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ABSTRACT

A method, based upon the results of the preceding paper, is

" established whereby a given potential may be simply tested for its capability

of providing an adequate charge-independent description of nucleon-nucleon
scattering to 300 Mev. The view is taken that the scattering is better
represented by replacing the (in general) strongly energy-dependent scattering
phase shifts with a set of suitably defined logarithmic derivatives r'JLa
These when avaluated at 'characteristic interaction distances' r, will depend
at most weakly upon energy. The success of the Feshbach-Loman (FL) model
in the interval 0 to 300 Mev is here regarded more generally as establishing

this view in the above energy range. These ideas are given their mathematical

- formulation through a generalization of effective range methods familiar in

low-energy scattering. XxHere r, which plays the role of an effective range,

is shown by means of stationary expressions for F’JL to attain a state-
independent value equal to the EL 'core' radius, provided that F'JL has the
desired weak energy dependence. It is then only necessary to find the behavior
with eﬁergy of the parameters r' JL* 28 determined by a given potential, in
order to test whether or not the latter is capable of giving a charge-independent
description of the scattering. The method is illustrated in S-states with two
parameter monotonic static potentials. It is found that Gaussian, exponential,
and Yukawa potentials are not consistent with the analysis unless these potentials
also contain a repulsive core whose radius is suitably restricted. A rectangular
potential is barely possible because of the uncertainties in the FL fit arising
from insufficient expe.rimenta.l data. An Appendix is devoted to a discussion

of the variational principle used in the text.

A portion of this material may be found in the author's Thesis, Harvard 1954,
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ON NUCLEON SCATTERING AND THE FESHBACH-LOMON MODEL
Robert B. Raphael

I. INTRODUCTION

In the preceding paper, (1) an explicitly charge-independent fit of the
nucleon-nucleon bound state, and scattering data has been obtained. A model
was 'used which confines the ngclear forces within a radius T, which depends
upon the state and which, for all but one state, the lSo, was taken to be
energy independent., In this region the forces are assumed to be sufficiently
strong to be essentially independent of the relative energy of the colliding
particles, and may thus be represented by an energy-independent boundary
condition applied to the set of logarithmic derivatives fJL(ro) of the interaction
wave function, We wish to point out that the success of this specific model
may be more generally regarded as establishing, within the above energy
range, an alternative and highly compact representation of experimental
results. This representation embodies an extension to higher energies of
the effective i‘ange methods(z) familiar in the analysis of low-energy nucleon
scattering, It will be shown in this paper that such a viewpoint results in a

simple procedure for determining whether a given potential is capable of

giving a charge-independent description of the scattering.

The success of FL in fitting data in the range 0 to 300 Mev suggests
that, from a formal standpoint, the scattering may be more appropriately

represented in each state by two parameterg,r'JL(‘f-) and r, which depend
; i

- only weakly upon the energy, than by the phase shift 5 IL’ which is in

general strongly energy-dependent, ) { PJL =f_ . +l) In II, we shall make
(4) JL

use of a procedure due to Schwinger to define an appropriate set of
generalized logarithmic derivatives 1—' on the surface of a sphere of radius

- r, which we then show to be Hermitian. A stationary expression for F is

then invoked, by means of which r is so chosen that r' has the desired weak

_energy dependence. The resulting condition for r is manifestly a generalization

of that used to define the effective range in low-energy scattering theory.
This connection is made explicit by consideration of the S0 and 381 + 3D1
states of the two-nucleon system. The "effective interaction distances™

r in these states are shown to be equal to each other within experimental
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error and to have the value T, found by FL to yield the best overall agreemént
with the scattering data. Thus, only a single range parameter is needed to
describe the low-energy scattering in singlet and triplet states. In III, we

- investigate the energy dependence of the logarithmic derivative in the 1SO
state and compare with the FL fit, It is demonstrated that with sufficiently
complete and accurate data for energies less than 50 Mev that it would be
possible to determine the character of the interaction potential. For example,
if it is assumed that r‘does not vary more than 20 per cent in energy from

0 to 50 Mev that the rectangular, Gaussian, exponential and Yukawa wells
would fail to fit the data. However, a potential consisting of a repulsive core
together with an exi;ﬁerior well of rectangular or Yukawa shape could satisfy
the abov:algriterion. In the former case a repulsive core radius r. less than
0.4x 10

required. A brief discussion of the variational principle used in the text,

cm, and in the latter r_ less than 0.7 x 10713 ¢ would be

together with its explicit realization for higher angular momenta and tensor

forces, is included in the Appendix,
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Ii. THE EXTENDED EFFECTIVE RANGE DESCRIPTION
Congider the Schroedinger equation for the interaction of two

nucleons,
W -mY 2 05 (r¥) =0, r=0, (1a)
and its adjoint,

vl -m' - o, (1b)

it

2 2
where k> =ME/A", Hz-V°+ H', and H' is the interaction Hamiltonian,
which wo shall assume to be energy-independent and of short range. Let us
also introduce a comparison wave function ¥ , satiefying
2 R .
®+v3HP - 0. (2)

Inside the interaction volume, ¥ 1is then an extrapolation of ¥ . By

elementary manipulation one obtains the relations

VAPTY @)Y = oo, | (3)

VAEVE(vENE) - 0 . %)

Let us integrate Eq. (3) over all space, but Eq. (4) only outside a sphere
of radius r = T: Then 4n view of the identity of ¥, ¥ at large distances,

we nust have

/ds-[ﬂf*vﬁ-(vfjr?]n;‘*"’ ®

Observing that only the radial part of the gradient operator contributes to
this integral, we define a generaligzed logarithmic derivative [7 on the

sphere r = r by the expressions
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[ P) (m] - J;T@) o .
or S 2l o (® -
.__é‘ (rf = !‘f(;)]—' h
8r 4 Per
The condition 1n Eq (5) thua expressea t.he hemiticit.y of r' 'Y
/w[ i’(/" r' >,-~If] oL @

It 1s pravm 1n the Appendix t.na.t

f d_d'r’ffrvrii’ = | f (dr} [r"z(Vﬂ‘) V(r"l’) "V (k - H )"l"]

r=r | a.ll space

f (dr)[ v(rT)V(r‘b i’ka“I’J
rzr e ' (‘8),-_.

48 a stationary mcpreasion for P under 1xuapendent variation of ‘P ?
"or their adjeints.u It. is convaniont to uae Eq. (8) ae a mems of spacirying
’ the energ depeﬁdonce of r. ‘Jnﬁer vax‘iation ws.th respect to tha energy,

the wave ﬁmetions in their G.apendenee on energ do not mntribute in

_virtue of bhe mt.ionary property, and one obtains the rigarous m;preseion -

A ?______ag .’f—f' /caé)'i"*b / (dx-n" Y'. R
- o 7. o
9

~ Let us now view the wave ‘functio,na ¥ ,.‘)F as being decomposed .sjizto m:uall}

orthogonal parts, each part corresponding to a constant of the motion. -



UCRL-3192

- Equation (9) is then to be regarded as a éet of independent equations

corresponding, for example, to possible values of the total angular
momentum J, spin S, and charge state 7 . Thus with central forces Eq. (9)

assumes the form

2 - ©° 2 -
U, () dFLL- /drUL-/druL s (10)

as shown in the Appendix, Here , Uy are the radial parts of Y,¥
corresponding to angular momentum L. The orthogonality of these partial
waves requires ‘[ to be a diagonal matrix, whose elements are [;L.
For the coupled waves present in triplet scattering with tensor forces, we
find in the Appendix that
2 =
U, (r) &y w2 () oWy
J e SR S ———
.agvk?,_ &k2

r:i:J

=0 2 2 “° 2 2
s [t @ @ - [l @ @],
T ’ 0
d
(11)

Here 'uJ, w; are the radial wave functions for L ~=J -1, J+1
respectively, and UJ, Wb are the corresponding comparison functions.
These wave functions, together with ;3 and the logarithmic derivatives,
may refer to either of the mutually orthogonal eigenwave mixtures which,
in virtue of the tensor coupling, remain unchanged during the scéttering

process.
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In each scattering state f s we now require .;f to be energy
independent, and of value such that the left-hand side of Eq. (9) vanishes

when evaluated at some specified energy E ,

[:g;l:i_ =0 E = E . (12)
a2

T

The logarithmic derivatives /j; , which in the vicinity of E depend at
most weakly upon energy, together with the (by choice) energy-independent
characteristic distances ?k s Completely spedify the scattering. Indeed
the [''s are formally didentical with the logarithmic derivatives f +1
assumed energy-independent bw'ﬁgLin their fit of the scattering datea.
However, while the latter incorporate the effect of a very strong nuclear

force confined within a region r < rg, the former embody no assumptions

whatever about the force except its static nature and short range. The

increased generality of description is reflected in the correspondingly
waeaker statement that f} is no more than leéally energy-independent.

The form of the stationary expression in Eq. (9) suggests that the
above déscription is closely analogous to the effective range représentation

of low-energy écattering. In the 180 state, Eq. (9) reduces to

2 - - g 2 . 2 o 2 2
v(5) N(F) = /6 ar [[a) -(kz_m(r))u]- [ [ (& ]

To
(13)

where u, U satisfy the equations
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[.f..+k2-kf<r>Ju=o , )
ar? | - '

[A?__+k2]u'=o, | (15)
5 .
dr

' 2 1l ,
in which A = W A and V, £f(r) is the 'Sy potential. Let us

set Ty, = O momentarily, and follow Schwinger5 in {ntroducing energy
expansions:
u(r) = uy(r) + K2 wuir)+ ..., ul(O) =0,
_ ' (16)
U(r) = Uglr) + K2 Uy(r) + ..., U(0) z 0,
and
-1 2 3.4 '
r;(o): kcotSo z &, + éreok'-Preo K4 0o
an)

Equation (13) then yields the customary definitions of the singlet scattering

length a,, effective range Too? and shape-dependent parameter P: ‘
-« - -]
-1 -2 2 2 e B
st - v, (o)[/[ (&19_) - X £(r) u, ]dr-/dr ggg) L (e
: ° dr 0 dr

- © ) .
% r, = U 2(O) / (Uo2 - uoz)dr , (19)

L
-2
Pry = U, (0) / (Ug Uy = u vul)dr . v (20)
0 N .
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It is thus appropriate to apply the condition of Eq. (12) at E = 0,

which then gives the defining equation for ¥,:

co 5 -,
/don-/uodr:O. (21)

r, 0

Using Eq. (19) and the zero-energy solution of Eq. (15),

-1

oir o, — (22)

Up(r) = 1 + a
we obtain an expression for ;o independent of the details of the force,
=l z2 41 -2 7 3

dr,, = r,+ a, o 5 8 T (23)

From the experimental values6

reo = (2.52 % 0.23) x 107 ca,
-1 12 .
we have
T, = (1.20 £o.11) x 1072 m, (24

This value is in good agreement with the 'core' radius Fo ~ 1l.32 x 1()":L3 cm

found empirically by LF to yield the best over-all fit of nucleon-nucleon
scattering data; and of course also agrees with the boundary radius of
0.47 ez/xm':2 found by Breit,3 using the same criterion (i.e., weak energy
dependence) but rather different methods.

Turning now to the coupled 331 + 3D1 mixture, we épply Condition {2)

to Eq. (11) at E = - € , the binding energy of the deuteron. In virtue of
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the normalization
- _
' 2
[dr(u12+ w,?) = 1, : (25)
0
we have
o0 ]
2 , _
/ dr(Ulvt-le) =1, Ex~-€, , (26)
= ‘ :

in which the 3, D comparison functions U,, Wy refer to the S-dominant
eigenwave mixture., Equation (26) is now to be compared with the 'bound

state' definition of the effective range,

-2 , - :’ TR |

() (Fre) = ) AF U, | (27)
where l-J'(r) is the solution of (15) at E = -~ &€ ,

2)é

Up(r) = U3(0) exp(-7r) , 7= (MEA) (28)

and thus corresponds to neglect of the small D-state admixture in Uy(r).

The latter and wl(r)= are the solutions of the radial equations, uncoupled

in the absence of interaction,

(ddre =7 om0,

(dYfdrt = 6/r2~ 9% )W/ (r) =0 (30)

which we write as



UCRL~3192

“13>

— 1/ ’
U, (r) = Lijto) (1=5%) “exp (~mr) (31)

W lr)= 11, ) Y [1+3(9r) % 3(7r) ] expl-27)(32)

In this way 6*(}‘0) measures the total amplitude at large distances,

Lim [Ulz-f- wf]é ~ Uy(0) exp(-77) , (33)

r-» o

while § similarly measures the relative amplitude of D state,

Lim “1/("12"“ wlz)é ~t . (34)

r-»c

The quantity U(0) 4is determined from Eq. (27) to be

l_1-1(0) = 27/Q1 - "71'31.)5 y .(35)

while & is fixed by reference to the quadrupole moment,

Q - __}%l | foodr 1‘2(11¢:L w, - 2-3/2 wlz) = 2.7 x 10‘27 cmz. (36)
A _

The error incurred in Eq (36) by replacing the interaction wave functions

by their corresponding comparison functions is small, in virtue of the

‘insensitivity of Q to changes in the former at small distances. The

quantity _\' thus determir;ed is ~ 0.02, although this value could

fluctuate by perhaps 50% without destroying agreement with the observed

value of Q and the asymmetry of the low-energy n-p angular distribution.
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The Condition (26) then yields the following expression for Fi:

- e =[1+e 8375 )+ 7 ) expt-277) o)

In Fig. 1 we have plotted r, 4n its dependence upon the admixture % ,
1

3

using the experimental values7

€ 2,226 +0,003 Mev,

(1.720 -.ta.035)1o"13 em,

Fel

and have also indicated the permitted raﬁge of values of 55. We may
evidently consider the characteristic distances ;i, ;; to be the same
within experimental uncertainties., Thus even at low ensrgies the
compactness of this "extended effective range" description is manifest,

in that only one characteristic distance need be used to describe the ground
staﬁas of the two-nucleon system as opposed to the two range}corrections
Teo? rei in the usual treatment.

It is cleaf>from the abdve development that r has no more

significance than the effective range itself. In the lS  state, it is

¢
closely egual'to half the effective range, and therefore may be thought of
as a mean interaction distance, In general, however, it 1is simply to be
viewed-as one of two parameters that have.been chosen to represent a single
strongly energy;dependent quantity, the phase shift, in euch a way as to
make it an explicit function of energy, rather than an implieit one, over
a certain energy range. To the extent that an energy-independent core

region is actually a true representation of the nuclear force, these

parameters have physical significance.
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1. IMPLICATIONS FOR THE NUCLEAR FORCE

Since the value of r agrees well with the core radius of the preceding
paper, we may apply FL's results directly to our own work, Regarding the
logarithmic derivative Fas energy-independent results in a quantitative fit
of all nucleon scattering data to 200 Mev, In virtue of our more general
description, this fit is no longer to be regarded solely as a consequence of
a specific model of nuclear forces, but rather as constituting a strong condition
which any proposed nuclear potential must satisfy if it is to yield a charge-
independent representation of the data. More specifically, the energy-
independent character of P in S states is maintained only within an energy
region corresponding to the shape-independent approximation where all
s‘hort-range potentials are equivalent; i.e., 0 to 15 Mev., The further energy

' dependence required by the FL fit must therefore be determined by the details
of the potential, Thus what has been established in the abo;ze simple fashion
is a means of testing potentials for their agreement with experiment without
recourse to a phase-shift analysis. One need only determine the behavior

-with energy of ther‘g corresponding to the potential in question,

In order to illustrate this procedure, we turn our attention to 1S0
scattering from a number of potentials in the limit of zero binding (infinite
scattering length). Let us first consider the rectangular well, for which

. an exact expression for F’ can be obtained. 8 The functions u, U are

given by
u ~sin a x, xg 1,

(38)
u = U ~sin kx cotd + cos kx, x 3 1,

where we now use the dimensionless notation x = r/R. K = kR,
a.z = K% + 112/4, and R is the range of the force. Matching logarithmic

derivatives at x = 1 yields the desired expression for

(otc.v\‘x}cd'ff{(;('-f)._ ¥
« cota + heot K(K-y) (39)

F'(r()z' K Ca'\‘(’(;'&S):: K

where according to Eq. (21) x =r/R = 1/2,
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An estimate of the energy dependence of { ' (K}is to be made by

comparing its value at a given energy with its correct zero-energy

.value,
[M0) =2 R/ +271s) (40)
= 0.0965 + 0.0077 (Rect. ).
v The expréssion

Etw)= (rin)~rt(e))/ ] (41)

t
is shown in Fig. 2.
It is of interest to use the rectangular well as a means of
testing the accuracy of results obtained through the use of variational

principle, Eq. (13). Consider the approximate expression

Pik) =T+ A+ Gr* (42)

The coefficient r' ) is required to vanish by our choice of r; then

. f’z is primarily ré"éponsible for the energy dependence of r’ over an
interval whose extent we now determine, By differentiating Eq. (13)
twice with respect to energy, making use of its statiémary character
in the manner already described, and evaluating the resglt at E =0,

we obtain

oo o2
r‘z x {J ’2(;;) g ‘dx U Ul - S dx u up i,
. o _ o (43)

“which may be re-expressed in terms of the shape-dependent parameter
P, using Eq. (20)¢

. 3
', =-x (8P +1/3). (44)
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A simple calculation yields the value r' Z(rect.,) = -0.0096, consistent
with P(rect.) = -0.032 as given in Blatt-Jackson., (2) The expression

€K = rz ntwrt, (45)
o |

where fqo is given by Eq. (40), is seen from Fig. 2 to be accurate
within 10% for energies less than 50 Mev.

- We now assume that Eq. (42) gives an equally adequate repre-
sentation of the Gaussian, exponential and Yukawa potentials. The
carresponding € '(/1) are also plotted in Fig, 2. We now compare
this energy dependence with that determined by the FL fit for the

So state, restricting our discussion to energies below 50 Mev.
In this energy region p-p scattering is determined mostly by the
1S0 state, althoug3h at the higher energies there is a small contribution
coming from the Po state, The uncertainty in the change in f’ over
this range, Ar' , arises mostly from the incomplete determination of
the contributién of the latter state. From the FL analysis, it is reasonable
to assume thatA M varies between zero and the change which F L obtain
in their fit B. (Fit A seems to be eliminated by recent experimental

data.) The corresponding condition on P is

-0.0416 < P < -.0367 ' (46)

+

This condition clearly eliminates the Yukawa, exponential and
Gaussian potentials. The square well potential is still possible but
only barely so. It is clear that it would be worth while to make a more

thorough experimental investigation of this energy region.
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To demonstrate what information such research might yield,
suppose that f only changes by 20 per cent in going from 0 to
50 Mev. Then

-0.0416 < P < -0.0402 (47)

We shall now show that such a limitation on the permitted values of P
would require the use of core type potentials, as is already indicated

by intermediate energy scattering experiments. We shall also see that
the F L fit as given by Eq. (46) if applied rigorously would require a core.
As a first orientation, it may be noted that as P changes from positive

- to negative values, the potential becomes progressively shorter-tailed
and less attractive at the origin. Since P f{for a rectangular well is
-0.032, the requirement (47,) as well as (46) of the F L fit suggests a core
without adducing further evidence.

Consider then the potential

VvV, ,=2/-V , xc<x<1 (48)
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L,

for which exact sdlutiohs may be obtained. The calculation, which is

'perfectly straightforward, will not be discussed except to obssrve that

7 in its dependence on energy is most easily found by using an obvious

. modification of Bq. (13):

1
2,- —~ 2 F 2 2
v3(z) vr‘(x)-.-u(xc)'ea: - fx axgg%f-% ®+7,) v ]
c

"

where ’3’0 [u'l du/dx ] » and the other symbols have their usual

significance, In the limit of zerc binding, Vl is shown in Plg, 3 as a
function of E for several values of =x,. The value of the core radius r,
changes by no moré than. =+ 6.03 r for a given value of x, = r,R , so that
egch of the curves .in Fig. 3 also represents a characteristic core size.
cannot be maintained for vy £ ~ 25 Mev;

The matehing conditions at x = X,

for large - V; the curves approach asymptotic valuss of R, In the limit

. of small r, and large .Vy, this asymptotic value approaches P = -0.032,

iie., a pure rectangular well. The effect upon the scattering of an
increase-in core size is evidently just the reverse of that produced by

going to longer-tailed attractive wells, which implies the existence of

¢

many tail-core combinations for a given value of P. ‘We note that, in

order for Eq. (Ag) to hold, r, is confined to the approximate region

13

0.1x10 “em < r < 0.4 x 10

13
. cm

R Rect. (49)
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for reasonably hard cores.13 This is to be compared with

ro = 0.5 - 0.6 x 10—13 cm, the value uged by Jastrcwll in his

phenomenological fit of p-p scattering, as well as by Levylz in
The small discrepancy

conjunction with a meson-theoretical potential,

is due to their use of a fairly long-tailed attractive well, which in our

calculatiehe has the effect of increasing somewhat the permissible core

size. A numerical analysis making use of an exterior Yukawa well ylelds

the approximate limiting value

-1 _
rg < 0.7x10 3 cm, . Yukawa . (50)

In summary, we have seen that the local energy independence of [ in

S-states 18 valid over an energy range corresponding to the shape-

ﬁf i iﬁdependent apprdximation. The additional energy indeépendence required by
: except possibly the rectangularwell

! : the Fi;analysis prohibits the use of simple two-parameter potentials)y but
Such potentials will yield the

dqes‘permit core~type configurationa.
It has

 phase shift up to energies of at least 50 to 60 Mev,

C el

correst lso
been noted that there 4s still considerable freedom in the choice of

S TR
potential, 8, scattering to 50 Mev implies no restriction on the form

‘of the attractive well, although once a well shape is chosen the core

Siﬁejﬁé”limited.lh' A further (weak) restriction may be obtained by
1ﬁvoking“charge independence in S states,

-13 1
greater than ~ 0.3 x 10 13 cm, ’ Such small cores are not necessarily
in conflict with meson theory.l6

-While all our examples haveé been concerned with static potentials,

5 which tends to sexclude cores

the methods may be easily extended to treat velocity-dependent forces,

* . R ’ . . B : LT
. . . .
3 IO e Y . . : .
R T T AT WSy — e .
. T T et T e | - B

These can be reconciled with-the‘ﬁﬁ;analysis provided they are at most
1

1

e . IR

L ™
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weakly energy dependent. Calculations, to be reported more fully at a
later date, reveal that such forces are capable of reducing € (Eq. (41))
‘in S states considerably below its corresponding static force value. We
point out that the virtual excitation, in close collisions, of nucleonic |
isobaric states produces an S-state force having this behavior in the
energy range considered above, 17 _

The fit of the two-nucleon scattering data obtained from the
cohstancy of r' in all states is quantitative to energies as high as 200 Mev,
so that the testing procedures may be extended. Uncertainties in the FL
analysis due to causes already mentioned will of course increase, so that
limitations on the energy variation of r‘ will become less severe,

The methods we have presented are of course not restricted to
S states. The forces obtaining in higher angular momentum states with
tensor interactions may be analyzed with the aid of the development in
the Appendix. It is hoped that these methods may be of use in treating the
consequences of specific models of the two-body force without the necessity

of direct comparison with experiment at a variety of energies.
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APPENDIX

We shall verify that Eq. (9) in the text is a stationary expfession

for the generalized logarithmic derivative P (r) with respect to

independent variations of ¥ ; ¥  or their adjoints , subject only to the

restriction

YY) = F@r), roe.
. _ (A1)

(r¥)(0) = 03

The stationary value is attained for functions ¥ , ¥ satisfying Eq. (1), (2)

1 T
in the text. Variation with respect to B , ¥ for example gives

Foo [ faofrovew] o fusfrit2on] ]

R-*e0

— [Hr)si'*(k‘-u)?’

all space

+ [lr)s TRV T

2

- A:"”/m[rwrr(n?nrf"sr’/r?’]m; )

In virtue of the condition in Eq. (Al); the surface integrals on the left-

hand side becomes

Sdw[rs B (rENor]rar ;

hence the condition that /[’ be stationary under this type of wvariation

is expressed by the differential equations (1), (2) of the text and the ,

requirement of Bq. (7).
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By insertion of the appropriate partial-wave expansions into the
stationary ekpression Eq. (9), we may easily obtain the variational -
pfinciples appropriate to the different scattering states, £ogether with
the differential equations ﬁbeyed by the radial functions in these states.

For examplé let us assume

' = - A[R()  376(r)sy, ] (A3)

-~

where 312 is the tensor operator
8, = B/ )gy TN oy - 61" % » (AL)

A = MVO/EZ, and ‘?’ is the ratio of the tensor strength V; to the

central strength V,. We make use of

singlet Zo oeppy (cos @) U(r) . (45)

with a similar expression for -V ; and, after performing the angﬁlar

singlet
integrations, obtain the form of Eq. (9) appropriate to singlet states of

scattering:

U (r) /}"L(F) = dr[ (du, /dr) - (k +4 F(r) - L(L+1) )y
s /b L | | —L;rl) ]

- [T ar[(aw /dr)z- kz-vL +1 02 .
!L [ L ( -ﬂ’—z——)-r. : ) L ]
(46)

Equaﬁioh (A6). 1s a stationary expression for fiL(F)‘ when the radial
functions u, UL satisfy



>
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@2*

[t far? + (k% 2F )= Lei/r?] Juyr)=o

. (a7)
[d’/a{rz + ([(2—- L (L-I:Ij/r’-}] U, (r] =0
and providegi we make the identification
[, () = vt (7)) (au,/ ONES ‘ (A8)

Thus, in singlet states, | ' 4is a diagonal matrix wit.h elements F‘L'L.
In virtue of the stationary property of Eq. (A6), expansion of the radial
functions up, Uy 1in the manner of Eq. (18) of the text gives rise to the
rigorous expression Eq. (12).

Turning now to triplet states, we note that [_‘t riplet i}a in general
not diagonal, owing to mixing of states induced by the tensor coupling. We

may, however, go to a repressntation in which [ is diagonal by

triplet
taking linear combinations of states with the same parity. In this "eigen-

state representation" the scattering matrix is diagonal, ‘We follow Rohrlich

and Eisensteinle in introducing the partial wave expansion

— " T, m ‘Z'm J;m.
:g/fr‘-:plef'—fzjl Cs [Qf" f%!ﬁ v-l'crff'y ] (49)
where |

(410)
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oA

are a set of mutually orthogonal "parity" w‘av§ functions, the eigenfunctions
of the tensor Hamiltonian. Here the {f's are the orthonormal i‘;pin-angle
vectors introduced by Corben and Schwinger ,19_while Uy, Vg, Wy represent
the comparison radial functions for the states L = J -1, J, J+1
respectively. An analogous expansion is introduced for the interaction
wave function ?triplét' The effect of 812 operat.ix.xg on f s 88 given
in HE, is

S5 @J

-2 J-1 3 J§J+1}J
| 2J+1gUJ By

204 1

) - |
S - Lata+ 1)] - 2 J+2 Al
12,5, TeT+ 1 Zu, m;ﬁw‘, ’ - a)

We are now in a positioﬁ to carry out the angular integrations in Eq. (9).
The orthogonality of the wave functions, Eq. (Al0), results in three separate

_ 20
expressions corresponding to the eigenstates ( o , A 2 )

[UJ <rJ)r“U<rJ)](°‘ Tl Ry @] &)

dr/[(duJ/dr) -(}( -t-AfJ(P)“@a"‘P 13

. r

)]

2 2 ” ) W)
—)—[(duJ/dr) - (k+,\hJ(r) - (J-j»l)éJ‘fZ)} wJ] - ZAQJ(r)u'J w‘i}
r

- N (’l )dr/[(dUJ/dr) (/( - SJ 12 } UJ ]'f‘ [-(dWJ/dI‘)
¥,

- ( i - 1J+1)(J+2) ]} g
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[0, @]+ [ [~ - sz i) ]
r .
0 .

- ]‘.o dr [(dVJ/dr)Z - (kz - 44+ )vfj ),

;.}w) *
(A13)
Heré we use the notation of RE,
b = F -2 J=-1G
5(r) (r) . (r) -
‘s,,'(r) z 6 L—J(J'f’l):]!a’&'(r) ,
-+ 3 .
* 1 (A14)
hy(r) = PF(r) -2 J+i 7 a6(r) ,
;(i,(r) - F(r) + 2 ¥6(r) .

Again we obtain the differential equations satisfied by the 'various radial
functions in the form of conditions such that Eqs. (A12), (Al3) are stationary

exbreséions for the r ‘s, They are

s -'az?qg-l ) ug(r) = ) (£5(r) uglr) +g,(r) uy(r))

‘,gdr R

(- @H0E#2) ) w0 = A () uyle) + hylr) wyle))
R e W)

( .-I-"‘;#—kz*_.i___l*";l ) vy(r) = ,L@(r) vy(r) .
r . .

. dr



wJ(°(:°')~ CJ(d")[ain(kr-“""(J-l-l) +5w (Q’s )/cos‘s (1‘7
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The corresponding comparison funections satisfy the set of Eq, (Al5) with

‘ k z 0, Then by virtue or Eq. (Al), a variation or this typé applied to
£q. (A12) results in '

S Ty @ +w'ap e

= 2f(auyfar) - vy My ) Sy + 2 [ (@W/ar) - Wy [y, ) - § WalEp)
_ J rs , : - - ry

’ | o (a16)

for etther of the mixtures (e, ). The vartations of Us, Wy at r= Ty

are unrelatad and hence Eq. (Al2) ie indeed stationary providsd we define '

Pu#(iz) = U (ry) [ (d/ar)v u;]_ ;
ry S
(A17)
FVJ(FJ) = ~wJ':1(~;J) [(d/dr) "VJ (r)J-; : . SR . . (
L J . -

The stationary nature of Eq. (Al3) follows analogously.
' I‘b is & consequence of describing the scattering in terms of f}’he‘

, igenatatos of the tsnsor Hamiltonian that the variationa 5 {‘3 J ’ 'y W; are

asymptotically relat.sd. Thus asymptotically, U 3 wJ are given by

UJ(«.’»’) N AJ(«:. r)L-Bm fir - T+ SUJ(-( ,r))/m s%(mri] ;

(A18)
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- We must choose S (q,,’) cf (q 1)

in ordar to uniquely

fix the pairs of linearly indopendenb r&dial ftmctians (., .wJ)

(uJ, J)Y 80 that the coupled wave mixbure renains unéhanged before .and
aft.er the scattering, We may then define admixture paramaters o »
'7 J( a Y) -(C /AJ)('(’ ¥) giving the asymptotic mixing of tha L = dE 1

waves, Thus we have at large distances the relm;ion _

(x, af) o, 7 o, L
JJ 7J( ’ )JUJ( 3‘)(>, r —»ag. : .
5 | (AL9)
’I‘he reoiprocal 'relatianship between '7 Jd ’ ’Z,r s which follows from '-tha
unitarit,y of the S-matrix and the reciprocity of acattering, may a.lso be
obt.ainad from the varistional prineciple of Eq. (412) in a pe.rtieularly simplo

fashion, We introduce the acale tmnsfomtip_n

WJ(*’Y) — 7J(°f,3’) WJ( o, ¥) , N |
| X | ' (A20)
(s ?) (a( r) (w, ?) .
Wy — Y, ! f .
Equation (Al2) may then be written as
R 2 2., 9 o 2
.[BJ PuJ+7J wJ FWJ_] _ = &J-ZbJ '7J ‘l‘OJ 7J »
SR S o (a2)

_Vari.ation with respsct to 7] g Yields, by virtue of the stationary property,'

= J/("J"WJ ) Iy (’J)} T “22)

Int.roducing Eq. (A22) into Eq. (A21), one obtaina a quadrat.ic equation in
2
WJ r,W , whose solutions are the eigensolutions of the scattering problem.
J .

The well-known relation



£
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'7,;(‘:() 7J(ﬂ z-1 " (A23)

then follows immediately from Eq. (A22).
Pinally, it may be noted that thﬁ D-wave admixture for the deuteron

ground state may be written

N

5 2_/(1+ 5%

._[.Uz (J/QE)PU/Wz (&/&E)r;‘] sy E=z-€,

el

as follows from the stationary character of Eq. (BA21). This then implies

the more explicit Bxpression (39) of the text.
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" P e e i e i
= R
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FIGURE CAPTIONS

Figure 1: The variation of the triplet characteristic interaction

Figure 2:

. Figure Qi

distance ;i with the admixture parameter ¥ (Eq. (37).
The verticael lines indicate the error associated with the
triplet effective range rel. The shaded region indicates
possible values of the corresponding singlet quantity r,.
The distances ‘;i, F; may coneistentiwith experiment, be

taken as equal.

The dependence of the lSO logarithmic derivative on energy,
as measured approximately by the parameter €’ (Bq. (45)),

for four well shapes. The accuracy of thle measure is indicated
for the rectangular well by plotting the exact dependence &
(Eq. (41)) using Eq. (39). Since the LF fit excludes &’
values greater than 0,1, the potentials are valid only within

the shape independent region.

The dependence of the core height W, on the shape dependent
parameter P for various core radii L using an exterior

rectangularvwell (Eq. (47)) to achieve proper (zero) binding.

' Permissible core parameters must yiseld a value of P in the

neighborhood of P = ¥0.04 (constant logarithmic derivative).
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