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THE THEORY AND INTERFRETATION OF POLARIZATION PHENOMENA
IN NUCLEAR SCATTERING
Henry Pierce Stapp

Radiation Laboratory, University of California
Berkeley, California

- August, 1955
ABSTRACT

This thesis deals with a theoretical investigation of polarization'
phenomena in nuclear scattering. In Part I, the expressions needed for
& phase-shift analysis of polarization, triplé scattering, and correlation
experiments in nucleon-nucleon scattering are derived, and the results
of a phase-shift analysis are given for proton-proton (P-P) scattering
at 310 Mev. The theory of the correlation experiments is then developed
and an explicit expression for the scattering matrix at 90° as a function
of these_correlation experimenﬁs_together with the triple scattering

experiments 1s obtained. The symmetry effects in P-P scattering and

‘the formalism relating the N-P £o P-P experiments is developed; and the

problem of separating the nuclear phase shifts from the coulomb parts is

'discussed._ In Part II, a covariant treatment of polarization phenomena

in double and triplé scattering of Dirac particies from spin-zero targets
and from Dirac particies is developed and the relativistic triple
scattering and correlation expréqsib§§ are obtained. In Part III, the
nonrelativistic séattéring matrix ofiépin-one particles by spin-gero
targets is developed. The available data on déuteron'polarization are
analyzéd in terms of first and second Born approximﬁtions; The‘effect

of the D-state of the deuteron upon the ﬁolarization phenoména is also

considered.
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THE THEORY AND INTERPRETATICN OF POLARIZATION FHENOMENA
IN NUCLEAR SCATTERING

Heniy'Pierce Stapp

INTRODUCTION

During récént months a considerable number of polarization

iexperiments have been performed both here1 and abroad.2 In these

experimenﬁs particles emefging from nuclear collisions are found to
have fheir spin orientations partially aligned. Thia alignﬁent, or
polarization as it is called, may be studied by means of a further
scattering process. The degree to thch a pafticular iype of ﬁuclear
scattering polarizes the particles will depend upon the spin dependence
of the forces whiéh produce this scattering, and the'importaﬁca of
pblarization experiments lies ih this information about the spin
dependence of nuclear forces which they_prpvide; A basic purpose of
this dissertation is to deVelOpALhe Lheory ﬁeeded to extract from the.

experimental data the basic theoretical parameters of the problem'and

to apply this theory to the analysis of the data which are now .'9.v'z;1_i].able_°

The presénce of éb;n,dependence in nuclear forces,‘which is
evidencéd éﬁ iow enérgies By the deutérpﬁ quadrupole moment -and by the
success of the shell model, is shown at cytlotron energies by the large
polarizations which are'obtained. Forcqs of this type were used several
years ago in the phenomenological models of JastrowB, Christian et alh’s;

- [ : v
and Case and Pals, and were desizned to explain the differential cross

sections in nucleon-nucleon scattering. More recently Goldfarb and
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Feldisan, and Swanson haue investigated the polarization effects predicted
by these nodels. The hafd core model of Jastrow was found to give
poiarisations much smaller than the exverimental values, and only the
.L;S_modei of Case and Pais was found'to give the veryziarge pelarizatibns
vhich ere obsermed. The qualitatiVe fit of the Case and Pais differential
cross section with the experimental results is, however, almost wholly
destroyed in the more exact variatlonal treatment of Goldfarb and Feldman.
| Thls apparent failure of the potential models suggests an alter-
native approach in whlch the experimental dataare taken as the starting
p01nt and an effort is made to extract the information which they contain.
A first step along this direction would be a phase-shift analysis of the
aveileble data. Until recently, when the polarization data became
available,‘such en_analysis was in pminciple impossible'uhless only.
S-waves were considefed. “For triplet states each value of L, the
orbital angular mqmehtum,‘which is higher than one has four‘associated-
phase shiftsvcorreSponding to the threerpessible values of J and to
the admixture parameter The numhor of fourier coefficients (independent
pkmes of information) in the dlfferential cross section is 2L -+ 1 for
vthe N - P system and L “+ l in the P - P system where L is the
highest orbital angular momentum which contributes Thus the number
of phase shifts to be determined increases with L much faster: than
the number‘ef independent;neees of information in the differential cross
section. Femfexampleg if the partial uaves higher than f-waves are
neglected iu:the analysis of the{preten—proton experiments there are
| hine iﬁdependent phase shifts.“'However, the~eorresnonding differential
cress section,centainszoniy fouﬁ'fourier coefficients and the.four

equatiens on the nine phase shifts are indeterminate. Even when the

wz"
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ordinary polarization data, vhich are described by three fourier coefficients,
dre added the equations do not become determinate. However, besides the
ordinary polarization exveriment, which involves two scatterings, the

first to polarize a beam and the second to analyze this beam, there are

~a number of independent experiments.involving three or more scatterings,

In the basic triple scatperiﬁg experiments a first scattering'produces

a polarized beam, This beam is then scattered by the interaction being
studied and the eherging beam is anaiyzed by means of a third sqattering.
There are a vafiety of experiments of this tyve corrésnonding ﬁoth>to
the different orientations of the three scattering planesvand to the
various pdssible values of external rarareters such as magnetic fields,
These experiments, vhich give new information about the system, are
described by several new and independent varametcrs, twb of vhich have

been measured for the P - P system in recent experiments at Berkeley.

-With this additional information the ecuations on the P - P phase shifts

become determinate and a phase shift analysls becomes poésible. Such
an analysis has been carried out and.is discuséed in the first two
scctions of Part One.

Par? One is devoted, in general, to the treatment of nucleon-
nucleon polarizétion 5henomena. In it§ first section the nhasc-shift
exrressions for the variéué quantities meaﬁuredlin the P-P nolarization

and trinle-scattering expveriments are derived, The treatment of these

. experiments is based upon the theory develoved by Holfensteinlo and by

11 .
Wolfenstein and Ashkin, =~ while the treatment of the P - P phase shifts

12
is similar to that of Blatt and Biedenharn. The results obtained in
sectioh one are recorded in Tables A, B, C, and D, and they are the
basis of the vhase-shift analysis of the P - P experiments discussed

in section twvo.
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in the anaiysis of the Berkeley experiments, the incident beam
energy of which is about 300 Mev, it wasvassumed that partial waves
higher than f-waves could be neglected. ﬁowever, the validity of this
assumption is uncertain and alternatives to the phase shift-method are
desirable. In the third section of Part One the theory of.anothef type |
of triple-scattering experiments, called correlation experiments, is
developed and it is shown how, with the aid of these experiments, the
scattering matrix at particular angles may be determined without thé use
of avphase-shifﬁ analysis. _Ih particulArvthe explicit form of the - '
scattefing matrix at 90o is given in terms of the triple scattering and
correlation paraﬁeters measured at this angle. One of ﬁhe correlation
parameters (i.e., cNN) i1s found to have é particularly simple significance
at 90° where it gives a direct measure of the singlet-part of the
scattering. . : ' |

Polarization expériments have also been carried out on the N - P
system. The fourth section is devoted first to the discuﬁsion of the
symmetry properties of the P - P scattering matrix and then to the
relationships between tﬁe Nw-.P and P -P scatteriﬁg matrices required
by thg hypothesis of charge independence. Here 1t is assumed that for
largevangles‘the coulomb contribuﬁions to the P - P scattering matrix
are negligible. Severél direct relatiOnShibs_among the observed
| - quantities in fhe N-Pand P - P'experiments are then obtained. The
experiments which are involved, however, have not &et been performed.

The analysis 6f the nucleon-nucleon system outiined above and
developed in Part One is ‘nonrelativistic. However, the incident,Beam
energy of ﬁhe Berkeley and other cyclotron experiments together with
theistill'higher energies which are becoming available indicate the

desirability of a completely relativistic treatment of nucleon
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polarization phenomena. Such a treatment is carried out in Part Two.
The first three sections are devoted to the development of covariant

forms for the S-matrix, the density matrix, and the poiérization formalism

~ for the case of the scatteringvof a Dirac par£1cle by a series of spin

gero, finite-mass particles. In the fourth section the scattering of

a Dirac particle by a Dirac particle is treated. Tt is shown that with

certain interpretations and modifications the nonrelativistic formalism

is applicable in the relativistic région. The relativistic formulas

10)

~ for Wolfenstein's triple scattering parameter R( and for the

correlation parameter CKP differ from the nonrelativisti§ formulas,
and their relativistic forms are given. It ié found that the relativistic
corrections for the Berkeley expériments are of order 10%.

A different type of'polarization experiment, which has been.
carried out at Berkeley,13 is the polarization of deuterons. ‘Because the

deuteron spin is one rather than one~-half, its state of polarization'is

- not completely specifiéd by the orientation of the spin axis. There are

also orientational features which may be described in terms of tensors,

- as opposed to the vectors which specify the spin orientation. The first

section of the Third Part contains a general development of the theory
of the scaitering of a spin-one pérticle from a épin-zerp target. The
treatment is a generalization of the M-matrix formalism used in the
first two pafts for the polafization theory §f Dirac particles. Uéing
a different approach the general problem of the polafization'df thé
deuteron has been studied by Lakin.lh Insofar as they overlap the
results of the two treatments are-dn agreéﬁeﬂt. The results of section
one are used in the next three sections in which calculations based

upon various models and methods of approximation: are performed and
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o
the results compared to the experiments. In section twe a Thomas
type of spin-orbit force used in nucleon scattering problems‘by,Fermi16
and others17 is assumed and the Born approximation to the solution is
used»to“investigate the strength of the spin-orbit coupling. This gives
a measure of the spin—orbit interaction for 82 Mev nucleons. Subject to
tﬁe validiti of certain assumptions a spin;orbit term about twenty times
the Thomes term seems indicated both‘for this energy and for 300 Mev
nucleons. This‘ﬁalue is also consistent with the strength of the spin
orbit term needed by the shell model.18 However, the Born approximation
does not gire‘particularly'goed-overall agreement with the exberiments.
Since,'moreover, the scattering matrix is restricted to a very special
form by the Born approximation, with two of the four parameters vanishing,
a qualitatlve estlmate of the effects of the higher—order corrections
seems desirable. -In the_thlrd sectlon the second order Born approximation
is earried out for the case of a Gaussian potentialj Features of the
deuteron-earbon experimental &ata which are not contained in tﬁe firét
Born appre#imation are giren by the second-Born approximation. Aﬁother
source of higher order'effeete.is'the contribution to the scattering
matrix from the D-state part of the deuteren.wave function. Since the
interferenee effects between the S and D Stetesvary'asvthe product of

the amplitﬁdes, and since the D-state amplitﬁde is about 20€, these

' cogtributions might be appreciable. In the last section the D-state
centributions are eveluated in an epproximation in whicﬁ the center of
mass coordlnates of the deuteron are treated in the Born approximatlon
but in which the deuteron wave functions are used for the relative -
coordinate part of the problem. The D-state contributions are then

found to be much smaller than would have been expected.

e
K3



s
’

. spin-space density matrices ;?

-9-

PART I

Section 1. Basic Equations for the P-P System

In the analysis of polarization experiments it is convenient to use
the M-matrix introduced by Wolfenstein and Ashkin. This is a matrix in
the composite spin space of the two particles in a collision process and

is defined by

2

A

LEHN = Ko = Py, . W

Here the "X . are basis vectors in the composite spin space of the two

particles, X is the spin part of the state vector in an incident

inc

' plane wave state, and the scattering amplitude f£(6 §) is a vector in

spin space which is defined by

. iK
+scat(r, 0g) - f(ed)e r/r s v (2)

where the left-hand side is the asymptotic form of the scattered wave

in the relative coordinaté system.,. Following Wolfenstein and Ashkin the
inc 2nd .? (6 @) related by

pe # = u g) Panc T M 3

will be 1ntroduced where M(e #) is the hermltlan conjugate of N(e ¢)

The}average values of the quantlty related to any spin-space operator A,

' when the measurements are made on particles in the incident plane wave

or, alternatively, on particles in the beam corresponding to the

scattering angles 6 &, aret® respectively

< A>inc = Tr f inc A/Tr ? ine |
‘ (4)

(B)gy = TpEHampees ,
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~while the differential cross section is given by

1(e ) - Tr P (o ¢)/'rr§inc_, S (5)

:If the two protbnsbafe treated as Pauli pafticles then the
composite spin space is four dimensional and the M hatrii'éndldensity
matrices are four by four. They may therefore be written as a linear
combination of the sixteen linearly independent matrices (Gjii G-Zj)
where crli and O‘éiv (1 =0, 1, 2, 3) are the unit matrix and the

three Pauli matrices for the first and second particles, respectively.

Calling these sixteen matrices the S_ and noticing that
Prrs,s; = S, | - (6)

the density matrices may be written, with the help of Eqs. (4), in the

form

?inc = k'l‘r ?inc) Z < >inc n

| (7)
Qe - @ m 00 MS {8274 4 ]

_The- <Sn> are the quantities which détermine t.,her state of polarization
of the beam. In particular, the < 5:1 Y and <6=2 Y give the |
expectation value of the spin of the first and“second particles;
réspectively, and wiil be called the éolafization of these particles.
The quantities <O——-li,0._2-j> ,» (3, =1, ‘2, 3), called the correlation
‘parameters, ﬁhich are also needed to specify completely the state of
polarization, will be discussed in section three,

In the anaiysis of the P - P scattering it is possible to tfeatv

the two particles as if they were distinguishable, provided that the
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M matrix is appropriately symmetrized. This point is discussed in section
four. Thus, the first particle will be taken as the incident particlg,
the second as the target. A _

. The qﬁantities measured in the-recent Befkeley eiperiments are
called P(6), D(6) and Rg(6). P(6) and D(O) are the'polarization and
depolarization‘functions and'may be measured by experiments in which the

incident particles are polarized along the direction N, the normal to the

;plahe of scattering. If the magnitude of the incident pOlgrization is

Pync and the polarization of the particles scattered in the direction
L) ’ .
of 1is P(6f), then the P(@) and D(6) are defined by

P(og) -N(og) - RACO) D(O)Py,o) » (8)

where Iy 1is the cross section when Pinc = 0. If,.on the other hard,
the incident polarizétion is in the plane of the scattering and alongv
ft?x.i;n s then the part of the polarization vector of the scattered beam
which iies in the plane of scattering has a magnitude proportional to
Pinc and.is denotgfi by (pim'ﬁ(epi)). This defines the ve_ctc;r TI‘(G¢).
No#, as has been shown by WOlfensteinlo, the asymmetry in the differential
cross section after a scattering gives a measﬁre of the components of
polarization which are perpendicuiar to the,(laborafofy)_velécity qf the
incident particle. The cdmponent. of ?(9?5) which is perpendicular to
the laboratory velocity is called RK(Q) and this ié therefore the
measured quantity.* With the help of-Eqs. (3), (b)agnd (5) it is eaéily

seen that these quantities may be written in the fofﬁs stated and their

® With the use of magnetic fields to cause the spin to precess relative

to the direction of motion, other comoonents may b: measured.
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formal exvorezsions in terms of the l-matrix may be obtainei. Usin- the
definitions
-

i‘N , etec

QL

Cin

=}

- - p=s, LY
(Kip x Kout )/ Kin x Koy \

1

(Kout, -+ K3p)/ \Kout * Kin\.

-——

- — . X -~
(Kout'f Kin)/ \Kout = Kin \

.N
n

n|
"

(N x kg )/ |V x K \

-y

thut final relative momentum‘

-
hxin incident relative momentum -,

(9)

the observables may be expressed by ”

Io6) = % Tr w(ep) H(ep)

I,P(6)

3 Tr M(e9) M(egy Ty
IPE) =} Tr MR Ty M) Ty

Ic;"x(e)

1 W) Ty MCep) Ty -

where ﬁi is the Hermitian conjugaté of M. By the use of symmetry and
- time reversalrarguments?Wolfensteih and Ashkin have shown that the B

M-matrix for the P - P system mayfbe written in the form
(o) = a(e] oG—. + &= ' ~ -
K(eg) = a(®) +ce)cyy t ) T we) oz, G

1 8OO T T O T 1(ONO, S - T )

(10)
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By substituting this form of M(6¢) into the expressions for  10(9);
P(8), D(6) and Ry (8) and evaluating the traces, one obtains expressions
for these observables which are gquadratic functions of the-M;matrix'
coefficients a(®), c(8), m(8), g(8) and h(6). ‘The results of these
calculations are recorded in Table A. Equi&alent formulas have now
become available in the literature and the reader is referred to these
papérsl9 for a more detailed discussion of £hem. |

| The expressions for the observables in ﬁerms of the phase shifts
will be obtained by first ekpressing the M-matrix coefficients, a(8), etc.,
.in terms of the matrix elements of M and then obtaining‘these matrix
elements as functions of the phase shift&. In order to obtain expressions
for the coefficients a(8),... h(6), the ortﬁogonality property of the S,
ekpressed-in Eq. (6) is used. By multiplying both sides of Eq. (10) by

the various 5, and taking one fourth of the_trace one obtains

a(0) 4 TrM

$ TrM CTiN. = $ Tr MOy

c(6)

m(8) = 2 TrM q?lN Oy

- g(e)

1 1
3 Tr M 0‘1190-2? + 5 Tr M.O"lK T ok

' 1 , 1 ‘
_1}(9) -gTrMO_lpa'zp—-éTrMQ—lxa‘zxu

(11)

\

In order to compute the traces, specific repreéentations of the matrices
~ will be introduced. The S take their most ‘simple form in the single

particle representation where the basis vectors are

a(1)ol(2) = g3, 1)

ol(1) B(2) = F(3,-3)
() 0L(2) = @(-3,3)
B BER) = gD . - (12)
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The O{(N) and ﬁ (N) are the spin up and $pin down state of the Nth
particlé. In this representation, where vectors are specified by a
"couple” (a, b), the matrix elements will bebspecified by a pair of
couples; the first index in each couple referring to the first particle,
the second index to the second particle. The matrix.elementﬁ of the Sy

are therefore

(034 0py) = (0, (TP, (13)

(a,b)(c,d) a,c

where a,b,c and d'maf take on the values +3 and -3 corresponding to
the first and second rows and columns. .Taking the usual representations
of the Pauli matrices 5  letting the 3-axis be directed along the incident
beam, letting 9¢ _be the usuai polar angles describing the scattered beam

direction,and taking the order of the fcur states to be the one used in

" Eq. (12), the pertinent S, are:

1 o o0 o0
o 1 o0 o0
I = -

o o 1 o
o o o0 1
0 0 -ie'i¢ 0 \
o o0 o -7

T - | e 0 o0 o
0 1l 0 o
0 “teif0 o
1l 0 0o o

Tov = 0 0 o -t

o o 1eif o
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) 0 0 o210
o - 0 0 1l 0
Oox * ,
1IN V 2N 1 0 0
--_e2i¢ 0 0 0
(1 0 0 o218 |
. (0 ) 0 -1 1 0
a7« 0~ = :
S I_PG""P'F 1k 2K 0 1 -1 0
> \921¢ 0 0 1l }
-‘) . - - . -21
cos O sin O e i¢ sin B8 ¢ i¢ -cos 6e ¢
' : . ) sin 6 e1¢ -cos O ~cos © | -sin'eei¢
(0yp O3p = Ok T) = '
: 1P S2p -~ 1K 2K» sin © ei¢ ~cos € ~cos. O -sin Ge"_¢

~cos O 921¢ -sin © ei¢ -sin © ei¢ cos ©
()
The. M matrix elements which are most easily expressed in terms of the

phase shifts are, on the other hand, those in singlet-triplet representation.‘

. : #*
In this representation the M-matrix may be written in the form

| Myy I \ |
) R Moy o
o gy P w e 0
. \e o o s o
’ o | | o | (15)

where the M,y are functions only of 8. The indiceé /ﬁ =1, 0, -1,

S refer to the basis vectors

S 4s a constant of the motion due to the antiuymmetry of the wave

function and the conservation of parity. The 7 dependence follows from
the conservation of the 7 component of angula: momentum.
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Ay = 84, B
‘X' = -L s = + ( ’
0o * & <¢(; 1) + g(-3, 1))
Aoy = 93, )
' = 1 -3) - d(- E | |
Ks = =004, D) - 44, 28 (16)

where 1x.l, 7(0 and X .1 @are the three triplet states and :( g 1s the

singlet_staté. To obtain the traces needed in Eq. (11) the M-matrix may

be transformed to the single particle representation by means of the "
equation '
M(a, b)(c, d) = (a,blMl c, d)

= (a,b|M)(/4\Ml1))(1)lc,d) | (17

_The (a, blu) and ( 17| c, d) are Clebsch-Gordon coefficients which
are easily obtained from Eq. (16). Performing ‘the matrix multiplication
one obtains the M matrix in the s1ng1e particle representatiqn in terms

of the M)*g. It is

| . - -ig -1g -2i¢
= Mo ° Foo + M) B0y, - o) ‘3-‘5-“0-1 i K
1 ig . i -i¢ )
TSl 3l - Msg) Ao +lsg) 7:;”0-,1
| 21 g
\ X11 ¢ '\71:5M-10 o %M-lo o M- '
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.Comparing this matrix with the matrices in Eq. (14), out of which it must be

| built, one observes that

. Mll = M-l"l‘
My = Mo
Yo = Mo,

Mo = My - (19)

The four M sy together with M, Vand:, Mg give six variables.
Expressing them in terms of the five parameters. a(®),..., h(8) and
eliminating the latter one finds the additional relation”

V2 Ogo+iy) = L Oy -y, - Ny | (20)
sin 6 cos 6 » .

Calémlating now the traces in Eqgs. (11) one obtains the a(8),...,h(8) as
linéaf combinations of the Mgy . The results are given in Table B.
Combining Tables A ahd' B one obtains the observables as functions of the
My , and these are givep in Table C. ‘

The expressions in Table C will, when the M,y are expressed
ih,t‘enns of the phase shifts , give the observables in terms of the vhase
shifts. in- thé__dér_ivatio_n of the phasé shift expreésions for the M v
it is g:ohvenient to use a bra'cket notation. The vector ‘L LZ) will
represent the spherical harmonic, the |S, SZ) will denote the spin
vector pré;riously_d.enoted by '-XM "a'nd \L S LZ SZ) _is the prodﬁct

of these vectors. In this notation Eqs. (1) and (2) become -

This relation is obtained in a somewhat similzr manner in Ref. (11).
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ol 6) = (o I uY ) = mep| Xy
| (21)

and

Vo, ) = (o8 | 0 (22)

‘where '-f) is a vector in spin-angle space and M
‘in angle space and an operator in spin space.
The phase shifts are directly related to an operator R which may

be defined by

|9 = R | 1) - | (@)
where (of | fo)eixr/% is the outgoing part of the incident plane wave.
(The opefator S-R+1 is aﬁ operator in the-spin—angle sﬁace which
transforms the spin angle vector |f0), which describes the unperturbéd
outgoing wave, into the spin angle vector for the actual outgoing wave.
The connection between this definitidn and certain other definitions is

discussed in the appendix.) The analysié of the incident plane wave in

spherical harmonics gives

g = LI L, | £

= %;;; | Lz) ESLZO [TF(ZL * 1?} % (-1/k) X fne -

S hexw @

where

o’
1"

[‘h‘ (2L + 1)] : (-1/x) | | (25)

|'M) is a vector

v
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‘_'I_'he substitution of Eq., (24) into Eq. (23) gives
| £) :ZLRILoXinc)bL : . (26)
‘and a comparison to Eq-. (21) shows ‘that |
¥ = ZL R{Lop, . | ' (27)
The_ matrix elements of M(eﬁ) are therefore

(s* 54 ‘ M(eg) | ssz). = ZL(O¢ s'Sy | R| LS 0Syb

"

ZL (eg | L’ Lé)(L' S"Lé sé, \ R \ LSO sz)bL ‘

. z L'Ly YL,Lé (eﬁ)ZLbL(L' s' Lé sé Jr|l Lsos,) .

(28)
Since the matrix elements of K are known in the L, S, J, Jg
representation, one may write
| ] 1 ] 1 )
(L's -LZSZ'R| LS0S,) -
' 1! [ | et )
(L_ s' L, Sy | L'”S J Jé)(L s'JrJylRILSJ Jz)
X(LSJ JIz|L 508y
| (29

: _ "
where indices appearing three times are not summed. Since J, Jg and S

are constants of the motion, this may be simplified to

% .
The fact that

(L's' ol Ls1,8) = (LsL,s, |L's' gy

is a multiple of S

LL! Ssé, is used here.
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(L's'L,s, |[R|LsO0S,) -

- I
ESSS.(L' SLy,s, | L' s gyl R,SZI L)(LS JJz | LSOS,)
(30)

where RJJ is an operator oniy in the L part of space. Because
of spﬁericgi symmetry the R matrix is independeﬁt of Jg and this
index may be dropped. The diagonél eléments of RJS will be called
RJ H thus ’

L,

J J

@€l Rl 1 - (31)

"i
o

For the case S = 0, the vector addition law gives L = J = ' and
there are no off diagonal elements. The_antisymmetry of the wave function
requires L to be even when S = 0. Thus for the singlet state the only

contributions are from

R = R ' | L even, (32)

Fer S - 1, the values of L and L' must be J 4+ 1,‘5, J -1, and odd.

Thus, the only off diagonal elements are from J even and L -Jx 1

_ L' = JF 1, These will be defined

J

J \
(@ J+1| Ry|L=zJ-1) = R

(33)

(L' Jo1 R, L = 0t1) = B .
LS S A

The equality 6f these two matrix elements is a consequence of time

reversal,
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J
Inserting these expressions for the (L' | R | L) into Eq. (30) and

making use of the properties of the Clebsch-Gordon coefficients Cyg(J; Lz Sy)

defined by

t
(J; LZ,-SZ) .

', s' Lész‘lL s JJdz)

Our. Oss: SLQ , 3 s} LSt

Lsdylr's'ys), (34)

the expressions for the matrix elements Mﬂw(ey'!) may be simplified to

odd L

MA‘,‘(GQ‘) }= Z YL,Sz‘sé (e9) b NSéSz Ss,l

'+. Z- Lo (6) by, B::o 8s,o

even L
(35)
where -
L ‘ | ' 1 I - J
Nsész - § cLl(J; sZ - Sz, SZ) CLl(J; O’ Sz) RLl
' 4. . y Ltl b, L.
ZCLI(L £1; 55 - 55, 5,) CL:erz,l(L £1,08,)R LAz
(36)

The Mg, of Eq. (15) are obtained by evaluating the M (67) at

# - 0 and their expressions in terms of the Ri 3 and R  ares given
. A : s :

in Table D for the case that partial waves with L % 4 do not

contribute.

The RL s and R are closely related to the usual phase zhifts.
b

The equations

R 8
RL,O T exp 24 L - 1 ‘ (37)
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define the singlet phase shifts %)L, which will be real. Similarly the

equations

Jg_l, 3, 5’ L

gy s el 8] R

0

(38)

« w— -

define triplet phase shifts for the values of J which are indicated.
For even values of J which are greater than zero there are off-diagonal

elements and the above definition of R{ 1 would lead, in general,'to
_ 3 , _ s

L

: : 12 C
. Following Blatt and Biedenharn one defines in this case
real phase shifts 8 j +1 and a real admixture parameter £ such

complex 8 i

that

J _ 2.0 J 2 J J
RJi'l,l = (cos f exp 21 del 4+ sin £ epoiaJ;l)—l |
| | | - (39)
J J, J J
R = 8in 2 ' 21 - 21 .
s demagleopauldy -ewad )

An alternativé methad’of defining the real phase shifts, which seenms
convenient when coulomb effects are considered is discussed in the
_ appendix. |

" Egqs. (37), (38), and (39), together with Tables C and D, give
expressions for the observed quantities in,termé of the phase shifts.

These were used in a phaée shift analysis of the P - P experiments.

This»analysis'is discussed in the next section.
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Section 2. Phase-Shift Analysis of the Berkeley 310-Mev P-P Data.

The data obtained in the recent polarization and triple—scattering
éxperiﬁehts at éerkeiey, together with earlier data on the total and
differgntial Ccross sections, haye been used as the basis of a phase—shif£
analysis of the P-P system. This work was carried out in close callaboration
witﬁ Dr. T. J. Ypéilantis and Qith the invaluable assistance of other
meﬁbers ;f the experimental group, in particular Dr. Owén Chamberlain
and Dr. Emilio Segre, In this seétion a éeneral diséussibn of the
numerical computations that have been madé‘ié given together with a
summary of the preliﬁinary results obtained. To begin these calculations
a'pfeliminary runvwas carried oﬁt on the Univac at Livermore, and the
body of the coméuting was then done by the Maniac at Los Alamos.

The input data consisted of twenty—nine pieces of experimental
data. There were six measurements of R, at angles ranging from 22°
to 80° (center of mass) and six D measurements in the range 230 to 800.
The polarization bérameter was given at six points between 21° and 760.
The cross-section data were introduced in the following way: absolute
-magnitudes-for the total cross section and for the 900 differentiél cross
sectioh were given, and then at nine angles the ratios of the differenﬂial
cross segtion to that at 90° were used. The actual values used are
summarized in Table I.* These data were kindiy sﬁpplied by the memberé
of the experimental group, much of them prior to publication, - |

kIn the‘analysis of these.data the geﬁeral method was the same as

: ' : 20
that used by Fermi and Metropolis and others  in the analysis

* . .
For a detailed discussion of the experimental data see T. J. Ypsilantis,

Reference 30.
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of the 71 meson-proton systen. Tho rrocedure is to first express
the various quantities as functions of the phase shift. These relations
were developed in section one, and the results have been tabulated in
Tables C .'ind D Let these functions be denoted by O; (8 ) where i
runs over the number of experlmental obeervables and K runs over the
number of phase shifts. Denoting the measured values by Qi and the

corresponding experimental errors by E:i the quantity'
: o L2
Z = 2 [codr) -0
1 £

is then formed, ji: is a function of the phase shifts and it isva

measure of the fit of the phase shifts to the experlmental data. A
t;ial.eet of phase shiits‘is introduced as a starting point and the

:E:_ is computed. By slight variations of the phases the fit is
gradually improved until no more improvement is p0331b1e within the
.framework of the partlcular method of searching being used. Three metbods
of search were used, The gradient method is one in which the gradient

of :E:: 5. considered as a functlon in the space whose coordinates are
the phase_shifts, is computed at the trial p01nt,vand then the 2{, is
evaluatedlat a_succeseion of poinﬁsvalong the gradient line until the

fi£ starts to get morse. A new gradient is then computeddand the_process
repeated. This method leads to paths in the phase-shifts space which
seem to oscillate from one side to anoﬁher of narrow channels end-make

' only gradual imnrovement. A second method is the grid method in which
only one phase shift is varied at a time. It was found that when one

of these methods reached a poin‘ of no improvement, the other method
could many timos give further improvement, and when both methods were

stopped - a random step method would usually give further progress. The
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time required to compute 2. on the Maniac was very close to one second
and the time required to pursue a given rﬁn from the arbitrary starting
point to a relative minimum; using the grid méthod was between twenty N
minutes and one hour. During this time the step sizes in S were
prégressively diminished by factors of two from 1° to 1/6h°.. The last
few steps uéually produced little improvement in ZE; and ohly small
over-all changes in the phase shifts,

| Nineﬁy-six initial points have been used to date in the runs at
Los Alamos and 56 of these wére random points; the remaining points were
solutions obtained from a preceding run in which fewer pieces of
experimental data were.used. From these 96 starting points 28 relative
minima were obtained, and of these 28 solutions six were obtained only
a single time, indicating that a further search would probably uncover
additional solutions. The values of :E_ for the various solutions range
between 20 and 180 with the exception of one solution for which Z:. = 1131.
These.vaiues may be compared to the expected value of 2_ at the relative
minimum which lies in the neighborhood of the trﬁe solution. This
expected value is equal to number of observables minus the number of
variables (phase shifts) and is therefore 20. The probability that the
value lies between 16 and 2L, s ~ 50% and the probability that it is
larger than 50 is less than 0.1%, These statisticél results are based
upon the assumptions that the true values of the measured quantities can
be exactly represented by the nine phase shifts and that the errors are
all of a statistical nature (as opposed to errors of a systematic‘kind).'

- There are 18 solution_é for which Z_ is less than 50 and these

are given‘iniTable J. Some choice may be made among these solutions by
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the use of the Coulomb interference effects in thé small-angle differential
cross section. The experiments of Chamberlain, Pettengill, Segre and
Wiegandzl and. those of Fischer and-Goldhaber.z2 indicate a father large
destructive interference in the region where the Coulomb and nuclear
scattering amplitudes are of equal magnitude° Since the Coulomb amplitude
is predominantly negative imaginéry in this region the nuclear part of -
the scattering amplitude is required to héve its imaginary part positive.
" Nine of the éighteen solutions satisfy this condition, but for three of
these niine the real part of the amplitudé is sméller by an order of magni-
tude than that which is needed to account for the interference observed.
Recently another parameter of the P-P system has been measured by
James E. Simmons.togethef with Jack Baldwin, ﬁave Fiséher and.other members
of the experimental group mentioned above. This parametér, called A by
Wolfenstein; is_measured by passing the polarized beam through a magnetic
field which rotates the direction of incident polafization, giving it a
component along'the incident direction. This parameter has been measured
at three angles of scattering. At each 6fvthese angles separately the best
fit from among the reﬁaining:six solutions is given by the second of the
solutions.listed in Table J (the solution with fi: = 27.2). This
solution lies within the eXperimentél error at the two large angle points.
Only one other solution lies within thé expefimehtal error at either of

these points and this solution gives an extremely poor fit at the other

Ypsilantis 30 calculates the real part of the amplitude in the

interference region to be of the order of 0.19 x lO_13 cm.,
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large angle point. At the small angle point, which lies at 25.&0, none
of the solutions attains the large negative value that is measured, and
even this best solution is too small by 50%, which is three times the
experimental error. In spite of thié pobr small-angle fit, this solution
is by far the best of the remaiﬁihg six solutions and appears to be the
oniy solution found so far that gives even a fair fit to all the experi-
mental data. The values of the other observables that are predicted by
this solution listed under the heading G(Theé) in Table I for comparison
with the experimental vélues; One will notice that there is good agreement
ﬁith all except ﬁhe R data, and here again it is at the small angle
points that the disagreement becomes large. These discrepancies at small
angles suggest that the highér order phases shifts, though perhaps small;
are playing a significant role in this small-angle region, where their
effects would be expecﬂed to become most pronounced. Nevertheless, the
policy ofbneglecting the higher order phases shifts gains some general
suppoft.ih the smallness sﬁown in this best solutionAof the d and f
phase shifts relative to those for the s and p waves. It should pe
pointed out that if it is admitted that the higher partial waves play a
significant r&le in the small;angle region that the validity of the argu-
menté concerning thé Coulomb interference is placed in doubt. However,
the ‘A parameter has also been calculated for the solutions which have
negative:imaginary amplitudes and whose E; 's are less than LO. All
these solutions give strong disagreement with the large angle experimental

data.
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Section 3. Theory of Correlation Experiments.

In this section the information which may be obtained from
correlation experiments is discussed. In.these experiments an unpolarized
proton beam is scattered by protens and components of the polarization of
both the recoil'and scattered ,protens are measured in coincidence. Thus
the correlation between the scin directions of the two particles is

.determined. |

Sihce the center—of.mass momentum is‘not a constant throughout
tﬁis process the ware function will be expressed again in terms_ef the
individual coordinates ry and r,. The part of the wave function
k+l(r1, r,) after the first scattering which will contribute to the
correlation measuremepts will be a product of plane waves in the r

and r, spaces and its spin state will be described by 59 (6@). This

., will be the incident beam for the second process which involves a

scattering of both the first and second perticle. This scattering of

two particles can be represented by a generalization of the Wolfenstein-
Ashkin M-matrix. The generalized metrix will be a function of two sets
. of ahgles 91¢i and 62¢é and for the simple' case in which the second

_scatterers are spin zero it will take the form
LGTE 6,8,) = (£(8)) + £)(6;)01'N)(f, ( 63) + 8,(8,) Tp°N) .
| _ | (10)
In general the matrix M(Gl¢l; 92¢é)v s just the direct product
of the M matrices for the individual scatterings The density matrix
. which represents the spin state after the second scatterings is

?(eﬁ&, 8,85, 6F) = M(el¢1, 8285) f(e¢) M(610,, 62¢25 )
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The ‘f)(6¢) is the density matrix for the incident state of the second -

scatterings. Suppressing the 6@ dependence, this may be written

-

@ = ¥rg) (L4 Py Ty + Py Ty 0y Oy T ) |
| | " IR 2)

5 4are the polarization vectors discussed in section one

and Cyy 1s the correlation parameter which, according to Eq. (4), is

( O"n 0‘2J> . The analog of Eq. (5) is

' o —
where Pl and P

i(al¢1,92¢2) = Tr? (el¢l,.92¢2)/Tr .9 : : - (13)

where I(6;8, 8,0,)d Ny dJ72 is ihe coincidence cross section. If now
Eqs. (40) and (42) are substituted into Eq. (41) and this in turn is
inserted in Eq. (43), the resulting expression becomes after some

simplification
I(618, 92¢2)

= Iy(6y) I4(6,) { 1+ Fl.?(el¢l) + ?2-}‘(92;252) +Cyj5 Pi(91¢1)Pj(62¢2)}

(L4)
‘where :
Io(6) = ‘fl(el), + lgl(el)l‘ N
10 = 1.0 2+ | ey00)] 2
Ib(el)P(Gi¢l) = ( £1(81) g1(6;) + f*{(el) g1(87) ) Ny(61/1)
To(6)F(8,8,) = ( £5(8;) g5(0) + £5(8)) £,(62)) Tp(aydy)

- (45)



Defining ~ I(8; 0, 65 0) =
(e, Tr, 8, 0) =
I(e; 0, 6, =
(e, T, 6,M) =

B B B E

(46)

;-A - | - el
and letting e; and e, be the normal vectors N; and N, when

#, =0 and @, = 0, respectively, one finds that

c S Cyy 094e = 1 LL + RR - IR - RL (7)
°1°2 T 1)U T ) Pl6,) L+ ER ¥ IR T RL
where P(Gl) = , P(61¢1) l and P(6,) = l ;?egﬂz)L Eq. (47) provides A

the relationship between the quantities LL, ete. which are measured and

the quantity

Ce. e, (6F)

<6:1';1 ?2':2 >e¢
2 Te(u(0p) M(eg) Tyor T 55y ) (48)

where the 6f 4is now no longer suppressed. Eq. (48) allows Celez(6¢)

e1€2

to be expressed in terms of M-matrix coefficients a(8) etc.
There are various possible ce1e2 according to the choice made
for the directions of '2i and 'Zé in different experiments. In one
—- .

type of experiment the 'gi and -;é are taken along N , the normal to

~ the original scattering plane. Then one measures CNN(G) where

Io Oyy(8) = % Tr M(eg) M(eg) Oy T yy | . » .

2 Re am” + 2|c\2-2|g|2+2|h\2. -
(49)

In other experiments :1 or ';} or both may lie in the plane of thé

: - -
original scattering. If M and M' are unit vectors in this plane
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-l . .
and N is still the normal vector, then one finds

Io Cyy! IpGy = 0 o | - (50)

and

I Oy' = cos(f - P")'z Re(a - m)g*

- cos( e-&-ﬂ') 2 Re($+ n)h¥ 4 2 sin (p +F')2“Re(l~chﬁ)
where p is the angle between -ﬁ and ‘f, the vector along the momentum
. transfer, énd t;' is the angle between " and .E} The sign of these
angles is such that p and P' equal 7"/2 , when the M and M'
lie along .5: Now in the laboratory frame in which the measurements are
‘made the particies emerge, neglecting a relativistic correction, in the
directions of i? and _:f; and the components in the plane which are

. , N -

measured are along the respective perpendiculars K and P. Thus p =0

.a.nd P" - /2 and
Io Cgp(8) = L Re ich™ . | ~(51)

The éxberimental dét.ermination of the correlation functions is
made difficult By the factvthavt. the part.idle scattered into the backward
‘direction has a small energy in the laboratory frame and the analyzing
power P(0) is correqundingiy small. The experimenté are the easiest
when © -.- W/2 The interpretation of the experiments at this .angle is
aiso considerably simplified by the vanishing. of some of the Mg.s.

This may be Seen by first noting that Lg of the incident plalne wave
is zefo and Since JZ is a covnstal.'lt of the motion, thbe. Lé of the
final state must .be the difference of the incident and final Sz's.

However, the parity of the wave function in the triplet :states is odd

and thus whenever the # dependence is even the © dependence is odd.
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‘Thus
Hll(ﬂ/z) - MOO(W/Z) = Ml-l(W/Z) = o . v (52)

At 8 - TW/2 Table B then gives

a = *MSS = -m :. -g
c = (8 (_Mlo - Mm]
ho= (8)2 [Mlo‘”‘oi ] . | (53)
| Inserting these felaﬁions in Tabie A, it is then found that: |
2
Il - Ogy) = 3 | Mg
, 2 2
Io(l-_“l" CNN) = ‘MOI‘ -+ ‘Mlo(
' 2 2
Io Ckp = i_{l“oﬂ - Mo J
To By =%39M01";s. |
= 3 \H01| + |uss ' cos 8p) ss
Io D - -Re M, Mgl

- |- ‘Mml cos 819 01 - (54)
Combining the second and third equations

Io(l+ Cyy + 2 Cgp) = 2 (M

2
al
| (55)

- 2
Io(L+ Cyy - 2 Cxp) = 2 Myl -

Thus at this angle the absolute values of all three of the nonvanishing
matrix elements are determined by the correlation experiments. Further-

more, the R and D measurements determine the relative phases of
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these matrix eiements, up fd a four fold ambiguity arising from the
: doublé-valuedness of the arc-cosines. Ixcept for this ambiguity and the
ambiguity of the overall phase the M-matrix can be completely determined
~at this angle by these four expériments, and the differeﬁtial cross
section., In the regions of higher energy where a phase shiftbanaljsis
becomes impractical this method of determining the H—matrix will take on .
increased impqrtance,_mEven when the phase shift analysis is used it can
pro#ide a rather stringent condition on the phase shifts.

By the use of more complicated types of experiments this general
method can be applied to angles other than TT /2. These generalizations
are straightforward but. will not be discussed here, since the experiments

are much more difficult than the ones used above and even these have no£

been satisfactorily performed as yet.
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Section 4. Symmetry Considerations and the N - P System.

In the first paft of this section the consequences of.the
indiétinguishability of the two protons are considered. In the second
part the relationéhipé betﬁeenteXperiménts'on the N-P and P-P systems
a;e diséussed-and some coﬁseqdehces of charge independence derived,

Consider first a system which consists of a single pa;£;;le.' The
proﬁability UJ’(R) that this particlé'will be found in a region R may

~be expressed'as
w@® = {(P®)) = Sd?‘i’*(f) p(R) ¥ ()

where P(R) 1is the oberator which projects onto the region R and is

defined By'
P(R)\P(?‘) = \'l/('l;‘) ~for T in R
PR)Y () = O otherwise .

Furthermore, the average over particles found in the region R of theb

quantity which correéponds to the spin space operator A 1is

@ - {aem)) /G®RD) .

For the system in which there are several distinguishable particles,
let A, denote the operators in the spin épacés of the various particles
which correspond to the Same'type of phyéical measurement A, The 4

expectation value of A for a measurement in the region R upon the

nth particle is
am = {a p (R) /(P (R))

where
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Pn(R)\f/(rl, To» ees) = \}’(rl, T, | for r, in R

0 otherwise.

If the measurement does not distinguish between the different particles
(though they may be distinguishable) then the expectation value is

AR®) = < 2 ok Pn<R)> / (Z,, Pn(R)> . e

The denominator < 2 n Pn(R)>
finding some particle in the region'R. In the case of indiétinguishable

w- (R) 1is the probability of

particles the 6perators corresponding to various measurements should be
of this form. 1In this case there is , in addition, a condition on the
~ symmetry properties of the wave function. For two protons the wave

function may be written
N g (r1, rp) = (2)'%(1 - T s)"f'o(rl, r,) | (57)

. where \-P o(rl, r2) is the unsymmetrized wave function and .T and S

are the spin and space exchange operators defined by

T+ TG . BN CON

where only the space coordinates of \‘l) 0 are interchanged in the last

equation. They satisfy the equations .

T A T

A, | o (60)
s Pl(R) S = P,(R) . . E (61)

Using the equation
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TS5 Ll}(rl, ‘r2) = TS (2)-% 1-17T 's)\’/'o(rl, rz)

- Yo vy | | - (62)

one finds that

RCRAL)

.<'r S A, fz(R) T s>

CRISD) | (63)
and ‘ ' .

| v _.<p2('a):\) | <Pv’1(R) > . » (64)

Thgrefore
AR) - oy @) . L) o (ss)
(R’ {PR) ) |
w® = 2<{nR) = 2 {e,®)) | (66)

ahd the nonsymmetrized operators may be used ﬁo calculate expectatioh
values and probabilities, so long as the symmetrized wave functions are
used, ’

In polarizatioﬁ experiﬁehts'the initial conditidns_ére specified
by giving the expectation value of the spin for the regions R and R!
'correspbnding to the locations of ﬁhe two particles before the séattering.
The operators whose expectation values are fixed are of the symmeﬁrized
forms given in Eq.i(56) since the two particles cannot be distinguished.
The density matrix | f) inc» 88 it is used here, correspondihg to such
expectation values in the incident state cannot bé'constructed,vin
general, since §> ine is a function only of spin and does not possess
the coﬁplexity required to describe the relationship between spin and
position which characterizeé the incident sﬁate; However one may use

instead the'density matrix §> gnc which describes the polarization of
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the unsymmetrized state LI) 0(rl, r2). Letting Mo(9¢) "be the

 M-matrix which propagates the \V o(rl rp), one has

0 = %o P '1ne Kt00) . . (67
According to Eq. (575 and the definition of the density matrix; the

actual density matrix is then

0 o - @ a-190%m a-ra@? (68)

Defining M(e¢) - (2)"% 1-17 é) Mo(6¢) this m;y be written

P - M@ ) e (69

which gives a relationship between the properly symmetrized density matrix

after scattering and the unsymmetrized one used for the incident particles.

- If this symmetrized form of the M-matrix is used then in specifying the

. state of polarization of the incident beam one may neglect the indistin-

guishability of the two protons and consider one to be the incident
particle and the other to be the target. The operators corresponding to
expectation vaiues in the _final state may according to Eq. (65) be

taken as operators referring to the first or second.particle if the

‘ cox_‘responding pi‘ojection operators are used. It should be not'ice‘d that

in relative coordinate space the 'projéqtions on the first and second

particle coordinates become respectively ‘P(R) and R(ft') where R is

the inversion trhough the origin of R. Thus the expectation value of

A nmeasured in the beamliz_rawieling in the direction 6g may be expressed

as <A1 P(9¢)> / (P(e¢).> or as <A2 P(e'g')) / (P(é'¢')> where
' = ¥ -6, @ - W+ @g. In order to automatically include the

effect of the factor 2 in Eq. (66) it is convenient to multiply the
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4

M matrix by (2)

. The §> (6f¢) is then doubled and the expression‘for

I(ef) remains

1(eg) = Tr- ? (GV)/TI‘ flnc .

The above remarks provide the justification of the treatment of the
P - P system given ih section one* and are the basis of the following
remarks on the relationship between the experiments on the P - P and
N - P.systems. _ |

'The content of the hypoﬁhesis of charge independence is that the
Pknmtrix‘for tne N-P system is just the Mo(6¢) "discussed above; that is,
aside from the requirements of antisymmetrization of the P-P wave function
the N-P and P-P systems are'identical,** It is useful, therefore, to
obtain the relations between the coefficients ao(e), c°(e), ....ho(e)
defined by , |
o, #) = a0)+ C(0)(a, + Toy) + mO0(8) T, T,

. IN 2N IN "2

+"30(e)(°'-ip Q‘Zé “"vo-'lx )+ h0ce)( ole"TZP - O %)

and the corresponding coefficients of the 'M(e¢). According to its

definition,

Meg) = (1 -1 s) MOeg) |
| | S (70)
= Meg) - T Moergr) .

(This matrix M(6@) is the M-matrix for the P-P system which has been

used in the earlier sections;) The MQ(9'¢‘) is”obtained-by replacing

¥* _ . o
See Breit, Ehrman and Hull, Reference (31), for another discussion

of these points,

- .
The coulomb effects in the P-P system are neglected here.
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—y ——dy, -l

Kout b7 Koyp in w0 (6f). 1In terms of the vectors N, P and E

associated with the angles of, M(e'g') is

- Wergn) = &%) - <=°(9'r)('01N + OQN')+ m°(.(->')(_<1‘1N Tox )

46090103, 035 4 O O3) - K280, 0 - 0% 0%

(71)
Using the definition of T in Eq. (58)

Mo, #) =. W(ep) - 7 10

(o) - 1(erg)+ 31 - Ty T wer 1)

a%e) - a%e") + (c%(8) + <2(6"))(Ty + Ty)

+ %) - n%(8")) Oy Oy + (£%(6) - £%(6") (0 G3p+ T T3

A+ (0(0) + 1(6))( T, Oy - Ty T)
+ 3(1 - T 0,)(a%0") - u0(e') - 2 g(o1))

'Collecting terms and comparing them to the terms of M(6@) defined in
Eq. (10) one obtains, with subscripts s and a denoting symmetric

and antisymmetric parts with respect to 6 = 77'/2 s

a0 = 2.820) - £2(68) + £2(6)

n(e) = 2ad(8) + tg(e)_- £9(e)
o |
g(6) = 2 gJ(6)+1t,(0) - t3(6)
h(e) = 2no(e)
o(0) = 2c(0) - | (2

where t9(8)

3(a0(8) - uO(e) - 2 g%e).
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The symmetry properties of the coefficients a(8) ..., h(e) are apparent

from this equation and one may aiso notice that
~8,(0) - my(0) - 2 g,(0) = 0. - (73)

If the hypoﬁhesis of bharge independence is not valid then the M0(9¢)
will not describe the N-P scéttering. fhis procéss,will be described
rather by an‘MFmatrix MSP(6¢) whose coefficients will be denoted by
aNP(e),..., hNP(G). If, mofeover, charge symmetry is not valid thére
will be an extré term .

BT (O)(Ty - Toy) -

In N-P scattering the polarization -of the proton scattered at ef
(the proton will be considered the first particle and the neﬁtron the
second, where ¥ = (¥; - ?2)) will be denoted by ?(P, 6@) and its

3 magnitudé is

1 M (og) FP(eg) Oy
e M (69) M (og)

{2' Re cMP(0) (T (8) + mF (o))"

P(P, ©)

2 Re B'F(0) (aF(0) - mNP(e_))*} 10°1 .

The polarization of the neutron scattered at ©'@g' 4is denoted by

P(N, 6'@') and its magnitude is

P(N, 8') = (rr MF(eg) ?f“P(egs) ) (Io).’1

) {z Re cP(6) (aF(6) + u'P(6))"

- 280 P(0) (™ (o) - m"‘Pce»*} (1)
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A.difference between P(N, é) and P(P, 8) would indicate the lack of
validity of the hypothesis of charge symmetry. The quantitiesA P(N 6'¢',
and P(P 9'¢) can be measured either by measuring the polafization of
the neutron or the proton, respectiﬁely, after an N-P collision, or by'
measuring the asymmetry;in an N-P collision when the incident neutron
or proton is polarized.11 | |
| In the depolarization and rotation experiments one may polarize
either the incident neuﬁron or the incident proton, and then measure
the polarizatioh of either particle after the scattering. To denote the
depolariZa@ion function when the neutron is polarized and the proton
emerging at © is analyzed, the symbol D(N, P, 8) will be used. If
the protoh is polarized and the neutron emerging a£ 6' is measured
the symbol will be D(P, N, ©'). The expressions for the various
quantities measured in termé of the (aNP(e),..., hNP(G), bNP(e) are
given in Table E where, however, aNP(Q) is abbreviated by a and
éimilarly_for the other coefficients. The consequences of charge
independence are obtained by identifying these coefficients with the
ao(e),..., ho(e) of Egs. (72);'the coulomb effects being negiected here.
Since the P-P.coefficients are, according to.Eq. (72), functions of the
N-P coefficients for both 6 and ', the relationships between the
N-P and P-P experiments will involve méasuréments at both angles.
However, at 1*’/2 where © = ©' the reiationships will be felatively
simple. Since the antisymmetric parts are zero_here one sees immediateiy

that _
(To Cxp(T/2)pp = (T, Cp(TT/2))p BN (/A

and a little manipulation shows that
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[10(1+- cm(ﬁ/z) - 2p(" /2) ] =4 [10(1 ¥ Cyy(7/2) - D(NP T /2)
g PP
< oeer /2
_ NP
(75)
and
'[10 Be(/2) ]PP = [ 1, (R (PP T/2) + Ry(PN T/2) - Re(wp T /2)
-rp(un 7/2)) :] .
NP

(76)

These relationships would provide some direct tests of~the‘hypothesis of
charge independence for the two nucleon system. The necessary experiments

are, however, considered quite difficult at the present time.
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PART II

Section 1., Covariant S-Matrix.

In the preceding part the polarization phenomena is treated using
the simpiifying assumption that the»nucleons are Pauli particles. In
view of the 300 Mev incident beam energy of the Berkeley expgriments and
the stiil larger energies now afailable a relativistic treatmént is
desirabie. In this part a éqvariant treatment of the problem is carried
out, | ‘ ‘ |

, 'In this first section the covariant form of the S-matrix for the
collision of a Dirac particle with a spir zero particlg is developed,
Relativistic invariance requires that the element of the S-matrix which
_transforms the spinor in the initiel state into the spinor in the final

state be of the form*

Sp(k's £ k) = A+ Buu+ § G Gio + DA YD+ EY,
where A, By , Guy, Du and E are respectively scalar, véctor,,
antisymmetfic tensor, pseudovecfor énd pseudoscalar functions of the
three 1ndepér_1dent fohr. momenta k, k' and %t. The 5 and k' denote
thq relative fourémomeﬁta'in the iﬁitial aﬁd final éﬁates respect;vely,
while t 1is the total four-momentum of the systém,:the sum of the
initial or the final four-momenta of theltWO parficles. The general
matrik‘of this form is, however, not consisientiwith the requirements

of hole théory. This'interpretétion“of the.Diraé equatidn'requires_thap
a Difac pérticle which is in a'plane wave staté.at‘both' t :,4‘00 and

t = -00 must have the sign of its energy'the same' at these two times.

Sp(k', L, k) 1is a matrix element in momentun space and a matrix in

spinor space. The subscript P distinguishes it from a symbol to
be defined later,
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Stated in physical terms the Dirac particle cannot be changed from an
ordinary particle at t = =00 to an antiparticle at t = + 00, or
vice versa.® Before expressing this condition in mathematical form some
notation must be introduced.

If the incideht'Dirac particle is in a positive energy state then

its wave function may be expressed as

. X » :
‘{/inc = ol T (ay up (£) 4+ 8y uy (£)), .
while for a negative energy state

Wine = o EF oy 0 () + 8w, ().

Here £ 1s the four-momentum representing the physicaliy measﬁredweggrgy_‘
and momentum of the Dirac particle. Thus fo > 0; and the space part

of £ has the same direction and sense as the incident velocity. Notice
that £ 1is not the reiativelmomentum, like k, but the momentum in the
Basic reference.frame. The fouf spinors ui(g) each have four.éomponents

. 3
_usi(g)v which are given by
u () = (g1 2.} +M) 2 M(£n + M) 2
Ugi\s/ = AF L2l 0 ’
Here, and in what follows, the upper sign reférs to indices i -1, 2

(positive energy states) and the lower sign refers to i = 3,4 (negative

energy states). The covariant normalization condition

¥ Cases in which real particles are created during a collision may be
treated by an extension of the S-matrix formalism, but will not be
considered here. '

% ,
£'x = £ xu  vhere f, =i f,, etc.

a0

M=c=1; M= proton rest mass.
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4y () uy() = uf (9) B wo = :gij
is satisfied by these spinors. In this relativistic treatment a star is

used to denote complex conjugate transpose and u denotes tf?B, the

adjoint of u. The ui(f) introducéd above are easily seen to be

solutions of the Dirac equation

(tigd+Wu@ o0 .

It is now convenient to introduce for any four vector ¥ the symbol

.\J(z) z (X'.‘!)}(x-ir)i >

where the square root in the denominator is to be taken as poéitive or

’positife imaginary. The Dirac equation then becomes

o w =xu . 3)

Using this relation the hole‘theory condition may be expressed by the

)

eqﬁation

se's b, £) = B s@r, b 0 Vo) W)

'where s(g', t, £) denotes the S matrix element between‘states in

which the Dirac particle has the physical momenta f and £' in the
initial and final states respectively., It will prove convenient,

however, to cast the condition expressed by Eq. (4) into the form of-a

commutation relation. This may be done with the help of the operator

\5(9, w = Ja It_l-u(-é V+?_r lﬁ-xl-%)'

o= [\5(9) + \&(!] | .
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Using the equations

X(g) _X(l_l) R X(W) X(W) s

one fiﬁds thét ,
P w ¥ w . (5)

' 3(9) X(B» ¥)

With the aid of this equation and 5,(k's £, k) defined by

sty o0 = P, Ys L W, (©

the hole theory'éondition may be expressed as

3,060 1,10 = ¥(e) s, 5,0 By NG

Since»tﬁe S-matrix and the Zf(g, w) have convariant fdrms the
sq(g',,p, k) must also be covafiant and it may be writien in the form
gifen by Eq. (1) with the subscript P replaced now by q. The
commutation relation Eq. (7) may be used to restrict the coefficients in

this expression for 'S, to the forms

a
B = M (bt,) - (8
Cup = N, c{xM Ky -y k- O - n?) [t - k) - bl - kﬂ‘)}}
v T _
Du = Ny d(-1) kKt g 3 o ma

Here the coefficients b, ¢ and d are scalar functions, m 15 the rest
mass of the second particle and the normalization factors Ny, N., and

Nd' are choosen so that
2 2 2'

The. £, \pe- 18 the antisyumotric symbol and n  4is a unit

pseudovector which satisfies
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This pseudovector n 1is the four dimensional generalization of -I\T, the

three dimensional vector normal to the plane of scattering. The auxiliary

‘operator S q(l_{' , t, k) which has just been introduced has a rather

simple interpretation. To see this let Eq. (7) be substituted into

Eq. (6) to give

sien e ) = (e, 09 ¥ a0 s, 1 00 ¥ ) e, £0)

| (6')
The operator (3('&) X (t, £)) is closely related to the Lorentz
transformatlon between the center of mass frame and the rest frame of
the incident Dirac pavtlcle, and the operator ( \&(f' t) x (t)) is
similarily related to the rest frame of the scattered particle. This

may be seen by i-educing the Lorentz transformation

L(f) = expE-% e(av-?) | 71 —l_]
~ to the form o )
o) = gl 3er+ MF)[ZM(f°+ M)] t (11)

In the center of mass frame in which X t) = P , one may immediately

identify terms to obtain

Yy B £
Yeeg, v Yo

where the subscript one indicates the center of mass value. Thus

L(g;)

e) (12)

o | »
S(£1, ty, £1) = L7(f1) 5. Gk, &, ky) L(fy) . This



-L8-

equation has the following interpretation: the S-matrix in the center
of mass frame may be decomposed into a product of two Lorentz transformations

and a scattering matrix S The first factor is a Lorentz transformation

aQ°
whiéh éonverts the spinors of the incident wave function from theif_
valués in the center of mass frame to their valueé in a rest frame of
the incident Difac particle. It converts the spinoré to their "properﬁ
values; one might say. Then the unitary operator Sq gives the effect
of the scattering upon the "proper™ spinors and finally a Lorentz
transformation converts the "proper" spinors of the scattered particle
back to their value as seen in the center-of-mass frame.

The forh of Sq in the center-of-mass frame is particularly

simple. The Eqgs. (8) give in this case

By zt« = b(3

$2Cy Gy = ¢ oy Ny (1=z1, 2, 3)

DA13‘5X‘,‘= dfgo"ini. (13).
Here the Ori, aré the usual four by four Dirac matrices

g 0

o 0

—

and N is the three vector which is normal to the scattering plane in
the center of mass frame. Combining these one obtains
[ (2% + g%ay) 0
Sq(Bi: ‘t'l’ kl) = v :
o U -gay
(14)

~ where O is the Pauli 07 N; and

~
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(15)
The f's and g's are scalar functions which completely describe the
'scat.tering. The upper tﬁo byvtwo matrix operates only on the positive
energy "proper" spinors and the lower matrix operatoes only on negative
energy parts.
| In the general frame, also, the Sq may be put into a form which
clearly separates the parts referring to positive and pegative energy

stateé. ,Th.e desired form is obtained by first writing

$C. Oy 3 c;n? (-1/2)( YA XO - Xv \X,u ) |
Cuv *M Xv

Cuv x;- Xg Egovu.ﬂ Y_r . (16)

S e

The condition that % C,,, Os,  commtes with ¥ (§) requires that
twCuv = =Chu tu =0 - . (17)

Using this relation, Eq. (16) may be written

2C.,05, = i X(&) 7\5 .ZL'E_. (18)
where _ | ' o ' .
Cp = 3(-1te) g Cuv | t-tal»'% . 9)

Ir ‘the expression for C,, from Eq. (8) isyf“]vaut into Eq. (19) and the

definition of n from Eq. (8) is used, one obtains
€ = cn . | ’ . ~ (20)

Eqs. (1), (8) and (18) now combine to give
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S,(k's t, k) - &+ b ?9(3)4— d(i X} Zfzx) + ¢ \&(z)(i 3“5 _B"_n) .

(21)
With the introduction of the covariant projection operators
. t _ ’ ’
Nw - 30 =8y, (22)
this reduces to ‘ . o
’ [ . - .
. : * - o
, | | (23)
In this form of Sq the 0:,) type of term has been eliminated in B

favor of projection operators and terms of the 1 X‘S xg type.
Alternatively the i »5 )AS may be eliminated in fa\:ror of projection
operators and QL 's. The form of the S-matrix obtained by
substituting Eq. (23) into Eq. (6') is covariant and clearly separates

, t;he pax:ts referring to the positive ahd negative energy states. This
form will be used in the analysis of the‘ polarizétion experiments in

the third seétion. In the next section the covariant form of the density
matrix will be introduced and reduced in a manner quite similar to the

reduction of the S-matrix in this section.



-51-

Section 2. Covariant Density Matrix.

In the treatment of polarization phenomena it is necessary to
consider mixtures of states and a density matrix formulation is convenient.

The expectation value of an operator A in the incident beam is expressed

in terms of the density matrix,_j’({) by the equationlo“

(), = w Q@ amp@ . (24)
- For the scattered. beam the correspondlng ‘equation is '
: A .

(a )f. = Tr S)(_f.') A/Tr f'(;‘_') . O (25)

The differential cross section is |
= Ir y‘(s_')/T'i'Sa' (€9 I (26)

where the density matrices before and after the scattering are related by*

?(f' = s(g' f)S)(f) S, 8 8) - (27)

The adJoint A of an operator A is defined by the equation

Au = 117?

and thus‘ Ca
PSE
where the star denotes complex conjugate transpose
The covariant dens:Lty matrices ?(f) and g(f') may be

expressed in the forms

?(:) ' (iTrﬁv(f)){l + )s +%swc;.o+1\6l 3 +e3" }
f'(f')

*

I Tr‘?(ff)){l + N bt} s G+ 1 8 K Ho 2‘5}

(28)

See Appendix for a discussion of the covariant density matrix used here.
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where }\A.'sm,) pp and e are respectively vector, antisymnmtric tensor,
pseudovector and pseudoscalar and similarily for the primed quantities.
The condition that the Dirac particle must be definitely in a positive

energy state for définitély in a-negative energy state in the asymptotic

region may be expressed by the equations

P (£)
| f'(.f')

By a treatment very similar to the reduction of the form of S_ in

¥ ¢ @) 3 @)

i

o) g’(z') Yany . (29)

q

" section one the density matrices may now be reduced to the forms”
: ’ -\ ‘
S)(f) (3 Try(f)){ Z: /\t(g) >\ 1+ ‘135 Y‘-f)}
: + T » _
g = ampen{ sy Ay N ar ¥, T}

(30)

where '
_P'_I_' = g'-f' = 0 (31)

and where

th ‘..Tr(jl’(f) /\i (/r &) = </\*@)»> |
. }\::) _ _ Tr(()Q) /it(&) 18\5);)_ - </\tly\5$>

Tr( S)_-(f))

and similarly for the primed variables.
.. The value of >\ specifies the energy state. For a positive
encrgy particle )\ = 1 and = 0 whereas for the negative energy

. X_ - .
rarticle =0 and )\; 1. The pscudovectors P are the

% ) '
This form has been used by Michel and Wightman,
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relativistic generalizations of the polarization vectors of the non-

relativistic treatment and describe the spin of the particle and anti-

particle.

This form of thé density.matrix, used in conjunction with the form
of the S;matrix developed in section one, will give a éonvariant |
description of polarization phenomena. In the following sectﬁoﬁ this

covariant treatment is applied to double and triple scattering experiments

and relativistic corrections are obtained.
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Section 3, Covariant Polarization Formalism.

- To find the state of polarization of a nucleon after a singie
scattering, one may put the expressions for S(f', t, I), ? (f) and
‘SD'(Q') giveﬁ in Eqs. (6'), (23)‘and (30) into Eq. (27), which relates
SJ (£) and f (£'). With the help of the relations )‘(g) = ?-(1._1)

and »(u, w) = X(u, w) for time-like u and w, one then obtains

Tr 'J:' Z/\(f') (1+1Y X}g ") ' | | -
vTr_‘y £ K _

A
: (/(f' I’)Y(&)) {Z /\(t)(f +ig*2‘ Z«.n) : | | .
% .

t

x()‘(w Y(t ) Z:/\(f) >\ 1+ o }*

x(?‘(f t)‘&(t)) 2+/\(t)(f - iE*X ¥ n)

xd‘(;)‘&(t ) . o (40)

By reducing the rights-hand_ side of this equation to the form appearing
on the left, one may obtain.‘the polarization _p' of the final beam in
terms of p , the initial polarization, and £?* and g% the scattering
| parameters. At the seme time the ciifferentiai cross section “

= Tr @ (£)/tr @ (£)

- will be obtained. Before performing this reduction, however, it is
convenient to transform the equé.tion into a simpler form. In particular
the equation inay be separated intd two equations » each of which ‘involves
only two by two matrices and refers to a single type of particle This‘
.not only simplifies computatlons but allows a more dlrect comparison to

the nonrelat1v1st1c formulation.
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To obtain this simplification the relations

Yo lw = Tow b‘m 9 =

- -

may be used to first transform Eq (40) into

18w ¥er, {Z A )\<1+13‘ p)} e, ¥ @)
{Z /\(’c)(f+ig)L X’n) |

| xn‘mk‘(:, ) {Z Awha+s e } ke
X{ LAWDE+ 15 )"5!--2)} |

where the = are now to be understood. Using the Lorentz transformations

W)

TI®) End T(t) = L7Y(t), this may be written

1 L ¥ e, t)){Z A >\<1+ 13,8 )} b‘(f',t)b“m)x.(;)

| .- m){z /\(t)(f+ ig» 1’ n)} L(t)
| xL(t)(Zf‘(t)X‘(f t)) { Z/\(f))\(l+ 12‘ @‘ P)}

« e, v ¥ ) Tw

x L{t) { T AwE+1 E%E-E)} (s

| (42)
The L(t) has the property that
1) LT - ,.,.m} o | w3
where anv () satisfies .
Xa Byv (t) = (_x]_)v (L)

IO N
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(x4) being the components of any aribtrary vector Xx in the center
Y ) . = :

of mass frame. Using Eqs. (43), (44) and (12) one finds

-L(E)(XA(Q) \& (%, '&)) i(&_) = \J(h) \6((’.(1; t)

L(g;) ’ (45)

where x may be £ or £'. Eq. (42) may then be writben
I(Lie] J108)) g ZAer ha+ 1Y, Z-y)} (&) )
= L(t) { ZAwe+ 16 Y } L(t) |
x (L(g)) L(g)) {Z /\(r) Ao+ 1 2?5 };p)}' (L) L(5))
x 10 { ZAwi+ 13 L) -_n>} i) -

(46)
With the introduétiop of the pure space rotatiqn transformation
: B(x) = L(x) L(t) Ix) , | (47)
one obtains | | ' ‘ : .
I R(£]) 1(2") f TAwr ha s 3‘5}‘-%30} L) B(gd)
- L { ZAwe+ 1e¥,) ) T -
x R(f1) L(£) { 2N a+s '3‘5 11;)} T,(z) 'ﬁ(:li |

x L(t) {Z Nwa+ 12 ¥ .;,)} L)

(48)
Defining '
o Pu = Py aw (£)
Ph I PL auu (')
N E. ny &y, () |

~
O
~
11

/\* = i(l:rp)
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and using equations similar to Eqs. (43) and (44), one obtains
I R(f)) { 2 N X 1+ i)k X-z')}'ﬁ(zi)
- {7;/\(0)(“ e ¥ ¥ |
x R(Z;) { 2 N\ >\ QL+ 13 _3‘._13)11(;1)
{Z/\(o)(ﬂ 15X5E-m} ‘ |
. (49)

According to their definitions the P P' and N are the values of

P a’ ~and n in the Lorentz frame where £, f', and %, respect.iwfely,

are pure time-like. Thus from the conditions

pf =z p'f' =z nt = O
the four-vectors P, P' and N must have vanishing fourth components.
Considered as three-vectors the vectors P and P' are, in fact, just
the proper polarizations of the incident and final beams, and N is the
normai to the scattering plane as measured in the center of mass frame.

With the definition
ﬁ(;i) 7?1'§(§l) = .;13(51) ?bj ;‘ | ‘(50)
Eq._(u9) reduces to | .»
1 ‘L*, N N'a+ 14 5 P Tyep) 3
{Z /\(o)(f + ig*% b‘ Ni)}
{ZtA«Dxu+ix Py ry pﬁﬁ}
{ZAmm%-i %} }

(51)
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where i and J need be summed only from 1 to 3. O8ince 1 ys Xi =
P 0'1 (i =1, 2, 3) this equation splits into two parts, each of which
i1s an equation in two by two matrices which refers to a single type of

particle.

+ - .
For the cases >\ =1 or >\ 1, the equations may be written

r? ( + ?'1

o )

' ~ 3 - -t L
£+ g*N 0 ) £ P 0 )(F = 27N 03)
thereby defining 1% The O j are now the two by two Pauli matrices

ard the vectors ‘i" and P' are defined by

~ ) ~ ' '
Py = -Pj rJi(_f_l) P:l = Pj rji(gl) .
' (52)

These equations are, except for a sign change ip o-'i for the negative

energy states, identical with the equations obtained from the nonrelativistic

treatment, except that the vectors P and B replace the polarization
vectors of the nonrélativistic treatment. In the analysis of »double and
-triple scattering experiments one may proceed much as in the nonr'elativi‘stic
case, remexﬁbering, however, that it is the proper polarization vectgr P,
rather than P, which is the same in t.he outgéing Seam of one scattering

as in the incoming béam for the next. The connection between the 'f\’/ of
one.scatt,ering and the g' of the preéeding scattering is

’;in) :‘hp's(n-l) r;‘];(f;‘_l) rki(;‘n) | | _ (53)

.where Eq. (52) has been used in conjunction with £he identity

p(n) o '(n-1)
P =

i - p:I. ‘
referring to the nth scattering and the subscript n on the four-momenta

. The superscript (n) - will denote the guantities

dénotes their center of mass values. The rotations appearing on the left,
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of Eq. (53) will introduce certain differences between the reiativistic
arnd nonrelativistic treatments. These will be called-the'rotational
corrections, |

A second type of correction comes from the use of fhe relativistic
traﬁéformation of momenta between the éﬁccessive frames. Thus the
relation betweén the incoming momentum for the nth scatterihg and the
outgoing momentum for the preceding scattering as measured in thgir
respective center of mass frames is

R T (54)

(fn)M. = (gr'l—l))« 2 A

The major portion of the transformation appearing here will, except for

“éxtremé relativistic cases, be given by the nonrelativistic Galilean

transformation. The remalnder will be called the kinematical corrections.
To analyze double and triple scattering experiments it appears

most convenient to choose the laboratory as the basic reference frame.

Assuming the target partlcles to be at rest in the laboratory one

notices that
PR "r’(‘?)

since the three Lorentz transformations which give
rav () = o (£ ’) ay) (Jn)) ayw (£1) 5 (55)

will be colinear and their product will be unity. For the scattered .

‘beam, however, the P' and ‘;' will differ. The formal manipulatidns
~ in the relativistic treatment will, therefore, be identical with those
of the nonrelativistic treatment except for the following two

modifications: first, the connection between the momenta in the successive

center of mass frames is given by Eq. (54); and second, an extra rotation
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xifb(gi) is applied to the polariiation vector in the outgoing beam

before it 1s interpreted as the incident polarization of the next

scattering, or as the proper polarization. The rotation p;{,(gi) .is

the effect of the three successive Lorentz transformations which take

a vector from its v#lue in a rest frame of the scattered particle to the

center of mass frame; then from center of mass to laboratory; and finally
~ from laboratory back to a (new) rest frame of the scattered particle.

‘ -

This rotation may be specified by an axial vector JL which is given by

the equation

R o2 @ x T 13 OB
a+ QPNa+ 3Ma+ (9%
(56)

(a) ) ‘ ©)
where (h‘) s (3‘) and (3{) .are the Lorentz contraction factors

- e
associated with the three transformations listed above and V,, Vi and

-
Vc are the space parts of the three relative velocities, respectively.

The tfansformations and the corresponding
rotation are schematically represented in n
the accompanying diagram, where e(n)

“and en are the laboratory and center of

.mass scattering angles respectively.

Since the rotation is about an axis

pérpendicular to the plane of scattering

S Lab vy CM
it may be neglected in the simple double

scattering expe;iments and in the depolarization experiments: in these
#* . S
experiments the polarization vector is always perpendicular to the .

scattering plane and the rotation will not affect it.
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In triple scalteringrexperiments of the rotation category the
polarization.vectér will have.componehtS'in the plane of the second
scattering. The asymmetry in the differential cross section after the
third scattering will measure the component of proper pdlarizétion vhich'
is in the plane of the second scattering and which is pérpendicular to
the laboratory direction of the scattered besm. ‘Both the kinemati'call‘
and rotational effects will play a role. As an example, the importént
case in which the masses of the Dirac particle and thevsécpnd target,
particle are equal will'be treated. The considerations of the next
section show thatlthe results obtained here will be applicable to the

case in which the second target is a Dirac particle.

e e - -

- —— ———- o et et + et

Because of the kinematical correcticans the second laboratory

scattering angle 6(2) is not 6,/2. The difference may be defined as

oz Ao s deag

Since.it is the component of polarization perpendicular‘td the laﬁoratory
direction of the scattered beam wh;ch is measured, thére will, for a

" fixed 6,5, be a kinemétical correc£ion of the direction which sﬁecifies
the cémponent of polarization whiéh is measured by the angle & .
Therevwill also be a rotational'cbrrection which changes the direction

of the polarization vector by the angle 8‘ :' \ji.l . The‘efféct-

of this second correction may be ac;ounted for‘by let#ing the polarization
vector remain fixed but rotating the diréction of the component which is
in effect measured, b&kthe angle - S . Taking the various senses into

s

account the net effect of the two corrections is to rotate the direction

- ——

of the effective component by ( E>- o) about t:e normal vectér N. A

caleulation shows that & = 2 &, and the rotational effect just
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reverses the kinematical correction. This has the simple physical
consequence thét the direction of the effective component makes an
angle 6(2) with the normal to the center of mass velocity. The
relativistic expression for the rotation parametef*- R inthe P-P

system, therefore, takes the relatively simple form

R = (|al . ml %) cos(8gy - Or,) - 4 Re g h" cos (6Lap)

+2Re i c(a? - mf) sin (OCM - eLab) _ .
- | )
where 'ecﬁ and eL#b are the center-of-mass and laboratofy angles at
the second scattering. To obtain this last equation it was assumed
that the prescription for extending the nonrelativistic formulas into
the relativistic domainvwill continue to Be valid when the target
particle has internal coordinates. In the next section the case in.
which the target is another Dirac particle 1s considered and this

assumption is validated.

% : . .
This is the R parameter which will be measured in experiments in

which magnetic fields are not used to rotate the directions of

- polarization vectors. See Reference 10.



-63-

Section L,' Polarization Formalism for Two Dirac Particles.

Ih the developments in the preceding sections it was assumed that
the target particle had no internal coordinates._ The form of the
results suggests that the relativistic corrections ihvolving'the spin
state of the first particle would not be changed if the second partiéle
were to possess internal coordinates. 'Indeed, one finds that the
manipulations involving the first particle spin state may be carried out
almost unchanged if the second particle possesses spinf In this section
the important case in whibh the secopd particle is also a Dirac particle ‘
is considered and the expected generalization is obtained. In this
treatment it will bé assumed that the two particleé are distinguishable,
Indistinguishable pafticles may then be treaﬁed by an appropriate anti-
symnetrization of the results. | | |

The S-matrix for the system of two Dirac particles may be expreséed
as a sum of terms, each of thch is a product of an operator in the
first spin space times an operator in the second spin space. Thué one

may take all possible billnear combinations of the matrices o
( ) /1 1 1 @) ' |
»(1),5 (1) 1?; ) B“ ) )t; ); SR A m‘.ﬁ’,‘ws b@(zzbggz))

which are linear in the first and in the second. subsets.
In exact analogy to the case treated above, the matrix Sq(g', t, k)

may be defined by

b = Y, 0 TP e, o ¥ P e

s(£', n',

x S, (k!

‘ ‘ 1) -
S5 5 00 F 90, P W, 0 -
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where h and h' are the initial and final momenta of the second Dirac
particle. The hole theory condition ‘may be introduced and used in a

mé.nner analogous to the reduction to Eq. (7), with»the results that:
1l
D@ s, 5 0 Dy - s, 50

TP s e,

et
-
Ix:
~
~
N
~
~
[34
~
1

= 5k, %, k)

Consider now the term in Sq(l_c', t; k) of the form

Cuvey & O -1 a4 o ‘2’)

The condition that this term commutes with UL( )(t) requlres, in

analogy to Eq. (17), that
ta c"’"! = =t C,;Atyf = 0.
Now applying the arguments which led to Eq. (18) one obtains

c»oo‘_g (3 O;Sl) ) = ){(1)(3)(1 \égl) X;(\:'L}C}")&'f

where t, CM"‘: = 0. The dependence on 0:'3(2) may be similarily

transformed ﬁo give

ey % (1) )(é O_(2) y 2 O X\(l)(g(i ‘&EI)X\A(I)) ?5*(2)(3)(15(22)%(2))

M -

where »CM t‘l =ty C;,f = 0. Eliminating all terms containing

O&4V s in a similar manner one obtains
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sk, ¢, k) = f#f‘”?*‘lh)ﬂ» ¢ 3*(2)(&5

e ‘”8{1)) Dt @, (z))
+c‘3’%‘*’<sxib‘§”zx " <z)3\< )( " }uz)xm
rEy B‘;l) 3,@)(1 3 f’ ¥

+org W 0,3 3@ ¥ P @)

+ 1O Y Wy 1By
EY g\cz)m(i N (1) 1D 4 & g\u)(t)(i Wz’ § ),

(1)\&(2)“) 3 (1)(&)( X\(l) &(1)

Y Oy Py} DY)

(1!) (1 \&(51) b‘,(l)) 3‘(2)(1.)(1 322) X\I(z),)

O
+ h(fj)(i 322) 3\(2)) ‘&(l)(t)(i 3*; ) 34;1) )

The goefficients appearing here are functions of<‘5' st Lk and

are pseudovectors and tensors which arse orthogonal to t ‘on all indices.

-

| ' ) .
Thus, for example, ty h} xg = ?f hxg = O . Now the flrst‘pwo

terms may be transformed into a more suitable form:
‘ W (1 (1) +
rr 030 - YL a0 IV

where . .
MeYe 1) - ot At - £7) - g1
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In the same way the rest of the terms may be grouped in pairs to give

s 5, K) = D, e a‘“)(,t_)){ gl i 3‘;” 3o

@, 3(2> A (2, |

(2) * 3«2)('6) + gy

+ (2)*3*(2)@)(1 5*(2) ¥ (2))+ »g(i g(l)bl(l))( }(‘(2)5«(2)
TR §1’ NSRRI §2"3*3,‘2)).
+5¥i*@%9u»fjﬁu5}.
Performing the gnalog;us nguping revlat;iv'e to 29 (2)(1_;) one obtains
Sy £, ) = Lz {é(l =3Pena :34(2)(3))}

x{f: e (1)** ?9(1)8‘(1) (2):: x(z)\&(z)

| s_,*,*'u L b‘f”)u 3 5‘;25} ,

vhere
. (1)t S (2)z: 3 4
tagy o = e = ey = g’ftf 0.
| | (59)
(1)H (2)rx. o
The g\ and g; must be pseudovectors and may therefore be
written |
é;utt énﬁ“ S " (212 (2)22
= n) gy = & nax

where n, are the components of the only available unit pseudovector,

that is,
n)‘ OO k'g kq-. tM fSQM)‘
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** '
The tensors g)‘y are, on the other hand, not restricted to a single

type of térm. The classification .of possible tensor terms is facilitated

by introducing the normalized vectors
¥ [+ kg - oSt (ke + k% )} (tet)7t
sl knt K\ Mgty kgt ke

‘NdA [k)x‘ k')‘] .

The vectors t, n, 8, d form an orthogonal set. The condition in

- L

N

d

T
Eq. (59) limits the possible terms in the ng, to those bilinear in
the components of n, s and 4, Invoking the re'quirement of invariance

. &
under spacial reflections the gi}' reduce to the form

T : : ,
87,3 .= c**nx ng <+ d+£3) e:‘ *‘td)\ck

T
+ & 7 (s) dp+ @) 5¢ )
Just as in the nonrelativistic case the required of invariadce under '
time inversionlo removes £he last two tefms since d) retains its

‘ sign under time inversion whereas sj) changes sign. Thus the

Sq(k', t, k) finally takes the form

Sqlk's &, k) 'Z%_/\m* A(z)t

et g ()3, \&(1) E(l) ot g (2);9:& 3\(2)E(2)

—1

+(c n}\ ng+ d*¥ oy N5+ etrd)\dj

x (1'\6‘2”3’“;\1)) 1X‘( )Y ] (60)
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In a very similar way the density matrix is reduced to the form
+ =3
pOm = e, n [z,,d\( o APy X

[1 + 1 )“1)}} (1) (1)*1 *(2) \&(2) p(f):b:*..

@)y @
x‘( ) w (1) \&
+ (1 b* )1 X‘ n @

(1)t '.(2)t¢
p

where p,, s " and C:‘ ,: are the polarization and

correlation parameters for the four typés of systems, and satisfy

(D2 (@) ag

t X 4
EM A - LS = c)g r = f)C}g = 0

These forms for f and S qQ may now be substituted into

£, h).

9' (£, b)) = S(g', B, & £, b)) 9 (g, b) S, b, &,

The transformations carfied out in section t‘hree may then be performed
‘upon the matrices in the two spin spaces.independently and the eqﬁation
will split into four equations in _thé two by"t,wo matrices each of |
which is identical in form to the nonrelativistic equations. The
quantities appearing in the places of the nonrelativistic polarization

and correlation components will be

¥ pg,l) r,(6)
;i2) = sz)l_rji(hl)
.';;(l) - P3(1) (fl)
;;(2) - P3(2) rji(bl)
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O iy (£1) 7py(l1)

~ .

Y 't

Gy = 0 rki(zl)_rmj(hi) ' (©3)

where now the superscripts refer to the first or second particle and

the er(J_gl) is defined as
sy - o® A o) o @

The ﬁodifications of the nonrelativistic formulas which the relativistic
effects introduce are seen, now, to be completel& parallél to those
obtained when the target had no spiﬁ,'and the assumption used at thev
end of ssction three is valid. |

In the treatment of the correlation experiments the relativistic
~effects on both particles must be considered. In the (:nn type of
correlation éxperiment, where the components of polarization perpendicular
to the scattering plane are measured the rotations wili again play no
role. In the (: KP ekperiment the reiativistic corrections will not
vanish., The application of Egs. (63) and (64) showé that the expression

for the quantity measured in these experiments is in the relativistie

" region

5 x % '
p 'z 4 Re ich” - 2 Re g(a” = m’) sin (8 - 2 Opap) -

(65)
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PART III

,Section'l..'Polarization Formalism,

In this section the general fprmalism for the.description of the
nonreiativistic scattering of spin one pafticles by spin zero targets
is developed. The treatment is élong the same éeneral lines ars thav |
used in the treatment of spin one-half parficles in the earlier chapters,
and is again based uponvthe use of the density matrix and the M matrix.
The M matrix which describes the scattering of a spin one particle
by a target of zero.spin will be thrée by three, and may be written in

the fol;owing £orm:
M(op) = A(ep) + By(ed)s; + Cyy(elsyy . (1)

A summation convention is to be understood and i and J run over

are the usual matrices

x, ¥y and z. The Si
o. 1 o |  Jo a4 o
5 = L (1 o 1 __syz.vl___i,o'.-;
| o 1 of \o 1 o
1 0 0
s3 =10 0. 0

0 0 _1 ,v‘

while

Sy, = 5(515‘14‘3331)'3’9‘ 1815 .

These maﬁriceé, together with the unit matrix, form a complete set in thé
space pf three by three matrices. The Cij(e¢) are made unique by
impdsing the condition that the matrix C(6f) with elements Cij(e¢) '

be symmetric and traceless.
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The spin state of the scattered beam may be described by the
density matrix E (6f) which is defined in terms of f i'nc. ,. the

density matrix before the scattering, by

) (o) = M(ed) Wed)/rp, . @
9 _? ine finc .

M is the hermitian éonjugat'e of M. With this definition the

differential cross section may be w'ritt.enll

) = 1r ¢ (of) | (3)
ami the average value of an operator A in the béam ‘scattered by 6¢ ] is
<A)G¢ = Tr ? (eg) A/Tr ‘? (eg) . ' | (L)

Using Bq. (3), bhe expansion of §(6¢) in terms of the Si “and Sij

may be written

plen = 1.(é¢><% +3 P,(e8) 5, + rij<é¢) ) | ©)
where 'rij{e;é) w11 be taken to be traceless. From Bq. (4) one then
finds that |
(,si)e¢. = P, (e (6)
Gy e @

" where the elementary properties of the Sy and S;; summarized in
Table F have been used. | | | |
The Pi is therefore a measure of the spin angulég‘r rho,mentum in
the scatte_red beam, énd will bé called the vector iadlarization. This
vector polarization, together with ‘. Tij’ which will be called the

tensor polarization specifies the state of polarization of the particles
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in the beam. In an unpolarized beam both Pi and TiJ are zero and
the density matrix is a multiple of the unit matrix. If the incident

beam is unpolarized §> jpe DAY thus be taken as the unit matrix and
p(eh) = 1uep) Hieg)

Eqs. (4), (6) and (7) then give

Py(of) = Tr 1 M(og) H(eg) 5/Tr 1 M(eg) H(ep) » (8)
T5(08) = T }uced) Heep) syy/mr Juep) Wep) . (9)

These equations will be used below.

- In a double scattering experiment, the beam which is first
scattered thru (6, @) is then scattered thru a second angle which will
be'called 6'¢'. The M matrix corresponding to the second scéttering is

- M'(0'¢d') and the density matrix after the second scattering is accordingly

ged) - ¥g) o) Hiew/m p @)

II'(6'¢')3(%v.y‘é Pi(9'¢')si + T;J(9|¢v) Sij)
. , _ . (10)

The differential cross section'after’the second scattering is then

o) = Tr p (o)

Tr E'(e-'ﬁ').M‘(e'Qf')(% -+ % Pi(e¢) Sy + TlJ(eﬁ) Sij‘ )

e (¥' (6'¢") M'(e%))

. {% + 1 b (ep) Tr ¥ (0) W(0'F) S,
_ Tr-.% i:i'(6'¢i) M1 (9'7")

‘, + Tﬁ(.@¢) Tr 501 (01g) i (e'g) S5 } \.
: Tr %—- i"(9'¢) M'(ng) (11)
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If in analogy to Egs. (8) and (9) one defines”

P erdty = 1% (arg (e /e 1 WMi(a'@r) M (G
Py(e14) = Tr o M(erg) (e'g') 5y/Tr 3 Mi(e'g") M (e'4") (12)
¥;J(e'¢') = Tr % El(el¢l) Ml(el¢l) S,ij/Tr %._ f,fv(engjv) Ml(elql); (13)

the the differentiél cross section given in Eq. (11) may be written

11 (0'g") = 3 Iy(e'¢") [% + 3 Py(o8) By(0'9") + Ty(0p) “T';j(e'szf')]
| (14)

where
Ie'8) = 3 Tr M (e'gh) w(e'g"). (15)

The P;(6, #) and Tij(e, #) as given by Eqs. (8) and {9) are called
‘the vector and tensor polarizabilities. The ??e¢)' and §26¢) given
in Egs. (12) and (13) may be called the vector and tensor analyzabilities,
since they give the degree to which the vector énd‘tensdr polarizationé
of the incident beam affect the differential crdss section after the
scattering. . | |

| Ié(e(¢|). is the differential cross section if Pi and‘ Tij’
the vector and tensof polarizations before the scattering, are zero.
It will be calied tHe unpolarized differential éross section and is
independent of the azimuthal angle. This unpolafized différential
cross section,‘thé polarizabhilities, and the_analyzabilities.can be
expressedrin terms pf A, By and Cij’ the coefficients of the M matrix.
Substitufing Eq. (1) into Egs. (15), (8), (9), (12) and (13), respectively,

and making use of Table H, one obtains

# -
Notice the new ordering of M M, however.
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I, 2 PG M+ 28 Bf o)) (26)
- 1 3 ) % ?A
IP, = 3 [a Re(A By) + 2Re Cp; By - In By By £y, - In Cy G, gijn']
(17)
Io P, = % [:hRe(A B.) + 2Re C, B + InmBy B§ € 4jn +In Cy c:jvgijn]
- | (18)
| .1 ” 1 %S |
Iop Ty = B[ZReACmn + Re By By - 3 (BiB)) O
- In(Cy B*; 5535) - (€ g B c‘an)] -
o B (19)
Io Tgn = : [Z‘Re AC, + Re BBy - (BB S
- 3§ (Cpy Cin) + % (cij cji) 8 m
' ' ™ o #
_+Im(°mi BJE ijn)'\f‘ ImEmij Bicjn
' ' ' (20)

where a 13k .is. the usual vector product symbol vand where primes and
angles have been suppresSed. One may easily verify that Tij and ?ij
are indeed symmetric and traceless.. : Y |

It will be noticed that the polarizabilities and analyzabilities
are not identical. ~The terms which are different in thé vector
polarizability and analyzability will vanish, however, when the restrictions
on the form of the M matrix which are implied by spacial symmetry and

invariance under time reversal are imposed. On the other hand, the
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tensor polarizability and analyzability will not become identical. To
obtain these results the invariance arguments of Wolfenstein and Ashkin

may .bé used to show that -

A(eg)
B; (eg)

a(8)
b(e) N , | , : (21)

while Cij(6¢) must be a linear combination qf thg terms
Cy(8) (Nj Ny - % |
Cp(e) (p; P, - %
| C(0) (K; Ky - %
Here

. —r, -
N

-——b b . -
kin x kg / Tkin x kg

- -
P

- b - —h
kKout +  ¥in / lkout + kin'

—d -l \

i, . - -
K = kou'c. - ki / ‘kout - ki

where the vectors "h'kin and N kout are the incident and final

momenta. Sixfxcej (Ni Nj +, Py PJ -+ Ki Kj) = Sij , the @atrix cij

can be written as
Gy = d@(mu'~18 ) + d(6) (P; P, - K. K:)
PR % REATREE St IR B S N S S
and the M matrix may be expressed by

‘Meg) = a(e) + b(e) Ny 8y +{dﬂmi%°%éiﬁ

+ d(e) (p; P, - Ky sz; Sy

(22

j °
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The scalar coefficients a(@), b(8), c(8), and d(6) give a complete
description of the scattering. The polarizability, analyzability and the
diffefential cross sections may be expressed in terms of them. Carrying

out the matrix multiplications in Eqs. (16) - (20) one obtains

I, . aa**-%b?‘.}%c.c*-q-%dd* . (23)
IgPhy = I, ?i- - .33 [2 Ré b(a + %: c)J N, (?h)
Ip T35 = %[{(a + 3 ) yc* { (a + %)“ ¢ - cc® ¢ dd*+ vbb*}(Ni_NJ -4 4)
+ {(a +1ad + (2 +3 e)” d} (Py ij - k; Ky)
+2Imdb*(PiKJ+KiPJ)] |
(25)
IoTyy = same excépt for sign of last term. | (26)

These equations, when substituted into Eq. (14) will give the differential
cross section after the second scattering, which is the quantity measured '

in the polarization experiments. Abbreviéting Egs. (Zh), (25) and (26)
by ‘ .

Py = BN = ;i, L R (27)
Tyy = %(Ni N -%Sij) + K (Py Py - Ki Ky) + T (Py Ky + Ky Py)
"r'ij. = _‘T(Niv Ny - % 'ij)‘* K (Py Py -'l(i Ky) - T(ps k5 + Ki, P;) ,

(29)

the expression in Eq. (14) for the differential cross section after the



second scattering becomes*

, { oy Ny - 3 Sij)-\- M. (PP - K;Ky) + T (PsKy + xipd)}

x {"z’(“ini - $0,) + (PP - KiKj)

- TPk + KJPi)} .
| (30)

Upbn performing the matrix multiplication this reduces to

I' - I(;(l + 3 tt' 4 %(u u - v v') cos @' +%w w' cos 2 §')
| o ()
‘where @' 4s the azimuthal angle for the second scattering in the
coordinate éysterh in which the intermediate beam mo;\res in the z direction
and the normal for the first scattering is along the y axis. The
t,u, v, w and I0 are functions of the type of target, the energy

and the scattering angle © and the brimes denote the second scattering.

The coefficients in the equation are

3K cos 0+ 37 sin6- N

t(e) =
u(8) = % P - iZReb(a-}-%c)*}IBl'
v(0) :_BII{-.sine-BT cos ©
w(e)=-(3 & + 3T sin® + 3% )
¥ cos sin Ll (32)
*®

e . n - =
It will be noticed that since kg = ki , the first { Jexpression

in Eq. (30) has the same functional dependence upon ki, that the
-~ |
second { } expression has upon kout'
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where
o ' 1 #
31110 = 2 Re d(a 14<§c)
3T I; = 2Ind b
3y I, = 2Re c(a ; % c)* 4 dd¥ 4 bb - o
{ ‘o '3 . -
I, | = e + % bb* 4 2 cc % dd¥ , v (33)

Egs. (31), (32) and (33) give the explicit exvression of ﬁhe differential
cross section after theléscond scattefing in f%ﬁms of the fundamental |
coefficients' a(e), b(e),‘c(e) and d(e).. The general form of the
différential cross section after Ehe second séattering given in Eq. (31)
has also been derived'by Lakino1A In his method tﬁe explicit form of
the M matrix is not used. He applies'ﬁhe'invariance argunents directly
to the quantity M M and obtains the form given in Eq. (31) where,
héwevef, tﬁe t, u,vv,lénd w are given as the expectation values of

certain operators after the scattering of an initially unpolarized beam.

In particulaf.he finds

b '3"<'S'zz>e¢. - 3T,

“ =% (SY>é'¢ - %Py \

v ='-§=3<SXZ>.G¢ = BTXZ '

w ‘_-_; 3<SXXI_ISYY>Q¢ = 3’1‘@-3'1‘5,& | .(31»),

where 2z and y are the directions of the outgoing beam and the
normal to the scattering plane respectively. One may easily verify

these équations, here, By using Eqsc (27) and (28). Thus Eq. (27) says
o .

However the sign of one term in Lakin's formula is in error.
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Py = PN - P ,and the u equations of (32) and (34) are equivalent,

The T of Eq. (28) can be expressed as
T oz wz(zw -3 + (-(sin 0) + (cos T ) (B, + Eyy)
(Ccos 64 + (sin 8)T)(E,, - Eyy)
(35)
whers Ejj are the .u'nit tensors (i.e., T2 I Ty Eyy ) Using this

expression one easily obteins the agreement between Egs. (32.) and (34).
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Section 2. Analysis of the Experimental Data in Terms of the First Born

Approximation.

The dévelopments in sSection one apply to thé mostfgeneral type of
interaction. It is of interest to see the form which the M-matrix will
take if certain a$sumptions regarding the interaction are introduced. A
cdmmon assumpﬁion-is that the interaction between tﬁé deuteron and the
spin zero target isvthe sum of the interactions of the individuai nucieons
which comprise the'deuterdnlwith the target: If these latter interactions
.are each the sum of a spin indepéndent inter#étioh and a spin-orbit
interaction then the hamiltonian for tﬁe interaction of the deuteron with
thé target will, in lowest arder, also be a sum.of only a central force
and a gpin-orbit interactiou; ~Herc the D-state contribution to the
. deuteron'wave function is considered as a ﬁigher order effect:. This
and other higher order effects will be discussed in section four,

16,17, 18 have suggested that the radial dependence of

Various authors
the spin—orbit force be taken as the derivative of the spin independent

potential. The interaction hamiltonian theh takes the form

_ i5 2 oL '
H=|] Ue 4 V (e sk x V, | £(r)
) ' o (36)
where M 'is the mass of the deuterdn; f(r) is the radial function
. . p * , _

normalized to £(0) = -1; Ue ,iélthe well depth of thevcentral’
potential, where U'.ié positive and real; V is the spin orbit well
depth and may be writtén g u cos 8 s where 'g =1 correspondé'tp-the
pure Thomas term;ls ‘The §7f‘ operates only on ‘f(r) whereas 'ﬁk is

the usual momentum operator. It is assumed that the phase § which

specifies the imaginary par£ of the potentidl is independent of position.

* .
See Section IV below.
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The matrix element of H between momentum states is

. if - ' 2
{H) - [U'e 4+ 1 V 5Nsin® [pe | £(k)
: 2 Mc2}
: (37)
where _
‘N‘ = ?in x Y:ov.d:/ll-‘;.n x T:out.'.l ’ | (38)
K - Join - o | (39)
oo b kgl = 4 g |
~and : _..‘f
- iK.r
£(K) = S~dr f(r) e . | | (40)

- In the first Born approximation the M matrix is just a multiple of
<Ef> ; , :
M(eg) " = 2M_ (H :
o) = =28 < ?

In this approximation the M-matrix gifen by Eq. (22) contains, therefore,
only the‘epiﬁ independent and the vector type term; the e(e) and d(e) -
are zero. With the heip of.Eqs. (32) and (33) the vv' contribution

to the differential cross eection is found to vanish and the tt' and
ww! contributions_ere of second order in both sin 6’ and sin 6' and
will be expected te‘be small when either>SCattering angle is small.

The experiment513 have been unable to detect any contributions of these
 two types in the dlfferentlal cross section,

If these terms are neglected the asymmetry defined as

STz (T (#0) - T (F=T)/(I (g0) + I (M))

may be expressed as e = Pe P; where
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Pe = V_;—-z—q(Z Re ab" / (aa%* 4= % bb*))
. ) |
2 . ' s

: 5 g cos 8 sin 8 (ﬁcgg\ sin © (1)

b2
l‘f%(gzcosza(Mz ) sin 6 )

and P; is the same function of the primed variables. The maximum value

of Pg is sin 8 s and it is obtained when the denominator is two.

In so far as this approximation is valid the factor g 'is fixed by the

slope of P, at. zero degrees and by the value of (Pe)max z sin § . -

Eq. (41) may be solved to give

g = (V32 ) ( Mcz) (.‘“’e\ : (42)
cos § -sin § pc o ’6-0 _

In the Rolarization of 165 Mev déuterons by a.luminum13 the experimental
values’of‘ P at angles less than 20° are consistent with a straight line
fit passing th:rough the origin. Using the value Pe(18°) = L6% and
Pe(méx)_': 85% the value of g given by Eq. (42) is 23.5. A similar

' -analysisﬁvcan be éarri’ed out for proton sca‘ttering and one obtains as

the analog of Eq. (42) |

& = 2 ’ m02 )(d Pe )" (43)
cos & sin $. pc de 620 '

where the small m 1is the proton mass. The 8p value given by the

300 Mev proton polarization data is 20. The g value would appear,
then, to be roughly the same for these two cases in which the px;oton

energies differ by a factor of four. The value g ~~ 20 is also
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consistent with the low energy limit associated with thé spin orbit

coupling in the shell model.18 | | |
Using the values of »sin 8 ' énd g .ébtained above one ﬁay

obtain estimates for the coéfficients t and w which determine the

cos 0 f and cos 2 f§ terms in the differential cross section. From

Egs. (32), (33) and‘(37), one finds

- bp* / aa® 4 % B = 3t

w

o .,
- 82 cos> & (pc/Mc2) sin 6
2

2
L+ -32- g2 cos & (Pc/ch) sin” ©

4
on

€ - .96 sin® 6/(1 + .64 sinZ @) .

As a fepresentative example the first and second scattering angles may

be taken as 10°. One then finds
' % ww! cos 2 f & cos 2 §f/(6000)

Cdw o 1/(18000) .

"

The épplication of the theor& developed in section one to the

S . case of an aluminum target, as above, is not strictly permissible since
the aluminum nucleus dees not hé#e spin zéro. AFér carbon, however, to
which the theory ghould applf, the experimental data does ﬁot agrée at

. S , all well with the résults of phg Born approximation developed here. The
polsrization at angleé less than 20° does not fit the predictions of the
Born approximation, a sharp rise occurfing between 20° and‘2h° in the
experiments. The failure of the Born approximation to represent the

experimental data may be due in part to an incorrect form for the
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interaction;‘.Even if this is correct, however, investigationsl7'oﬁ.the
scattering of nucieons have shown that the Born approximation usually.
gives only the>Qualitative aspects of the fesults prbvided by mofe exact
calcuiationﬁ. In the present case it is not clear that even the '
qualitative aspects will be provided by this approximation, for the
approximation imposes upon the M-matrix a very special form which it is |
not in general required to have. In the treatment of polarization effects,
‘pafticularly, the presence of the tensor terms in the M-matrix can be
expected to have important consequences. Tﬁese tensof terms will arise
both from the higher order’Born approximaﬁions based upon the interaction
hamiltonian'given in Eq. (36) ahd'also from the inclusion of the ﬁ~state
effects in the form of that hamiltonian. In order to obtain some basis
for estimating these effects the contributions ﬁo the M—matfix from the
second order Born approximation and from the inclusion of the deutefonv

D-state have been calculated ard are discusssd in the following two sections.
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Section 3. The Second Born Approximation.

. In the second Born approximation the M-matrix may be expressed as:

M=<—‘3—M——) Hes + Hpg 1 Ry

R E-E + if

where the subscripts i, m, and f represent the initial, intermediate
.and final momentﬁm states, and Hij is the matrix element of the
'interaction hamiltonian given by Eq. (36) if the form factor f(r) is
taken for simplicity to be (-e T / 0 ), the various integrations may

be performed and one obtains

’ | N ‘ ‘“*' | 2
™M - ( -2 M )e-o( A+ 1B3N sin6+A2'E(k Tl)e“

) 2
Lir 4 r, 8

, |
roasz-le b

+1B 't N (251n6/2)
) 2
) (ro a)

+ B T((z/\x*,\y“'/\z)(roalb ) - NxT3 eé
5 .
\ 2 a) 2
(44)
_.where the following abbreviations have been. used:

1§

Az - (ry VT )B.Ue

[+ - I
i

- (ro fﬁ )3 g U(cos g) ‘%(pc/Mcz)z

. N 2
A rg K~ sin® 0/2



[+
11}

>
N

> >
”

v
i

The T, may

| F(x)

by

T -3
N e
) |

o3
w
1

where '
A

-86~

-gMcZZ
292 (pe)?

k cos 6/2

) _
sin” 6/2 Sy Sy

cos® 8/2 Sy Sy

cos® 8/2 sy Sy - sin® 8/2 Sp Sp - 1 sin 6/2 cos 6/2 sy '

o0 .
. 2 2
o  -M(p-a) |
£ ap e : (45)
k - g + i¢
be expressed in terms of the tabulatedzh functions
2 x +2 ‘
-X t
SO B N
- » Y

0

ﬁ{p(kk-x )-F()xk-t-)\a)}
V-{ ) +kF(>\k-— a)+ kF(>\k+>~a)}

Lh?{ .—a)\"' +_jk F()\k—.)\a,)-k F(Ak + )\:a)}

' (ro/'rZ- ) .

‘The real part of F(x) has the asymptotic forms F(x) o x as

x> 0 and F(x) o % x"as x—» 09,

which are approximately correct

for the regions x ¥ .3 and x § 4 respectively. In the

 ‘intermediate region F(x) rises to a maximum of about .542 near

x V: 9. For 8 ( 35° the asymptotic forms may be inserted for-
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F(Mk = X a). If, in addition, certain small terms in (1 - cos 6/2)

—2
and (rg k) are dropped, the M-matrix becomes

-«

¥/ 2M e A+ iB (3) sin 6
LT 62

+A(ATV'TT‘ ( -1 ro ¥k -a) _ (1/7) ro k eéc(

r 2f3+-\/'2" 2

o . \ ) | | .
+ 1B 5__:‘__/_’_?_) (5-N)(2 sin 6/2) -3 _\_rg k(k-a) _ (‘1\/'1?)1-0 k) e_é

r 2V2 vz 2

To

+B BT W) (2/\x+ /\y"'/\z) _3 +r§k(k-a) _ (iﬁ‘l’-)rokv‘

3 (rO k)2 : 22 V2 2

To

. 2 . A

A s rg k(k - a) _ v )ry k e5°<

X .
2\/'2"\'» 2 .2

(16) -

For 165 Mev deuteroné on carbon the value of Xk 4is about four in units

17

T _ | :
of 10 3 cm 1, while a reasonable choice for rgy is 1.9 in units of

10-1-3 em L. Since th.en (rg k) :: 7.6, terms which were smaller by

a factér (ro k)‘2 théﬁ others of the same f‘om'wer‘e neglectged _'in
Eq. (46). The tensor pé;fts of the M-matrix are c_dh’tained in the last
term of Eq. (hé). They are of aldiffefent character ’iﬁ th§ regions of
large and small scattering angles, with the division',coming.at_ 6 A~ 15°
(i.e., 1y k sin 6/2 - 1). .For small angles _tﬁe déﬁinant term comes

from the (/\y -+ /\ z) contribution aﬁd is a multiple of SP Sp.

With this form of the tensor term the coefficients ¢(8) and d(8)
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are equal in magnitude but have opposite signs. Eags. (32) and (33) then
‘show that the wz, and hence the cos 2 ¢ dependence, w111, for small 8,
not be affected in the order con51dered here.. The main contribution to
d(e)’ w1ll be negative imaginary and the tensor contributions to- t will
tend to cancel the vector Contributions coming from the first Born
approximation. These latter terms are small of order sin () whereas
the tensor contributions are small of order (U c/ro k). With o

U = .85 Mev*‘ and g = 20 the tensor contributions to this tenm will be
the dominant ones in the small angle region with the two terms canceling
at fv'15°. In the region of large 6 the dominant tensor term will
come from'the'/\.x contribution in Eq. (46). This is a term of the
type Sﬁ Sﬁ and"d(e) - 0. " The chief contribution to c(8) will be
negative imaginary;eand it will combine constructively in the expression
Ipu = 2 ke b(a.dﬁ‘%'c)*' with the imaginary part of a coming from the
first Born approximation and the polarization will be enhanced. Armuch'
larger enhancement however, will come from the second order contribution
to b. The largest second order term in b will combine with the first
order c0ntribution in a to give maximum polarization independent of
the phase angle fS_;; The interference between the first order term in
b and the second order term in a may increase or decrease the
polarization depending on the magnitude of 8. .. The second Born
approximation indicates that the sudden increase in polarization around

”~ 12 would more likely be due. to these higher order effects in a

and b'vrather than effects of the tensor coefficients c and d which

- _ - : - . o
This value of. U was used by Fernbach; Heckrotte and Lepore in their

W.K.B.rcalculations of the proton-carbon polarization effects. Thétricross
section was too large by a'factor of about two in the region between

11° and 19O But the real part of the deuteron. potential should be
double the real part of the proton or neutron potential,
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are quite small; The vanishing of d(®©) in the region >-15° means that
there the t and w are.both determined by the single pérameter ‘q and
that, as in the first Born approximation, the relation % tt' = % (% Qw')
will still obtain. The sign of ¢ 1is such that the v, , and hence

the cos 2 § asymmetry, will be decreased in the region.in which these

tensor terms become important.
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Section 4. Deuteron D-State Contributions.

In this section the hamiltonian describing the interaction of the
deuteron with the spin zero target is calculated from the basic interactions
between ﬁhe two individual nucleons and the spin zero target which is
takeh to be a fixea 8ca£tering center. These will both be assumed to
take thé form |

—

2 - -
(__.) 37 WA « D, ey

SE

mece

| | . o (47)

The indices i = 1,2 refer to the two hucleons, m is the mass of the
nﬁcleoné and U, V and f£(r) are the same as in section two., With the

introduction of the center-of-mass and relative coordinates

B = vi(rlfplrz)v | - (ry - 1) | (48)
and the.corresponding conjugate gomenﬁa | |

P = (py + o) o | p = #p; - p) 9
tﬁe’total hamiltonian reduces to ﬁhe férm 

Byor . Ho(R) + VHD.('r) + H(R, 1) . o (50)

~ where Hy(R) + HD(r) is the hamiltonian for the free deuteron; HD(r)

is the hamiltonian for the internal cbbrdinates of the deuteron and

| o VL 2 4(1) = =
HE, 1) = B UG + 1)) -g_(g_) 3 »kf” x & (£(r1))

2 o
(&) g @33 «J e,
(51)

\
+ 7
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The expression appearing on the right-hand side of Eq. (51) is to be
_ N »
considered as a function of R,'? and the corresponding gradient -operators.
It is, of course, an operator in the spin space of the two nucleons.

The deuteron eigenfunctions are
, ma M |
P @ - ‘{-’ (r) S 52)

M ‘ .
where Y’ (r), the relative coordinate part of the deuteron wave function,

satisfies
M M
oY @ = pY i

ED belng the deuterbn energy. These ‘4’ M(r) may be written

Vi = 1 (w4 v Sz ) Y™
r (L7 e 3

° (53)

where the 7( = Yloi(hﬂ') are the usual triplet spin state vectors.
The Yjis
812 is the tensor operator

25
are the spin angle vectors defined as in Blatt and Weisskopf.

8, = 3 0'(1’ ) 0_(2) He? - M.

and the spin angle function'for the D-state may be written26
. M

Y = 12 Y . S - (54)
¥ 101 _

M .
The YﬁLS also satisfy
M M M ' '
S
12 Y ¥ - 1 Y . (55)
—= 121 101 — 121 _ :
Ve z | |
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The u(r) and w(r) are the radial S and D wave functions and

dr u (r)

o
0

L/)

(S - state probability) & .96

(D - state probability) % .0k .

in the first order Born approximation the M matrix for the
scattering of the deuteron from the initial state 9? - to the final

: .;M'K'
state \a? will be proportlonal to the matrix element

' : 3 1K . LMK
M K (R r) S_dBR d3r ? MK (R,r) H(R, r) 9'[” (R r)

'3 -4K'R M'M  4KR
dR e H (R) e

whére
e . SdBr Y0y ke, Y. 69

The matrix H(R). with elements HM'M(R) is, therefore, the effective
interactioﬁ"hamiltonian fdr'the collision for the deuteron with the
spiﬁ zZero target.‘ More precisely, it is the effective interaction
hamilténian in the first Born approkimation° In a higher order
calculation it would be necessary, of éourse, to sum not only over all
K, the total momenta of the deuterén in the intermediate states,»bﬁt_also
over all of the unbound states in the internal variables. Were it‘ndt
- for this.latter summation, the effective hamiltonién, YHM'M(R), would
be_thé exact hamiltonian for the interaction of the deuteron with the
spin zero target.

As the first step in the calculation one may convert H(R, r)

into a function of the proper variables. This function is
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- | .Rz 2 _ 2 hr2
HQR, r) = #(-U) e /ro e =/ 0, cosh(R rA/rg )

: R
-Rz/r -rz/hrg
0
-+ v ( A e e
2 Mc)

X ; é(“l* 5*2)' [(;xﬁﬁ- x T)(2 cosh RrA/r
ro

(2 in‘-b 4 P x T)(2 sinh Rr,u/rg):]

+3(F, -T)- [(2 PxR+3Px (2 cosh Rea/rd)
SF xR Fx (2 otmh Rra/ed) ]

In order to proceed with the calculation of H(R) it is convenient to

3
represent the functions u(r)/r and w(r)/r" in the form

. | 2
u(r) =v' A(1‘2)“: g 8(‘2)3_;.1 dl_

r

_ . o _ 2.
w(r) = B(r?) = gbq) e L 3-
1‘3 0 .

" where . a(}) and b("}_)' are the inverse Laplace transforms of A and B,
A somewhat léngthy calculation then shows that H(R) may be written

- ® & ! (57)
H_(R)z-fd} _fdx( vam + L H—] {SxK VA(R)} o

0
+32 spsg-1) v/a\ ( B(R) ¢R) _)
2 “R ™R 2(M) 2 (0+D)

L > )
v(a) {sxx, K E®) v /gy ER)
+ (%) { SR }++2_ Wl (24 )

rg + D) e )
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where the following abbreviations are used:

3/2

2 2. 2
/ot 0D ) 2 -
A(R) - e ‘o o : al(}) 31(‘3)
Ey
. " 0: ¢ .
+ 21(3) By L LE D B Dt
i’ h g & B2 }'

)l{. 2 4 1?)? 3(r§+n) 15 (ro4 D"

e dnned {g e |

| 1a R’ r2 ? ok
- by(}) bl(Y) 3 SR sR - 1) T’ L4 _R "gh

(r+D) 5(1‘(2).—-\'0)

2 (32 | . g2 2
R%/(x 0-e»n) a1(3) by(y) 128
BR) = e (rg-\-D t Y30 ( +D2)2
2 N 32
o(R) o) 5 ) @) b0
- @& 1 ),
T I 1} 1
ro't-D .

y S ..,Rz N\ _ s gb p? L2 B2 o2
_ 5 2 2/ 5 (rg'F»Dz)B 5 _(r§.+ 02)2
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' 32
PrL AN / SEPRAVE
= € v , 1 1
_ (%)
, L 2 2 . 2 2 2
Cx (-18/8) | _T0 4+ & To D - 4 R ®D
I S 0 R E S 3 (54 0°p
8 R Dh - Rlth_ - 1 ro‘
15 (r(2)+ D2)3 15 (0+D)E 3 (r‘i'Dz)
2 2
- 2 R D
15 (2 4 D?)2
o . -Rz/(rg-f D2) A ;2 | 3/2 .
FR) = e _To ) bl(i) bl(lz)
' 4 R , rg +0° |

x| 4k - 8R*p® - 671 ; 8 g% p?
(rg + %) (r?,-»b?)z D) 5 (e D)

4D -_- (2[+'1)

vl = Prp S
{v,w} = VW WY
.i»-

a(}) = AP’ )l

= BP0’ AT )é (1)2 60)

o
i
PN
2
vvv»
§

(AR R AV . (58)
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The 31(1)' and bl(vt) are defined so that if a(}_)v a.ndl b(}.) arev
multiples of the same delta function (so thét the radial wave functions
are Gaussian with the same range, mﬁltiplied by appropriate powers‘of r)
then al(i_) and bl(},) are equal to this delta.functioﬁ multiplied
by ( 96)% and (. Oh)£ respectlvely. |

If one takes b("z) - 0 and adjusts a('Z) accordingly then the
limit.in which there is only the S-state is obtained. If one also takes
D-o0, which corresponds to taking a ﬁoint deuteron, then the hamiltonian
goes over to the one used in sections tw§ and three. Thé_effects of the
finite size of the deuteron are ¢ontéined in the dependence upon the
parameter D which is gffectively the'sizé of the deuteron. One may
note that if the deuteron size is about eéual to. rgos thé range of the
force acting on the individual nucleons, then the range of the force
acting on the deutefon iﬁself is incfeasedvappreciabiy. This would tend
to make the differential cross section for deuteron scattefipg squeeze
into émaller angles; relaﬁive to ﬁhe'nucleon.scattering atldofresponding
énergies. Noticing that éngies qf the same momentum transfer should be
comparéd,.one finds this.effect‘present in the experimentai data;27 If
the D-state contributions aré included but the déﬁterén‘ﬁiéé is taken |
smali cdmpared to ry then the'hamiltoniaﬁ again goes over to the one
used in sectlons two and three except for certaln terms which are
quadratic in the D-state amplltude. Because of these latter terms the
.‘D—sta+e contributlons will play a role even for vanishlngly small deuteron
size.

"In the actual phy31cal case, in whlch the deuteron size is of the
same.order as ro there are a large number of terms whlch are essentlally
different from those appearlng in sections two and three. ‘Some of these

terms are spin independent or are of the form of a spin orbit interaction.
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Thus their effect is simply to alter somewhat the radial dependence of
" these terms as compared to those used in the earlier sections. In addition
to these terms there are two new types of term which, independently of

the particular form of the deuteron wave functions, have the forms

(3 spsy - 1) £(R)
and

{é‘ x ?,6((% Sg Sgp - 1) g(R))} . | (59)

‘ - .
The contribution to the M-matrix from a term of the first type i

(-24/47h°) times
o ' \ - o ,
’ ‘ vv iK.R 3"
3 sz S, - 1 £(R) e R | (60)
where K 1is now the mqmentum transferred. Performing the angular

integrations this expression becomes

o

(Q'SK SK-l)_ ShTf R2dR (sinKR + 3 cos KR - 3 sinKkR\| f(R).
2 0 S\ = (xR)® (kr)’

| (61)
‘The tensor contributions to the M-matrix from this terﬁ has thefefore
the same form,v(.g.-lsK SK - i), for all values of the scattering angle.
For small momentum transfer the term is of order '92 as may be seen
with the help of Eq. (61). In contrast to the second Born epprekimation

in which tensor contributions of the form' Sp Sp appeared, the

coefficients c(®6) and d(6) are now equal in both sign and magnitude,
and the coefficient w in Eq. (32), and hence the cos 2 @ dependence

of the differential cross section, will now be modified. The two
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largest terms of the % S Sp - 1) f(R) tyve are the term multiplying
B(R) and the term in UA(R) which contains the factor 8'(30)-%. These
terms have identical forms except that the factor U in the latter is
replaced by 16V h2 t (2 M c2).-l in the former. Letting

‘1v = (1/32) x lO26 cm 2, which corresponds to a deuteron radius of
4 x 10;13 em, and taking V - éO U one finds that the term'no; containing
- }_ is larger by an order of magnitude. The sign and phase of the -
c(8) and d(6) which arise out of this term will be the same as that of
thellbwest order contributiohs to a(8) and Egs. (31), (32) and (33) |
show; then, that ﬁhe cos 2§ asymmetry will'be'enhanbed. To estiméte
the magnitude cf this effect one may avproximate a('i) énd b(VL) by
multiples of a delté funcﬁion. Then the integrations over 2 and 7
are trivial and the factor ay( }O) by ( 1(9 becomes (. 96)%( Oh)2 ~ 1/5

Since
5 3 -3
(2 8¢ 5 - 1 = -7 Gysy - 2/3) - FGpS - S¢Sy

the contributions to ¢(8) and d(8) coming from this term are

e® = ae) ¥ 1(-2) (-aunmad)u
o °° | .3/2. 2 > 2
2 R /( D7)
x(l)therR % D 8 To - é /rof
0o (ro + D2) V30 frg t D%l
x | sin KR + 3 cos KR - 3 sin KH
KR . (KR)Z (KR)3
| ‘ o 3/2 3/2
. ( %)( ) ATl p?y \8 [ 15 ) /7 (rg™+ D°)
\(r -f D°) 130 r§-+ D2 - 4

€

2, 2. 2, .
&g+ DY/L [-»xz (r2 + DZ)J
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The expression for a(6), on the other hand, is given aporoximately as

| ,  3/2 -Rz/rg +D°  1K-R

a(e) = -2M u(-1) | 43R _To e e
L2 rg D?
| . 3/2 2,2, 2
| 2 K2(rS4 D) /b
N _ 2H) (-v) (1T)3/2 (rg*D2)3/2 ro ) o ro* )/ .
kﬂ-ﬁz r2A+ n2
0
Thus
¢(@) = d(®) = 1 x 3 _8 (k% D? siﬁzﬁe) (a(e)) .
5 h V30

A_t the energy of the Berkeley cyclotron k - 4 x 102_13 cm-l. Taking

13

D=-1.4x10 "~ cm (see Catherine Way reference 32) one then obtains
c(6) = d(6) ¥ 32 a(e) sin} e .
5 5

At € -~ 150, c(0) and d(©) are then ten percent of a(8) and the

‘value of w(6) given in Eqs. (32) and (33) is about four-tenths. The

cos 2 asymmetry is then, according to Eq. (31), about three percent.
This is consistent with the experimental results which are that this
asymmetry is less than four percent. ‘
There is also the second term given in expression (59) to be
considered. This has the form ) |
- wh —
i_sx K, V((% S S - 1)(g(R)))}.
. ‘ -+
Its matrix element is proportional to '

ikin *‘R

' -~k R (L, —n .
S(?R e out {S, K x V <(% Sg Sp - 1) g(R)) e
. el .
An integration by parts on the operator V allows this to be reduced

to
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b

. , (3 | iX.R
¢ S, Nisin 6 k dﬂ(% Sp Sg - 1) g(R) e

which in>turn reduces to

{s,u(%sK sg - 1) f(k, K) .

But Table G shows that this is Just a multiple of S-:N. Thus this
second type ofvtensor term really reduces to a vector term and the only
tensor term which arises is the one of the form 4(% Sk Sg - 1) which

was previously discussed.
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APPLNDIX A

The Formm and Definition of the S-}atrix

Tne S matrix used in the first section of part one was defined
by
Ir) = (s-1) | (A1)

vhere (6f | fo) = _fd(e¢) was the spin anzle function describing the
asymptotic outgoing part of the incident plane wave, and . (eg | £) = £(o¢)
was the spin angle function'dcscribing the ASymptotic scattered wave.

That is,

"y (out) - L
\*,1nc {r e’v¢) == r1 = f0(9¢)

\" scat_(r’ 8, #)

A more usual way of defining the S-matrix is to relate the incoming part

(a2)

exp i Kr  f(of)
T

of the incident plane wave to the scattered wave. Here some consideration

must be given tovphase factors and one may define S' by
l£9) = (' -1ty ) | (a3)

vhere £)(6) and “£'(6g) are defined by*

(in) : . .: A :
\\}/ (1")) T) exp -I(Kr - ;-\T L) I f')
([ R R

(a4)

“Herae, the Angular mowentum, 'L, is considered as an onorator;

% IR0 I AU B A
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The 8! defihed in this second way is the quantity to which the time
reversal arguments12 may be directly applied and which obeys the |
réciprocity theorem S;’_J = 33,_1 . Here the states referred to by
(-1) and (-j) are the time inverses of the states (1) and (j),

and they may be defined by
’ '.‘ . ] . .

(L s J J,} gy = (¢3 L s - 3) ~ (a3)
where ¢3 are vectors in the spin angle space only. The reciprocity
theorem, together with the spherical symmetry of the physical problem
may be used to obtain the symmetry relation '

. | ' ? : . .
8:13*. = sJ_i* : (46)

where the states ¢

% and ¢j* are defined by

©s 5o lf) = Blrs g . )

In a representation in which '¢J_.= ¢J*' one obtains the symmetry
property | |

’ | ‘ 1 .

S = S " A : . A8
i Ji . (a8)

From this eéuatiqhvthe symmeiry 6f the S-matrix uséd in part one may be
deduced. | -

The remainder of_this'aépendix will be devoted fo a discﬁssion
of the definition of the nuclear phase shifts in the pbééenCe of a -
coulomb‘field. This development will be prefaced by a few general-rema{ks
concerning the tranéformation pioperties of the symmetric S-matrix
defined by Eqs. (A3) and (A6). This matrix will be considered as a

matrix in a mixed representation, the basis vectors on the left and
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right belonging to different sets. Now if the basis vectors ' ¢;) are
changed by phase factors to give | ¢;) - e-lo{i ‘ ¢;) then , ¢3*)
will be changed into ' - o

" * io( '
185 = e 3 Piu) -

The S!' matrix element in the new represéntation becomes

iqi in ) | .
= e . S;.j* e . (A9)

s;j*
The new matrix, consideréa as a matrix in the indices 1 and 3, will
continue to be symmétric; however, the unit matrix will not be transformed
into'itselff These nropertiés are; of course, different from the
transformation properties of a‘matfix in an ofdinéry (ﬁnmixed) representation.
A qérollary of these remarks is that the symmetry of the S' matrix will be

retained when its definition is altered to

£ = " -1 1) | (A10)
where ' ' ' "' i '
B E NI B
| n (A11)
| S LS |

Hovever, the conditions under which s'-1 Willunot be those for which

S§" = 1. These remarks will give a backoround for the following discussion

of the coulomb effects.
When there is a coulomb field present there is a prosressive phase
chanze at large r values and the definition of the S matrix must be

modificd., An approprinte'ﬁcneraliznﬁion of Brs. (A3) and (AL) is

1 M
@ R
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where

(in) \
‘ n (r)) - ¢ (%—) exp -i(Kr - “lfn 2Kr -4 'I'l’L)lfg)

inc
(A13)

| |4/ scat (r,) == %) exp i(Kr - "‘lpn 2 Kr - é‘TT‘L)‘fM)

where )l = 272' e2/-( /‘h2 K and A is the reduced mass. In cases
in which L is a constant of the motion the Sg matrix is diagonal in

the L S J J, representation and the diagonal eiement.s are expressed
as exp 21 8 L (a possible J index is suppressed). Introducing the

, "nuclear" phase shifts

$, =6, -9.. S (aw)
29 M |
where O'"L is the coulomb phase shift - argl (L L+ irl) , one
may obtain ’ ' -
M 216
(S‘ - l) - @€ B §
' N
210" 218 . 250-
-z € (e - 1) ff‘ (e - 1)

v _ (A15)
N
where 8 s 0% and 5 are considered as diagonal operators. With

the definitions

’ N
: 2i 8
\KN:S.N-]. :-_(e '1)

and v
2107

(e - 1)

1
[
!

QC

1"
42]

one may then write Eq. (A12) in the form

' io ig” c
I = e RYe T 4R . | (A16)
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An equivalent way of writing this equation is
N N N, - c
1) =R+ | ) (A17)
_ N | N | -
vhere |f) and | fo) are defined by

‘ q’sca’c(r)) = ~( }1' ) exp i(Kr - Q[n 2 Kr - 3 'L +vi01)‘ ’fN)

.‘{/(in)‘ L | 0 | PO N
l (r)) = #(2) exp -i(kr - N Yo 2 kr - FTL+107) ‘fo)

inc
- | (a18)
where v'fc) is the'value.of lfN) when there is a'ppre coulomb
interaction. The:Eqs. (A17) and (Alé) give a ﬁatufal definition for the
Wnuclear" S matrix SN - T{rN +1 when L 1is no longer a constant of
the motion. >It need hardly be méntioned'that thisT"nﬁcléar" S-matrix is
not the same as the S-matrix which would describe ﬁhe system if thev
coulomb interaction were simply removed, sincé it will Be'a function of
e in‘general, but it does have part of the coulomb effeét remoﬁed (i.e.,
theUCr'i). Furthgr, this matrix is Eymmetric and it beéomes Qnity'hhen
th¢ nuciear interaction vanishes. The SM defined in Eq. (A12) is
related to VS.N according to

M iO“.'N:lr

S e S e . ' f(,A19)

< M ¥ - .
It is the S which was used in the phase shift analysis, and as in
part'ohe, its triplet part corresponding te a given j value may be

writtenl2

* -ATL/2 M _TWL/2

More prccisely ‘e may be identified with the

S-maitriv in part one.
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M cosé - sine 6xp 21 SJ-fl 0 g cos€ sin€

J sint cbsg 0 exp ZisJ_l -sin€ cos €

(A20)
where the J indices are suppressed on the right hand side. The
corresponding 8 JE1 and £ for the "nuclear" S may be defined
by the analogue of Eq. (A20), namely

N N "N N
N cosf -sin € N exp 21 S Jl 0 cos & + sing

S = .
J +sin € N ocos €N 0 exp 21 S g_ sin 5" c_os£N

(A21)

sﬁbstituting Eqs. (A21) and (A20) into Eq. (A19) one may thain the
"nuclear” phase shifts 8 .l: 1 and admixture pa.ra.mgtér € N in terms
of the gJ'-’l gnd € obtained in the phase shift analysis. The
interesting feature is that the admixture parameter whicii measures the
amount of mixiﬁg of the two angular mdmentum states is different when
defined relative to S'M and SN although the coulonib interaction

causes no mixing.* The‘origin of this change is not in the physics,

but rather in the way that the admixture pafameter is defined. For if the

pﬁysicé were left unchansed but the phases of the basis vectors (f;)

~ are changed then the admixt‘,ure'parameters 8' and £Y defined as in

Eq. (A20) for the symmetric matrices S;l and . S;j* would be different.

jE
The admixture parameter defined in the above way depends on the relative
phases of ‘the incident states as well as upon the amount of J -1

wave which emerges when a. J + 1 wave is incident and vice versa.

In this nonrelativistic treatment.
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There is an alternative way of defining the admixture parameter which
tells directly how an incident partial wave in one state divides into the
two outgoing partial waves and which:is independent of the ﬁhase factors

contained in the basis vectors. One writes, instead of Eq. (A20), rather

19 ' . | . 18
M e £J+vlv 0 cos 2 € i sin 2¢ ¢ J¥1 _ OS
SJ = o eiaJ_l 10, ,

i sin 2% cos 2 € 0 e

With this d_efinition the relationshin bet.weventhe SJ;; and the
S ey defined by the andlog Eq. (A21) is

N

ng_l - J1 + Q:#l (422)

Just as for the states for which L is conserved. The equations

relating the two definitions of S? are

8J+1+ J-1 :Sin+ J-1

tan 2 £ = tan ZZ/sin (8-:]4_1 - 5J-1)
sin ('8J+1‘»- &,_l) - sin 2 E- /sin 2€
- _ | | (A23)

The phase shifts S and the admixture parameter C have a simole

internretation. The S gives the shift, in the rhase relative to the

L
- unperturbed wave which the particle obtains in _tara-veling the.incomi'ng'
leg of the scatﬁeri_ng pr‘oceés. The scattex';ing causes the ihcoming Bea.m
té d:_lvidb hetween the two possible R.art,ia-l waves in a m‘oport.icm'.f‘i_:wd
t;y' E and th_én the phase shift s L o°F é L1 1s added dep{mdi.ng

on vhether the particle cmerrces in the original or in the other partial
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wave. In so far as the entire. coulomb .effect. can be considered as

acting outside of the region around the origin in which the nuclear

effects take place, the SLJ and -E-J will be Just the true
nuclear plfiase shifts, those which obtain for the N - P scattering.

This relationship is not true when the usual SLJ and 8J are used
because the shift in the phase induced by the coulomb effects becomes

intimately incorporated into those phase shifts.
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APPENDIX B

The Covariant Density Matrix.

In situations in which statistical mixtures of states are considered
‘i‘t is convenient to introduce the den'sit,y matrix j which in an

appropriate representation may be written
f - "*.I’q)w.-‘<‘~\/«|
where W g 1s the probability that the system is in the state & s

so- that z_ W = 1. The probability of finding the system in

a region" R may be written

w(r) - spp®

- where Sp. is the trace over both coordinate and spin variables, and
0) is the operator which projects onto the region R. If R is
taken as the three dimensional momentum regién (dF) - dfy df, df3

‘then
widF) = (dF) Trj - (F)
. _ S

where Tr 1s the trace in spin space and

Ps (F) = la(F)l {luqm) w.‘<u.((v)l}

The amplitude a(F) 1is a function of the three momentum F defined

in terms of \K‘ (F), the momentum space wave function, by

Ko = aq® Jugen .

The u.((F) are spinors _w‘nich can be expressed as linear combinations
of the ui(f) of sectipn one, and like the ,ui(f) they may be defined in

terms of their values in the frame in which F - O by the equation

ug(F) = L) ug(0)
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Then

e . 2
war) = (@) @] (™

where .('X‘)F is the Lorentz contraction factor. Since ( x )F(dF) is
an invariant, the required invariance of w(dF) requires that Ia(F)' 2
is unchanged in a Lorentz transformation. |

Notice that the densit& matrix and‘the volume elemeht are not
invariants separately.-‘If, however, the particie is definitely in a
positive energy state or definitely in a negative energy state one may
ﬁrite ' | |

2 ’ .
£ = | aa (B Jug (7)) wy @ (P

, | |
= |ax () - fux (F) wy (ua (F) | ua(F))(2)(@x (F)]

2
- (D) Jag®] T Jue®)(Ewa) T ()]

4 F
= () f‘f)
The ( ?ﬁ ) may now be put with the (dF) to form an invariant. The

matrix (£), since its matrix elements
P = @O P (0 1 a0

are invariants, must be of the form

?(f). = (%Trf(f))[l-&- >\M\£+5s,_,,0;u

+i\t5tp}k"'q%5 !

where the coefficients >\u , q“g,' » B, and q transform in the

evident manner,
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The expectation value of the operator A over .neasurements in

the region R - (dF) is

{1 ) (aF)

Spf A@/spr

F
() @) 1 @ (4 .

-

(@ PHNCORE I Y

If the region R restricts also the three momentum H of the second
particle then the element (dH) will aiso appear in the invariant
* H
combination ( § ) (dH).
. . 1 ' ’ ’
For the final state the matrix SD (;') is defined in the

analogous way. It is related td;?(;) by the equation

f'(g') = S, 5 ) 9 S(£', t, £).

Here the invariant .eléments ( ‘3‘)K(dK)( X‘)T(d'r) and ('25A )T(dT)

have been incorporated‘ into the definitions of f (;‘) and ‘91 (2')
respectively and the trivial integration over T and K performed,
allowing theée variable to ’be considered as fﬁed and discrete. The
condition Sp _? = 1 bécomes then Tr f (f) = 1, and the

differential cposs section is
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TABLE A
M o= a(e)+ o(6)(0T,+ a'zN)-rm(e)(clNa- ) +8(0) (97 0= pp + Tk T3K)

+h(9)(0‘lpc' - Ok O‘ZK)

2P
. 2 Py 2 2 2

Ioe) = lal + fml + 21cl 4 2 1g + 2 |hl

IP6) = 2Rec (a+ i)

C | 2 2

Ip(L -0(®) = & \g| 4 4 In\

: | 2 C .2 Cw] RS
IORK(G) = ~[la|, - |m} —LRehg]cos 6/2 4 2Re 1 c(a-m) sin §/2
Io Cxp(0) = LRedich
' i | 2
In(l - Cyy) = Ia-m12 L1l

IORM(G_) = (lal - ‘m\ )cos (——P)—hﬂegh cos (2 4(8)

+2Reic(a—m) Sin( ﬁ)
IOy (6) = 2Re gla- nf cos((g'_'.F;') - 2 Re h(a +m)*' Qos((a -+(s')
+4LRedich ’sin(f(a—f(a")

.h\. . — -3 ’
(M is along K for - 0, along P for ,B - Tr/Z and c¢imilarly

for M and P’



a(o)

Q(é)
m(8)
(o)

h(e)
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TABLE B

3(2 M, + P&x)ﬂr Mgg)
eV 2000, - Myy)

t(' _2 M1.1+ M50 ' MSS)

| *(Mll‘l" H..]_ - !53) )

»i(l/coé-e)(Mll - M, - My)
, i( VZ/sin 0)(M o4 ¥,,)
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. TABLE C

2 2 2 2 2
d|w, |+ 5 iMoo | + & ¥l + 3 |Mpl 4 2 "Moﬂ

Io =
2
+ 3w |
I = (V2/4) Re 1(g - Mo )My - My o+ M)
IpP = 2Re {_(Mil - My Mo O My Mg - 2 My M10}
IRy = 3 (¢°S ) Re {(Moo+ (cos 6 - 1) _.___._"-5 Mlo)'(Mn + M, +MSS)
‘ - sin®
T M
+»(r<1o r”m) ss}
sin 6 sin ©
Iokp =  (1/2 sin 8)( lMOl‘_ - , Mol )

Io(l‘CNN)=5(,Mss -+ '”11“””11')
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TABLE D

Mg = (_—_1__5){& +20 co;29~1) n20}
M, = (_-_;{g){cose(%nil.g.. %Ril+ _’4{532)

4 (5 cos3e 3 cos 0)(2 R31+§ 314,8 gl gnz)
o e )

+(5cos e-3cose)(2.331+ R .gnz)
¥ = (if)%g{(%ﬂn 3R, f)

*+ (5 cos e-l)(éan-a-%g 5 ..%331 ;;:32)
Mo = | (-1k?)(s;g e){ (-3 R(l)l-{..%Ril - {532)

(5 cos” o - 164 le"‘"‘ -%'Rgl“‘” J{é’n? )}

= . S - ' 2 g3 3 b T 2
M, (__;;2‘) (5 cos” ® - 5 cos 8)(-% Ry ot 35 B - 5 Ry - e ).
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TASLE E

N - P System

Ig(8) = la] %4 MI{F214%+2|g|ﬂ-z|M2+2lbl_
IOP(P, 6) = 2Re cla< m)*-\- 2 ﬁe b(a - m)*

IoP(N, 6') = 2Re c(é-l- m)* - 2 Re b(a - m)*

2 | 2 2
Io(1 - D(N, P, ©)) ja-ml 4 4)nl 4 & ol

I,(1 - D(P, N, 8"))

L}

2 2
I(1-D(, P, 0) = 4 (el 4+ & |n]

1,01 - DY, N, €'))
) : 2 . 2 % "
IRk (P, P, 6) :-cosg lJal - [m| -L4LRegh -4Recb
-+ sin @ {2 Re i. c(a - m)* <+ 2Re i b(a+ m)*]
2 . :
IoRp(N, N, 8') = cos -2-{2 Re i(a - m)c* - 2 Re i’.(a-l—m)b*}

+sin9{‘a - lm“'l'b,Reghcl-hRecb}

IORK(N, P,.el) = CO0s 2{2 Rg(a -|-m)g - 2 Re(a - m)h? '

+sing'{»l;Reic_g*.+hReibh*.}
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TABLE E (Cont.)

IRp(P, N, 8') = »cosg{-aneicg*-z.neibh*}

+sing{2'Re(a-¥m)g*-§ 2Re(a—m)h§}
2 R 2
Il -Cp(8) = la-m| + & gl + & bl

Ig(Ckp(8))

LRe i ch*+ LReibg"

Note: The R experiinent;s are those in which a neutron initially at rest
in the laboratory frames scatters the proton t.hrbugh a center-of-mass '

angle of 9,
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TABLE F
1. Tr Si = Tr Sij = 0
2. TrS; Sy = O
3. : TrSiSJ = zgij
be TrSi55g = 5[‘Sik ‘Sm“ Sm SJJ"B"S'U'&
5. | Tr 84 Sjsk = iE 13K ‘ ' (Pr“ove using 6)
ig.
6 S35 = Jk+§sdxk+§gjk

3 ' |
-+ 3 [Si x Ik ¥S5xk,1” % x 1,3)

+i I

3 € ik

93 x K = .iijk ‘Si | ' | | | (not summed on 1)

ijk,f = Eijk Si,’e. | (not summed on i)
1. ' if. 1, 3, k are cyclic

eijk =9 -1 if i, -k,j are cyclic

0o if i, J, k are not all different.



51 Sk

1§ Pk

513 Ske
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TABLE G

= ils
z[sixjx k+ 51 x k,j]

’*[813 5.+ Sy - '3253’1(51]
%[ijk,if 5 x k, J']
: lsjksi + 813y - §51,Skj
1 : . ‘ . ) v.‘ *
3 [513 kg + Skl 51y + 3 &1-2 'i’su Sx '%‘Sij Sk:z]
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TABLE H

TrS;y8, 8 = TrSiySy = 18y §r 18,08, 5 3“
Tr 55 S S;vm. = f];' [81}( Eum '/'512 E*jkm.'f Sg’k Ciﬁm -+ 832 £.J'km J

Tr S5 54 S .-‘. -2 S Su.csmlJn 4’_[513 &cm &q,JS - Bﬂ&kn *{mjg |

Tr SiJ skl Smn | is independent of the order of t}he three factors. - Each
factor itself is unchanged by an interchange of the order of its two

indices.
The [ ]S means the contents of the bracket is to be

symnetrized with respect' to interchanges of the orders of each element
of the pairs 1ij , k,e and mn and also with respect to interchanges

of the pairs ‘wit.h each other. Thus
'[gij Skm S,?ri] =  %[Sij Skmsfr; + gij gkn S,Qm_
‘l‘S[nS S + (S:Qu Sim ’Sjk + Skmg ig Sjn +8km S'm gﬂ?
[Siﬂ Skn Smj]

[ glegkn Smj <+ SJ,Q Skn Smi + ‘S S,Qn Smj *S‘jk Cgfn Smi
’*'Sil Skm Snj 4‘.514 ka gni +>8ik &Em Snj +‘gjk &(sn Sni ]
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TABLE I

GJ(Thep.)
6, = qTrot>, 20° - 22,2, * 0.70 mb 22.04 mb
8, = I,(90.0° = 3.72% 0.19mb 3.71mb
83 = r(80.20) = l.045% 0.039. 0.997
8, = r(71.L°) - 0.97L% 0.032 0.991
5 = r(64.0%) - 0.958 £ 0,032 0.987
6y, = r(60.8°) = 1.013x 0.041 0.986
6, = r(52.4°) = 0.997 % 0.035 0.989
8g = r(4,.8°) = 1.008 £ 0.026 1.003
8g = r(36.0°) = 1,074 % 0.040 1.034
810 = r(31.99) = 1.031 ;o.o31 1.055
617 = r(23.4°) = 1.098 £ 0.033 1.098
815 = 8(76.2°) = 0.613 -_*-_0;108 0.486
613 = 8(63.9°) = 0.635% 0.068 0.559
o1, = s(53.4°) = 0.633% 0.052 0.653
615 = s(42.9°) = o.7éo:'o.ouov 0.761
8¢ = s(32.3°) = 0.837% 0.060 0.856
617 = s(21.6°) = 0.891% 0.067 0.924
615 = £(23.0°) = 0.245%0.079 0.254
619 = t(25.8°) = 0.299% 0.055 . 0.315
80 = t(36.5°) = 0.456=% 0.081 0.476
8 = t(52.0°) = 0.533% 0.060 0.490
8, = t(65.2°) . 0.503 = 0.0L8 0.474
6,3 = t(80.5°) = 0.472% 0.063 0.516

QO
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TABLE I (Cont.)

- r(x)

GJ(Theo.)
6y, = u(22.3°) = -0.330 = 0.142 ,-0.020
65 = u(34.4°) = -0.175 £ 0.084 0.012
85 = u(L1.8°) = 0.111 ¥ 0.076 0.076
6, = u(54.1°) - 0.322 = 0,058 0.237
828 = u(70.9°) = 0.381 = 0.088 0.443
09 = u(80.1°) = = 0.752 ® 0.114 0.509

o Iox°)

I5(90°)

s(x) = Iy P(x°)
' Io(x°)_ cos x sin x

t(X) - IO D(xo)

Iy (x°)
u(x) = IO R(xo)

I, (x°) cos%



TABLE J

e

Summary of Solutions from Second Run
3 Mixing 3 3 Rer (10°)
?h g:?:f,; | Pz _ 1?2 x10°2 en1 Z (or M)
3F2 | - '
2 831, -2 EM _ 2812 2 832 *:G
-0.014 0.031 -0.272  0.734 -0.110  0.224 26.4
0.032  0.125 0.5%6  0.806 -0.079  0.270 27.2
-0.068  0.012 . 2.i76 =0.386 0.210  0.113 29.6
-0.018  0.024  2.250 -0.609  0.235  0.172 32.4
10.104  0.096  0.460  0.659 -0.163  0.232 36.0
-0.318  0.055 -2.800 -0.372 0.057  0.001 36.0
0.188 -0.022 -1.248 0.489 -0.185  0.017 L0.6
-0.024  0.590  0.761 =-0.672  0.063  0.148 41.0
0.179  0.04,8  -0.818  0.478 -0.070  0.007 L1.1

Table continued



TABLE J (Cont.)

s »1b % % % % bt b e Rot(10%)
0 2 0 1 3 b, 3 ana 2 2 APl 2 (or ¥)
2

| x,
2:50- 2:;2 2 5&0 2 8&1 2 553.. 2 égh. -2 6;’ 2 5%2 2 éi2
20.37L  0.310 -0.550 -1.175 -0.138 0.051  0.209 0.419 -0.076 -0.123 20.6
1.497 -0.043 1.267 -0.016 -0.242 0.034  3.053 -0.622 0.139 -0.198 21.8
0.547 -0.294  0.025 0.670 0.136  0.0l4  2.933 -0.860 0.055 -0.157  22.i
-1.325  0.040 -1.378 -0.A36 0.005 0.012  0.648 0.568 -0.252 -0.179 31.8
-0.088 -0.082  -1.202 -0;729 0.226 -0.027 -1.190 0.623 -0.337 -0.116 36.C
20175  0.307 -2.467 -0.668 <-0.0k5 0.0k6  0.072  0.227 -0.077 -0.0i3 k1.7
0.22 -0.045 =-0.139 1.053 -0.234 0.043 -3.091 -0.637 0.053 -0.122 12.9
0.645 -0.008 2.647 0.383 -0.239  0.037 -2.448 -0.418  0.095 --0.059  43.7
1.333 -0.423  1.350 0.064 -0.105 -0.010  2.625 -0.443  0.364 48.0

-0.105

62T~
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report

¥ , may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report. '

As used i1n the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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