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ABSTRACT

This report presents the theoretical arguments concerning imperfections
in tracking and deviations in rf amplitude, with formulas and graphs esti-
mating the magnitude of the various effects.
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INTRODUCTION

In a machine of the synchrotron type the accelerating fields give rise to
forces that tend to keep the ions bunched near the proper phase for acceleration.
If the parameters of the system -- such as the magnetic field of ‘oscillator

- frequency or amplitude -- vary slowly compared to the period of oscillation
about the stable phase, the ion bunch adjusts its phase and spatial position
correspondingly without 'loss of ions or appreciable increase in amplitude of '
phase oscillation. This is true for unintentional as well as programmed vari-.
ations: 'If the variations are more rapid, the bunch does not follow as well;
there is a tendency to stimulate phase oscillations, and some of the ions may
fall out of synchronism. For example, if an ion bunch is riding at synchronous
phase and the accelerating voltage shifts in phase by 10° in a time that is short
compared to the period, the ions will thereafter oscillate with a 10° amplitude.

In the proton synchrotron, unintentional fluctuations in the machine's
parameters are particularly serious. The phase-oscillation frequency is in
the range/of 1 to 2 kilocycles, and there are many sources of disturbance in
this audiofrequency range. The accileration goes on for a long time, so that
random variations can lead to a large cumulative effect. Phase damping ac-
companying the programmed changes in parameters is negligible, so that
there are always ions executing large phase oscillations and ready to be dropped
out of synchronism by an unfavorable fluctuation.

It is the purpose of this report to present a guantitative treatment of the
effects of fluctuatiqns. The essential results have been worked out by the
Broockhaven group;” here the derivations are presented somewhat differently
and examples of local interest are included.

RANDOM FLUCTUATIONS

The phase motion of the ions for srﬁall deviations from synchronous
phase is described, if damping effects are neglected, by the differential equa-
tion ’ '

a’ 2 dw 9y " ! 2

6 + w8 = = - - dw tan ¢ (1)

A dt 2, H dt s’

at P Coaema ey S R

a
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© where 6 = deviation from synchronous phase,

wé: phase oscillation angular frequency,

W = deviation of oscillator frequency from the prescribed value,

h = deviation of magnetic field from the prescribed value, ?'}\
"wo = rotation angular frequency, , ' N\ }
. . \wv‘
¢S = synchronous phase, -
a = fractional deviation of rf amplitude from the prescribed value.

This equation is sufficiently good for estimating the effects of fluctuations
unless the fluctuations are periodic and of frequency near . In that case
the nonlinear character of the phase oscillations is important, and a different
treatment is required. For the present, it is only necessary to remember
that the phase motion becomes unstable for 6 ~1 radian under normal oper-
ating conditions, so that a fluctuation should be regarded as very serious if
the calculation predicts an induced amplitude of that general magnitude. The
solution to Eq. (1) may -be written

6 = 90 sin (‘wpt +8) + ® (1), ‘ (é)‘

t -
\. . _ 1 \L dW wo 1 dh
where | ®(t) = 5 Etv Ty (TR20y '’ aF
, P TR

-a wpz. tan ¢s]' sin wy, (t-t')dt'. (3)

, The first term represents the oscillation due to the initial phase dis-

- placement and velocity, and the second term is the additional phase displace-
ment induced by the fluctuations. The simplest case to consider is that in
which the disturbances are sinusoidal with angular frequency p . For ex-
ample, if -

a =0,
w =W0 cos (pt),

h =0,
-W p, .
then (t) = ___2.._.._2. sin pt - sin w]
| o (

The fréquenc'y modulation W is of course accompanied by a phase modu-
lation,

~

t w
q,zj Wdt' = ¢ _sin pt = —2 sin pt.
o - ° K
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@ (t) is in general small unless: = w_, in which case the formula
does not apply, as mentioned above. However, it is probably indicative for,-
' -~ say,

=12 w_ ,
" P

in which case we have

t - = i t' - J2 sin wt’
Enrw J2 sin wj ZLIJ 1nﬁwp J2 sin wp_7

m_+

in the presence of frequency modulation. Thus 20° of phase modulation
could be serious even for a frequency 40% off resonance.

Next, consider random fluctuations. For this purpose, it is better
to rewrite Eq. (3) by integrating by parts to make frequency and field errors
appear explicitly:

®(t) = - w, tan ¢_ i a(t') sin @ (t-t)dt'

w

+ S‘ E(t') - ‘ ° —-H-—_Wcos oy (t-t%) dt“ :
0

(1-n )(l+_K)

+ boundary terms; (4)

or, if phase errors are of primary interest, to introduce
G (t') = JL W(t'')dt'’

and integrate again by parts:

®(t)> = v, tan ¢_ £ a(t') sin @, (t-t')dt’

t {
Jo E%_) cos wp(t-t")dt" - o, L P(t') sin wp(t—t’)dt'

RN
(l-n)(1 '+HR> .
. . boundary terms. (5)

The boundary terms do not lead to cumulative effects and may be dropped.

To illustrate the method of calculation of the cumulative effect of
random fluctuations, suppose that the frequency changes by an amount w
) for a duration of time T starting at random times t. Then, from Eq. (4),
- ‘we have
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| €+ T -
® (t) =Z W ( . cos w_(t-t')dt’
i t. P
i
, T w r .
= - 2 sin ...IZ?___ zl:a; cos w, (t-t; - =) ' ' (6)

where the sum is for all ti <t.

After N such disturbances, and before the {N+1), ® will be oscil-
lating freely, as can be seen by rewriting Eq. (6):

w T , N
@(t) = - 2 sin p cos w_t Z ¥ cos w {t. +7/2)
> P o wp p'i

. N
. W
+ sin wpt .E;, T (ti + ‘7/2)}

1=] . P

: The amplitude is the square root of the sum of the squares of the two
parts 90° out of phase:

v 5
2 wp’r N w v
4 sin — ; 5~ cos wp(ti +7/2)
i= P
2

N
— W _. _ _
+[1 1 T‘TI; sin w (¢, + 7/2):| }

2 wp”’r' w 2( N - '
4 sin” P <.%> {Z [cos W (t; +7/2)

(ampl)?

&

=]

(=

+ sinz wp(ti + 7/2)] + cross terms

Now if N is large and phases w_(t. + 7/2) are random, the cross

' i
terms will be positive as often as nega%ve, so that the positive quadratic
terms, which add up simply to N, willdominate. Then

N , (7

w T

2w
'u)—i) 51n—T—

ampl ~

The actual amplitude induced in a given acceleration period would be
larger or smaller depending on the precise succession of t.'s; but if this
mean-square formula indicates an induced amplitude of 1 radian or more,
one would expect that successful acceleration pulses would be rare, the more
so the larger the indicated amplitude.

a’
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Equation (7) demonstrates the sens1t1v1ty of the beam to such fluctu-
ations. For examp’le, take _ ‘ R

2. TerOOO sec \1',:. S

H

W
p

w 2 mx 100 sec_l,

T =200 psec;

then this type of disturbance could only be allowed 100 tlmes a total dura-
tion of 0.02 second with a phase slip each time of + 7° '

Corresponding calculations for a sudden phase'shift 1[10 or jump in

rf level a lead again to Eq. (7) with wi replaced by i]Jo or a_ tan ¢S
/ P o
respectively. If the disturbance consists of a positive square pulse followed
1mmed1ate1y by a negative one (s1mu1at1ng a differentiated square pulse) the
wT - w'r

effect is to replace sin —ZP; by (1 cos T in Eq. (7) The magnitudes

of the effects are thus comparable unléss the duration is short compared to

a phase- osc111at10n period, in which case the single square pulse is relative-
ly more serious.

Before random errors are discussed further, it is worth noting that
the above development can be applied to the question that occasionally a-
rises concerning the phase motion induced by the use of current markers in
tracking. The frequency does not track continuously but in a succession of
straight lines, changing slope at each current marker. If the frequency
error at each marker is W and each comes at time tn’ Eq. (4) becomes

. Y+l Vn ‘
®(t) = ; ~2 T ,:cos Wy, (t-tn+1)-- cos wp(t —tn):'
‘ P n+l n’ , : :

summed over tril'< t.

The successive magnitude and phases are unrelated to the phase-oscil-
lation frequency and may be treated as though random. The mean square
amplitude is than

o

Where N is the number of current markers passed. This might amount to
10° for a 1% rms error in oscillator frequency. -

' NOISE

A type of fluctuation always present is that known as noise. Since it
is difficult in this case to distinguish a structure and estimate the number of
fluctuations, as demanded by the preceding formulas, a different formulaticn
is indicated. It is shown later that the two approaches lead to the same re-
sult.
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Consider an ion suddenly subjected to a series of errors in field, rf
voltage, frequency, and (or) phase. The disturbances persist for a relatively

long time T, after which we want to know the magnitude of the.induced oscil- ¢
lations. For definiteness we shall think of frequency fluctuations, though the
same analysis applies to any of the types. First decompose the fluctuation - $h

in a Fourier series of basic peried T:

WO S e sin (ZBE ba). e

(o] n

The summation extends from 1 to a value of n correspondmg to the
highest frequenc1es passed by the system, that is, to

n = Tv
max . max

"Noise' means a type of fluctuation that has a Fourier decomposition
in which the phases a  are. random and the amplitudes € are selected
from a probability dlstrlbutlon of some sort. That is, on successive acceler-
ation periods the noise is different in detail ‘and the en's quite different if
the particular structures are analyzed; but after many periods, the en's
fall into a certain probability pattern. ''White'' noise means that the ampli-
tudes follow a Rayleigh distribution,

i

€+ 2

- n
- - Zen ';Z'
P(en)den —— e den ,

where a is the rms value of €

This calculation, however, involves only'vestimates based on mean
square values, so that it is not necessary to distinguish between various
distribution laws. Before deﬁFrmining the phase oscillations it is appropriate

toc relate the rms value of . to the e 's:
: = @ n

t
2 2 :
W _1 S . 2mwnt . 2wmt
o = T ) dt Z € €, Sin (—T—..— +qn) sin ( T + o‘m)
o . n,m :
"max —
= ]_/2 b . € 2 :"1/2 € - Ty .
% n o n max
e L .
That is, : .

max 0 rms - i -
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Insertmg Eq. (8) in Eq. {4) and integrating to time T, we have

. . . o Te T /cos a (1 Zcos wp’I»‘)v + ;22‘ 51npr sin a, /
®(T) =5 =2 S 4 - (10)
m 2 Z
v n n- - pr
‘ | <’ TT >
(\-’r In this form it is apparent that only the Fourier components in the nelghbor-

hood of the phase osc111at10n frequency are 1mportant

w T
Let =N + v, where N is the 1argest integer less than 'ZPTr—"

Then, if only terms for v << N are retained, Eq. (10) becomes

w T _ e

®(T) = -Zoﬁ 2 ' Kp sin ¢/2 sin (Y/2 ,+0.n),
Y- . .
2T
where U = o T -27N
2 2

Then ®2(’i')

1/2(;%?-) Z(ve—f“p)z sin? y/2 ,'

where the cross terms have been dfopped as in Eq. (7), this time because
of the randomness of 0’ and sin“ (a + §/2) has been replaced byitsaver-
age value, 1/2:

The phase { is peculiar to the exact time T of observation and
should be averaged out:

2 19T 2 ™ sin® @2 du
®@(T) = Z’<-Z_>L €, (Z T F -
v . [¢] (V—.ﬁ
2 o
B ;wz on Z 2 21rVsinx‘ dx
A v J =
v r2m(v -1)

Finally, to obtain a means square value for ®, we should replace each

€, by its mean-square value:

2wy —\2
2
@*(T) = w/2< ) ZZX Smxdxﬁr <T:r ) A
v : '
Then, usiﬁg Eq.b(»‘))‘, we have " -

o W2 - -
®. - =1/2 W <_._> L (1Y)
rms rms\v

’ max . .
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Etiuation {11) imposes a rather strict.condition on the rf system. For
example, if T = 1 sec, Vmax ° 2 x 10 cps and 6 ms is required to be negli-
giblé -——i.e. . 5° __ the tolerance on noise level 1s : . !

frris "
< 4

—7— <4cps,

which is about 1 part_in 105 of the osqillator frequency.' It is hotewbrthy that

the induced amplitude does not depend on phase-oscillation freq#ency or rotation
frequency; in fact, it does not even depend on bandwidth, for ZIms ;g

\4
max

strictly the spectral dens1ty in the vicinity of the phase-oscillation frequency.

The earlier calculation can be‘rephras'ed in noise terminology. For
example, Eq. (7), for square impulses of short duration, is

(ampl rms - W’r\f_

In this case we have

m—

2 2 T™N
Wo=vw
for N i@pulses in total elapsed time T.
Therefore
(ampl) = Wrms JTr
However, a Four1er analysis of a succession of square pulses of duration T
would contain frequencies up to Vonax 1/T . Therefore the expression for

the amplitude a:grees in magnitude and functional form with Eq. (11).

- Finally, the formulas corresponding to Eq. {11) are:
for rf amplitude noise,

- ' p T
erms =%rms .7 tan <l)s v , and
: : max
for magnetic field fluctuations,
A h T
rms z (1-n)(1+§g’—’) Hrms Ymax

Influence of Damping

The characteristic effect of damping can be seen by considering a
simple case -- that of an oscillator subjected to a succession of impulses,
equal in magnitude but applied at random times. First, if damping is neglect-
ed, the motion after the first impulse at time tl will be

6 =5 sin wp(t—tl),
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where & is the amplitude induced by a single impulse applied to the oscil-
lator initially at rest. After the second impulse, the motion will be

6 = & 51n-wp(t-tl) + 6 sin wp(t-tz),
and so on.

Applymg the argument following Eq. (6), we have the rms amphtude
after N impulses, :

(ampl) =JNs . , ‘ (12)

If the oscillations are damped then the motion followmg t wi_ll be
9—6D(tt)51nw(tt)

and so on. Here D(t, t,) is the amount by which the amplitude has decreased
from time t; tot. The argument is now slightly modified, for after averaging
out the osc1111at1ng terms the damping factors remain,

(ampl)? = 62 f_ D¢, t)"‘62 dN D2(t, t")at’, S (13)

1 ‘
where '(altﬁ is the average rate at which the impulses occur.

In most familiar oscillating systems the damping is exponential; i.e.,

D(t, tl) = e-q' (t—tl) R
where a is a positive number. In this case, Eq. (13) can be integrated,
with the result o . . ‘

_ 2a(t-t,)
2 2 dN 1-e - i
(ampl)” =6~ F Za
For t sufficiently large,

' 2 §% AN
(amp)® = o &,

independent of time. This is why a pendulum does not start swinging by it-
self under the impulses of air molecules striking it. One should say that it
starts to swing but, because of damping, quickly settles down to an unobsera-
bly small amplitude.

Damping in an accelerator is qualitatively different in that it follows
a power law rather than an exponential. Using

v\
‘Dit, t') = ({-)

we get, by integration of Eq (13),

2 2 4Nt t) anr L
(ams1)” = & T = 1'"<T> B
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which becomes, for 't »t;" ,

S 1
s N B . -
{(ampl)” = 8" 5—q = . 3 | o o | .
identical! with Eq. {12) except for the numerical factor in the denominator. :
For n=1/4 or 1/2, as is common in accelerators, the change is not great. =

A power -law damping only decreases the rate of build-up somewhat, but does
not limit the amplitude. The conclusion would be that damping in an acceler-
ator is not of much help in counteracting random disturbances.- v

Sinusoidal Perturbation Near Resonance’

"The differential analyzer has been used to develop the phase motion of
a synchronous particle after the initiation of a sinusoidal frequency or phase
perturbation. These trajectories are difficult to predict analytically because
of the nonlinear nature of the phase oscillations. The nonlinearity is of great
value in preventing loss when the perturbing frequency is near the phase-
" oscillation frequency, so much so that the ions can tolerate a much larger
perturbation of pure frequency than of noise. ' :

The results of the analyzer runs are summarized in Table I. FEach box
represents a run, and shows the amplitude of phase modulation (denoted by
A) and the resulting maximum phase deviation of the ion from synchronism
or the survival time if the motion is unstable (denoted by B). w},w is the
ratio of driving frequency to the phase oscillation frequency for small ampli-
tudes. /Some of .the runs are shown in detail in Fig. 1 as examples; marked *

The results are also given in the form of graphs (Figs. 2a and 2b). Here
an attempt is made to plot the phase - or frequency-modulation amplitude that
separates the stable from the unstable region. The division is not at all sharp,
for not all ions would be damped by the same perturbation, the effect depends
on the amplitude and phase of their phase oscillations. The dividing line
does, however, agree reasonably well W1th exper1ments in wh1ch perturbations
are dehberately introduced.

It is worth noting the gain in stab111ty due to the ronlinéar effects. From
Table I, for example, we see that 3° of phase modulation at resonance produces
a 60° excursion of the ion; a 60° amplitude would be induced in a linear oscil -
lator by a modulation of 0.01° acting during a 1-sec acceleration period.

REFERENCES"

1. See, for example, N.M. Blachman and E. D. Courant, Rev. Sci. Instr.
20 p. 596 and Rev. 801, Instr 21 p.: 908,

2. See also N. M. Blachman, Rev. Sci: Instr. 23, p. 250.
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Fig. 1 Typical plot of phase motion A 8 as a function of time under the
influence of a sinusoidal perturbation.
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Fig. 2a Effect of phase-modulation amplitude Y on phase motion as a
function of driving frequency w. Amplitudes greater than those
corresponding to the curve should produce serious loss of beam.
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Table I

R esults of analyzer runs for different w/w_ratios. A denotes
amplitude of phase modulation; B denotes maximum phase deviation
from synchronism (or survival time if motion is unstable). ‘

o y

0.6 0.8 1.0 1.2 1.4 1.8 2.0 2.2
A| g° 4° 3° i ° 1.5°
g° 15° 60° } 25° 6°
° J, !
A {15° | 10° 6° T 4° 3°
15° 40° 90° 25° 14°
40° 20° 15° 10°
45° 1.5 osc | 1.5 osc 70°
o o s A O o % o o ¥ o o
80 40 30 20 15 20 15 10
0.5 osc | 0.5 0sc | 0.5 0sc | 1.5 osc| 70° 90° 70° 50°
A 60° 45° 30° 55° 45° 35°
0.5 osc | 0.5 osc | 0.5 osc| 0.5 osc| 0.5 osc| 0.5 osg
i




