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ABSTRACT 

A lower limit is found for the momentum derivative of the 

scattering phase shifts of a relativistic neutral twc=particle system 

when the interaction is of finite rangeo 

* This work was supported in part by the United States Atomic Energy Commission? 
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MOMENTUM DEPEND~NCE OF PHASE SHIFTS 

Charles J o Goebel 9 Robert Karplu~ 9 and Malvin Ao Ruderman 

Some restrictions on the momentum dependence of the phase shifts 

for a nonrelativistic scattering problem have been discussed recently by 

1 Wignero In this note we derive a somewhat stronger restriction for the 

phase shifts for therelativistic scattering of neutral particles confined 

to a single channelo The latter condition essentially means that we are 

dealing with a first quantized fieldo 

The proof is based upon the ur1itarity of the partial S-matrix 

referring to a single phase shift and to the completeness 9 outside some 

radius a0 9 of the asymptotic wave functions describing the scatterer and 

scattered particle in the center-of=mass system in a given state of anguiar 

momentumo We shall restrict our discussion to S~waves; analogous theorems 

are \~Slid for other angular momentao 

For nonrelativistic 5-wave scattering~ upitarity and completeness 
2 3 2iak 

have been shown f) to lead to the conclusion that S(k)e [ a '/ a0 J ·, 
4 ' 

if it has an analytic continuation, ' is a regular function of k for 

Im k > 0 as long as I).O bound states are present o If there are no branch 
3 

points~ Ning Hu has shown that one can therefore write 

218 (k) 
S(k) :: e 

=2iak 
= e 

a. "' a / 0 

Tf 
8 

Im k L ·0 e 

The k8 for different s are not assumed to be necessarily distincto 

The form of Eqo (1) is dictated by the absence of poles in the upper half 

plane and by the condition 

(1) 



21·s (k) 
S(k) :: e 

=21 ~(-k) * 
: e : S (=k) o 
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(2) 

For a relativistic particle the energy is a double-valued function, 
. ± 2 2 i . . . 

E = (k + ~ ) , in general the scattering amplitude depends both on k 

and E so that cuts must be introduced in the k-.plane along the imaginary 
3 

k axis .from if' to ~ and =1ft- to -iQO " Following Hu, we can 

write 

-2iak 
S(k, E) = e Tf 

(S 

* * (E - E )(k - k ) s s s (3) 

-12 2' S(k) has a pole at k :: k
8

, E : E
8 

= k 6 "'-fA . but need not have a pole 

at k ~ k8 , E = -E8 ~ we have s*(k, e) = 5(-k, E) in accord with unitarity 

but there is no s.imple relation between S{ks E) and S(k, =E)o But for 

a real field (neutral particles only) S(k, E)~ S(k~ -E), so that for 

every factor in Eqo (3) contributing a pole at k5 ~ E8 there is one 

contributing a pole at k9 ~ =E89 When the pair of factors with E
8 

are 

multiplied, Eqo (3) reduces to the form of Eqo (1). 

We may solve Eqo (1) for the phase shift and obtain 

0 (k) :: - ak -t- Z 
s 

-1 tan q (k) :: 
s 

where we have introduced the angle 

and the function o( 
6 

(k) , 

(4) 

(5) 

(~ \ . 
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The properties of the derivative of S(k) with respect to k~ 

denoted by a dot~ are related to those of the derivatives of e and ~ ~ 

(6) 

~ 

Because the poles of' S are all in the lower half plane, however, o( is 

always positiye, 

> 0 ' (7) 

whence 

(8) 

Actually, the properties of ,.../ 
'-1s permit a still stronger statement on the 

' 
lower limit of & 0 By comparing Eqs. (5 1 ) and (7), we may °Conclude that 

But this implies that 6 has the lower limit 
s 

0 

1 I o(s I = 
k l+o(2 

s 

• 

1 J sin 2 e
8

) 

2 k 

(9) 

(10) 

and that 9 in turnil 0 has to be great·er than =a by a positive definite 

amount 



• 

~ >-a+ ...l.. 
2 k 
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Z. - a+ _L \ sin 2(8 1- ka) \ 
2 k 

(11) 

The last part of the inequality can be easily deduced b.Y induction, starting 

with a sum over two terms» 

(12) 

6/ sin e1 \) cos e2 j + ' , sin 82 ) } cos el l ~ \ sin e1 \ + \sin e2 \ • 

Equation (11) above corresponds to Eq. (5a) of Reference 1, but differs in that 

the oscillating term always makes a positive contribution. 

When bound states are present S(k) of Eq. (1) has simple poles in 

the upper half plane at k ~ iXA such that the energy of the bound state 
I 2 2 I 

is 1 r- - ~ . Then the rhs of Eq. (1) will have a factor 

and Eq. (12) becomes 

• s 

k + i '2 
k-i'K) 

Another inequality which can be stronger than Eq. (11) and is 

(13) 

(14) 

valid for real fields even if inelastic processes enter at higher k~ follows 

from an application of CauchyUs theorem to exp (2i g(k) r 2ika). Since the 

integrand has no poles in the finite half plane. if there are no bound states~ 

~ 
\-



' 

Cauehy~s theorem yields 

2i [&(k) + ka] 
e -= 

~ 

p \ dt 
1fi J t - k 

..,..oO 
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· 2i [& (t) + ta J 
e (15) 

By differentiating Eq. (15) logarithmically and using &(k):: -8(-k), we 

obtain 
e/4) 

s (k) = -a + t ~ dt sin
2(& (t~ - 0 (k) +at = ak) 

(t - k) . 

(16) 

_oO 

>=a • 

The integrand of' the rhs is always positive. Therefore a knowledge of 5 (k), 

even over a limited region of' k~ contributes a lower limit to the entire 

integral in Eq. (16). 5 

For the partial 5-matrix of' Eq. (3), which describes the scattering 

ot a charged relativistic particle, even the inequality (8) will not hold 

in general; it does not seem possible, therefore, to apply the inequalities 

(8), (12); and (16) to the scattering of' charged mesons. Furthermore the 

possibility of' charge exchange makes even Eq. (3) inadequate for the S-wave 

scattering of 7/0 
-mesons by nucleons. Under .the transformation E ~ =E 

. 2i 0 + _·t 
the partial S•matr:i.x e 3 for 11 +- p -77T + p becomes that for 

- _,.,r ..1- 6 1!' +- p~,, T p. In a charge-independent theory, for instance, 

0 
2i ~3 (=E) f(= f- p ~71 +- n- can take place» e can not be unitary, and 

8 3 (-E) cannot be reaL 

Nevertheless some information about the range of' interaction can 

be inferred for the meson-nucleon system. Completeness and unitarity give 

the relation 
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oO 

\ ikr J dk e 

-oO 

where s(k~ + /k 2 +~ 2 1

) may be the partial S-matrix for 7ft+ p -~-f!/t + p · 

or tf-+- p 7 r 0 + n. Charge independence relates the charge exchange 

amplitude to the two elastic amplitudes, and the t.f+ amplitude becomes the 

complex conjugate of that for ~- when the sign of the energy is changedo 

Completeness, unitarity~ and charge independence lead to the single relation 

oO 

j 2i¢3(t) 2i¢l(t) 
....L ~ ± e u i - t - k 

dt (17) 

where 

and 

Differentiating both sides of Eqo (17) with respect to k and then setting 

k = 0, we obtain 

oO 

2 8:J<o) +- &l (0) +- 3a = rr s 
-00 

2 ¢ 2 . 2 sin 3 (t) + sin ¢1 (t) 

t 
dt 0 

(18) 

With Orear's extrapolated phase shifts~ 

and ~ 1 : + ol6 _J£_ J 

j'AC 
(19) 

the .. ,complete neglect of the positive definite integral yields a. .z .02 ~ • 
~c 

A stronger limit on a is easily obtained if we use a linear 

approximation to the S-wave phase shifts.7 The integration in Eq. (18) can 

be carried out, with the result 

i\_ 
\ 

I 

f 
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(20) 

From this we can infer 

(21) 

, 
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