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ABSTRACT 

This report presents the theoretical' arguments concerning imperfections 
in tracking and deviations in rf amplitude, with formulas and graphs esti­
mating the magn~tu:de of the various effects. 
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Lloyd Smith 

Radiation'Laboratory, Department of Physics: 
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Juhe 16, 1955 

INTRODUCTION 

In a machine of the synchrotron type the accelerating fields ·give rise to 
forces that tend to keep the ions bunched near the proper phase for acceleration. 
H the parameters of the system ~ 7 such as the magnetic field of osc;:iliator 
frequency or amplitude ..:_ vary slowly compared to the period of oscillation 
about the stable phase, the ion bunch adjusts its phase and spatial position 
correspondingly without ·loss of ions or appreciable increase in amplitude of 
phase oscillation. This is true for unintentional as well as programmed vari­
ations; ·If the variations are more rapid, the bunch does not follow as well; 
there is a tendency to stimulate phase oscillations, and some of the ions may 
fall out of synchronism. For example, if an ion bunch is rid:i.ng at synchronous 
phase and the accelerating voltage shifts in phase by 10° in a time that is short 
compared to the period, the ions will thereafter oscillate with a 10° amplitude.. / 

In the proton synchrotron, unintentional fluctuations in the machine's 
paramete_rs are particular! y serious. The phase -oscillation frequency is in 
the range! of 1 to 2 kilocycles, and there are many sources of disturbance in 
this audiofrequency range. The acciaeration goes on for a long time, so that 
random variations can lead to a large cumulative effect. Phase damping ac­
companying the programmed changes in parameters is negligible, so that 
there are always ions executing large phase oscillations and ready to be dropped 
.out of synchroni!;!m by an unfavorable fluctuation. 

H is the purpose of this report to present a quantitative treatment of the 
effects of fluctuati9ns. . The esse~tial_ results have been worked out ?Y the. .. 
Brookhaven group; here the denvahons are presented somewhat d1£ferently 
and examples of local interest are inCluded. 

RANDOM FLUCTUATIONS 

The phase motion of the ions for small deviations from synchronous 
phase is described, if damping effects are neglected, by the differential equa­
tion 

d 2 2 __,.. e + w .a = 
dtL. p 

dW wo I dh 2 
(It - ZL 'H at - dw tan <j>8 , 

(l-ri~ {1 + 1fR ) f p 
( 1) 

a.. 
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e :: deviation from synchronous phase, 

w = phase oscillat_ion angular frequency, 
p 
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W = deviation of oscillator frequency from the prescribed value, 

h =deviation of magnetic field from the prescribed value, 

w = rotation angular frequency, 
0 

<I> s = synchronous phase, 

a = fractional deviation of rf amplitude from the prescribed value. 

This equation is sufficiently good for estimating the effects of fluctuations 
unless the .fluctuations are peribdic and of frequency near ~ . In that case 
the nonlinear character of the phase oscillations is important, and a different 
treatment is required. For the present; it is only necessary to remember 
that the phase motion becomes unstable for e ~ 1 radian under normal oper­
ating conditions, so that a fluctuation should be regarded as very serious if 
the calculation predicts an induced amplitude of that general magnitude. The 
solution to Eq. ( 1) may·-be written 

where · ) 
/ 

e:: e sin ("w t + 5) + ® (t), 
0 p 

(2) 

t 

. ® (t) :: i--l 
p 

-a w/ tan ~~ sin wp (t-t')dt'. (3) 

The first term represents the oscillation due to the initial phase dis­
placement and velocity, and the second term is the additional phase displace­
ment induced by the fluctuations. The simplest case to consider is that in 
which the disturbances are sinusoidal with angular frequency fJ. • For ex­
ample, if 

then 

Q :: 0, 

W =W cos (tJ.t), 
0 

h :: 0, 

.. w fJ. . 
a (t) :: 2 ° 2 [f~n JJ.t .. sin 

wp - fJ. 

The frequency modulation W is of course accompanied by a ph~se modu­
lation, 

t 

ljJ = t Wdt' =t!J sinj.Lt= 
0 

w 
0 

sin tJ.t . 

, 

•, I 
\. ; ., 
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~ {t) is in general small unless iJ. ~ w , in which case the formula 
does not apply, as mentioned above. Howe!er. it is probably indicative for, 
say, 

f.1 =JZ w ' p 

in which case we have 

pw 
® {t) = + _o_· /Sin .}2 w t 

w c_- p 
p 

-fi sin wp_t7 = 2l\J /SinJz wt· -fi sin wt7 
~ 2~ P P_j 

in the presence of frequency modulation. Thus 20° of phase modulation 
could be serious even for a frequency 40o/o off resonance. 

Next, consider random fluctuations. For this purpose, it is better 
to rewrite Eq. ( 3~ by integrating by parts to make frequency and field errors 
appear explicitly: 

® (t) = - w tan cj> { m {t') sin w {t-t')dt1 

p s 1 p 

+boundary terms; 

or. if phase errors are of primary interest, to introduce 

4iW) = { W(t'o}dt'o 
0 

and integrate again by parts: 

® (t) = w tan"' p '~"s ! a!t') sin "'p (t-t')dt' 

t 

~ cos wp {t-t'~dt' - wp i 
+boundary terms. 

( 4) 

( 5} 

The boundary terms do not lead to cumulative effects and may be dropped . 

To illustrate the method of calculation of the cumulative effect of 
random fluctuations, suppose that the frequency changes by an amoup.t 
for a duration of time T starting at random times t.. Then, from Eq. 

1 
we have 

w 
f4) ' 



e (t) = E 
i 

+ 'T 

W ·.'T. • 

= - 2 sin +- z=~ . w 
1 p 

where the sum is for all t. < L 
1 

.. -6-

'T 
·COS W (t-t. - ...,-) 

p 1 "' 
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After N such disturbances~ and before the (N+1). ® will be oscil­
lating freely, as can be seen by rewriting Eq. (6}: 

®(t) 
W'T 

= - 2 sin .-I:_ 
2 

w t 
p 

N 

E 
i=1 

w 
w 

p 
cos w (t. t r/2) 

p 1 

+sin w t 2~ : (ti + r/2)} 
p i=l p 

(6) 

The amplitude is the square root of the sum of the squares of the two 
parts 90° out of phase: 

·, . w 'T 
I 2 2 p 

(ampl) = 4 sin -z-'""" 

W'T 

4 
. 2 p 

= s1n z-

{[~ w 
w 

p 

+[t 
1=1 

(: )2{t 
p 1=1 

cos 

2 

w < t. + 'T I 2 }] p 1 

2 

sin "'p (ti + T /2) J } 
lcos

2 
w (t. + -r/2) L' P 1 

. 2 R + s1n w ,t. p 1 
+ T/2) J +cross terms } 

Now if N is large and phases w (t. + r/2) are random, the cross 
terms will be positive as often as negafiv~. so that the positive quadratic 
terms, which add up simply to N, will dominate, Then 

ampl ~ 
2w w 'T 

w sin+ .jN. 
p 

(7) 

The actual amplitude induced in a given acceleration period would be 
larger or smaller depending on the precise succession of t. us; but if this 

1 
mean-square formula indicates an induced amplitude of 1 radian or more, 
one would expect that successful acceleration pulses would be rare, the more 
so the larger the indicated amplitude. 

' . 

i 
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Equation (7) demonstrates the sensitivity of the beam to such _fluctu­
ations. For example, take 

. . . . -1 . 
w = 2 1T x 2000 sec ·, . 

p 
-1 

w = 2 1T x 100 sec , 

'T = 200 tJ. sec; 

then this type of disturbance could only be allowed 100 times: a total dura­
tion of 0.02 second with a phase slip each time of± 7° 

Corresponding calculations for a sudden phase
1 
shift ·ljl or jump in 

0 . 

rf level a lead again to Eq. (7) with :!!_ replaced by ljJ or a tan <j> 
w 0 .0 s 

p 
respectively. If the disturbance consists of a positive square pulse followed 
immediately by a negative one (simulat"ing a differentiated square pulse) the 

W'T W'T 

effect is to replace sin L by {1-cos + in Eq. (7). The magnitudes 
. 2 
of the effects are thus comparable unless the duration is short compared to 
a phase -oscillation period; in which case the single square pulse is relative-
ly more serious. · 

Before random errors are discussed further, it is worth noting that 
the abqve development can be applied to the question that occasionally a­
rises concerning the phase motion induced by the use of current markers in 
tracking. The frequency does not track continuously but in a succession of 
straight lines' changing slope at each current marker 0 If the frequency 
error at each marker is w and each comes at time t , Eq. (4) becomes 

n n , 

® (t) = L 
n 

W -W 
n+l ·n 

w (t -t } 
p n+1 n 

summed over t < t. 
n 

Ieos w (t-t 
1

) . - cos w (t- t )l l p n+ p n~ 

The successive magnitude and pha'ses are unrelated to the phase-oscil­
lation frequency and may be trea.ted as though random. The mean square 
amplitude is than 

where N is the number of current markers passed. This might amount to 
10° for a lo/o rms error in oscillator frequency. 

NOISE 

A type of fluctuation always present is that known as noise. S.ince ·it 
is difficult in this case to distinguish a structure and estimate the number of 
fluctuations, as demanded by the preceding formulas, a different formulation 
is indicated. It is shown later that the two approaches lead to the same re­
suH. 
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Consider an ion suddenly subjected to a series of errors in field, rf 
voltage, frequency, and (or) phase. The disturbances persist for a relatively 
long time T, after which we want to know the magnitude of the induced oscil­
lations. For definiteness we shall think of frequency fluctuations, though the 
same analysis applies to any of the types. First decompose the fluctuation 
in a Fourier series of basic period T: 

W(t)= 
w 

0 

( 2nnt. ) --,.,-- +. a. . 
.l . n 

The summation eX!tends from 1 to a value of n corresponding to the 
highest frequencies passed by the system; that is, to 

n =Tv 
max max 

(8) 

"Noise" means a type of fluctuation that has a Fourier decomposition 
in which the phases a. are random and the amplitudes e are selected 

n n 
from a probability distribution of some sort~ That is, on .successive acceler-
ation periods the noise is different in detfl.il and the e 1 s quite different if 
the particular structures· are analyzed;· but after man~ periods, the E 

1 s 
fall into a certain probability pattern. "White'' noise means that the aibpli­
tudes fo:llow a Rayleigh distribution, 

P( E ) de 
n n 

2E 
n 

E· 2 
:- n ---z-

a -z- e 
a 

de 
n 

where a is the rms value of E 
n 

This calculation, however, involves only estimates based on mean 
square val.ues, so that it is not necessary to distinguish between various 
distribution laws. Before d~rmining the phase oscillations it is appropriate 
to relate the rms value of _ to the e 1 s: 

That is, 

E 
rms 

·· w 0 n 

t 

): dt > en em sin ( 
2

lf?t + <;tn) sin (
2
1f;t + a.m) 

n 
max 

= l/2 > 1 
n= 

n,m 

2 
E = ~.1/2· 

n 

. 1/2 

~ . 2 ~ (w) = Tv .-_. · 
.· max wo rms 

-y 
E 

n 
Tv . 

max 

(9) 

, 
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Inserting Eq. (8) in Eq. ·( 4) and integrating to time T, we have 

®(T) = [: 
n 

w T e n 
o n 

2n 

In this form it is apparent that only the Fourier components in the neighbor­
hood of the phase -oscillation frequency are important. 

w T 
.Let n = N + v, where N. is the largest integer less than --!rr-

Then, if only terms for v << N are retained, Eq. ( 10) becomes 

®(T} 

where 

w T 
0 

=~ 

wT-21TN. 
p 

sin 

Then ®
2
(!) = l/2~~~T Y L~ ':~f sin

2 
.V/2 , 

where ~he cross terms have been dzopped. as in Eq. (7), this time because 
of the randomness of a , and sin (a. + tP/2) has been replaced by its aver-
age value, 1/2. n 

The phase ljJ is peculiar to the exact time T of observation and 
should be averaged out: 

2 
E 

v 

= 1T o s1n x dx 2 (w T~2[ 2 f21Tv . ' . 
Z" ~ v ev .21T(v~1) 

Finally, to obtain a means square value for 
2 b . l ev y 1ts mean-square va ue: 

~, we should replace each 

Then, using Eq. (9), we have·. 

. . 1/2 

®. ,, = 1/2 w "(.2_) rms · rms v 
max 

( 11) 
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Equation ( 11) imposes -a rather strict condition on the rf system. For 
example, if T = 1 sec, v = 2 x ·104 cps and () is required to be negli-

0 . . max . . · rms 
gible i.e. , 5 -- the tolerance on noise level is 

w . . 
rms 
21l' < 4 cps, 

which is about 1 part in 10
5 

of the oscillator frequency .. It is noteworthy that 
the induced ~mplitud.e does not depend on phase -oscil.lation frecwency or rotation 
frequency; 1n fact, 1t does not even depend on bandw1dth, for . rms is 

Jvmax 
strictly the spectral density in the vicinity of the phase -oscillation frequency. 

The earlier calculation can be rephrased in noise terminology .. For 
example, Eq. (7), for square impulses of short duration, is 

(ampl) = w"'':JN . rms 

In this case we h.ave 

2 w 2 TN 
=w ~ 

· .. 
for N i'mpulses in total elapsed tim~ T. 
Therefo~e 

(ampl) = W jTT . rms rms 

However, a Fourier analysis of a succession of square pulses of duration T 

would contain frequencies up to vmax - 1/T . Therefore the expression for 

the amplitude agrees in magnitude and functional form with Eq. (11). 

Finally, the formulas corresponding to Eq. ( 11) are: 
for rf amplitude noise, 

e = a. rms rms -/ tan ~s j:rmax 
and 

for magnetic field fluctuations, 

() = rms 

·w 
1 0 

Z' ZL 
( 1-n}( l+"iT) 

Influence of Damping 

The characteristic effect of damping can be seen by considering a 
simple case -- that of an oscillator subjected to a succession of impulses, 
equal in magnitude but applied at random times. First, if damping is neglect­
ed, the motion after the first impulse at time t 1 will be 

() = 5 sin wp(t-t 1). 

I 

·. ) 
\~·; 
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where 5 is the amplitude induced by a single impulse applied to the oscil­
lator initially at rest. After the second impulse, the motion will be 

e = 6 sin w (t-tl} + 5 sin w (t-tz>· p . p 

and so on. 

Applying the argument following Eq. (6}, we have the rms. amplitude 
after N impulses, 

(ampl) = JN 5 . rms 
(12} 

If the oscillations are damped, then the motion following t 1 will be 

8 = 5 D(t, t 1) sin wp(t-t 1}, 

and so on. Here D(t, t
1

) is the amount by which the amplitude has decreased 
from time t1 to t. The argument is now slightly modified, for after averaging 
out the oscilrating terms the damping factors :remain, 

( 1) 2 s: 2 ~ . 2( ) ;... 2 dN I D2 I )d 9 amp = u ?--- D t, ti 5 crt J... (t, t t , 
1=1 . tl 

dN 
where Cit is the average rate at which the impulses occur. 

( 13) 

\ 
'· I'n most familiar oscillating systems the damping is exponential; i. e. , 

D ( t t ) - -a ( t - t. ) , i - e 1 , 

where a is a positive number. In this case, Eq. ( 13) can be integrated, 
with the result 

2 2 dN 1-e-Za(t-ti) 
(ampl) = 5 crt 2 a 

For t sufficient! y large, 

2 52 dN 
(ampl) =·· ra at ' 

independent of time. This is why a pendulum does not start swinging by it­
self under the impulses of air molecules striking it. One should say that it 
sta"rts to swing but, because of damping, quickly settles down to an unobsera­
bl y small amplitude. 

Damping in an accelerator is qualitatively different in that it follows 
a power law rather than an exponential. Using 
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which becomes·, for t >>t·' , 
- - 1 

--- 2 i N -
{ ampl) = 5 zn:n 

idel:ltl!cal-; with Eq. ( 12) except for the numerical factor in the denominator. 
For n = 1/4 or 1/2, as is common in accelerators, the change is not great. 
A power -law damping only decreases the rate of build-up somewhat, but does 
not limit the amplitude. The conclusion would be that damping in an acceler­
ator is not of much help in counteracting random disturbances. 

Sinusoidal Perturbation Near Resonance
2 

The differential analyzer has been used to develop the phase motion of 
a synchronous particle after the initiation of a sinusoidal frequency or phase 
perturbation. These trajectories are difficult to predict analytically because 
of the nonlinear nature of the phase oscillations. The nonlinearity is of great 
value in preventing loss when the perturbing· frequency is nea:r the phase­
oscillation frequency, so much so that the ions can tolerate a much larger 
perturbation of pure frequency than of noise. 

The results of the analyzer runs are. summarized in Table I. Each box 
represents a run, and shows the; amplitude of phase modulation (denoted by 
A) and the resulting maximum phase deviation of the ion from synchronism 
or the survival time if the motion is unstable (denoted by B). wfw is the 
ratio 0~ driving frequency to the phase-oscillation frequency for sl?nan ampli­
tudes. ')Some of the runs. are shown in detail in Fig. 1 as examples; marked * 

The results are also given in the form of graphs (Figs. 2a and 2b). Here 
an attempt is made to plot the phase- or frequency-modulation amplitude that 
separates the stable from the unstable region. The division is not at all sharp, 
for not all ions would be damped by the same perturbation, the effect depends 
on the amplitude and phase of their phase oscillations. The dividing line 
does, however, agree reasonably well with experiments in which perturbations 
are deliberate! y introduced. 

It is worth noting the gain in stability due to the nonlinear effects. From 
Table I, for example, we see that 3° of phase modulation at resonance produces 
a 60° excursion of the ion; a- 60° amplitude would be induced in a linear oscil­
lator by a modulation of 0.01° acting during a 1-sec acceleration period. 

REFERENCES-

1. Se_e.- for example, N. M. Blachrnan and E D. Courant, Rev. Sci. Instr. 
20, p. 596, and Rev. Sci, Instr. il~ p.: 908_. 

2. See also N. M. Blachman, Rev. Sci. Instr. 2'3, p. 250. 
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Fig. 1 Typical plot of phase motion 1::.. e as a function of time under the 
influence of a sinusoidal perturbation . 
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Fig. 2a Effect of phase -modulation amplitude l\J on phase motion as a 
function of driving frequency w. Amplitudes greater than those 
corresponding to the curve should produce serious loss of beam. • 
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Fig. 2b Effect of frequency-modulation amplitude f:::.w on phase motion 
as a function of driving frequency w. Amplitudes greater than those 
corresponding to the curve should produce serious loss of beam. 
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Table I 

Results of analyzer runs for diffe:rent w/ w ratios. A denotes 
amplitude of phase modulation; B denotes maxRnum phase deviation 
from synchronism (or survival time if motion is unstable). 

w/~ 

0.6 0.8 1.0 1.2 1.4 1.8 

i go 40 30 20 1.50 A I 

B ·a 8 15° 60° ' j 25° 60 

A 15° 10° 60 
>:c ! 

40 30 

B 15° 40° 90° 25° 14° 

A 40° 20° 15° 10° 

B 45° 1.5 osc .1. 5 osc 70° 

80° 40° 30° 20° * 15° 20° * 15° A 

B 0. 5 osc 0. 5 osc 0.5 osc . 1. 5 osc 70° 90° 70° 

A 60° 45° 30° 55° 45° 
! 

B 0.5 osc I 0. 5 osc 0.5 osc 0. 5 osc 0.5 osc 
[i 
,I 
1: ,, 

2.2 

l 
I 

-
10° 

50° 

35° 

0. 5 OS( 

_j 
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