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ABSTRACT 

The lattice energies of some transition metal oxides have been 

calculated using the Born-Haber cycle and compared with theoretical 

values. 

I 
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INTRODUCTION 

Ionic crystal energies can be expressed in terms of a relatively 

simple theory because of the importance of the well-understood Coulomb 

forces in the over-all interionic interactions. The alkali halides have 

received a great deal of attention, and the agreement obtained between 

theory and experiment is excellent. On the other hand, very little has 

been done with the transition metal oxides; consequently some of the 

necessary data for a complete theoretical treatment of these compounds 

is lacking. The purpose of this paper is to review briefly the simple 

theory of Born and two other more complete theories, calculate the 

lattice energies of several bivalent mono-oxides from these theories, 

and then compare these calculated energies to the experimental energies 

found from using the Born-Haber thermochemical cycle. 
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CALCULATION OF THEORETICAL LATTICE ENERGIES 

4 The Born Theory of Ionic ·crystals · 

The lattice energy of an ionic crystal is the energy change involved 

in bringing the constituent ions (infinitely separated initially) to their 

respective positions in the crystal lattice. At large ionic separations 

the only significant force in .operation between ions is the Coulomb inter­

action. At shorter ionic separations the outer electron shells begin to 

overlap and this gives rise to a repulsive force. At the equilibrium 

distance (i.e., in the stable crystal lattice) this repulsive force just 

balances the Coulombic attraction between unlike ions. Assuming for this 
-n 

case that the repulsive force is proportional to r we have for the 

potential between ions 

2 e 
+ 

where e is the electronic charge, z is ionic charge, r is the ionic 

(1) 

separation between ions l and 2, b and n are constants. The p_9tential 

energy per unit cell can be written 

V = - e2 z2 A B 
+ -­n 

r r 
(2) 

where A is the Madelung constant depending only on the structure of the 

crystal. 

Differentiating Eq. (2) with respect to r and equating to zero 

(since at equilibrium dv/dr = 0 at r = r ), 
0 

Solving for B, 

dV 

dr 

B = 

2 2 A e z 
2 

r 
0 

n 

B 
n+l 

r 
0 

= 0 (3) 

(4) 

Substituting this in Eq. (2) and expressing the potential for a crystal 

in equilibrium, 

v = 
2 2 A e z 

r 
0 

(l - ~) 
n 

( 5) 



Th~·lattice energy per mole is 

U =-NV= 
0 0 

-5-

r 
0 

1 (1 - -) . n . 

2 This equation was originally derived by Born and Lande. 
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(6) 

In evaluat.ing the lattice energies the following constants were used: 
. -10 

e = 4.8o223 x 10 e.s.u. = electronic charge, 

z = 2 = charge on each ion, 

= 3.495115 = Madelung's constant for NaCl type crystal, 

= 6.0238 x 1023 =Avogadro's number, 

8 = repulsive f'actor.7 

.Substitution of' these constants into the equation and converting into kcal 

gives 

4061.6 u =---
0 a 

kcal, (7) 
0 

where a is the length of' the edge of' the cubic unit of crystal structure 
0 8 

in angstroms . 

Table I 

Calculated Lattice Energies from Born Equation 

u (calculated) U* Born- u- u ·Crystal a 
Haber Cycle 0 0 . 0 

CaO 4.797 846.7 858 11 
TiO 4.235 959·1 957 -2 
vo 4.10 990.1 966 -24 
MnO 4.4345 915·9 941 25 
FeO 4.332 937-6 967 29 
CoO 4.24 957·9 984 26 
NiO 4.1684 974.4 1,003.8 29 

*Electron affinity of 0 + 2e = 0 taken as -187.6 kcal (See Table III 
and Fig. 1). 

More Refined Methods 

(1) Using Repulsive Energy as an Exponential Law 

In deriving Eq. (6) it was assumed that the repulsive energy was 
-n proportional. to r . . Quantum mechanics has shown that the repulsion due 

to the interpenetration of electronic clouds follows an exponential law of 

the form be ~r/f. Substituting this into Eq .. (2) for B/rn one obtains 
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v = 
r 

(8) 

Differentiating and equating to zero 

b e-ro/r. = 

as before leads 

e2 
z

2 
Af 

to the equation 

2 (9) 
r 

0 

Substituting this into Eq. (8) and multiplying by -N ,one obtains for the 
0 

lattice energy 

u = 
0 

p 
(1- -) 

r 
0 

Using the same constants as before with the additional constant f> 
Eq. (10) becomes 

u = 2320 (l - 0.345) 
0 r r 

0 0 

Table II 

Calculated La.ttice Energies from Eq. (ll) 

(10) 

l = 0-345, 

(ll) 

1 - 0.345/r u U* Born- u - u Crystal r Haber Cycle 0 0 0 0 

Ca.O 2.39 0.856 233 858 25 
TiO 2.12 0.837 916 957 41 
vo 2.05 0.832 9lfO 966 26 
MnO 2.20 o.8l.f3 ·890 941 51 
FeO 2.15 o.84o 907 967 6o 
CoO 2.12 0.837 917 984 67 
NiO 2.08 0.834 934 1,004 70 

*Electron affinity of 0 + 2e = 0 take:c, D .. s -187.6 kcal (See Fig. 2). 

(2) Including van der Waals' Forces and Zero-Point Energy 

A more accurate theory of lattice energies vrould take into account 

van der Waals' forces and zero-point vi bro>tional energy in addition to the 

Coulombic and repulsive energies treated above. However, the calculation 

of van der Waals' forces (London forces) requires the polarizabilities of 

the ions involved, and for the most part these are not available for the 

+2 ions of the transition series. Another difficulty arises when these 

additional terms are added, and that is in the calculation of the repulsive 

energy, since differentiating and equating to zero no longer produces a 
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simple expresslon. It is necessary to take the second derivative and 

relate it to the compressibility, another physical property that is 

difficult to obtain, for the transition metal oxides. The data are 

readily available for Ca~ so a calculation of the lattice energy of CaO 

will be made which includes a term for the van der Waals' force and 

another term for the zero-point energy. ~ne potential energy for CaO 

per ion pair is given by the expression 

(12) 

Each term in Eq. (10) will be evaluated separately. 

First term~ This is just the electrostatic potential between ions 

in a crystal lattice. The value of r for CaO = 2.40 when A = 1.747; 
r 

6 -12 = 7o2 X 10 ergs= 966 kcal/mole. 

Second term: The constant C is subdivided3 into 6.595 c + 1.8o7 +-
( c + c )/2 where c , c o c 

++ -- +- ~~-
are obtained from London's Equation, 

IA l:s 
( IA+~ ); a is polarizability,and I is ionization 

potential. 

++ 4 -24 5 For Ca , a A = 0. 725 x 10 cc , 

For 0 

So that c ' +-

8 -12 
IA = 1.5 x 10 ergs. 

aB = 3.92 x l0_2 J+ cc5, 

. 8 -12 IB - .o x 10 ergs 

= 20.21 x lo-60 erg em~ -60 
Cf+ = 1).65 X 10. erg em, 

8 8 ·-6o = 22 . x 10 erg em. -6o = 92.1 x 10 erg cm 1 C c 

c -12 I 10 = 1.197 x 10 ergs= 17.2 kcal mole 
r 

Third term: Differentiating and equating to zero, one obtains from 

Eq. (12) 

dV 

d r 
= 0 

Taking the second derivative and relating to compressibility 

(13) 
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= - (14) 

This gives two equations to evaluate b and ~ . Rearranging and combining: 

[ A ~2 + 6
7
cJ 

r r 

= (15) 

and 

6 b e""'r/r =.f ( A2e2 + 6 c). 
r r 7 (16) 

~ for CaO ~ 0.75 x lo-12 cm2jdyne. After straightforward calculating it 

6 -8 is found that~= 0.34 x 10 em, which is in good agreement with 

. l 
Kapustinsky's value. 

6 b e-r/ = 8.65 x lo-12 ergs= 124.2 kcal/mole. 

The remaining factor to be calculated is the zero-point vibrational 

energy, which is equal to 9/8 RG where G = Debye temperature. From low-
a o 

temperature heat-capacity curves G is calculated to be roughly 550°, 6 
0 

9/8 RG = 9/8 x 1.987 x 550 = 1.2 kcal/mole. 
0 

Total lattice energy for CaO: 

Term Value (kcal/mole) 

Electrostatic 966 

van der Waals' C/r6r 17.2 

Repulsive -66 e-r/p -124.2 

Zero-Pt. Vt. -9/8 RG 1.2 . 0 

U = 857.8 kcal/mole 

This value would agree with the experimental value computed from 

the Born-Haber cycle if an electron affinity of oxygen of -187.6 kcal 

were accepted. There is no direct measurement of this quantity. 
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4 Born-Haber Cycle 

EXPERIMENTAL LATTICE ENERGIES 

In order to relate the lattice energy of an ionic crystal to known 

thermochemical quantities Born and Haber devised their famous cycle, which 

is similar to the one following (shown for a bivalent oxide)~ 

Equation 

M (g) 

++ = . 
M(g) + O(g) = MO(s) 

MO(s) = M(s) + 1/2 o2(g) 

M(s) = M(g) 

1j2 o2(g) = o(g) 
++ -

M(g) = M(g) + 2e 

o(g) + 2e = O(g) 

+ 

+ 

o(g) > 

r~E 
S+O 

o(g)<: 

.M 

-U = -lattice energy 

~Q = theat of formation 

S = heat of sublimation 

D = heat of dissociation 

I = ionization energy 

-E =-electron affinity 

Since this is a closed cycle the net energy change is zero and 

U = ·Q + S + D + I - E . (17) 

In Table III, E = -187.6 kcal derived from the CaO calculat(-ions above has 
\ 

been assumed. 

Data and Calculations 
Table III 

Summary of Data and Calculations (all values are in kcal/mole) 

Crystal ·Q s D I U+E u 
CaO 150.65 42.3 59·55 417.65 670.2 857.8 
TiO 123·9 113.2 59·55 473.16 769.8 957.4 
vo 99·5 122.7 59·55 496.34 778.1 965.7 
MnO 92.05 66.73 59·55 535-06 753·4 941.0 
FeO 63.8 97·9 59·55 558.31 779·6 967.2 
CoO 57·1 102.0 59·55 577-45 796.1 983.7 
NiO 57·3 101.75 59·55 597·58 816.2 1,003.8 



-10- UCRL-3138 

The heats of formation of the oxides are from Coughlin. 9 The heats of 

sublimation are from Brewer. 10 The value of D(o2 ) is from Brix and 
11 . . 12 

Herzberg. The I values are from Moore. Where necessary, all values 

have been converted to 298.15~. Thus the experimental values of U given 

in Table III are for 298°K. Whereas the theoretical values from Eqs. (7) 
and (11) do not include the increase in heat content due to vibrational 

excitation upon heating from 0°K to 298°K. However, the total increase 

in heat content for TiO, for example, upon heating from 0°K to 298°K 
is only 1.475 kcal,: of which some is associated with the thermal ex­

pansion and stretching of bonds. Thus the lattice constants at 298°K 
were used in Eqs. (7) and (11) and all results compared at 298°K without 

correction for vibrational contribution other than the zero-point 

contribution in the CaO calculation. 

DISCUSSION OF RESULTS 

In Fig. 1 is plotted the difference between the experimental and 

the calculated lattice energies (using Eq. (7)) against increasing atomic 

number of the metal ion. It was expected that the energy difference would 

be positive for TiO and VO, coming to a minimum at Mn~ and going through 

another maximum for the others as has been found for the aqueous ions 

and other compounds of these elements. 13 The answer could be in the 

choice of the repulsive factor n or perhaps in the lattice constant a 
0 

for VO and TiO. The lattice constants could be in error due to nitrogen 

or carbon impurities or non-stoichiometric compositions. The crystal 

energy is considerably changed by a small change in n. If n is given 

values of 8 for CaO, 7 for TiO, 6 for VO, 8 for MnO, 8 for FeO, 7·5 for 

CoO, and 8 for NiO, the entire picture is changed to one that is reasonable; 
4 . 

n has been related to compressibility) by the equation (n - 1) = Kr /~ 
where K is a constant, including the electronic charge and Madelling's 

constant, et cetera, r is interionic distance and ~ is compressibility. 
' . 

In calculating lattice energies from Eq. (7), n was taken as 8 for all 

the oxides as suggested by Sherman. 7 Substituting known values for rand 

approximating~ one obtains a set of·values for n that appear to be quite 

reasonable with those previously given empirically (i.e., there is a 

minimum for the n value of VO and a maximum value for CaO) . 
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Fig. 2 shows the difference between experimental and calculated 

lattice energies using,Eq_. (11) with the repulsive term as an exponentiaL 

The general form of the graph is much more reasonable, but the large 

deviations found with the heavier transition metals are not as good. 

This is probably because these heavier oxides are not so ionic as the 

lighter oxides. 

It appears that no simple theory gives a precise explanation of 

the variation of heats of formation of the transition metal oxides. It 

would be valuable to obtain spectral data for the splitting of the 

electronic levels of the transition metal ions in the oxide .crystal 

fields·and then by difference obtain some values for the repulsive 

contributions to the lattice energy. 
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Figure 1. Differences in lattice energies in kcals found 

experimentally and calculated from Eq. (7) 

with repulsive force a 1/rn. 
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U0 = r (l - 1/n); n = 8 
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Figure 2. Differences in lattice energy in kcals found 

experimentally and calculated by Eq. (11) with 
-r/e repulsive force a e . 
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