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ABSTRACT 

Calculations are made of the error in the Madelung constant when com-

puted by Bertaut's method with a finite number of terms and with various 

shapes for the charge distribution within the atoms. A charge density which 

is proportional to the distance from the edge of the spherical atom gives 

most rapid convergence for the range of accuracy one percent to 0. 003 per-

cent. For higher accuracy a better shape is charge density proportional to 

the square of the distance from the edge. If Gaussian atoms are used and 

overlap neglected, no choice of parameter allows an accuracy for a given 

number of terms as great as for the above functions. If the overlap effect 

is included by a second series (double series of Ewald) the convergence can 

be made more rapid than for any of the single series methods, but at the 

price of a more complicated program • 
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INTRODUCTION 

If the atoms of an ionic crystal are replaced by spherically symmetric 

charge distributions which do not overlap, the Coulomb interaction energy 

can be calculated by a single absolutely convergent infinite series whose terms 

1 2 
are a function of the lattice vectors in reciprocal space. Bertaut ' developed 

this theory and has given the form of the terms for a few simple shapes of 

the charge density as a function of distance from the atomic center. An esti-

mate of the rate of convergence of the series has been given for the case of 

uniform charge distribution within the spherical atom. 3 The present paper 

reports similar estimates for several other shapes. It is found that some of 

these are substantially superior to the uniform distribution for accqrate 

computations. 

POWER DISTRIBUTIONS 

Each ionic charge is distributed within a sphere of radius R so that the 

charge density is proportional to a normalized distribution function f(r ), 

where r is the distance from the atomic center. We have considered cases 

where f(r) = a1R =r t, with n zero or a posit~ve integer. Then the Made lung 

constant A can be expressed: 



-4- UCRL-3196 

3 The notation is the same as in the previous paper except that g is a constant 

and 4> is a function which depend on the choice of f(r ), as listed in Table I. 

Table I 

Functions and Constants for Eq. (1) 

Atomic 
f(r ), r<R <P (a.) shape g 

3 18(sina. - a. 
2 

uniform 3/5 
coso.) 

4'!TR
3 8 

a. 

3(R-r) 
26/35 

' ' ' 2 
linear 

'll'R4 
28S(a. sino. + 2 coso. - 2) 

a.lO 
2 

- 3 sino. + 2a.)
2 parabolic 15(R -r) 

25/28 ~200(a. coso. 
2'll'R 5 

12 a. 
3 

' 2 . 2 cubic 15(R -r) 
23/22 . 6 2$920,0

1
(a. +a sma. + 4 coso.- 4) 

'll'R 14 a. 

The error in Eq. (1) when the series includes only terms for a. less than 

a limiting value has been estimated as in the previous work
3 

by replacing 

the sum by an integral of the average value of the terms. The results are 

plotted in Fig. 1. Table II lists selected values of the integral Q 

2 
( Q = ~ARZ/L~Z ). It is seen that initially the uniform case gives the best 

approximation because of the smaller self -energy term, but at about one per-

cent accuracy the linear case series becomes better. For the range 

one percent to 0. 003 percent, which is likely to include most problems of 

practical interest, the llnear case is as good as or better than any other. 

Beyond 0. 003 percent, the parabolic series is better. The cubic or higher 

I, 

... 

() 
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powers are not likely ever to be better because g is always greater and the 

asymptotic form of <1> is proportional to the same power of a. 

Table II 

Q vs. a for Series Types 

a/rr Uniform Linear Parabolic Cubic 

0.5 0.1726643 0.2931046 0.4295580 0.5732962 

1. 0 0. 0159921 0.0586987 o. 1374429 0.2390632 

1. 5 0. 0047134 0. 0036371 0.0258938 0.0731344 

2.0 0.0019496 0.0003013 0.0024336 0.0163946 

2. 5 0.0009964 0.0001357 0.0001883 0.0030793 

3.0 0.0005739 0.0000903 0.0000902 0.0007350 

3.5 0.0003612 0.0000329 0.0000554 0. 0002801 

4.0 0.0002414 0.0000123 0.0000164 0.0001223 

4.5 0.0001697 0. 0000081 0. 0000041 0.0000512 

5.0 0.0001234 0.0000057 0. 0000031 0.0000240 

The number of terms in the series is roughly proportional to a
3 

Thus 

to reduce the error to 0.1 percent, if x terms are required in the linear 

series, about 2.lx, 5. 6x, and 6. 2x terms would be required respectively in 

the parabolic, uniform, and cubic cases. 

GAUSSIAN DISTRIBUTIONS 

If f(r) = k
3 

e -k
2

1rr
2

, a normalized Gaussian function, Eq. (1) must be 

corrected for the overlap of the atoms. 
1 ·2 

In this case, as shown by Bertaut, ' 
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kL . 2 L IF I 
2 

2/ 2 L ZiZ:g ·'-
A=- ~Z. - ---~~ exp (='!l'h k » = __ . -~ __ erfc( v 'l!"kri, £ 

z J J 21TZV li h2 · 2Z i~£ ri,£ ·. 
{2) 

. 4 
This expression is equivalent to the double series of Ewald. The choice of k 

is arbitrary. If it is small enough, the sum over h converges rapidly, but the 

sum over r. n is large. If k is large enough, the second sum is negligible, 
1, }(J 

but the first sum converges slowly. 

Estimates have been made by integration of the convergence of the sum 

over h for three values of k. The results are shown in Fig. 2. For four 

nearest neighbors and kR = 1, 2/3, or 1/Z, the first term of the second series · 

is respectively 0.10, 4. 5, or 19 percent of A, with R taken as half the nearest 

neighbor distance. These values are included in the plot to show approximately 

the limit of accuracy if the second series is neglected. It is seen that in the 

interval conside;red here, the Ewald method with neglect of the second series is 

not competitive with the best single series function. On the other hand, the 

exponential functions ultimately converge much more rapidly than the power 

functions. For very high accuracy the Ewald me.thod with both series and 

judicious choice of k is likely to involve much less computation than any of 

our single series, assuming sufficiently accurate values of the error function 

are available. It should be pointed out that in general it is much simpler to 

compute the reciprocal lattice vectors than the interatomic distances. The 

choice of the best method in a particular case will depend on the accuracy 

desired and the relative inconvenience of many terms or more complicated 

program. 

We thank Dr. Bertaut for calling our attention to his unpublished report
2 

and for suggesting that we investigate this problem. 

This work was performed under the auspices ofthe U.S. Atomic Energy 
I 

Commission. 
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Fig. 1. Percentage error of Madelung constant 

for power distributions. 

UCRL-31Q6 

,. 
l· 



0 
0 
X 

~~~ 

-9-

3 
lOr------------------------------------------. 

2 
10 

10 

10
1 

-2 
10 

-3 
10 

ex 

------ LIMIT 

OF ACCURACY 

MU-10452 

Fig. 2. Percentage error of Madelung constant 

for Gaussian distributions. 
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