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The question is considered as to whether complete rotational 

symmetzr in isotopic spin space is necessary. In particular the 

classification of elementary particles on the basis of the representations 

of a finite group is attempted. It is found that for the particles whose 

reactions are known the law of conservation of charge results in a scher.10 

essentially equivalent with ones previously proposed. However~ some 

additional freedom is found which would accommodate particles with rather 

unusual properties if such are ever observed . 
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STRANGE PARTICLES AND THE CONSERVATION OF ISOTOPIC SPIN 

* H *** K. M. Case, Robert Karplus~ and C. N. Yang 

Radiation Laboratory, University of California 
Berkeleyi California 

I. INTRODUCTION 

One of the most widely used.principles of present day elementary 

particle physics is that of charge independence. It is generally taken 

to be synonymous with the invariance of strong interactions under all 

rotations in isotopic spin space. This concept has been very useful in 

describing nuclear interactions and pion-nucleon interactions as well as 

in bringing some order into our qualitative understanding of the production, 
1 reaction and decay of the strange particles. In view of this success it 

seems imperative that one should reexamine the experimental evidence to 

determine whether it is indeed sufficient to establish the isotropic 

nature of isotopic spin space. 

In the present paper we wish to look into one particular aspect 

of this problem: does invariance under a finite group of rotations in 

isotopic spin space provide enough 8,1Mmetry to furnish a basis for the 
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classification of elementary particles and to account for all 'experimental 

~vidence of "charge independence"? 

We ask this question because so far all experimental evidence for 

charge independence, direct or indirect, concerns only systems with 

relatively few states whose equivalence under isotopic spin rotation does 

not require the symmetry implied by the full group. In particular it is 

rather striking that the charges of all "elementary" particles that have 

been found do not exceed unityo This observation provides a further motive 

for investigating finite groups of isotopic rotations, as these admit onzy 

s~ll multiplets with few different charge states. 

It should be noted that the argument for an isotopic gauge trans

formation and the necessity for a b-field
2 

is eliminated if only a finite 

instead of the full continuous group of isotopic rotations is involved in 

the invariance principle. 

In trying to investigate the possibility of restricted invariance, 

a fundamental problem arises. This concerns the connection between the 

charge and the symmetry operations, or, in other words, the assignment of 

charge within a multiplet. It should be emphasized that the same problem 

exists even in the usual considerationso Originally the isotopic spin was 

defined so that the generator of the infinitesimal rotation around the 

z-axis was essentially the charge operator. A consequence of this relation 

is that the three conservation laws of charge, heavy particles, and isotopic 

spin in the z direction are not independento Loosening the relation 

destroys the interdependence and so provides an additional selection rule. 

It is precisely such a procedure that resulted in the "strangeness 
,. 

1 
selection rules of Gell-Manno 

• 
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In the present ease, only finite rotations are available. Hence 

charge cannot be connected with an infinitesimal generator. To avoid the 

question of what happens with an arbitrary definition of charge, we have 

adopted a definition which is as close to the ordinary one as is possible 

within the present context. We have then considered the consequences of 

invariance under various finite groups together with the conservation of 

charge" Since charge conservation no longer generates invariance under 

arbitrary rotations around the z-axis in isotopic spin space~ one obtains a 

situation which is in general quite different from the usual case of 

invariance under an infinite group. Nevertheless~ .for the known "elementary" 

particles the result is essentially the same as that obtained by assuming 

the continuous rotation group and the classification scheme of Gell-Mann. 

There do existi however~ the possibilities of additional selection rules 

and of the occurrence of particles with rather strange properties such as 

multipletG with a gap in th•::J charge spectrum. It must be emphasized that 

these results are all based on the assumed assignment of charge. Descri~ions 

quite unlike the conventional ones could perhaps be achieved with a somewhat 

more general connection between charge and the group operations. 

II. PROCEDURE 

We shall first determine those finite subgroups of the full three · 

dimensional rotation group that should be considered. The existence of the 

1.f ~meson triplet requires the group to have at least one three-dimensional 

irreducible representations. Omission of reflections narrows the choice to 

the tetrahedral9 octahedrali and icosahedral groups (Ti Oi I respectively). 

Nothing essentially new results when inversions are includedo 
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The occurrence of doublets such as the neutron and proton 

necessitates the use of double-valued as well as single-valued representations. 

Character tables for all representations of the three groups T~ 0 and I are 

given in the Appendix. 

For the continuous group the relation between the charge Q and 

the generator Iz of infinitesimal rotations around the z axis is 

usually taken to be 

(1) 

The constant a( is the same for all states of a multiplet. A rotation 

C~ thru an angle ¢ around the z axis is therefore 

C¢ = exp i ¢(Q - C( ) (2) 

For the finite groups we choose one of the axes of largest symmetry to be 

the z axis. Let this be an n-fold axis. We require Eqo (2) to hold for all 

these rotations. Thus 

c = expi.az! (Q-0() 271/n n 
(3) 

would seem to be the most natural generalization of relation (1). Of 

course Q is then defined only modulo n. Consider now an ~-dimensional 

irreducible representation of the finite group. It will accommodate an 

;q=fold multiplet, each member belonging to an eigenvalue of c21t/n 

•• 

' 

The invariance of the transition opE'!rator under this rotation implies that \,. •. 

in any reaction the product of the eigenvalues of c2~/n for initial and 

final states must be equal. There results the analog of the Iz conservation \.· 

law . , 
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> ( Q = o! ) : const [ mod n J (4) 
all particles 

Combined with charge conservation it yields the conservation law 

~ o( ~ const [mod nj 
all particles 

(5) 

which is just Gell-Mann 9 s rule in a somewhat weakened form. 

The general procedure of the investigation is the following3 First 

we assign the known particles to various irreducible representations of the 

group chosen. Charge assignments in agreement with Eq. (J) are then.made. 

To verify whether these assignments are consistent with the observed fast 

reactions two conditione must be cheeked. The conservation law (Eq. (5)) 

must be satisfied and the reducible representations furnished by initial and 

final states must contain a common irreducible representation of the finite 

group. The latter is the analog of conservation of total isotopic spin. We 

assume as a separate postulate the conservation of heavy particles. Our 
0 ~+- ~~ + anal;ysis will be based on the particles N, P, A , ~ fj .L-::.. , 1f , 

?1- g 1.1°' a+ 9 e= 9 and 9° which undergo the fast reactions 

71=+ p -----t /\0 + s 0 ll 

= 
p ~2::::± + 71'f 6 + :; 

and = 0 0 e + P~l\+1( (6) 

The spontaneous decay of the strange particles~ of course$ must be forbidden 9 

as well as the reaction 

(7) 
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whose non-occurrence has been noted experimentally. 

It has been stated that the reducible representations furnished 

by the initial and final states must be resolved into irreducible constituents. \,. 

Since the charge operator is not in general directly expressible in terms of 

the group elements, the reduction of the representation may leave the charge 

matrix unreduced. In other words, the charge matrix may have elements 

connecting different irreducible representations of the finite group. Now 

the Hamiltonian must commute with all operations of the group and must also 

commute with the charge operator. The latter condition means that in effect 

the symmetry is enlarged with a corresponding effective enlargement ot the 

irreducible representations. Thus selection rules in addition to Eq. (5) are 

obtained. The consequences or these considerations for the different groups 

enumerated before are discussed in the next sectio~ 

III. THE TETRAHEDRAL GROUP 

From the character table of the tetrahedral group we see that the 

representations ~~ /i , . and ~ are identical with the representations 

00, D! and D1 of the full rotation group. These will be called the 

ordinar,y representations. In addition there are two one-dimensional and 

two two-valued two-dimensional representations. 

If only the ordinary representations are used for the elementary 

particles, Gell-Mann 1s assignment is duplicated. This is obvious since in 

this case Q is (up to a constant) the infinitesimal generator for rotations 

around the isotopic z axis as in Eq. (1). 

' .. I 
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It is, however, possible to assign particles to the other representations 

consistent with the requirement that reactions Eqo (6) be fast and reaction 

Eqo (7) slqwo One of these can in fact be obtained from the ordinary 

assignment b,y a simple rule: the matrices representing the finite rotations 

are multiplied by the corresponding matrices of tne one dimensional 
s . 

representation </'~) where S is the strangeness of the particle under 
. 3 

consideration in the original assignment. This rule is based on the fact 
t 

that strange~ess is conserved» and'that r is one dimensional. The 
0 g mS+nh 

<ro > other assignments are generated by multiplication instead with 

where m and n are integers and h is th~ heavy particle numbero For the 

particles mentioned earlier there are therefore many possible assignments 

which give indistinguishable physical resultso We shall adopt the convention 

that all these particles have the ordinary assignmento ,---,-
Additional particlesg such as ~ ~ can then be accommodated in 

a variety of ways 9 because the finite group has several irreducible 

representations of the same multiplicityo If they are all assigned to 

ordinary representations, the result is identical with the use of the 

infinite groupo Otherwise it can be shown that the assignment is eouivalent 

to one with all particles having the ordinary assignments» but with this 

additional selection ruleg each particle has a new quantum number 

CJ.J: Oll 1 or 2 which is additively conserved modulo 3. 

IV o OCTAHEDRAL AND ICOSAHEDRAL GROUPS 

The examination of these two groups can be carried out in a similar 

faehiono The octahedral group has the features of the tetrahedral group 

with one additional complication. First of all, without the representation 
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/',there are two sets or·the ~mall representations or the infinite group, 

~ , r; , aild {;_ and '! , r: , and G . These two sets are related 

in the same way as the three sets of the tetrahedral group. The result is 

that the properties or the complete symmetey are retained with a possible 

additional quantum number w : 0, 1, which is additively conserved modulo 2. 

The representation f7, which has no analogue in the tetrahedral 
X 

group, can accommodate a pair or charged particles whose charges differ by two 

units. This presents an interesting new possibility. 'lh8 :lrreducibility or 

direct product representations involving ~ 9 however, ensures that a 
X 

particle which belongs to it can only interact elastically or be produced in 

pairs. 

The icosahedral group has only one set or the small representations 

of the infinite groupq 'fhere is then no alternative to the ordinary assignment 

o:f the known particle. · The other irreducible representations either contain 

multiply charged particles (I? ' r ' rl ) and/or share the unusual 
' 3/2 2 ; 2 

propertieS Of r <!";_ J !"_ 1 r) .. in that the charge . Spectrum Of the 
X '2 1 y 

multiplet contains gaps. For the same reasons as before, there are severe 

restrictions on the inelastic reactions they can undergo. 

CONCLUSION 

We have seen that for all the groups considered one is led back to 

the full symmetr,r with respect to all isotopic rotations. It should be 

emphasized that this conclusion is reached under the assumption that the 

relationship between the charge and the isotopic spin rotations is essentially 

L-
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the same as the one currently adopted for the full groupo Only the 

discovery of a multiplet of new particles with a strange charge distribution 

could definitely require the use of the finite group with representations 

unlike those of the infinite group" 
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APPENDIX 

* TABLE I: Character Table of the Double Tetrahedral Group (T) 

Glass 
~epresentation E -E 6C2 4C3 

a 
4C' 4C3 3 

~ 1 1 1 1 1 1 

r' 2 
1 1 1 w w <..0 

0 
li 2 2 

ro 1 1 1 uJ o.J w 

~ 3 3 -1 0 0 0 

r; 2 -2 0 1 -1 1 

r' 2 
2 -2 0 w -w w 

~ 

I! 2 2 
2 -2 0 (JJ -w CJ.J 

(.0 = 

a' 
4C3 

1 

2 
w 

w 

0 

-1 

2 
-w 

=W 

Representations ~ , 1-;_ , f! are the re'Presentation D09 D1 , D! 

of the full rotation group. 

.J 
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* TABLE IIz Character Table of the Double Octahedral Group (0) 

~·· e E =E 602 604 60' 
4 

a 
12 02 

ro l 1 1 l l l 

r* 0 
l l l -l <=>l -1 

r:. 2 2 2 0 0 0 
X 

~ 3 3 ~l 1 1 -l 

~ 3 3 -1 -l ... l l 

fi 2 -2 0 -{2 .f2 0 

* {2' r~ 2 -2 0 -~ 0 

r;/2 
4 -4 0 0 0 0 

803 

l 

l 

=l 

0 

0 

1 

1 

-l 

sea 
3 

l 

l 

-l 

0 

0 

-1 

-1 

l 

* Representations r ' r_ ' G ~ r/ are the representations Do ' 
0 l '2 .32 . 

D1 , Di , D3; 2 of the full rotation group~ 
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* TABLE III: Character Table of the Double Icosahedral Group (I) 

~l&ss 
p 

r; 
f? 
1 

li 
r; 
I; 

fi 
r; 
~ 

r;/2 

r',;2· 

q = 

E -E" 

1 1 

3 3 

3 3 

4 4 

; ; 

2 -2 

2 -2 

4 -4 

6 -6 

1 + {5' ; 
2 

12C; 

1 

"' 
(3 

-1 

0 

~ 

f3 
1 

-1 

12C 1 

; 

1 

Of 

(3 

-1 

0 

-C>f 

-(3 

-1 

1 

a a' 
12C; 120; 

1 1 

f (3 

o( o( 

-1 -1 

0 0 

-f3 ~ 

-c( o( 

-1 1 

1 -1 

1 - if 
2 

2003 20C' 
3 

1 1 

0 0 

0 0 

1 1 

-1 -1 

1 -1 

1 -1 

-1 1 

0 0 

3002 

1 

-1 

-1 

0 

1 

0 

0 

0 

0 

r;, ~ , f;_ , ~' f;;2 , . f;12 are the representations D0, D1 , 

D2, D3/2, D;;2 of the full rotation group. 

\ . .o 

t 

'i • 
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