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. * ON NUCLEON SCATTERING AND THE FESHBACH-LOMAN MODEL 

Robert B. Raphael 
I 

Radiation Laboratory, University of California 
Berkeley, California 

November 9, 1955 

ABSTRACT 

A method, based upon the results of the preceding paper, is 

established whereby a given potential may be simply tested for its capability 

of providing an adequate charge-independent description of nucleon-nucleon 

scattering to 300 Mev. The view is taken that the scattering is better 

represented by replacing the (in general) strongly energy-dependent scattering 

phase shifts with a set of suitably defined logarithmic derivatives r JL" 

These when evaluated at 'characteristic interaction distances' r, will depend 

at most weakly upon energy. The success of the Feshba~h-Loman (FL) model 

in the interval 0 to 300 Mev is here regarded more generally as establishing 

this view in the above energy range. These ideas are given their mathematical 

formulation through a generalization of effective range methods familiar in 

low-:energy scattering. :.:~Here r, which plays the role of an effective range, 

is shown by means of stationary expressions for r JL to attain a state­

independent value equal to the F . .t 'core' radius, provided that rJL has the 

desired weak energy dependence. It is then only necessary to find the behavior 

with energy of the parameters r JL' as determined by a given potential, in 

order to test whether or not the latter is capable of giving a charge-independent 

description of the scattering. The method is illustrated in S-states with two 

parameter monotonic static potentials. It is found that Gaussian, exponential, 

and Yukawa potentials are not consistent with the analysis unle.ss these potentials 

also contain a repulsive core whose radius is suitably restricted. A rectangular 

potential is barely possible because of the uncertainties in the F L fit arising 

from insufficient experimental data. An Appendix is devoted to a discussion 

of the variational principle used in the text. 

* A portion of this material may be found in the author's Thesis, Harvard 1954 • 



,j . 

'• '!i ,• 
,f 
!' 

; , .. -3- UCRL-3192 

ON NUCLEON SCATTERING AND THE FESHBACH-LOMON MODEL 

Robert B. Raphael 

L INTRODUCTION 

In the preceding paper, ( 1) an explicitly charge -independent fit of the 

nucleon-nucleon bound state, and scattering data has been obtained. A model 

was :used which confines the nuclear forces within a radius r which depends 
1 0 

upon the state and which, for all but one state, the S , was taken to be 
0 

energy independent. In this region the forces are assumed to be sufficiently 

strong to be essentially independent of the relative energy of the colliding 

particles, and may thus be represented by an energy-independent boundary 

condition aJ?plied to the set of logarithmic derivatives f JL (r 
0

) of the intera~tion 

wave function. We wish to point out that the success of this specific model 

may be more generally regarded as establishing, within the above energy 

range, an alternative and highly compact representation of experimental 

results. This representation embodies an extension to higher energies of 

the effective ~ange methods (2 ) familiar in the analysis of low-energy nucleon 

scattering. It will be shown in this paper that such a viewpoint results in a 

simple procedure for determining whether a given potential is capable of 

giving a charge -independent description of the s~attering. 

The success of FL in fitting data in the range 0 to 300 Mev suggests 

.that, from a formal standpoint, the scattering may be more appropriately 

represented in each state by two parameter,,rJL(r) an~ r, which depend 

only weakly upon the energy, than by the phase shift 6 JL' which is in 

general strongly energy-dependent. (
3

) ( r JL = f JL +1) In II, we shall make 

use of a procedure due to Schwinger (4 ) to define an appropriate set of 

generalized logarithmic derivatives r on the surface of a sphere of radius 

r, which we then show to be Hermitian. A stationary expression for r is 

then invoked, by means of which r is so chosen that r has the desired weak 

energy dependence. The resulting condition for r is manifestly a generalization 

of that used to define the effective range in low-energy scattering theory. 

This connection is made explicit by consideration of the 
1 s

0 
and 

3s 1 + 3n 1 
states of the two-nucleon system. The "'effective interaction distances"" 

r in these states are shov:.n to be equal to each other within experimental 
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error .and to have the value r 
0 

found by FL to yield the best overall agreement 

with the scattering data. Thus, only a single range parameter is needed to 

describe the low-energy scattering in singlet and triplet states. In III, we 

investigate the energy dependence of the logarithmic derivative in the 
1 s0 

state and compare with the F L fit. It is demonstrated that with sufficiently 

complete and accurate data for energies less than 50 Mev that it would be 

possible to determine the character of the interaction potential. For example, 

if it is assumed that r does not vary more than 20 per cent in energy from 

0 to 50 Mev that the rectangular, Gaussian, exponential and Yukawa wells 

would fail to fit the data. However, a potential consisting of a repulsive core 

together with an ext>rerior well of rectangular or Yukawa shape could satisfy 

the above criterion. In the former case a repulsive core radius r less than 
-13 . -13 c 

0.4 x 10 em, and m the latter r less than 0. 7 x 10 em would be c 
required. A brief discussion of the variational principle used in the text, 

together with its explicit realization for higher angular momenta and tensor 

forces, is included in the Appendix. 
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II. THE EXTENDED EFFECTIVE RANGE DC'.SCRIPTION 

Consider the Schroedinger equation for the interaction ot two 

nucleons, · 

(k
2

- H)Y : 0 ; (1-·P) :·0, r:O, (la) 

and its adjoint, 

.,. 2 t ;r (k - H) : 0 , (lb) 

2 A:.2 2 t ' where k : ME1 u , H = - V + H , and H is the interaction Hamiltonian, 
\ 

which we shall assume to be energy-independent and of short range. Let us 

also introduce a comparison wave function ~ , eatiet,ying 

(k 2 + 'il 2) -:r = 0 • 

Inside the interaction volume, ~ is then an extrapolation of )V • B.r 

elementar,y manipulation one obtains the relations 

V • ( 1' rV Y -(V "/' ) t "/') : 0 , 

v · cr 7v r -c v -t- t r > = o . 

(2) 

(3) 

(4) 

Let us integrate Eq. (3) over all space, but Eq. (4) on1y outside a sphere 

of radius r = r. Then in view of the identity of ~ -f" at lar(te distances, 

we must have 

(5) 

Observing that only the radial part of the gradient operator contributes to 

this integral, we define a generalized logarithmic derivative I' on the 

sphere r = r b.1 the expressions 

\ 

\ 
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The con41tlon in Eq. (Sl: thus e.xpr.euses the hemt:lcity ot r t. 

-. 
r:r 

_j ~'"+-r<r.; r1") ... i].,j = o . 
' ··~- ~ . ' . . 

. ' 

· ~ It is ·provet:tin 'the Appendix that · 

' all·space 

.. -' ,:~. f [. -2 ·1' ~ ,..-r;..T 2-T-] 
· { dr) r V ( r Y ) · V (r .x, - .x k ·:r . 

.(6} 

(7) 

(8) 

. is a Stationary axpress'ion to'r' r . uruhtr independent . Va.ri~tion 'or + ' ~ 
I • . 

·.or· their a.d.Jo1nte .• · ·xi is convenient to uee Eq. (8) as a me~n~ ot spec1iying 
'·. 

the energ deperl4ence. ot f' :• Under var·iation with re~pect -to the energy, 

the wave tunci19na in their depcJndenee on energy <lo not eon~ribu.t.e in 

virtue ot the ~tionar;v property' and one obtain$ the rtgorou$ exp~e881~ 
.~-. 

'< • 

. . 1' . ' 
(di-) jJ y. . 

all apace 
. {9) 

Let us now view the wave functions 7 '-r as being decomposed into mutually 

orthogonal pa.rta, each part corresponding to a constant ot the tnotion. · 

• 
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Equation (9) is then to be regarded as a set of independent equations 

corresponding, for example, to possible values of the total angular 

momentum J, spinS, and charge state 7. Thus with central forces Eq. (9) 

assumes the fo~ 

2 - ) ·a r. f-a 2 !eo 2 (10) UL (rL .. :-, LL - dr UL - dr uL , -
~· 2 ··; k -' 0 rL 

as shown in the Appendix. Here '\.t UL are the radial parts or "Y,'£ 
corresponding to angular momentum L. The orthogonality of these partial 

waves requires 'r to be a diagonal matrix, whose elements are r;_ . 
For the coupled waves present in triplet scattering with tensor forces, we 

find in the Appendix that 

-- /

G() [ 2 2 
dr UJ (r) + WJ (r)J - ~~r [uJ

2 
(r) + wJ 

2 
(r)] • 

0 
(ll) 

Here uJ, wJ are the radial wave functions for L : J - l, J+l 

respectively, and UJ, WJ are the corresponding comparison functions. 

These wave functions, toaether with rJ and the logarithmic derivatives, 

may refer to either of the mutually orthogonal eigenwave mixtures which, 

in virtue of the tensor coupling, remain unchanged during the scattering 

process. 

i' 
i 

,·i 
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In each scattering state J , we now require r} to be energy 

independent, and ot value such that the left-hand side of Eq. (9) vanishes 

when evaluated at some specified energy E , 

= 0 J E : E (12) 

r:rJ. 

The loga~ithmic derivatives ~ , which in the vicinity of E depend at 

most weakly upon energy, together with the (by choice) energy-independent 

characteristic distances rJ 1 completely specify the scattering. Indeed 

the ~'s are formallz identical with the logarithmic derivatives f 
1
+ 1 

assumed energy-independent b.r F;JLin their tit or the scattering data. 
~ .... 

However, vhUe the latter incorporate the effect of a very strong nuclear 

force confined within a region r ~r0 , the former embody no assumptions 

whatever about the force except its static nature and short range. The 

increased generality of description is reflected in the correspondingly 

weaker statement that fJ is no more than lo~al1Y energy-independent. 

The form of the stationary expression in Eq. (9) suggests that the 

above description is close~ analogous to the effective range representation 

of low-energy scattering. In the 1s0 state, Eq. (9) reduces to 

: ~-dr ft~t- (k
2

- >. t(r))uj- {dr [{~) 2 
- k

2 oj, 
0 

(13) 

where u, U satisfy the equations 
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(14) 

0 , (15) 

' ' 2 1 in which ~ : MVo/fi and V0 f(r) is the s0 potential. Let us 

set r 0 : 0 momentarily, and follow Schwinger5 in introducing energy 

expansions r 

u(r) 2 
';.(0) = 0' = u0 (r) + k u1(r) + . . . ' 

(16) 
j 

U(r) - U0 (r) + k2 u1 (r) + . . . . ' u1 (o) : o , . -
and 

r:co) = k cot so -1 2 3 4 
: ao + t reo k . - p reo k + • • • 

(17) 

Equation (13) then yields the customary definitions of the singlet scattering 

length a0 , effective range reo' and shape-dependent parameter P: 

ao-l = uo-
2

(0) [ f[ r:~l-). f(r) u/)dr- ~;; r::of , 
-2 lao 2 2 i reo = U0 (0) . (U0 - u0 )dr , 

0 

P reo3 = uo-2(0) [~uo ul- uo ul)dr • 

0 

(18) 

(19) 

(20) 
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It is thus appropriate to apply the condition of Eq. (12) at E = 0, 

which then gives the defining equation for 

0 • (21) 

Using Eq. (19) and the zero-energy solution ot Eq. (15), 

-1 
U0 ( r) = 1 + a0 r , (22) 

we obtain an expression for ro independent of the details of the force, 

6 From the experimental values 

reo = (2.52 ±. 0.23) X 10-lJ em, 

1 . l2 1 
&0 - = · (0.422 :t 0.001) x 10 em- , 

we have 

( ) -13 : 1.20 ± o.u x 10 em • 

(23) 

(24) 

-13 ThiS value is in good agreement with the 1 Core 1 radiUS r O ,...., 1.32 X 10 em 

found empirically by LF to yield the best over-all fit of nucleon-nucleon 

scattering data; and of course also agrees with the boundacy radius of 

2/. 2 3 . 
0.47 e 1 mc found by Breit, using the same criterion (i.e., weak energy 

dependence) but rather different methods. 

3 3 Turning now to the coupled s1 + D
1 

mixture, we apply Condition 4.2) 

to Eq. (11) at E = - f , the binding energy of the deuteron. In virtue of 
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the normalization 

!
00 

2 2 
dr(u1 + w1 ) : 

0 
1 ' (25) 

we have 

= 1 J E:-E., (26) 

in which the S, D comparison functions 01, Wl refer to the S-dominant 

eigenwave miXture. Equation (26) is now to be compared with the 'bound 

state' definition of th~ effective range, 

-2 (J ;-laO -.c ul (o) 2 ,_~:, == o ~,.. u, - :t. (27) 

where U(r) is the solution of (15) at E : - E , 

(28) 

and thus corresponds to neglect ot the small D-sta.te admixture in u1 (r). 

The latter and w1(r), are the solutions of the radial equations, uncoupled 

in the absence ot interaction, 

(29) 

(30) 

which we write as 

• 
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(31) 

In this way 0'~0) measures the total amplitude at large distances, 

Lim [u1
2+ w12]~ ,_, u1(o) exp(-"'/r) 

' r-QO 

while ~ similarly' measures the relative amplitude of D state, 

The quantity U(O) is determined trom Eq. (27) to be 

while 5 is fixed by reference to the quadrupole moment, 

Q- q 
- 10 dr r (ul "'1 - 2 "'12) :::=: reo 2 -3/2 

0 

-27 2 
2.77 x 10 am • 

(33) 

(34) 

(35) 

(36) 

The error incurred in Eq. (36) by replacing the interaction wave functions 

by their corresponding comparison functions is small, in virtue of the 

insensitivity of Q to changes in the former at small distances. The 

quantity ! thus determined is r- 0.02, although this value could 

fluctuate by perhaps 50% without destroying agreement with the observed 

value ot Q and the asymmetr.r of the low-energy n-p angular distribution. 
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The Condition (26) then yields the following expression for r 1: 

In Fig. 1 we have plotted r1 in its dependence upon the admixture ~ , 
7 

using the experimental values 

t: - 2.226 ±0.003 Mev, 

= (1. 720 ±0.035)10 -l3 em, 

and have also indicated the permitted range of values of r
0

• We may 

evidently consider the characteristic distances ~l' r 0 to be the same 

within experimental uncertainties. Thus even at low energies the . 

compactness of this "extended effective range" description is manifest, 
. ' 

in that only one characteristic distance need be used to describe the ground 

states of the two-nucleon system as opposed to the two range corrections 

reo' rel in the usual treatment. 

-lt is clear from the above development that r has no more 
1 

significance than the effective range itself. In the s0 state, it is 

closely equal to half the effective range, and therefore may be thought of 

as a mean interaction distance. In general, however, it is simply to be 

viewed as one of two parameters that have been ~osen to represent a single 

strongly energy-dependent quantity, the phase shift, in such a way as to 

make it an explicit function of energy, rather than an implicit one, over 

a certain energy range. To the extent that an energy-independent core 

region is actually a true representation ot the nuclear force, these 

parameters have physical significance. 
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IlL IMPLICATIONS FOR THE NUCLEAR FORCE 

Since the value of r agrees well with the core radius of the preceding 

paper, we may apply FL's results directly to our own worko Regarding the 

logarithmic derivative r as e'ner gy-independent results in a quantitative fit 

of all nucleon scattering data to 200 Mevo In virtue of our more general 

description, this fit is no longer to be regarded solely as a consequence of 

a specific model of nuclear forces, but rather as constituting a strong condition 

which any proposed nuclear potential must satisfy if it is to yield a charge­

independent representation of the data. More specifically, the energy­

independent character of r in s states is maintained only within an energy 

region corresponding to the shape-independent approximation where all 

short-range potentials are equivalent; Leo, 0 to 15 Mevo The further energy 

dependence required by the FL fit must therefore be. determined by the details 

of the potential. Thus what has been established in the above simple fashion 

is a means of testing potentials for their agreement with experiment without 

recourse to a phase -shift analysis o One need only determine the behavior 

. with energy of the r£ corresponding to the potential in questiono 

In order to illustrate this procedure, we turn our attention to 
1 s0 

scattering from a number of potentials in the limit of zero binding (infinite 

scattering length)o Let us first consider the rectangular well, for which 

an exact expression for r can be obtained. S The functions u, U are 

given by 

u- sin a. x, X< 11 .... 
(38) 

u = U -sin kx coto + cos kx, X } 1, 

where we now use the dimensionless n·otation x :z r /R, K. = kR, 

a.2 
:: K2 + ,.2 /4, and R is the range of the for ceo Matching logarithmic 

derivatives at x = 1 yields the desired expression for 

( ot... c. ""f tX.} c o T 1-< ( k - I) - t{. K . . .. _, 

o( Cot -~ + 11. G Cl "t I'( ( X - 1) (39) 

where according to Eq. (21) X = r/R l!: 1/2. 
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An estimate of the energy dependence of r (K) is to be made by 

comparing its value at a given energy with its correct zero-energy 

value, 9 

r (0) =a -lR/(1 +a -lr) (40) 

= 0.0965 ± 0.0077 (Rect. ). 

The expression 

E ( K) = ( r r K J - r r o; J/ r ro J (41) 

is shown in Fig. 2. 

It is of interest to use the rectangular well as a means o£ 

testing the accuracy of results obtained through the use of variational 

principle, Eq. (13). Consider the approximate expression 

(42) 

The coefficient r 1 is required to vanish by our choice of r; then 

r 2 is primarily re'~ponsible for the energy dependence of r over an 

interval whose extent we now determine. By differentiating Eq. (13) 

twice with respect to energy~ making use of its stationary character 

in the manner already described, and evaluating the result at E = 0, 

we obtain 

(43) 
r -2(-) 2: UO X 

X 

which may be re-expressed in terms of the shape-dependent parameter 

P, using Eq. (20)-r,; 
3 

= -X. (SP + 1/3). (44) 
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A simple calculation yields the value r 2 (recto) = -0.0096, consistent 

with P (rect.) = -0.032 as given in Blatt-Jackson. (Z) The expression 

c.'< K ) = r2 r -1 1{, 4 (45) 
0 

where r 
0 

is given by Eq. (40), is seen from Fig. 2 to be accurate 

within 10% for energies less than 50 Mev. 

We now assume that Eq. (42) gives an equally adequate repre­

sentation of the Gaussian, exponential and Yukawa potentials. The 

c~rresponding e 1( K,) are also plotted in Fig. 2. We now compare 

this energy dependence with that determined by the F L fit for the 
1s state, restricting our discussion to energies below 50 Mev. 

0 
In this energy region p-p scattering is determined mostly by the 
1 
S state, although at the higher energies there is a small contribution 

0 

coming from the 
3

P state. The uncertainty in the change in r over 
0 

this range, Ll.r , arises mostly from the incomplete determination of 

the contribution of the latter state. From the FL analysis, it is reasonable 

to assume that.6 r varies between zero and the change which F L obtain 

in their fit B. (Fit A seems to be eliminated by recent experimental 

data.) The corresponding condition on P is 

-0.0416 < p < -.0367 (46) 

This condition clearly eliminates the Yukawa, exponential and 

Gaussian potentials. The square well potential is still possible but 

only barely so. It is clear that it would be worth while to make a more 

thorough experimental investigation of this energy region. 
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To demonstrate what information such research might yield, 

suppose that r only changes by 20 per cent in going from 0 to 

50 Mev. Then 

-0.0416 < p < -0.0402 (4 7) 

We shall now show that such a limitation on the permitted values of P 

would require the use of core type potentials, as is already indicated 

by ·intermediate en:ergy scattering experiments. We shall also see tha.t 

the FL fit as given by Eq. (46) if applied rigorously would require a core. 

As a first orientation, it may be noted that as P changes from positive 

to negative values, the potential becomes progressively shorter -tailed 

and less attractive at the origin. Since P for a rectangular well is 
' -0.032, the requirement (4 7) as well as (46) of the F L fit suggests a core 

without adducing further evidence. 

Consider then the potential 

V (x) = -V 
0 

0 

x<x c 

X <X< 1 c 

X> 1 

(48) 

.. ''\ 
i'"" '. ,_, ..-..' \ 

' ... '. 



... .. 

UCRL-3192 

for which exact solutions may be obtained. The calculation, which is 

perfectly straightforward, will not be discussed except to observe that 

. r in its dependence on energy is most easil)r found by using an obvious 

modification ot Eq. (13): 

1 

= f dxa~f-~ 
XC 

-X 

-! ' 
1 

where ~ 
0 

: ( u -l du/dx J , and the other e)'lllbola ha.ve their usual 
' X::Xe 

significance. In the limit of zero binding, v1 is shown in Fig. 3 as a 

function ot e, for several values ot x0 • The value ot the core radius r 0 
I 

~hangee 'by no more than" :t 0.0) r tor a. given value of x 0 = rc/R , so that 

each ot.the curvet-in F1g. J also represents a characteristic core size. 

'fhe matching condit:ions at x = xc cannot be maint.ained for v1 <. ..._ 25 Mev; 

for ·large · v1 the curves approach asymptotic values of R· In the limit 

of small r 0 and large v1 , this asymptotic ~alue approaches P. = -0.032, 

io;.e., a .pure rectangular well. The effect upon the scattering of an 

increase·in core .size is evidently just the reverse of that produced by 

going to longer-tailed attractive wells• which implies the existence of 

many tail-core combinations tor a given value of p. We note that, in 

order for Eq. (4?) to hold, r 0 is confined to the approximate region 

-lJ 
0.1 x 10 era -13 r-

0 
.t:_ 0.4 x 10 em , ~· (49) 
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1.3 for reasonably hard cores. This is to be compared with 

-u u rc .= 0.5 ~ 0.6 x 10 em, the value used by Jastrow in hie 

phenomenological tit of p-p scattering, as well as by Levyl2 in 

conjunction with a meson-theoretical potential. The small discrepancy 

is due to their use of a fairly long-tailed attractive well, which in our 

calculations has the effect of increasing somewhat the permissible core 

size. A numerical analysis making use of an exterior Yukawa well yields 

the approximate limiting value 

-1.3 
r 0 < 0.7 x 10 em, Yukawa. (50) 

In summary, we have seen that the local energy independ.ence of r in 

S-states is valid over ·an energy range corresponding to the shape­

iridependent approximation. The additional energy ind~ndence required by 
. except possibly the rectangulatvvell 

the:~ analysis prohibits the u~e of simple two-parameter potentials I\, but .. . 
does 'pei'mit core-type configurations. Such potentials will1ield the 

\ 

oorrect 
1s0 phase ·shif't up to energies of at lea.·st 50 to 60 Mev. It has 

been no't.ed tha:t there ·is still considerable freedom in the choice of 

potential • 
l s

0 
scattering to 50 Mev implies no restriction on the form 

of the·attractive well, although once a well shape is chosen the core 

si~e>ts · li.m.tted •14 A .f\lrt.her (weak) restriction may be obtained by 

invoking-· charge buiependence in S states, 5 which tends to exclude cores 

-13 15 greater -than .- 0 • .3 x 10 em. Such 18mall cores are not necessarily 
. 16 

in conflict with meson theory. 

While all our examples ha.vs been concerned with static potentials,· 

the methods ~ be easily extended to treat velocity-dependent forces. 

' These can be reconciled with the F.iC analysis provided they are at most 
i 
I 
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weakly energy dependent. Calculations, to be reported more fully at a 

later date, reveal that such forces are capable of reducing e (Eq. (41 )) 

inS state.s considerably below its corresponding static force value. We 

point out that the virtual excitation, in close collisions, of nucleonic 

isobaric states produces an S-state force having this behavior in the 

energy range considered above. 
17 

The fit of the two-nucleon scattering data obtained from the 

constancy of r in all states is quantitative to energies as high as 200 Mev, 

so that the testing procedures ,may be extended. Uncertainties in the FL 

analysis due to causes already mentioned will of course increase, so that 

limitations on the energy variation of r will become less severe. 

The methods we have presented are of course not restricted to 

S states. The forces obtaining in higher angular momentum states with 

tensor interactions may be analyzed with the aid of the development in 

the Appendix. It is hoped that these methods may be of use in treating the 

consequences of specific models of the two-body force without the necessity 

of direct comparison with experiment at a variety of energies~ 
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APPENDIX 

We shall verify that Eq. (9) in the text is a stationary expression 

for the generalized logarithmic derivative ~(r) with respect to 

independent. variations of 'f 1 'if or their adjoints, subject only to the 

restriction 

(r Y )(O) = 0 ; "f (r) --. r (r) ' r-- . 
(Al) 

The stationary value is attained for functions Y' , 'ff satisfying Eq. (1), (2) 
. T ~T~,. 

in the text. Variation with respect to ·-r 1 :r for example gives 

In virtue of the condition in Eq. (Al); the surface integrals on the left-

hand side becomes 

hence the condition that r' be stationary under this type of variation 

is expressed by the differential equations (l), (2) of the text and the 

requirement of Eq. (7). 
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B,y insertion of the appropriate partial-wave expansions into the 

stationary expression Eq. (9), we~ easily obtain the variational 

principles appropriate to the different scattering states, together with 

the differential equations obeyed by the radial fUnctions in these states. 

For example let us assume 

!f' : - ~ [F(r) -t (r'G(r)s12J , (A3) 

where s12 is the tensor operator 

(A4) 

2 A = MVo/fi J and -r is the. ratio of the tensor strength vl to the 

central strength V 0 • We make use of 

(A5) 

with a similar expreesion for *'f' singlet; and, after performing the angular 

integrations, obtain the fo~ of Eq. (9) appropriate to singlet states of 

scattering: 

Equation (A6) is a stationary expression for fJ..L (F) when the radial 

functions "'.' u1 satisfy 

(A6) 
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(!7) 

and provided we make the identification 

(AS) 

Thus, in singlet states, r is a diagonal matrix with elements r LL. 
In virtue of the stationary property of Eq. (A6), expansion of the radial 

functions ~~ UL in the manner of Eq. (18) of the text gives rise to the 

rigorous expression Eq. (12). 

Turning now to triplet states' we note that rtriplet is in general 

not diagonal; owing to mixing of states induced by the tensor coupling. We 

may, however, go to a representation in which r triplet is diagonal by 

taking linear combinations of states with the same parity. In this "eigen­

state representation" the scattering matrix is.diagonal. We follow Rohrlich 

and Eisenstein18 in introducing the partial wave expansion 

where 

r Y. ~1'1'\.= p U (acJ_ $ W. (oc) 
-cot _u:r T ..... ""'j :r 

(AlO) 

J- y ~~- p v: ~) 
-:/.."! - - V'J J" 

,_ ;P J;nt ,;._ 
_.r - f. u 1~)-t ~ w.: (7'} 

,., u J" 7 "'"" w;r :r 
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are a set of mutually orthogonal "parity" wave functions, the eigenfunctions 

of the tensor Hamiltonian. Here the §• e are the orthonormal spin-angle 

19 vectors introduced by Corben a.nd Schwinger, . while UJ, V J• WJ represent . 

the comparison radial functions for the states L: J - l, J, J~l 

respectivelf. An analogous expansion is introduced for the interaction 

wave function Y triplet. The effect of s12 operat~ on .f , as given 

in R&, is 

-2 J-l§u -t6 [J(J-tl)Ji JWJ, 
2J + 1 - J 2J+ 1 -

6 r,J(J + 1)1 l JU - 2 j + 2 l"w , 
2J-t- l -J 2J+l ..... J 

(All) 

2 .Jv . 
- J 

We are nov in a position to carry out the angular integrations in Eq. (9). 

The·orthogonality of the wave functions, Eq. (AlO), results in three separate 
. ( ). 20 

e-xpressions corresponding to the eigenstate& 0( / _.;(9/ r , ' 
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j""dr [ (dvJ/dr) 
2 

- (k 2 
- J(J~ 1) +J _((r)} v/J ,(1>) 

0 

! CliO [ 2 2 21 (.-<9) 
- dr (dVJ/dr) - { ~ · - J(J~l) } VJ J . 

-. C4J rJ r 

(Al.3) 

Here we use the notation of IQi, 

tJ(r) = F(r) - 2 J - 1 G(r) ·, 
2J + 1 

gJ(r) : 6 [J(J + l)J i. YG(r) , 
2J +1 

F(r) - 2 J -f.. 2 it G(r) , 
23+1 

{<r) : F(r) + 2 a' G(r) • 

(Al4) 

Again we obtain the differential equations satisfied by the'various radial 

functions in the form of conditions such that Eqs. (Al2), (AlJ) are stationary 

expressions for tho ,•s. They are 

(A15) 
:· ~ . 

( ~ + k
2

- J(J+ 1) ) vJ{r) : A~{r) vJ(r) 
. dr r2 
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The ,corresponding comparison functions aatisfy the. set C)f Eq. (A15) With 

A : o. Then by virtue or· Eq. (Al), a ·variation of -this type applied t() 

Eq. {Al2) results in 

.. 

(Al6) 

tor either ot the mixtures -(~", ~r). The variations ot UJ, WJ at· r = rJ· 

are unrelated, and hence Eq. (Al2) ie indeed stationary provided we define 

J 

(Al7) 

• ( 

The · stationari nature ot Eq ~ {Al3) tollQWS analogouel.T. 

It is a co~eequence ot deecribing.the ~cattering in terms of the 

e1genste.tes o£ the tensor Hamiltonian that the variatione -~ OJ, &wJ are 
. . . . t-. 

a&ymptotioally related. Thus as)'IBJ)totioally, UJ, WJ are given by 

u ( Cl( , "> 
J 
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;;:r.,:~,~,· 

('< '1') . (ef' a') . . . 
We must choose f tJ : 4'w . 1n order to ·unique)3 

J J - . 
fix the pairs ot line_arly :i.ndeJ?endent radial . .funet~ons (u.1' .wJ) ~ . , 

r -
( uJ, ""J) _ so that the coupled wave mixture remains unchanged -bet ore and 

atter the scattering. We mq them define &dmixt.ure parameters 

"/ J( o~' .,...) = -<c.r/ AJ)( -t' r) giVing the a.sfDlptotic mixing ot the_ ~- = J -±-1 

waves. Thus we have at large distances the relation 

(Al9) 

' . 

The reciprocal rel.ation~hi.p between _ '7Jd. , 1J a-' , which follows from the 

unitarity ot the 5-matrix and. the reciprocity ot -sc~tte~ing, ··-y .also be 

obtained from the variational p.rineiple ot Eq. (A~) 1n a particularlT simple 

fashion. We introduce the scale transformati~n 

(A20) 

Equation (ill) may then be written as 

Variation wit.h respect to '7 J yields, by. virtue of the stationar,.. property, 

(A22) 

Introducing Eq. (A22) into Eq. (A2l), one obtains a quadratic equation in 
2 

WJ r WJ' who-se solutions are the eigensolutions of .the scattering problem. 

The well-known relation 
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= .-1 (A23) 

then follows immediately from Eq. (A22). 

Finally', it may be noted. that the D-wave admixture for the deuteron 

ground state may be written 

(A24) 

: -[.u2 
(c) /dE) rufw2 

(d /~E) f'w] _, E:- c , 
r::r 

as follows from the stationary character of Eq. (.21). This then implies 

the more explicit Expression (39) of the text. 

\ 
\ 
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FIGURE CAPTIONS 

Figsre 1~ The variation of the triplet characteristic interaction 

distance r1 with the admixture parameter l' (Eq. (37). 

The vertical lines indicate the error associated with the 

triplet effective range r el" The shaded region indicates 

possible values or the corresponding singlet quantity r 0 • 

The distances r1, r
0 

may consistent~with experiment, be 

taken as equ.a.l. 

Figure 2: The dependence of the 1s
0 

logarithmic derivative on energy, 

as measured approximately by the parameter £' (Eq. (45)), 

for four well shapes. The accuracy of this measure is indicated 

tor the rectangular well b,y plotting the exact dependence 

(Eq. (41)) using Eq. (39). Since the LF fit excludes e' 
values greater than 0.1, the potentials are valid only within 

the shape independent region • 

. Figure } z The dependence of the core height V)1 on the shape dependent 

parameter P for various core radii r
0

, using an ~terior 

rectangular well (Eq. (47)) to achieve proper (zero) binding. 

· Permissible core parameters must yield a value of P in the 

neighborhood of P = i0.04 (constant logarithmic der;vative). 
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