nae ey 1)
: B-1

The index i in this expression is intended to designate the radial
distance of various volume elements from the origin; o< , the angular
parameters of the volume element in some chosen coordinate systew. ?b@
letter ng o is a possible value of the stochastic variable dN(rjq )

restricted to positive integers or zero. To simplify the notation we
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employ the value of the stockastic variable ny to designate the

distribution., We also define:

N T— Z Miw | CI——N—(PL)': Z_ Ol—l;ln(r[uy,

where the bar in the last exrression designates the mean of the variable.

For an isotropic distribution-~which will here be assumed--we also have

(R,

dN (r{‘,{) - (H]T)" de C]—RJ (T‘L‘).

It follows from this assumption together with the fact that the underlying

distribution is of a Polsson type that the conditional probability

W [i{m‘*} \ {n‘} } defined by

W T {nwd] = Wl [Hndl W tnit), o,

may be expressed as
Ny
W[nn'*-n‘y;\’]2,\\”17))\..ln| n-._]: Wnt ,' W _(.c‘_ﬂﬁ_‘_j
! + Moo !

_ T (aﬁmw““‘ﬂ A

« T ne N AR (e

}n; ° (B"B)
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The statistical dependence zrising from the neglect of close neighbors is
then reflectad in the structure-of W'Nknl n, ..0) alone, -
Combining (B~2) with (B-1) and employing a Fourier representation

for the delta function we readily obtain

.y - : }2' "
WIE &= (em? [ap e~ " qno (B-4)

where

@)= o emdem). WY (n,m, )
(no) ' (B-5)

and

B i | bk(ex ni
& (h) = { s dN(riDexp (Lkix) 56)
dN(r) .

The unfamiliar symbol in (B-6) is defined by

qu = (8-7)
4T II:F . :
We now decompose the sum in (B~5) into summands
=
CP(h): Z s")
(=)

~ where

>
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L

w
}

1 - Z_ Z Z_ Lemlem).. Wld\r(nl‘r)?»"' )*

nyoe N2 0 N30

[ )

> Z > elnem). We (0.0 0y, )

L2
N
(3}

53 = ;Z. Z Z Co E(nQ 8(7\4) WSN(D:DJH-?/“ ))

(B-8)

4 ° 4 o o © P & @ ° ° °

Because of the restriction on the summations of the right member of (B-8),

W
the quantities Wy (0, 0, o0 0, ny, ny Ly «os) may be factored as

0 = W) R (ANE)P, (dR )., @9

£
i

We (0.0:0) By (AN ) B, (dN (1))

Equations (B-9) are expressions of the obviocus fact thatonce a distant
neighbor has made its appearance, in dV(ri), the distributions of distant
neighbors in dV(ri +1+ S) are statistically independent of the particlesv

in the remaining elements of volume. In accord with our assumptions

] = c (B-10)
[ nl .' )

W) = P (dN(R))

_ , dN (r)™ - dNn)
N )

W20, np) = Z RNE) R s (dN(r)Y) (B-11)

’!

W3(0, 0, n3) =

R (dN(\’.)er NP (AN (),
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The elementary but somewhat tedious summations may now be carried out,
yielding the result |
—_ N-) -
—\ [Nm)] NS
Gry= [dNIF) 2 _ e |
(N-1)!

(B-12)

X eXP[S:QdN(r'\ { e %’f‘;f'»‘?'/lt"’__ ' ’} J
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APPENDIX C

In this appendix we cutline a method of solving the constant-
coefficient diffusion equatimuhich is used in Section IV. The present method
yields the solutions in a form wore amenable to further integrations than

those obtained by Chandrasekhar. The equation to be solved is

o o |
Y- () -x V=0, @
Writing

f= f gk Bep(ckrsity)dkdl,
we obtain
) . A
2qlk ) ke Vgle b)) pro-vgle )

+ «{*qg(k, L) = O.
This equation is easily solved by the method of charadteristicslsqkor which
RObSee, for instance, Courant-Hilbert, Methoden der Mathematischen Physik,
Interscience.

at = 1, ak - Bl -k dg = - L%
ds ds PE-k, &’g

On integration, these give
. ' | - 2 2pt . 24
v L C}/’\oz-o({(ﬁo-ﬁ JS) e2p" +2(£°‘%—"\’S>°h e_ﬁ_a!

24 S
y ROP t})
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_and ‘ '(,o e [5”' '&« + ( ’_'gj“ - !5_' ’ti ) e“ {bt .
Since we require
£(x, v, 0) = S(ﬁ—ﬁo) S(y,t-gg) s
-6 °i§i§o - #gﬂxo
gO = (2‘”) e ) °

From these equations a complete solution is obtained., If t‘3 << 1,

i,e, little damping has taken place,

ex (amy S b ol o)

In this case,

Pix b) = [dy fx.v.b)

= (2m)? jca(dg,o‘,t)ei—é'?‘ dk

has the Fourier transform

L ke (Xet Vo -4 143
am® o~ HE(er k) AL

which is the expression used in Section IV.
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