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ABSTRACT 

Neutron production by protons of energy between 100 Mev and 

300 Mev is investigated by means of the impulse approximation. It is 

found that a condition for the analysis to be possible without knowledge 

of the phases of the neutron-proton interaction is that this interaction 

be a function only of the momentum transfer in the scattering process, 

independent of the energy of the collis:i.~n. Evidence is presented that 

the condition holds approximately for the features of neutron-proton 

scattering that have been investigated hitherto. The analysis of neutron 

production suggests that the impulse approximation is of doubtful 

validity at 100 Mev for nuclei having A~ 7, but improves with increas­

ing energy up to 300 Mev. Some of the main features of the process 

appear to be reproduced by a theory which takes very little account of 

the structure of the target nucleus, beyond the momentum distribution 

of its neutrons and the effects of the exclusion principle involving its 

protons. Effects of attenuation appear to be less important. In the 

course of the argument a method of representing effects of the exclusion 

principle is developed, in which excited states associated with a given 

ground state, and thus orthogonal to it, are approximated by a variational 

modification of plane waves which preserves their mutual orthogonality. 
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1. INTRODUCTION 

The ease with which a neutron beam ·can be produced by ex­

change reactions in high-energy cydotrons has led to extensive ex-

. 1 k h . f . 1 b 1- 12 
per1menta war on t e scatter1ng o neutrons$ espec1a ly y protons. 

A necessary preliminary to this work has been the investigation of the 

energy spectrum of the neutron beam itself. As a result, there is now 

considerable information on the spectrum of neutrons produced in the 

forward direction by protons incident with high energy on light nuclei 

{see References 1, 2, 5, 6, and 10~15~. On the other hand, no such 

motivation has promoted studies of the yield and angular distribution 

of these neutrons, and consequently these features have received 

1 . 1 1' 1 . 16-21 re at1ve y 1tt e attention. 

The forward spectrum changes only moderately with changes 

in proton energy or target element, exhibiting none of the highly specific 

features characteristic of low-energy nuclear reactions. This suggests 

an investigation of the possibility that well.l-known general features of 

nuclear theory, r~ther than imperfectly known details, may dominate 

the process, and may be adequate to account for the observations. Such 

a program receives some encouragement from a theoretical investigation 
22 

of the process by Mandl and Skyrme, which agrees in some respects 

with the experiments, and is so simple that its improvement may not 

lead to insuperable complexity. 

The most promising method of treating scattering problems 

with complex nuclei as targets is the impulse approximation of Chew. 
23 

It appears that the necessity of knowing the phases of the elementary 

scattering matrix elements used in this approximation can frequently 

be avoided by some means; in such cases, sufficient information about 

the elementary scattering process is contained in its cross section. The 

scattering from the complex target is then determined,, after the 

elimination of the incident proton and product neutron, by matrix ele­

ments of the target nucleus of simple structure independent of the 

nuclear interactions that give rise to the scattering. The problem that 

remains is that of representing the nuclear states in a manner simple 

enough to permit the necessary integrations, yet capable of yielding 

results of reasonable accuracy. 
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Applications of the impulse approximation have been restricted, 

f h h d 
24 h . 1" . . d or t e most part, to t e euteron - -w ose s1mp 1c1ty perm1ts a equate 

representation of its states- -or else to processes that may be treated 
26 28 

by the use of sum rules,. ' As the problem treated here cannot be 

simplified by either of these methods, the nuclear model used will 

have to be oversimplified, A form of independent-particle model has 

accordingly been adopted; calculations become very difficult for any­

thing more elaborate, and the success of the nuclear shell model gives 

empirical support to this choice, 

The states occupied by these individual nucleons remain to 

be determined, A certain amount of information is available on the 
25-30 

momentum distribution of nucleons in nuclear ground states, but 

for excited states nothing better than plane waves seems to be known. 

These states have a serious deficiency in that their lack of orthogonality 

to the ground states creates difficulties in treating the exclusion 

principle. {The corresponding objection to the use of plane waves for 

the incident proton and product neutron, as required by the impulse 

approximation, is much less serious, because these nucleons have 

much greater momenta- -and thus much shorter wave lengths- -than 

the target nucleons). Now, the exclusion principle is a general 

quantum mechanical feature, which may be expected to act similarly 

in many nuclei, rather than one of the specific det.ails whose neglect 

is suggested by the experiments, There is reason to. believe that it 'is 

in fact quite important in inelastic scattering processes; for example, 

it is invoked to account for the fact that nuclei are more transparent 

than they would be if their constituent nucleons were as effective 
31 32 

attenuators as free nucleons. · ' It would thus be advantageous to 

improve upon the plane -wave excited states at least enough to achieve 

consistency with the exclusion principle. 

In view of the present fragmentary state of knowledge of nuclear 

... 

forces and nuclear states, it appears that the above-mentioned ground- fo' 

state momentum distributions constitute the only positive information 

available. Now,. there exists in the theory of metals a method of 

constructing excited states in terms of lower-lying states. 
33 

This 

amounts to subtracting from plane waves their overlap onto the lower-
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energy states. The only property of the excited states used in this 

procedure is their orthogonality to the lower states. Their mutual 

orthogonality within a single band is ensured by their having different 

propagation vectors. Higher bands can be obtained by repetition of 

the process, with the inclusion of the just-completed band among the 

states to which the states of the new band must be orthogonaL 

The method cannot be applied in this simple form to the 

construction of nuclear states. There is no lattice structure, and 

consequent propagation vector, to ensure mutual orthogonality within 

bands, whiil.e the inductive method of successive construction of states 

is difficult to apply because the spectrum is continuous. The method 

has accordingly been generalized by replacing the use of plane waves 

by the variational condition for free -particle states- -a condition that 

would be equivalent to using plane waves, in the absence of supple­

mentary conditions. The reason for using this device is that it ensures 

the mutual orthogonality of the resulting states. The orthogonality to 

the ground states is readily achieved by imposing it as a supplementary 

condition, and this condition enforces a departure from plane -wave 

states. 

Since the states thus constructed are related only indireCtly 

to actual conditions in the nucleus, their use is legitimate only if the 

results do not depend critical~y upon detailed properties of the states. 

The purpose of the elaborate definition is merely to ensure consistency, 

and of course the consistency condition does not determine the states 

·uniquely. In order to check the supposed insensitivity to the choice of 

states, a separate calculation has been performed by use of harmonic 

oscillator states instead of plane waves. These are easi~r to work 

with, as the required orthogonality is ensured if the ground state of the 

harmonic oscillator is given the same spread in momentum space as 

that observed in nuclear ground states. The harmonic oscillator states 

are less realistic than the modified plane waves, but may well be 

suitable for the proposed use in checking, because they are so 

different from plane waves. In particular, they have a discrete 

spectrum, while plane waves have·a continuous spectrum. 
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Even such simple states as these become very complicated 1n 

practice if the target nucleus is larger than an a particle. The fact 

that experiments show no great changes in neutron spectrum associated 

with the transition from light to heavy nuclei encourages the attempt 

to seek further simplification. Accordingly, the calculations have been 

performed for a single a particle as target, in the expectation of pre­

dieting results for other light nuclei by adding (without interference) 

the results from their constituent a. particles. It may be added that 

the a.-particle model is supported by previous successes, such as 

explanations of the 'IT+ /rr- ratio in meson production by nucleons, 
34 

and 

of the character of the stars arising from the capture of 'IT mesons by 

1 . 35 
nuc e1. 

Since some important targets cannot be considered to be com­

posed entirely of a. particles, it is necessary to add contributions from 

odd nucleons. The importance of the odd neutron in Be 9 is very 

apparent from a comparison of the neutron spectrum and neutron yield 

from Be with those from C, as has been noted by previous in:vesti-
18, 21 

gator s. Here again it is proposed to ignore interference between 

contributions from the odd nucleon and the core of a particles. 

Thus, the odd particles are treated as independent particles, 

and each a particle is also treated independently- -moreover, each 

. o:. particle is itself treated by an independent -particle model. In the 

last step, the center -of -mass recoil of the 01. particle as a whole has 

been ignored. 

In atomic physics it is customary to justify each approximation 

employed by applying certain validity criteria. Such criteria are 

k f f h b d . d . . 36 b t .nown or some o t e a ove- 1scus se approximations, ut canno 

be applied rigorously because the nuclear forces are not sufficiently 

wen known. The danger of relying on deductive discussion of validity 

of approximations is shown by the success of the nuclear shell model, 

despite grave a priori doubts as to the correctness of an independent­

particle approach to nuclear problems. It seems that the best way to 

test approximations in nuclear theory is by comparing their consequences 

with experiment. Thus, in this work, the validity of the approximations 

is a hypothesis. This justifies the use of whatever consistent 
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simplifications may be necessary to make the calculations feasible" 

The resulting approximations are necessary to make the calculations 

possible, rather than demonstrably sufficient to give adequate accuracy" 
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2" NUCLEAR MATRIX ELEMENTS 

The scattering process to be considered is an exchange 

collision, in which an incident proton loses its charge in the target, 

and is detected as a product neutron" Since, however, this nucleon 

will be considered to have retained its identity, while its i-spin state 

has changed, it will always be designated by the same subscript 0. As 

this use will be in connection with operators, there should be no 

confusion with the use of the same subscript with states to indicate 

initial states" This nucleon may be referred to as the fast particle. 

As a consequence of the impulse approximation, one of the 

target neutrons differs from the others by being the one struck. Since 

this is the one that receives the charge lost by the fast particle, it 

will sometimes be referred to, when in its final state, as the residual 

proton. 

The initial and final states of the target nucleus may be called 

4;
0 

and 4Jf respectively. In its final state the nucleus may be referred 

to as the residual nucleus; in this usa'ge, the residual proton is 

considered as a part of the residual nucleus" 

Following the above conventions, the spin and i-spin of the 

fast particle are called at and ~ respectively. Since the impulse 

approximation implies the use of plane waves for the states of the fast 

nucleon, the initial and final momenta of this nucleon are c-numbers, 

which may be called ~ and rc; respectively. The momentum 

~ - 7 transferred to the target is designated 2Sk'? The initial 

and final states of spin and i-spin will be denoted by x 0 and xf. 

respectively. 

The operators for target nucleons are F, ~ and ~ The 
1 1 1 

initial and final values of the momentum P are F and P 
respectively. 

the difference 

1 1 1 

As a consequence of the conservation of momentum, 

LSP = ~ - £'"? while vanishing for most nucleons, 
. 1 1 1 

must have the value .6.k 7 for the struck nucleon. 

As a consequence of (Galilean) relativity and spatial homogeneity, 

the interaction between the fast nucleon and the struck nucleon requires 

for its specification not four independent momenta (initial and final 

• 
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for each nucleon), but only two. These may be taken to be the momen­

tum transfer ~ and the complementary momentum trans£er q{ 
resulting from the interchange of the final states of the two particles 

designated 0 and i. The latter momentum is defined by the relations 

-::--tq. = .-4 - ~k" = k~ - ..,.........+ i kci i f ki: 
That this operator is defined only for the struck nucleon is indicated 

clearly by the equality on the right, which represents the conservation 

of momentum for this nucleon. 

The interaction between the fast nucleon and the target may be 

written, according to the impulse approximation, in the form 
A 

R :: ~ -,
0
- -,7 R{O,i) o(LSl.- ~. 

. 1 . .1 1 
1= 

The 0 function expresses conservation of momentum, while the factor 
- + -r
0 

.,i changes the fast particle from proton to neutron, and the struck 

particle from neutron to proton, as required. 

The cross section is controlled by a matrix element of the 

form 

The elementary scattering operator R{O, i) h~s been investigated 

generally by Wolfenstein and Ashkin, 
37 

for the case in which the struck 

nucleon is free, rather than bound into a nucleus. This case will be 

sufficient·for the present purpose, since the·idea of the impulse approxi­

mation includes ignoring the effeCts of binding on the scattering operator . 

. The result obtained by Wolfenstein and Ashkin may be expressed in 

the form 

. 2 2 ·2 2~·~~ t).,. ~~X.~ 
R(0,1) = a(.6.k ,q. )+b(.6.k ,q. )n. ·(a.+u:.0 )+"'" (.a.R, q!, a 1. a0 , ' 1 1 1 ' 1 1\.f:l. 1 

where 

n?:;::~ xq7. 
1 1 

' 
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The "normal vector 11 
;;_ used here differs from that used by 

1 . ..... 
Wolfenstein and Ashkin, being in fact just half of their n. These 

._. -+ -+ 
authors included in their interaction a term in ni" (0'0 - O'i~, but this 

has been suppressed as incompatible with the well-establis~ed charge 

symmetry of nuclear forces. They also give a more explic.it form of 

the tensor 71) Af-1.' but it will be sufficient for the present purpose to note i.J 

that there is no loss of generality in requiring it to be symmetric in A 

and fJ.· 

The following notation will be employed in the treatment of 

this interaction: 

..... ...... A + ..... ..... 
s. = a. +b. n .. 0'. J s = ~ T. S. o(D.k. - D.k), 

1 1 1 1 1 
i 1 1 1 1 

= 

A A fJ. ..... A + ..... ..... ..... 
V. =b. n. +/rtA 0'. J V= ~ T. v. o(D.k. - D.k). 

1 1 1 fJ. 1 i = 1 1 1 1 

Thus, the key equations take the forms 
.......... 

R(O, i) = S. + V. · a0 , 
1 1 

It is relatively simple to get a form for the matrix element in 

which the fast-particle operators no longer appear. In the fir.st place, 

the i-spin states of this particle are known, so that the states x0 and 
..... ..... 

Xf take the respective forms p(O) x 0 (0'0 ) and n(O) Xf(a0 ). Here p(O) and 

n{O).are the two possible i-spin states, proton and neutron, while 

X 0 (a
0

) and Xf(a
0

) are spin (but not i-spin) states. 

(n(O), "o p(O)) = 1, the matrix element becomes 

Since 

In contrast to the. i-·spin states, the spin states of the fast 

particle are entirely unrestricted. It is thus necessary to square the 

matrix element and sum over final states and average over initial 

states. As there are two initial spin states, the average requires a 

factor 1/2, and the fact that initial and final states form complete 
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sets results in the reduction of the sum to a trace: 

The trace is evaluated immediately by means of the well­

known relations 
4~4~ ~~ ~ 

(O'o a) (0' o 0) = a o b + i {] o a X 0, 

(1/2) Tr [ 1 ] = 1, 
( 0') 

The result is 

. Tr [ <M = 0. 
( 0') 

The fast-particle operators have now been suppressed, and 

the matrix element has been expressed in terms of the purely nuclear 

matrix elements. 
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3. EXPRESSION OF NUCLEAR MATRIX ELEMENTS 
IN TERMS OF FORM FACTORS 

The three components of the vector nuclear· matrix element 
~ 
V fO have the same structure as the scalar matrix element SfO; 

consequently, it will be sufficient to treat the latte:r. It may be written 

in the form A 

sfO = {4Jr [ i~ ,. : si a(~ k?i - MJ) 4Jo) . 

It is now necessary to consider the nature of the states 4Jo and 

~r Despite the simplifications of the impulse approximation, it will 

not be possible to evaluate the matrix elements without extreme 

simplification of these states. 

In the first place, the .target nucleus will be considered to be 

an aggregate of a. particles. Interference between the constituent 

a. particles will be ignored. Odd-odd nuclei, and nuclei with excess 

protons, .. will not be treated; consequently residual nucleons too few in 

number to form an a. particle will constitute either a single neutron or 

a triton. The targets Li 
7

, Be 9, and C 
12 

may all be treated by this 

scheme, using for ljl0 and ljJf states of four particles or fewer. More­

over, ljJ
0 

will be the ground state of this set of nucleons, and consequently 

its spin and i-spin dependence can be included in a separate factor, 

lJ;o(l ... A)= Xo( ... a .• 'T •••• ) 4>o( •.. -P. ... ) 
1 .1 1 

In the second place, the new simple targets will be treated by 

means of the Hartree or independent-particle model. That is, the 

nucleons will have their individual states, and the state of the system 
' 

will in general be a determinant or antisymmetrized product of these 

states. For ~O' of course, the factor Xo alone will be antisyrnmetrized, 

and the factor <Po will be a simple product whose symmetry is ensured 

by putting all nucleons in the same single-particle state. 

This approximation does not treat correctly the center-of­

mass motion of the target. In effect, instead of binding the nucleons 

together, it binds each of them to a fixed center of infinite mass. Since 

the particles treated are in fact bound to the rest of the actual target 

nucleus, the principal error involved is the neglect of the recoil of 
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this nucleus. This recoil may not be uncomfortably large, for targets 

of seven or more nucleons. 

A more serious error is that effects of other correlations 

between the nucleonic motions are also lost. This, however, is the 

point of the approximation, because such correlations are unknown; 

and possibly very complicated. 

The correct states will be linear combinations of the states 

here employed, and vice versa. Use of the incorrect states will yield 

tolerably good .results provided the component correct states lie within 

a range of energy not larger than the resolution of the experiments, 

which is perhaps 5 Mev, and provided interference effects resulting 

from the superposition are random. 

If l!Jo is properly antisymmetrized, then the symmetry of the 

interaction ensures that only antisymmetric states ljJf will contribute. 

It is thus unnecessary to write ljJ£ as a determinant-~a simple product 

will suffice. In order for this to be true, however, it is necessary 

that the individual particle states used be mutually orthogonal, to 

avoid the appearance ~;?f new normalizing factors containing the non­

vanishing overlap integrals. If orthogonality holds, the spin and i- spin 

factors of the product state may be collected separately: 

ljJf = Xf(. · · O'i' 7 i· .. ) cpf( .. ·!\"· .. ) 
The matrix element now take.s the form 

A + 
sfo = (xf cl>f' [ i:l 'Ti si o(Elti - Ki)] cl>o xo)· 

Since the term containing S. is the identity operator for all 
1 

nucleons except that indicated by the index i, the state cpf can diff~r 

from the state cl>o only with respect to this nucleon. Thus, the state 

cpf must have all particles except particle i .in their ground states 

cp 0 (j), and particle i in one of the excited single-particle states 

,?-It (i)- -Y being an index which specifies the particular state. The 

index f thus includes specification of the excited particle i, and the 
' 

summation over i is suppressed. Then SfO takes the form 

sf0 = (xr [.,.: (cl> It (i). si o (..6.lti - M)' cl>o (i~] x ~. 
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The fact that the operator S. depends on the operator 
1 

~ ......§> ........,. ...... _,.. ..... 

qi = k 0 - k i' = kf - k \• and thus on the momentum operator k i' 

makes the result of further reduction of this expression for SfO too 

complicated to be useful. If, however, the state q,
0

(i) has a suffi­

ciently narrow spread in momentum space, it is permissible to re-
-+ -place q i by k r This approximation will also be satisfactory if Si is -sufficiently insensitive to q .. 

1 

Comparison of the results of neutron-proton scattering ex-

periments near 180° at various energies shows that the cross sections 

for the same momentum transfer do not differ greatly. For example, 

the differential cross section at several energies is plotted against ex­

change momentum transfer in Fig. l. The fact that the curves for 

different energies are not far apart when .6.k is not too large shows 

that the cross section is not sensitive in this range to any variable 

except .6.k. In particular, it is not sensitive to q. Accordingly, the - -use of the mean value kf for q i may not lead to unduly large errors. 

The argument is of course incomplete, since it applies to the entire 

eros s section, and would fail to disclose large variations of the 

separate terms if they were in opposite directions. -It is true that evidence for q -dependence of the neutron-

proton interaction is provided by the experiments that have been per­

forrned39 on polarization in neutron-proton scattering. In fact, the 

..... - -polarization is parallel to the normal vector n = .6.k x q, and thus cannot 
-+ 

fail to vary with q. Examination of these experiments, nevertheless, 

is not entirely discouraging. It appears that the polarization vanishes 

near 90° in the center -of -mass system, as well as ~t 180°, and in the 

intervening range of angles has a maximum of the order of 20 o/o. This 

range of angles corresponds to the range of .6.k within which q -independ­

ence of the cross section is demonstrated in Fig. 1. Such q -dependence 

of individual terms as may be associated with the possibility of 

polarization is seen to be moderately small in the interesting range, 

and may reasonably be treated less carefully than the main (unpolarized) 

contribution. - - -The result of replacing q. by kf in S. will be denoted by S .. 
1 1 1 

As S. is independent of the momentum k., the matrix element is 
1 1 ' 
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norming to toto I o-

MU-10721 

Fig. 1. Neutron-proton differential cross section as a 
function of momentum transfer. 
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considerably simplified: 

sfd = (<!> k(i}, o{ Aki - Kk) <J> 0 (i)} (xr[ 'T/ si] x0). 

The factor in the <j>' s is independent of the index i, and depends - -only on the momentum transfer .6.k, and on the quantum number k which 

specifies the final state. It is convenient to introduce the definition 

--i.6.ko X • 

= (<l>k'(i}, e 
1 

in which the last step is an application of the representation of the - -momentum transfer operator 0 (.6.k. - .6.k) in configuration space as 
1 --i.6.k·x. 1 

0(:;7. 11 
- 57.') e 

1 

1 "1 
Substitution now yields 

It is now easy to sum the square of SfO over the states xf' 

since these states constitute a complete set: 

~ 

a. T 

The significance of the index i is that it specifies which of 

the target nucleons is excited in thefinal stateo Which one it is makes 

no difference to the energy; consequently it is necessary to sum over 

all of them to get the entire contribution to the spectrum: 

I 12 I - 12 A ' - + - *-. L SfO = Fk~.6.k) (Xo• [ ~ T. 7'. S. S.] x 0 ). 
1,0",7 1=1 1 1 1 1 . 

The further reduction requires the explicit exhibition of Si' 

in order to exploit the form of its spin dependence. Consider first the 

definition -- -S. =a. +b. n.o a. Since a., b., and n. depend on the 
1 1 111 11 1 -nucleon i only through the operator q. --which, however, is to be 

1 -replaced by kf' and thus loses its dependence on the nucleon i.--the 

index i can be suppressed in the notation for the mean values of these 

operators 0 There results 

, 
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S. = .a + b n · a. 
1 l 

- -n . a. 
l 

If the state x0 is not a singlet in the spins, it will pe necessary 

to employ the average of .. ~ / SfO /
2 

over all orientations of the initial 
. 1, TJ,T 

total spin. The result wj__,ll then always be spherically symmetric in the 
.:;.- .... 

spin space; thus, the term in n · a. cannot contribute. Consequently, 
. l 

an expression independent of the spins is obtained: 

i, a, T 
I 1

2 I - 12 { I - 12 ·~- 12 - 2 } A - + SfO = Fit(.D.k) · a + b n (x 0 ,[ ~l Ti Ti] x 0 ). 

- + . 
The operator Ti Ti annihilates a proton, but gives unity when 

applied to a neutron. It is thus the· projection operator onto neutrons, 

and the sum ~. T~ 'T.+ is the number of neutrons N in the initial 
i= 1 l l . . 

state of the target nucleus. It follows that 

~ I 5fo 1
2 

= N { I i 1
2 

+ I h l ii
2

} I Fk <Ek> 12 
· 

i, a, T 

-2 
The quantity n may be evaluated as follows: 

n2 ·~ (Akx ~) 2 
= Ek • kf X (Ek X kf) = Ak· [k~ 2 Ek- (~· .6-k)kf] 

--For a free-nucleon target, k( .6-k = 0. In order to employ the 

results of free-nucleon scattering experiments, it is therefore necessary 

to ignore the term in {kf· M) 2
. This is somewhat unsatisfactory in the 

~ . .... --+ 
forward direction, where k

0
, kf' and .6-k are all parallel, for then -- . . -....,..... 

kf· .D.k = kf .D.k holds, rather thank( .D.k << kf .D.k. Fortunately, this 

difficulty affects only the term in I -p,l.2 . It is probable,. from the 

previously mentioned experiments on polarization in neutron-proton 
. . 39 

exchange collisions, that b does not exceed 20o/o of the other 

coefficients in the relevant range of .D.k .. Thus, I b 12 contributes less 
a1 . - - 2 than 4to of the total cross section, and neglect of the term in (.D.k· kf) 

leads to a relatively small error. The sum now appears as 
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The result of a similar evaluation of 

E 
i,a,.., 

1 vfo 1
2 

must be 

I F0Ek) 1

2 

1-12 --In this expression also, any dependence of 'm on .6.k· kf must 

be ignored. Invariance under time reversal requires that such --dependence be approximately~ in any case, since .6.k· kf is an --approximation to .6.k· q, which changes sign under time rever sal. 

The eros s section depends on the sum of the scalar and vector 

contributions. In this sum, N I F~Ak) 12 
is a common factor. It is thus 

convenient to introduce a new definition: 

I R 12 = I a 12 + zl b 12 k/ .6.k2 + 117112. 

The sum then takes the simple form 

E 
i, (],1' 

In the case of a free nucleon target, I Fk(.lk) 12 
reduces to the 

0-function that imposes conservation of momentum. Thus· ·1 R j2 
is the 

matrix elem·ent for neutron-proton scattering, and accordingly is 

observable experimentally. In particular, thanks to the ignoring of -k-dependence, knowledge of the phases in the interaction is not needed. 

The square of the matrix element has not yet been summed over 

all the states that contribute to the spectrum at a giv~!l energy. Some 

type of angular degeneracy exists for the states <j>k{i), and this has not -yet been summed over. In fact, k represents a set of three quantum 

numbers, of which the energy of the stat.e constitutes only one. The 

summation over the remaining two may be denoted ~· where ~ denotes 

the unit vector k/k.. No cases in which the· sum is an integral, Ek_ 

will be interpreted to signify f d~; a factor such a~ k
2 

/ (2'1T) 
3

, which 

might have been expected, will be included later with the density of 

final states. 

· When I Fk(M) 1
2 

is summed over ~. no vector remains other 
.,-+ . 

than .6.k. Consequently, the result cannot depend on the direction of 

this vector, but only .on its magnitude. A suitable notation is then 

IF.k(.6.k) j
2 = L:k I F~{Ek) 12 . The neutron intensity is thus 

proportional to the quantity 

r I M£0 12 = N I R 12 ' F k (.6.k) '2. 

, 

, 
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4. CONSTRUCTION OF MODIFIED PLANE-'-WAV~ STATES 

Although the use of an individual-particle model for the nucleus 

leads to certain general relations, specific predictions become pos s.ibil.e 

only when the individual particle states are known or assumedo Perhaps 

the best-known assumption of this kind is the use of plane-wave states, 

which are often used for the sake of simplicity even when their validity 

is doubtfuL 

It is to be noted, however, that plane waves are unsuitable as 

bound states of the nucleons, and are available as approximations only 

for states in the continuum. Since the concept of a transition, which is 

fundamental in scattering problems, has no meaning except between 

orthogonal states; it follows that the states used in the continuum must 

be orthogonal to the bound states 0 The latter, however, are not 

orthogonal to plane waves; such waves must therefore be modifiedo 

. Moreover, it is necessary that the transitions be mutually exclusive, 

which means that the 'continuum states must be mutually orthogonaL 

It is possible to construct a set of states, orthogonal to given 

states and to each other, yet retaining some of the simplicity of plane 

waveso· The procedure is to set up a variational condition and boundary 

conditions which together define plane waves, and the~ to impose the 

orthogonality to the given states as supplementary conditionso These 

conditions are introduced into the variation problem by Lagrangian 

multipliers, which ar·e subseq:uently determined so that the conditions 

will be satisfied. 

A certain awkardness arises from the fact that those states 

to which orthogonality is required are most conveniently represented 

in polar coordinates, whe·rea:s such coordinates are inconvenient for 

tr~ating plane waves 0 It is necessary to expand the plane waves in 

spherical waves, and to express the various conditions in terms of 

these expansion functionso 

The argument calls, at various points, for the use of certain 

properties of the spherical Bessel functions. The required properties, 

with .notations and definitions, are collected at this point for reference 0 
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Any spherical Bessel function Z J. (kr), which belongs with 

angular momentum J. and has radial momentum k, satisfies the 

differential equation 

2 . 
d [ r Z 

1 
{kr)] · 

2 
---,2:---~· + [ k 

dr 

1 (1 + 1) 

2 
r 

The proposed program will exploit the fact that this equation 

is equivalent to the variational condition 

where 

fdr {( d[r ZJ.(kr)] )2 + 1.(1 + 1) Z 2 (kr)} 
6 dr 1 

00 

I 
0 

dr r
2 z 2 

(kr) 
1 

The function,regular at the origin will be denoted by j 
1 

(kr). 

The notation h~ (kr) will be employed for the "spherical Hankel 

functions, 11 which behave asymptotically like 

(kr)-l e±i (kr -lf 1 ) respectively. The other real function 

will be called nj(kr). The relations between these functions are: 

h
1
± (kr) = n

1 
(kr) ± i j 

1 
(kr) 

The definition of the spherical Neumann functions n
1 

and of the 

spherical Hankel ~unctions h/ differ by factors -1 and ± i respectively 
. . 40 . 41 

from those g1ven by Morse and Feshbach and by Sommerfeld. 

± 
h

0 
(kr) 

Explicit representations for the case J. = 0 are 
±i kr 

e 
kr 

j (kr) = sin kr 
0 kr 

(k ) = cos kr 
no r kr 

Finally, the relation between plane and spherical waves can 

be written in the equivalent forms 
I 
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I A i (it· 1 -~ J. ) II A 
4Tr j 1 (kr) = dk e 2 P J. (k · r) 

1\ A. 
In these expressions, k and r are unit vectors in the directions - -k and r respectively. Their components are direction cosines, and 

A 
they may as well be called direction vectors. The notaticm J dk is 

used for integration with respect to direction over the entire solid 

angle. 

By analogy with the expansion of plane waves in terms of 

spherical w~ves, the desired modified plane-wave state may be expanded 

in the form 

In order to complete the specification, the boundary condition 

at inifinite distance is required. There is a certain amount of arbi­

trariness about this condition. A suitable choice is the one used for 

s.cattering problems, which is that the incident flux be that of a plane 

wave, so that the state differs from a plane wave only in the outward 

flux. This condition can be expressed in terms of the radial functions 

f
1

(k, r) in the form 

Here AI. is the amplitude 

of the scattered wave with spherical harmonic of order 1., and is to be 

determined in the course of the argument. 

The functions f 1 (k. r) are now required to satisfy the same 

variational condition as the functions j l. (kr): 
2 o(k ) = o, 

J dr {( d [ r~;k, r)]) 
2 + 1 (1 + 1) f 1. 2 (k, r) } 

¢ 2 2 J dr r f 1 (k, r) 
0 
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Finally, the functions f 
1 

{k, r) are to be distinguished from the 

function j 1 {kr) by requiring them to be orthogonal to certain functions 0 

The states to which orthogonality is imposed may be represented in 

spherical coordinates, and have the form 

Of course, the number of values of n for any value 1 may in principle 

be any positive integer, but this integer will naturally be small in 

practical caseso 

The orthogonality conditions can now be written readily: 
c;;/J 2 
J r - dr cj>., (r} f 11 {k, r) = 0 o 
0 X, n X 

Introducing a Lagrangian multiplier 13 1· (k) for each of these ,n . 
conditions, and performing the standard variational manipulations, one 

finds the resulting Euler- Lagrange equation to be an inhomogeneous 

differential equation, 

d
2

[rf1(k,r)] 

dr 2 
. 2 1 {i. + 1) . + [k - 2 ] rf1 (k, r} = r ~ f3i. {k} cj>i. (r)o 

r n ,n ,n 

The solution of this equation can be obtained in terms of the 

Gl"een 1 s function defined by the boundary conditions and the corresponding 

homogeneous equationo This solution is 

v 11 (k, r) = 
L,n 

oO 2 . J <1>1. {r') G 1 (kr, kr'} r' dr' 0 

0 'n . 

The coefficients a.., (k) are proportional to the multipliers 
L, n 

j3 11 (k) 0 • Since the 13' s are not of interest in themselves, there is no 
L, n 

need to determine the factors of proportionality: 

This solution rna y now be introduced into the orthogonality 

conditions, in order to determine the values of the a.'s 0 The following 

notation wiU be convenient: 

, 

, 
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an, (k) 
.~:, n 

cP 

b n 1 (k) = J 
.~:, nn 

0 

. 2 
v n 1 (k, r) cj>J. (r) r dr . 
.~:,n ,n 

The orthogonality conditions take the form 

~ 
n' 

b n r (k) O.n 1 (k) = an (k) . 
.~:, nn .~:, n .~:, n 

The solution for the coefficients an (k) is now obtained in 
.~:,n 

terms of the matrix reciprocal to the matri~ of the integrals b n , (k), 
x., nn 

an (k) = ~ 
x., n n 

There remains the problem of determining the required Green's 

function G
1

(kr,kr'). In the first place, it enters linearly into vJ.,n(k,r), 

and thus also into bn ,(k). It consequently enters inversely into _
1 

.~:,nn 

b n 1 (k) and into a.1 (k). Hence, the function f n (k, r) is homogeneous x.,nn ,n x.,n 
of order zero in the Green's function, and there is no need to normalize 

iL Since the homogeneous equation is that for the spherical Bessel 

functions, it is necessary only to find expressions in terms of such 

functions, which satisfy the boundary conditions of being regular at 

the origin and reducing to outgoing waves at infinity. These conditions 

determine the function at once: 

r < r' 

G 
1 

(kr, kr 1 ) = 

r > r' 

This completes the determination of the ~odified plane-wave 

states in terms of the states to which they are required to be orthogonal. 

The results thus obtained have greater generality than will be required, 

however. The case that will be of interest later will be that in which 

there is only one state cj> 1 , n' having J. = 0, and representing the state 

of a nucleon in an "a,, particle. " A simpler notation is possible in 

which the index n is suppressed; for example, the state of interest can 

be called cp
0

(r). For this case, the results obtained above take the forms 



-ljlk(r ) = e 

:-!"··­
lK·r ao(k)vo(k, r) 

h
0

(k) 
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oP 

vo(k, r)= I <l>o(r 1 )Go(kr, kr 1)r
12 

dr' = IGo(kr, kr 1 I <l>o(r 1 ~, 
0 

..,p 2 'CP 2 
= f r dr <l>o (r) f r 1 dr' <l>o (r 1 ) G 0 (kr, kr 1 ) 

0 0 

= (<!> 0 (r) I G 0 (kr, kr 1 
) I <l>o (r 1

)). 

c
0

(kr, kr 1 )= 

j
0

(kr')h
0 

+(kr) = 

. ikr 1 

s1n kr· e 
2 

k rr 1 

. k 1 ikr s1n r · e 
2 

k rr' 

r < r 1 

r > r 1 · 

I : 



... 

-26-

5. FORM FACTOR FOR MODIFIED PLANE"-WAVE ST.ATES 

When modified plane waves are introduced into the expression 

for the nuclear form factor, the result is 

ao{k}vo(k, r} 

h
0

(k) , e 

-. If the spherically symmetric state <Po (r) is written in the form 

{4w)- 112 q,
0

(r), then q,
0

(r) will be a normalized function of the radius 

r. The integration over angles can be performed at once; it picks out 

the spherically symmetric parts of the exponentials, and introduces a 

factor 4w: 

. - 1 I 2 I· - - 1\ a 0 (k) (: . ~ 
Fk<Ak)= (4r.) [y0 (1k -Akl r).,q,0 (r)J-~ v 0 (k,r),J0 (rAk)<\>0 {r);J· 

0 

Since ao (k) = Oo (kr)' <l>o (r ~ it is proper to write 

-The remaining integral in Fk( A k) will be denoted by 

c
0

(k, Ak): 

c
0

(k, Ak} = (v
0

(k, r), j
0

{rAk) q, 0 (r)) 

Then the relation 

.. 
reduces the number of independent integrals. The form factor may 

now be written 

- 112 ao < I k - & I) . 
Fk(Ak) = (411') a 0 (k) [ ao(k) 

c
0

(k, Ak) 

.....,c..,...
0 
...... (.-k ,-,.o<T") - J 

' 1\ -Since the direction k of the vector k is not observed, it is 

necessary to square the form factor and integrate over this direction. -The result, which still depends on the magnitude of k, will no longer 

contain any direction at all, and so is sufficiently represented by the 
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notation IF k(.t:.k) 1
2 

o Its evaluation begins as follows: 

co (k, ..6-k) 12 
- c

0
{k, o) 

At this point it becomes necessary to introduce an explicit form 

for the ground-state radial factor q, 0 (r) 0 Since it is simple, the Gaussian 

form will be used, and, as will be seen in Section 8, this choice is not 

contradicted by experimenL With proper choice of units, this state is 

then 

I 2 
-1 4 - 2 q,

0
(r) = 2TT I e ~ )r 

Then a
0 

(k) has the value 

ao(k) = 1 sikrkr <l>o(rl r2 dr = (4w)l/4 e -~/?,)1<2 ' 

and the form factor becomes 

2 512 
1Fk(..6.k)l =(4TT) e 

-k2 1 2.f.Lk..6.k-.(..6.k) 2 c (k, ..6-k) 2 

0 ~12) !1 df.L \{e + I C~(k, 0) I 

- 2R (
c 0 (k, .t:.k)) f.Lk.t:.k - (liZJ(.t:.k)

2 

c
0

(k, o) e . } 

512 
= ( 4TI") e 

-k2 
{ ( 

sinh 2k ..6-k 
2kLSk 

co (k, ..6-k) 

lc
0

(k,o) I 
2 

( c 0 (k, .t:.k)) 
- 2R C (k 0) 

\ 0 ' 

sinh k ..6-k 

kLSk e , 
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The double integral c 0 (k, ~l:c) remains to be evaluated. Writing 

out the defining equation at length, and introducing the explicit form of 

the Green's function, one obtains 

Dt' 2 00 2 c
0

{k, ~k} = f r dr<j> 0 (r) I r' dr'<j>
0

(r')G 0 (kr, kr')j0 (r'~k) 0 0 

o.o r' 
+ J r' 2 dr' <j>

0
(r') j 0 (r'~k) h 0

+(kr') I r
2 

dr <j>
0

(r) j 0 (kr). 
0 0 

In each of the two terms, the first integral (the one with 

variable upper limit) has an ~n integrand. The ranges of these 

integrals can therefore be extended symmetrically to negative values 

of the respective variables of integration, as indicated in Fig. 2, 

provided factors of 1/2 are introduced to restore the original values. 

But when this has been done, odd integrands cannot contribute at all. 

Since the irregular spherical Bessel function n 0 (kr) is odd, and in 

view of the relation h
0 

+ = n
0 

+ i j
0

, the replacement of j
0 

by -i h
0 

+ 

will not affect the values of these integrals. The integral takes the 

form 

-i oaf 2 + Jr' 2 + 
2 r' dr'<l>o(r')j0 (~kr')h0 (kr') r dr<j> 0 (r)h0 (kr). 

0 -r' 

As a result of these manipulations, the two terms now have 

identical integrands, and are extended over mutually exclusive domains 

which together constitute the upper right hal£ plane. Moreover, since 

the two terms arose from a single integral, there is no inconsistency 

in the sign of the element of area to prevent them from being recombined: 

c 0 (k,~k) = -i Jr 2 dr I r'
2
dr'ho+(kr)h

0
+(kr')<!>

0
(r)<j>

0
(r') j 0 (r'~k). 

r + r' > 0 
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Fig. 2. Domains and coordinate systems for the 
integral C

0
(k, D.k). 
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c (k, ..6.k) 
Since only·the ratioC O(k, O) is to be used, it is unnecessary 

to substitute normalized functi<bns for <j> 0 (:r) and <j>
0
(r'). Substitution 

leads to 2 ,2 

c 0 (k, ..6.k) = -2 k_,-~,..·-Ak- I dr I 
~ r + r 1 >0 

dr' (r sin r'..6.k) e 
r +r · + ik(r+r') 

2 

' 2 2 
-U/2J(r +r' )+ik(r+r') 

- - -...-
1
--[ :k J dr f dr' sinr'..6.k· e 

2k
2 

..6.k · r + r~ > 0 

-~ /2}tr 
2 + r •2

)+ ik(r + r ') 
+ i ~ f dr J dr' cos r'..6.koe ]. 

r + r' > 0 

The limits can now be simplified, as suggested in Fig. 2,by the 

transformation 

[ x = r - r' l 
1 y = r + r' ( 

or 
{ 

r = 1 /2(y + x) } 

r' = l/2(y - x) 

whose Jacobian is 1/2. The result is 

x..6.k . y ..6.k . x..6.k . y ..6.k 
(cos - 2-

0 s1n - 2- - s1n - 2- 0 cos - 2-

x..6.k y..6.k . x..6.k . y..6.k ] 
x (cos - 2- o cos -2- + s1n -z- · s1n - 2-) 0 

To this expression the terms in the integrand which are 

odd in x cannot contribute. Moreover, those even in x can be 

evaluated by completing the square in the exponent, or by reference 

to Peirce, Formula 508. It is found that 

~~ -(l/4)x
2 

dx e x..6.k = 2 ..r:rf1 e - (..6.k/ 2) 
2 

cos-2- ·1" 
-e/) 
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Thus, the double integral is reduced to a single integral, 

C (k /\k) - -fi [. d { -(t::..k/2)
2 

foP d . -(l/4)y
2

+iky . 
0 , w. - - 2- cl1< e y e sm 

2k 6.k D 
~} 

+ 1
. d { -(6.k/2)

2
Ja/Jd -(l/4)y

2
+iky 

d6.k e y e · cos 
0 

~}]. 

Unlike the x integration, the y integration cannot be per.:. 

formed in terms of elementary functions. The required new transcen­

dental funtion will be taken in the· standard form 

Then 

.;D 2 
~ (u) = (1/2) J dt e-(l/4 )t sin (ut). 

0 

r e -(1/4) y
2 

+ y(k±b.k/2) = 17T 
0 

2 
e- (k ± t::..k/2 ) + 2 i~ (k±t::..k/2). 

Although the y integral can now be expressed in terms of 

~(k±t::..k/2), the expression for C 0 (k, 6.k) is not very useful unless the 

differentiations with respect to k and 6.k can be performed. This 

requires a knowledge of the properties of the function~' which will 

now be investi~ated: · 
2 

~ (u) = ~ [ J dt e -(l/4)t + i tu 
41 0 

aiJ I 2 J dt e- ( 1 4)t - i tu] 

0 

2 icP 2 icP 2 . 2 u 
= (l/2)e-u [ J dq eq -J dq eq] = (1/2)e -u J 

. 2 u 
= e -u I 

0 

-u u 

42 
On p. 32 of Jahnke-Emde 

the range u < 2. A simple method of 

-u 

u 2 
appears a table of I e q dq for 

numerical evaluatqon for larger 

arguments is to integrate the following differential equation on a 

differential analyzer. The equation follows by direct differentiation 

of the last result, 

= -2 u ~ + 1. 
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This relation permits evaluation of the derivatives in c
0

(k, .6.k). 

Its solution as a differential equation requires an additional condition. 

This is provided by the obvious relation 

' (0) = 0. 
It now follows that ~· (0) = 1. Higher derivatives can be 

evaluated, and a power series set up, but these will not be needed. 

Further qualitative information on the behavior of the function is con­

tained in the asymptotic expre s sian resulting from integration by parts 

of the original integral with infinite upper limit: 

2 
~(u) = (1/ 2 ) [ -e -(l/4)t cos(ut) j" _ 

u 0 

l 

- 2u 
as 

l oP -(l/4)t2 

2- f dt e · t cos(ut)] uo 

This asymptotic approximation, and the obvious approximate 

value ~ (u) :::: u for small values of u, are shown together with ~ (u) 

itself in Fig. 3. 

The evaluation of c
0 

(k, .6.k) is now straightforward: 

C (k, .6.k) =-fiT [ 2 ( d - d ) { e -(.6.k/2 )
2 ~ (k + .6.1$:/2)} 

0 4 k 2 .6.k (:'£K d2S'iC 

2 
-2 ( ~ + ~ ) { e -.(.6.k/2 ) ~ (k - .6.k/2)} 

2 .6.k 2 
_r:;;- d ~) e-(.6.k/2) - ( -2 - k) ] + Ly1T ( dk + U.UK 

2 
= &k e -(.6.k/2 ) [ { p (k + .6.k/2) - ~ (k - .6.k/2)} 

-k
2 

-(l/4)(.6.k)
2 

+ i ..r:;f sinh k.6.k · e . 
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J 

MU-/0723 

Fig, 3, The transcendental function ~ (u) 
-u2 u 2 

= e !
0 

eq dq. 



-34-

In the limit .6.k....,;. ,0, the function becomes _ . 
' 2 

c
0

(k,O) = ~;k' [ f'(k) + i 1if""'k e-k] 

The evaluation of the form factor can now be completed with­

out any further difficulty. In the first place 

c
0 

(k, .D.k) 

c
0

(;k, o) = 

From this there follow 

. c ao~ .D.k) 12 -
c

0
(k, O) -

( c 0 (k, .D.k)) _ 
R\ c0(k, 0) . -

2 ' 

e- (.D.k/2) { 1 - 2k t (k) }{ ~ (k +.D.k/2 .) - ~ (k- 4k/2 .) } 

.D.k[ {1- 2k ~(k)}2 + 1T k 2 e-2k2 ] 
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The form factor can now be written as 

I 2 I 2 I 2 
I Fk(.6.k) J2 = (4 lT)5 2 e -k -11 2)(.6.k) {e -~ 2X&) sinh 2k.6.k 

2k2Sk 

+ {~(k+.6.kl2.)-~(k- 4kl2 )} 2 +lT sinh2 k.6.k·e- 2k
2

-(ll2)(.6.k)
2 

(.6.k)
2( {1- 2k ~(k)} 2 + lT k 2 e-2k2 ] 

2sinh k.6.k 

k.(.L\k) 
2 

e- (.6.kl2 ) 
2 

{ l-2k ~ (k) }{~ (k+ .6.1<12 ) -~ (k- L\1~12 ) } + 1rk sinh k.L\k· e- 2k
2 

-(l/2)(.L\k)
2 

{1- 2k ~(k)}2 + rrk2 e-2k2 

It is convenient to introduce the notations 

a(k, ~k) = ~(k + .L\k/2 ) - ~(k - Skl2 ), 

j3(k) = ~'(k)=l-2k~(k).· 

The second and third terms in the expression for J F k(.6.k) J
2 

have a common denominator. The numerators contain terms in a.
2 

and 

aj3 respectively, which suggests attempting to complete the square. The 

:result is a simplification of the expression for the form factor: 

J Fk(.L\k) 12 = (4lT)5I2 e -k
2 

-(.6.k)
2 

{sinh 2k.L\k sinh
2

k.L\k 
2k2Sk k2 (.6.k) 2 

1 (.6.kl2 )2 sinh k.6.k\2 
+ ~e -~ k 1 } 

(.6.k)2[ 132 + 1Tk2 e -2k2] 

2 2 
(4 .... )5 12 e -k - (.6.k) { sinh 2k.6.k ( 1 tanh k .L\k) 

= II ZkZk - k&k 

( 
a (.6.kl2)

2 
A sinh k .6.k )2 

LSk e - 1-' k.ZS:k 
+ } . 
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For small values of .6.k, the numerator of the last term cannot 

be evaluated accurately without a very accurate table of the function I· 
It can be handled by an expansion in powers of .6.k, however. The 

condition for this is th,at not only .6.k, but also k.6.k, must be small. The 
expansion gives 

~(k± .t:.k/2 >=~(k)±P'<k)(1/2.6.k)+(1/2)~"(k)~1/2).t:.k) 2 ± -h ~"'(k)(.t:.k/2) 3+ ...• 

from which follows 

a(~k.6.k) = 13(k) + -h- f3"(k)(.6.k/2)2 + iT 13iv (k) (.t:.k/2) 4+ ...• 

Successive apJ?lications of the differential equation for I lead 

to the result 

13"(k) = 2 + [ (2k)
2 

- 3~] f3{k). 

Thus, 

Now 

l3 sinh k.6.k 1 2 1 5 k Lik = 13. [ 1 + 5: (k.6.k) + 5""! (k.6.k) + . . . ] 0 

This leads to the required expansion 
' 

a(k, .6.k) (.t:.k/2)
2 

_ A sinh k.6.k = .!_ (.t:.k/2)2 + 
Lik e ..., kLik 3 

The higher terms in the series will not be needed. 
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6. FORM FACTOR FOR HARMONIC OSCILLATOR STATES 

In order to determine whether the results· are sensitive to the 

· nature of the final states used for the proton, the calculation has been 

repeated using for these states the excited states of the harmonic 

oscillator whose ground state is ~ 0 (i.: .. ). This ensures the desired 

orthogonality between the various states used. -Instead of an index k, the final state is specified by the values 

of a set of three integers. The notation adopted is 

The energy of these states is 

. 3 
E = E + E + E = (1 + m + n + -

2 ) w 1mn 1 m n 

where 

= (N + ~) w, 
2 

N = 1 + m + n. 

When these expressions· are ~ntroduced, the form factor becomes 

Then 

~ I F 1 (~) 1
2 

will replace the 
1 +m+n=N mn 

previously used quantity 

I F k (£:.k) 1
2 

= f ! Fk<Ek) 1
2 dk in determining transition 

rates. 

It is apparent that 

-Fn (£:.k) = Mn(£:.k )·M (£:.ky)·M (£:.kz) 
.t: mn .t: x m n 

in which, for example 
cV 

I i qx 
M

1
(q)= u

1
(x)e u

0
(x)dx. 

-<:P 
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The summed form factor thus takes the form 

1Mn(.6.k )·M (.6-ky)·M (.6-k) 1
2 

..t x m n z . 

It is now necessary to introduce explicit expressions for the 

harmonic osCillator eigenstates u (x): 
n 

. ' 2 
u (x) = N H (x) e -ll/2)x . , 
·n n ·n 

where 2 

and 
1 

N = ... ----, 

n 12n n! 1":;' 

-x 
e 

The evaluation of M J. (q) proceeds as follows: 

( 1 ) 1. o/.J • dJ. 2 - J dx etqx . -x . M 1 (q) = · . -:-I ·e = 
i'll' . 21 . 1! t - oo dx 

(iq) 1. 
. --~-

l 

..,/) 2 + . (t'q\J. J dx e - x 1 q x = -=:::.::='===--
-~ {T;: 

-(1/ 4)q2 
e . 

Substitution in the expression for l F N(.6.k) 1
2 

yields the 

result 

= 
l 

N: 
(.6.k)2N 

2N 

(.6-k ) 2n 
z 

2n n! 

e 
-(1 I 2K.6.k) 2 
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-U/2X.6.k)
2 

If N = 0, the right side of this equation reduces to e 

The fact that this approaches unity as .6.k approaches zero checks the 

normalization for the case N = 0. 

The case N = 0 is not of any special importance, however; in 

fact, it cannot occur at all for a saturated target. · Moreover, .the 

condition .6.k = 0 is of less interest than the condition that the neutron 

production be in the forward direction. A convenient approximation 

to the latter condition can be found as follows: 

2M~ = k 0 
2 - kl=ik() +k;(l~~kf)::::2k0 .6.k . 

The relation .6.E;, Nw leads to an expression for (.6.k)
2 

in 

terms of N: 
2 2 Mw2 

(.6.k) 2 :::: M (.6.E) = 

ko 2 2 Eo 

The form factor can now be written 

Not only is this expression confined to the forward direction; 

but also the approximations fail ·unless N w/E0 < < 1. 
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7. CROSS SECTION FORMULAE 

It is still necessary to express the cross section in terms of 

the scattering matrices that have been found" The application of such 

expressions to the case of neutron-proton scattering will provide the 

means for evaluating the function I R (~k. kf) 12 w.hich represents the 

elementary saatteringo The basis of the discussion will be the usual 

quantum -mechanical formula for transition rates. If the rate is 

designated as w, and units are used in which ti = c = 1, this formula is 

Here p (Ef) is the density of final states" It t~kes, for the 

present purpose, two different forms, corresponding respectively to 

excitation of discrete and-continuous states of the residual nucleus. 

Discrete Level 

In this case the density of final states is 
2 2 

kf dkf dwf kf dwf 
-"1"3----= 
81T dEf 

In this expression, kf, vf' and wf are momentum, velocity, 

and solid angle, respectively, of the fast particle in its final state. If 

v 0 is used for the initial velocity of this particle, the cross section can 

be expressed as 

dO' 

'CIW£" = 

·With the value of ~ 
f 

follows 

w 
k 2 

f 
= -r---.:2--

(21T) v 0 vf 

I Mfo 12 given at the end of Section 3, there 

( .M_)2 
21T I R(~k. kf) j 2 
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The last step depends upon the nonrelativistic relation kf = Mvf' in 

which M is the nucleon mass. 

This formula is applicable to neutron-proton scattering, since 

the recoiling proton, with respect to its internal degrees of freedom, 

is always in a "discrete level." In this case, I F k(~k) 12 = l and 

N = l hold. It will be most convenient to handle this case in the center­

of-mass system, in which vf = v 0 , and kf = p.vf (p. is the reduced mass). 

The result is 

Note that the use of the argument kf in R is not now an approximation, 

Since 1.1 = M/2, this equation permits the evaluation of the 

factor I R 1
2 

in the cross-section formula in terms of 

(~~cm)np 
It is most convenient, in referring to the experimental data, to have 

this cross section in terms of the energy of the incident fast nucleon in 

the laboratory system. For this purpose, the energy relation for 

·· neutron-proton scattering is employed in the form 

ko z = ~f 2 + {~k} 2 

The equivalent nucleon-scattering energy may therefore be defined by 

Then 

dO' 
dwf 

vf 
= 4-v 

0 

N (au ~k, Enp~ I F k (~k) 1z 
ern /np 

This expression is valid in the nonrelativistic approximation. 

It is understood that the variables employed are those of the actual 

scattering, and that these are used to evaluate E The angle of 
np 

neutron-proton scattering for which 

(
da \ 
(fcO"";/ 

/np 



is evaluated is just 

Continuum Level 

. -1 
2 s1n 
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( 

. b.k . ) 

/2M Enp 

The expression to be derived will not apply to the most general 

case, but rather to the case found earlier to be of interest, in which a 

single nucleon- -called the residual proton- -is excited into a continuum 

level, while the rest of the nucleons are left in their ground states. 

Variables without subscripts will be used for the residual proton. The 

states of this particle will be specified by means of the asymptotic 

momentum k. The density of final states then takes the form 
2 2 

kf dkf dwfk dk dw 
p (Ef) = 

(21T)b dE 

The eros s section, which is now also a spectral distribution 

function, has the form 

= 

= N 

Remarks 

Mk 

(Z>rr) 
3 

dw = 

(

. da(b.k, Enp)) 

dw · 
em np 

It is instructive to write the preceding results in a somewhat 

different form. 

Discrete level: = 
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Continuum level: 
kM = 
(21T)3 

np 

The feature to be noticed is that the left sides are to be evaluated 

experimentally as functions of three arguments: the energy E
0 

of the 

incident protons, the energy Ef of the product neutrons, and the 

momentum transfer ~k. The right sides, on the other hand, must be 

investigated theoretically by means of nuclear models, and are functions 

of only two arguments, the momentum transfer ~k and the energy 

transfer ~E = E 0 - Ef, but not of E 0 or Ef separately. Thus, independ­

ently of any model, the experimental quantities on the left must also 

be functions only of these .. two variables. 

The experimental verification of this relation would constitute 

a check on the hypotheses required for its deduction. These are the 

validity of the impulse approximation, and the neglect of the q -dependence 

of the elementary scattering matrix. That departures from the energy 

shell produce insignificant changes in this scattering matrix may be 

considered as part of the impulse approximation. The actual deduction 

has been based, in addition, on an independent -particle model, but it 

is probable that this may be replaced by a weaker condition, and thus 

not be concerned in the proposed test. 

The data available at present are somewhat meager for the 

proposed test. There is extensive information at 100 Mev from 

Harvard, 
21 

but spectra with knowri absolute intensities are available 

at other energies in the forward direction only. The Harvard results 

foi: carbon show a spectrum that is rather insensitive to ~E and ~k. 

except for a monotonic decrease to zero in the neighborhood of the 

threshold locus. At higher energies, such as are available at Harwell, 

Rochester, and elsewhere, the spectrum shows a strong maximum not 

far from threshold.. This difference, between a flat spectrum and a 

strongly peaked one, represents a failure of the test for independence 

of E 0 , and thus a failure of the hypotheses. It is to be hoped that this 

failure applies to the experiments performed at the Harvard energy of 

about 100 Mev, rather than generally. In fact, as seen in Fig. 1, this 
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energy is too low to escape the q-dependence of the neutron-proton 

scattering cross sectiono It is known, also, that the index of re­

fraction and the opacity of nuclear matter both decrease substantially 

with increasing energy in the range from 100 Mev to 150 Mev, thus 

producing more favorable conditions for the impulse approximation 

at the higher energies. 

If the Harvard work is omitted from consideration, the 

remaining data on spectra provide no variation of ~k independently 

of ~E and E
0

0 Consequently, the proposed verification cannot be 

made directly. It will be seen later that some available work on 

angular distributions- -which represent integrals of the spectra, rather 

than the spectra themselves- -provides the means to test a similar 

relation. 
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8. THE GROUND STATE 

The ground state of the nucleons has been assigned the 

Gaussian form e -~/z)r 2 , but it is still neces sa;y, in order to complete 

the specification of this state, to determine the unit of length in which 

r is to be measured. This unit determines the size of the nucleus, and 

also, by a Fourier transformation, the mome_ntum distributions of the 

nucleons. Accordingly, experiments on nuclear sizes and momentum 

distributions must be called upon in the evaluation of this parameter. 

It is, however, somewhat difficult to interpret experiments 

on nuclear sizes in terms of a Gaussian distribution. Moreover, the 

experiments that ~deld momentum distributions are high-energy 

scattering experiments of the type presently under consideration. 

Consequently, only experiments on momentum distribution have been 

drawn upon. 

Henley29 has used a Gaussian momentum distribution in 

discussing the production, at 90° to the beam, of positive Tr mesons 

by 345 -Mev protons (nominal energy) impinging on carbon. He chose 

i:he parameter of the Gaussian distribution so as to fit the experiments 

by Hadley and York on deuteron formation by pickup;
5 

using the general 

theory of Chew and Goldberger. 
26 

This Gaussian gave a rough, but 

not unsatisfactory, fit to the meson production experiments also, show­

ing itself superior for this purpose to the Fermi-gas momentum 

distribution, and to the distributions used by Chew and Goldberger 

themselves in treating pickup. The Gaussian used is the one that 

results in a mean kinetic energy of 19.3 Mev. 

Wol££
28 

has interpreted experiments by Cladis
27 

on the in­

elastic scattering of protons by means of a Gaussian momentum 

distribution. Instead of using the mean kinetic energy, he reports the 

value of the energy at which the probability density is reduced by a 

factor e -l from its maximum value. A suitable designation of this 

parameter is €; its value is found by Wolff to be 16 Mev. In order to 

compare this with Henley's result, use is made of the fact that this 

value would be the mean value of the energy if the momentum space 

had two dimensions instead of three. Consequently, the two energies 

-.. 
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are in the ratio of two to three, and !"lenley's result takes the form of 
2 . . . . 

a value € = 5 x 19.3 Mev= 12.9 Mev. 

Very direct information on the momentum distribution has 

been obtained by coincidence experiments on quasi-elastic scattering. 

The nature of the process has been elucidated through the angular 

correlation experiments by Chamberlain and Segre. 
43 

The possibility 

of such a process of quasi-elastic scattering is itself encouraging with 

regard to the applicability of the impulse approximation. Actual study 

of momentum distributions by this method has been carried out by 

Wilcox. 
30 

He finds the momentum distribution of the protons in Be to 

be close to Gaussian, withe = 20 Mev. 

It is apparent that the three values of e are not concordant. 

They are, however, of somewhat low precision. The experiments of 

Gladis allow toe any value between 14 Mev and 19 Mev, while those 

of Wilcox allow any value between 16 Mev and 25 Mev. The experiments 

on pickup and meson production seem to be no better in this respect. 

Thus, the failure of the numbers to agree is not a serious inconsist­

ency, but a manifestation of the fact that the experiments determine 

the value of the parameter only within rather wide limits. 

As units have been adopted in which 1i = c = 1, the choice of 

the unit for some one quantity will fix the units for all quantities. The 

unit of energy e fixes a unit of momentum lip = y2Me , and a unit of 

length p. The Henley, Wolff, and Wilcox values of e fix values of 1lp 

which are 155 Mev, 173 Mev, and 194 Mev respectively. 

From the considerable range of possibilities, the value 

I I -13 
1 p = 170 Mev has been chosen. Then p = 1 170 Mev= 1.15 x 10 ern, 

and E = 15.4 Mev. This choice is not a critical one, as the main features 

of the work are fairly insensitive to it. It is apparent that the state 

ljJ = e-(112)r 2 
has the property 14; 12 = e-l for r = 1; consequently, p 

is the required unit of length. 
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9. KINEMATICAL CONSIDERATIONS 

The use of the impulse approximation depends upon a kine­

matical similarity between scattering from a complex nucleus and 

scattering from a single nucleon. The similarity is not an actual 

equivalence, however; consequently some care is called for in setting 

up the relation between the two processes. The principal difficulty has 

been dealt , with by introducing the energy E Certain difficulties 
np 

remain, however, connected with the influence of the nuclear Coulomb 

field and of the binding energy of a nuclear nucleon; neither of these 

effects is pre sent in the case of nucleon-nucleon scattering. 

It is necessary to consider the following variables: 

M = nucleon mass of about 939 Mev, 

D = Coulomb barrier height, 
.... 
k

0
= momentum of incident proton, 

E
0

= energy of incident proton, .... 
k f = momentum of product nyutron, 

Ef = energy of product neutron, - .... () = angle between directions of k 0 and k f' ............ 
.6-k = k 0 - kf = momentum transfer, 

.6-E= E
0 

- Ef = energy transfer, 

Enp =[kf 
2 + (.6.k}

2
] /2M = Ef + .6.k

2
/2M .... 

The complementary momentum transfer q cannot be considered 

a kinematical variable, since it involves the momentum of a target 

nucleon, and such momenta are distributed in a manner controlled by 

the state of the target nucleus. 

The variables in this list are not all independent. The principal 

relations between them are: 

It is desirable to precede discussion of these relations with 

consideration of the manner in which the Coulomb barrier is to be 

handled. The height D of this barrier is of course small compared to 

the initial and final energies, E
0 

and Ef' of the fast nucleon. However, 
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it is hot necessarily small compared to their difference, the energy 

transfer AE, and must accordingly be given consideration in the 

definitions of E
0 

and Ef" Now; in view of the high energies involved, 

the Coulomb barrier will usually be surmounted, and events that 

involve penetration of the barrier will be unimportant. The energy 

E 0 shduld therefore be considered as less than the energy of the 

proton beam by the amount D lost in climbing the barrier. The neutron, 

on the other hand, has no barrier to cross in escaping from the nucleus; 

thus Ef is the ex~rirnental neutron~ energy. It follows that the energy 

' transfer AE is smaller by the amount D than the experimentally 

measured difference between proton and neutron energies. 

It is now necessary to distinguish between the two models-­

the harmonic oscillator model and the modified' plane-wave model. In 

the former model, the spectrum of levels available to the residual 

nucleus is discrete, and the levels are uniformly spaced with an 

interval w. This unit is closely related to the unit € introduced in 

discussing the nuclear ground state, 

w = 2€ = 30.8 Mev. 

It will be .convenient to use this unit of energy even in treating 

the modified plane -wave model, in order to facilitate comparisons 

between the two models. 

The modified plane-wave model has a continuous rather than 

a discrete energy spectrum. The characteristic energy that requires 

determination in this case is the depth B of the initial state below the 

lowest level of the continuum of final states. This energy is the 

threshold for the neutron production process. The energy B having 

been absorbed in freeing the neutron, the remainder of the energy 
* . transfer, E = AE - B, is available as excitation of the residual 

' ·* 
nucleus. If E = 0, then AE = B holds. Thus, B is a possible energy 

transfer, and like AE itself must be reduced from the conventional 

value by the amount D. Aside from this correction, it is just the 

difference between the binding energies of the target and residual 

nuclei. 

This definition may be illustrated by numerical evaluation of 

B in the case of carbon, which will be required later. Hollander et al. , 

in their isotope table, 
44 

give the maximum energies of the positron 
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12 + 12 
from N ((3 )C as 16.6 Mev, while that of the positron from 

N
13 

((3+) C 
13 

is L2 Mev. N the . Nl3 C 13 . . . ow, pa1r - 1s a m1rr or pa1r, 

whose energy difference is all Coulombic except for the neutron­

proton mass difference. As the latter difference is the same for the 
. 12 12 

other pa1r N -C , and the Coulomb energy also must be very nearly 

equal in the two cases, the difference between the maximum energies 

of the two positrons is just the desired quantity B. Thus, 

B = 16.6 Mev - L2 Mev= 15.4 Mev. 

A similar calculation can be made baied on the maximum 

energy, 13.4 Mev, of the electron from B
12

((3-)C 12 . This time the 

estimate of the Coulomb energy is obtained from the maximum energy, 
. 11 + 11 - + 

1.0 Mev, of the pos1tron from C {(3 ) B . Because (3 and (3 

emissions are compared this time, there is a correction 

2 x 0.5 Mev= 1.0 Mev for the mass of two electrons. Thus, the 

result is B = 13.4 Mev+ 1.0 Mev+ 1.0 Mev = 15.4 Mev. 

The agreement of the two estimates to one -tenth Mev is in 

part fortuitous, as the estimate of the barrier height D is shown by 

studies of isotopic multiplets to be reliable only to perhaps 0.2 Mev. 

Also, the fact that 2B = w( or B = E) is a coincidence, since it would 
4 . 16 

not hold for some other nucleus such as He or 0 . 

* The residual proton energy E = .6.E - B is to be understood 

as being measured at the top of the Coulomb barrier, since the 

correction -D applied to .6.E is equivalent to taking the zero for the 

energy of the last proton at the top of the barrier. This proton will 

gain the further energy D in leaving the nucleus and escaping to 

infinite distance. The energy at infinite distance is of no interest, 

however, since this proton is not detected in the experiments. On 

the other hand, the momentum of this proton just outside the nucleus 

is of interest, as it is used to specify the plane wave vV:hose 

"modification" produces the state of the proton. This momentum is 

k =12ME* 

There may appear to be a question as to whether k ought to 

be measured inside or outside of the nuclear potential well. The model 

used has, however, the characteristic that it never introduces nuclear 

forces at all; consequently there is no well, and such a question cannot 
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arise. Or it may be said that the forces have beeh schematically 

replaced by the condition of orthogonality to the ground state, and 

hence cannot be introduced again in the form of a well-depth correction. 

With these definitions settled, it is possible to carry out the 

necessary kinematical calculations .. As an example, consider the 

transformation from the experimentally determined parameters, 

E 0 , Ef' and 8, to the parameters used in the cross-section formulae, 

.D.k, .D.E, and E np 

.D.E = E 0 - Ef' 

(.6.k)
2 = k 0 

2 + k/ - 2 k 0 kf cos 8 = 2 ME0 + 2 ME£ -· 4M-t'E 0E/cos 0, 

E = np 

k/ + (.6.k)2 

2M 

The inverse of this is 

= E 0 + 2Ef - 2 -{E0Ef cos e. 

· E 0 = .D.E + Ef = E . + .D.E - (.6.k)
2 
/2M, . np 

EO + Ef - (.D.k)
2 
/2M 

cos () = = 
2 ~EOEf 

The form factor for modified plane -wave states has been 

evaluated as a function of k and .D.k. It is therefore desirable to 

consider these as independent variables. Since E
0 

is (ideally) 

constant in any one experiment, it is a convenient third independent 

variable. Since experiments involve definite angles, it will be 

necessary to consider loci of constant 0 (and E 0 ) in the k - .D.k plane. 

The most important of these loci is that for 0 = 0. Its equation is 

.D.k = k 0 - k£ = k 0 - ~ 2MEO' - 2MB - k2 ' , 
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or equivalently 

2 2 2 
(~k - k0 ) + k = 2M(E0 - B) = k 0 - 2MB. 

This equation represents a circle in the k - Ak plane, having 

its center at ~k = k
0

, k = 0, and its radius of length 

. {ZM (E
0 

-B) = ~02 - 2MB. Since the radius is less than k 0 , 

the circle does not inte.rsect the axis ~k = 0. Because of the simplicity 

and importance of these loci, they are presented, for the energies E 0 
of several cyclotrons, in Fig. 4. 

The loci of constant 8 are determined, in general, by the 

parametric equations. 

(~k) 2 = 2ME0 + 2MEf - 4M ~EOEf 'cos 8, 

2 
Ef = EO - B - k /2M. 

Elimination of Ef leads to the single equation 

2 . 2 2 2 2 
[2E0 -B -k /2M- (~k) /2M] = 4E0 cos 8(E0 -B -k /2M). 

Since cos 8 > 1 is impossible, the circle 8 = 0 represents a 

cutoff- -all loci of constant 8 (for given E 0 ) must lie inside this circle, 

There is also a cutoff at the threshold k = 0; thus, only the semicircle 

having k ~0 is required. This is the reason for the importance of the 

case 8 = 0. 

The nature of the curves for general 8 can be determined by 

considering their derivatives 

[2E0 sin
28 -B -k

2
/2M - (~k) 2/2M] k dk + 

[2E
0 

-B-k
2
/2M- (~k) 2/2M]~k·d~k = 0. 

The condition for a vertical tangent is found to be either Ak = 0 

or 

2E0 = B + k 2 
/2M + (~k) 2 

/2M. 

The first condition is never applicable, since the curves are 

all inside the circle 8 = 0, while the axis Ak = 0 is entirely outside this 

circle. The second condition, however, together with the equation of 

the curve, determines a point where the tangent is vertical, 

r 2 • k =~ko - 2MB . ~k: k 1 . 0 
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Fig. 4. Loci in the k-.6.k plane. 
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This point is independent of e. Thus, all loci of constant e 
are mutually tangent at this point. It is apparent that the point is 

indeed the point where a circle of radius 

/k0 
2

-2MB, 

with its center at ~k = k
0

, k = 0, has a vertical tangent; thus, the 

situation is transparent for the case e = 0, at least. 

Taking up next the case of a horizontal tangent leads to the 

condition 

either k = 0 

or 2E0 sin
2

e = B + k 2 
/2M+ (~k) 2/2M. 

The first condition shows that the curves of constant e intersect 

the axis k = 0 with horizontal tangents. The second condition, together 

with the equation of the curve, determines a second point where the 

curve is horizontal, 

~k ~ k
0 

sine, 

k = Jk
0 

2 sin2e - 2MB 

This point exists 

sin e ~ 

if and only if k is real, which requires 

12MB - {B 
ko - VEQ 

It is possible to eliminate e from the expressions for the 

point, thus obtaining 

{~k) 2 
- k

2 = 2MB. 

This is a condition satisfied by all points where the second condition 

for a horizontal tangent holds, It is thus the equation of a locus that 

is intersected with horizontal tangent by the curves of constant e. It 

represents a hyperbola asymptotic to the lines ~k = ± k, which 

inter sects the axis k = 0 at ~k = y2MB, It is when e is so small that 

the locus of constant e intersects the axis k = 0 at a smaller value of 

~k that the second horizontal tangent fails to exist. It may be 

remarked that the point where the tangent is vertical also lies on the 

hyperbola. 
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Since the kinematical relations for a free -nucleon target 

include 

(D.k)
2 = k 2 = 2MD.E, 

the condition for quasi-elastic scattering may reasonably·"be taken as 

either 

(D.k)2 = k2 

or (D.k)
2 = 2M:6.E = k 2 + 2MB. 

Thus, the region between the hyperbola and its asymptote will be 

considered to be the quasi-elastic region. It is apparent, however, 

that the concept of quasi-elastic scattering is a natural one only where 

the hyperbola approaches the asymptote. 

A locus of constant 8 which intersects the hyperbola (with zero 

slope) where it is near the asymptote clearly intersects the asymptote 

with a small slope. The fact that a locus of constant 8 which has only 

one horizontal tangent is confined between those which have two and 

the circle 8 = 0 prevents its slope also from having a large value at 

its inte.rsection with the asymptote. Consequently, the loci of constant 

e all have small slopes throughout the quasi-elastic region. 

It is expected -- and will later be found to be predicted by 

the present theory -- that scattering in the quasi-elastic region is 

more aboundant than scattering elsewhere. It follows that the most 

important part of a locus of constant 8 is the part traversing this 

region, where its slope has Just been shown to be small. In this 

important region, therefore, it is a fair approximation to substitute 

a locus of constant & for a locus of constant e. This substitution 

will be exploited to such an extent that the loci of constant 8 themselves 

will not be needed. Two of them are shown in Fig. 4, however, to 

illustrate the above remarks; the hyperbola and its asymptote are also 

included. 
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lOo QUANTITATIVE RESULTS OF FORM-FACTOR 
CALCULATIONS 

Since the nuclear form factor. in the case of modified plane­

wave states, is a function only of the two variables Ak and k, it may 

be thought of as the altitude of a surface above the plane of these two 

variables" This plane is the one depicted in Fig" 4" The sections of 

such a surface, taken on l?ci of constant e, are closely related to the 

energy spectra of the product neutrons" The relation can be made 

closer by the use of (1 /2)k
2 

as the independent variable along such a 

section, in view of the relation 
2 

Ef = E 0 - B - k /2M 

which holds between this variable and the neutron energy Er More­

over, since the principal quantum number of a harmonic -oscillator 

state is 
2 

N = B + k /2M, 

the use of (l/2)k2 as independent variable facilitates the simultaneous 

presentation of modif:i.ed-plane-wave and harmonic-oscillator results" 

Such simultaneous presentation is further simplified by 

consideration of {2'ili'~ - 3
k -1 F k{Ak} i 2 , instead of I F k{Ak} 1

2 
it selL 

The new factor «2w) -} k is the density-of-states factor for the residual 

proton, which has been (in effect) included in I F N1Ak) 1
2 

in performing 

the sum over .1.. m, and n subject to J. + m + n = No -When I F N(Ak) 1
2 

is plotted as a histogram, the areas under the histogram and under the 

curve of {2w~ - 3 
k _ l F k~Ak) 12 

have the same singnificance-- as shown 

in Section 7, the significance is that multiplication by kf(da/dw ) cmnp 
gives (aside from a constant factor, the same in both cases) the 

number of neutrons produced in the corresponding range of Er 

It is also convenient to consider a third function" This is the 

form factor for unmodified plane waves, obtained from that for modified 

plane waves by suppressing the correction terms arising from the 

modification" This function is called N0 {k, Ak), and the function 

explicitly considered is ~2w) - 3
k N0 ~k, Ak)" The compa~ison of 

modified and unmodified plane"-wave form factors gives desirable 

insight into the effect of the modification, and thus of the exclusion 

principle" 



-56-

In Figs, 5 through 8 appear graphs of the form factors, 

constructed in the manner detailed above, It will be noted, however, 

that the sections are, for the most part, on loci of constant ~k. rather 

than of constant e. This is simpler, gives a better idea of the behavior 

of the functions, and is nearly as closely related to experiment. More­

over, loci of constant e change as the proton beam energy is changed; 

thus it has been necessary to choose explicitly the energy of the 

Harwell cyclotron ( 170 Mev) in order to fix the locus of e = 0 on 

which .a section is taken. In examining these curves, it is convenient 

to keep in mind that the independent variable, (l/2)k
2

, is a measure of 

the product neutron energy (with reversed sign and shifted origin) in 

units of 30.8 Mev. 

These curves show that the surface for (2'111') ·~ 3 k. N
0

{k, ~k) is 

a ridge near the locus k = ~k, high and sharp for small k(and ~k), and 

getting lower and broader with increasing k, The surfaces for 

{2v) -
3 

k IF k(~k) 12 
and IF N{~k) 12

, however, behave in this manner 

only for large k; for small k the ridges retain much of their breadth, 

and decrease in height instead of increasing. This difference is to be 

ascribed to the operation of the exclusion principle. 

The form factors (other than that for unmodified plane waves) 

may be seen in Fig. 5 to be small on the forward locus for the Harwell 

proton beam, From Fig. 4 it appears that the forward loci for proton 

beams of higher energy lie farther from the quasi-elastic region 

k .::::: ~k, and thus in regions where the form factors are even smaller 

than in Fig. 5. In considering a forward locus it should be noted that 

the theory cannot be applied throughout its length; when ~k becomes 

large, the q-dependence of the neutron-proton interaction (as seen in 

Fig, 1) becomes significant,. rendering invalid the concept of a form 

factor, The line at (l/2)k
2 = 2.20, in Fig. 5, represents the approximate 

upper limit of (l/2)k
2 

for which the curves have any significance. 

These results may profitably be compared with those of 

Wolff, 
28 

which have been drawn upon in connection with the ground­

state momentum distribution. Wolff used an approximation which, as 

he showed, gives correctlythe lowest three moments (namely, those 

of order 0, 1, and 2) of the spectrum of inelastically scattered protons 
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Fig, 5, Form factors on the locus 8 = 0 for 170-Mev protons, 
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0.3 

f k2 = EXCITATION ENERGY IN UNITS OF 30.6 MEV 

~ U-10726 

Fig. 6. Form factors on the locus b.k = 0.896 for l 70 -Mev 
protons. 
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Fig. 7. Form factors on the locus .0.k "'= 1,50 for 170 -Mev 
protons. 
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Fig. 8. Form factors on the locus ~k = 2.50 for 170-Mev 
protons. 
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at a given angle 8. The results are independent of the final states. 

He also showed that the approximation is a good one in the case of the 

harmonic oscillator. In this work, he ignored certain interference 

terms, which represent the effect of the exclusion principle. The work 

reported herein is not quite directly comparable, since it deals with 

the form factors instead of the spectra and with loci of constant ~k 

instead of constant e; use of neutrons instead of protons makes less 

difference. Nevertheless, it can be seen that the general similarity 

of harmonic -oscillator and plane -wave results for large ~k shows 

that his approximation is tolerably good for plane waves, while the 

differences between harmonic -oscillator and plane -wave results 

indicate the type of variations that may arise as effects of the in­

accurately treated higher moments. Gladis et al
2 7 

found that Wolff's 

location of the peak of the proton spectrum differed from experiment 

by 12 Mev and 27 Mev at 30° and 40° respectively. At these angles, 

the momentum transfers at the peaks of the spectra (in the present 

units) were 2.26 and 2.82. The harmonic-oscillator and plane-wave 

form factors are found from Fig. 8 to have peaks at energies differing 

by about 2 7 Mev, which is indeed of the same order of magnitude as 

the difference between theory and experiment. 

It may be noted that the general agreement of harmonic­

oscillator and modified plane-wave behavior, especially as contrasted 

with the unmodified plane waves, tends to justify extension of Wolff's 

assumption of the relative unimportance of higher moments to conditions 

where the exclusion principle is effective. 
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11. SUM RULE FOR ANGULAR DISTRIBUTION 

The completeness property of the states of the residual proton 

can be used to evaluate the integral of the form factor over all energies 

at a fixed value of the momentum transfer. The integral can be written 
2 

f d(k
2
/2) k/(2'TT)

3
1 Fk(.6.k)l

2 
= f k dk dw I Fk(§}!

2 

( 2'TT) 3 

( .6.k=cons t. ) (.6.k=const. ) 

2 - f k dk d<ll 
- (2'TT)3 

(.6.k=const.) 

The notation ~~ indicates that the sum is to be extended over all states 
f 

. ()f available to the residual proton. Although the discussion has been 

made as if the states ~f were in the continuum, the result is clearly 

valid for discrete states also. 

The completeness theorem cannot yet be applied because, since 
.· -

the energy of the state ~f restricts the direction of ,6.k through the 

relation 
2 2 2 - -2 - - 2 2M.6.E = k

0 
- kf = k

0 
- (k

0 
- .6.k) = 2k

0 
. .6.k - (.6.k) , 

the operator --e 
i.6.k·r 

is not the same for all states ~f' This difficulty may be overcome by 

noting that the factor I F k (.6.k) 1
2 

of the original integral is actually -independent of the direction of .6.k. (This is not inconsistent, because -the restriction of the direction of .6.k is actually a restriction only on - - -k
0 

· .6.k, and k
0 

is not otherwise involved in the integral.) The value -of the integral is thus unchanged if . .6.k is replaced by a fixed vector -.6.k 1 of the same magnitude. The result is --f 2/ / 3 I 2 j ( ;h eiLS.k'· r ."' .. ·· ... :o) /2 ' d(k . 2)· k (2'TT) · I F k(.6.k) = 'f' .~f' w 

(.6.k=const.) 

with 

(.6.k') 2. = (.6.k) 2. 
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It is apparent that the variation of the operator with the states 

@f can be avoided in this manner only in the case of integration at 

constant .6.k. 

If there are no protons in the target, the available states @f 

constitute a complete set. Consequently, in this case, 

I k
2 

dk 

(211")3 

( Lik=const. } 

If the target is saturated,· however, the state ~O is not included 

among the possible final states @f' beca';lse it already has its complement 

of protons. In this case the argument takes the form 

2 , I k dk 

(2'11")3 

(.6.k::const .) , 
= 1 - e -~ /2){.6.k') 2 = 1 - e -6 /2)(.6.k) 2 

where the Gaussian initial state, ~O = e-(l/2)r
2

, has been used for the 

evaluation of 
- -+ 

(
Ill i .6.k' . r "' ) 
'~'O' e wo . 

The above results apply to a free neutron, or to a neutron in 

an a. particle. They can be extended to many other nuclei by using the 

a.-particle nuclear model, and neglecting interference between coh­

stituent a particles or between o. particles and odd neutrons. The 

cases of a constituent deuteron or triton are not covered, however. 

A different approach would be required for the deuteron, but the 

triton may be treated by a simple extension of the above discussion. 

In this case the transition to the ground state of He 3 may be considered 

from the standpoint of hole theory; a proton hole in the state ~O is 

transformed into a neutron hole in the same state, and the matrix 

element for this must be 

J 
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The square of this quantity constitutes the entire contribution of the 

ground-state transition to the integral of Nl F k(.D..k) 1
2

. Since there 

are two neutrons in the triton, the corresponding contribution of the 

excited-state transitions is 
2 

2[ l - e -(l/2)(.6..k) J. 
The result is, finally, 

I k
2

dk 

(2'1i) 3 

(.D..k=const. ) 

The form of this result reflects the presence in the triton of two 

neutrons, and of a proton that excludes the residual proton from one 

of two otherwise possible spin states in the case of a ground- state 

transition. 

It is convenient to introduce the notation 
2 

I F (.D..k) I 2 
= f )k d; · N I F k (.D..k) I 2 . 

(Ak:ccon,{. ( 2 'li) 
A rule for the value of this quantity, which applies to all cases except 

odd-odd targets and targets with negative neutron excess, is: every 

neutron contributes unity, while every proton contributes 

-(l 1 2)(.6..k} 
2 

. - e The rule IS represented by the equation 

I F (.D..k) 12 = N - Z e -(l/ 2)(.6..k)
2 

It is not apparent that this result has any direct experimental 

significance. It will now be shown that it has, however • in that it 

provides a fairly good estimate of the angular distribution of the product 

neutrons. 

The correct angular distribution is obtained by integrating the 

neutron yield at constant e, rather than the form factor at constant .D..k: 

da = N f 4 kf ~~ ) I F (.D..k) I 2 
~'f k 0 dw k ern np 

(B=const.) 

It has already been noted that loci of constant 8 and of 

constant .D..k are nearly coincident in the quasi-elastic region, and that 

it is just in this region that large values of the form factor are possible. 

Thus the main contribution to the integral comes from a region in which 

integration at constant e differs but little from integration at constant .D..k. 
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As further support for this point, Table I has been prepared. This 

table presents, for both harmonic -oscillator and modified plane -wave 

form factors, the fraction of the sum-rule limit obtained by integrating 

only up to the forward locus (8=0) for 170 -Mev incident protons. 

Table I 

Comparison of sum-rule limit with integrated form factors at 170 Mev. 

.6.k 

0.896 

1.500 

2.500 

Sum-Rule 
Limit 

0.330 

0.675 

0.956 

Harmonic Oscillator 

Integral Fraction 
of Sum-
Rule Limit 

0.318 96.4% 

0.665 98.4% 

0.884 92.5% 

Modified Plane Wave 

Integral Fraction of 
Sum-Rule 
Limit 

0.23Z 

0.547 

0.626 

70.4% 

81.1% 

65.5% 

It is true that the loci of constant e cross the quasi-elastic 

region again, this time wfth nearly vertical tangents quite different 

from loci of constant Ak. This happens, however, where k is near 

its maximum, and thus corresponds to production of low-energy 

neutrons. The experiments, however, do not detect low-energy neutrons; 

moreover, the q -dependence of the neutron-proton cross section ex­

cludes them from consideration in the theory presented here. The 

integral for the angular distribution must accordingly be terminated 

before the locus of constant e re-enters the quasi -elastic region. It 

should be remarked that if e is too large there are no high-energy 

neutrons, and the theory is not applicable at all. 

The case of small e also constitutes an exception. As see in 

Fig. 5, in this case there is no strong peak in the spectrum to justify 

neglect of the difference between the paths of integration. Since, how­

ever, the yield for small 8 is small, the use of the sum rule will re­

place one small value by another- -namely, by l - e(l /Z)~l¥, with small 

.6.k. 'This degree of agreement will be sufficient for many purposes. 
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It is therefore justifiable, to a considerable extent, to write 

kf 
N I 4-­ko 
(~k=const.) 

On loci of constant ~k, with ~k not so large that the q­

dependence of the neutron-proton cross section invalidates the theory, 

the factor 

( ~~ ) 
\ em np 

is a function only of ~k, and thus can be removed from the integration. 

The factor kf' which is proportional to the square root of the energy 

Ef of the product neutrons, varies over a limited range because of the 

exclusion of low-energy neutrons from consideration .. For example, 

in the Harwell experiments, the rp.tio of the smallest and largest values 

of kf is about 0. 7. When, therefore, it is taken outside the integral by 
-

an application of the mean-value theorem, its mean value kf is fixed 

within quite narrow limits. The desired result now follows: 

L ~~ ) . N 
\ em np 

k
2 

dk z I IFk(~k) I = 
(21T)3 

(~k=const. ) 

= 

It is still necessary to choose the value of ~kat which to 

integrate in estimating the neutron production at a given angle e, and 

also to fix the best value of kf" To the extent that these choices are 

arbitrary, they are not critical; if they were, the approximations could 

not have been justified. A simple choice is to evaluate all parameters 

at the intersection of the locus of constant ()with the quasi-elastic locus 
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.6.k = k; at this point the form factor is near its maximum, and the 

loci of constant 8 and constant .6.k are nearly tangent. 

In general, 

and 
2 

Ef = E 0 - B - k /2M. 

But now, in addition, 

Thus 

.6.k = k. 

-2 -2 I -2 ' 
.6.k = 2M(2E0 - B - .6.k /2M) - 4M cos 81E 0 (E

0 
-B -.6.k /2M). 

~ (4M E
0 

- 2MB - .6.k
2

)(1 :- cos 8). 

The coefficient of .6.k2 is 1 + (1 - cos 8). Its reciprocal is 
2 . 

1 - (1-cos 8) + (1 - cos 8) - ... , or nearly cos e if 8 is not too large. 

Thus 

and 

.6.k ~ 2k
0 

sin 
8 J(l B ) cos 8 2 - 2E0 

8 
( J - 4'i

0
) ~ 2k

0 
sin Jcos 8 2 

Then 

~ 2M(E0 -B) - (4ME0 - 2MB) · 2 sin
2 

: cos 8 

= 2M(E0 - B) cos 
2 

8 + 2ME0 (sin28 - 4 sin 
2

: cos 8) 

- 2MB(sin
2 

8 - 2 sin
2 ~ cos 8) 

2 4 2 
= 2M(E

0 
-B) cos 8 + E7(8 ) +ff(B8 ), 

and 

,, 
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It will be recalled that the neutron-proton cross section is to 

be evaluated at the proton energy E = [kf
2 + (.t:.k)

2
] /2M. Thus there np 

follows 

For the larger angles, the simple approximate formulae are 

inadequate, and the exact expiressions must be employed. In any case, 

the final result takes the form 

= 

~np 
This relation .is subjected in Section 14 to an experimental check 

similar to the one applied. to a related equation in Section 7. 
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12. INTERPRETATION OF EXPERIMENTS. 
I: EFFECTS OF ATTENUATION 

The theory has now been carried to a point where comparison 

with experiment is possible. Such a comparison will be more illumi­

nating, however, if previous theoretical considerations of the neutron­

production process are kept in mind. 
22 

Mandl and Skyrme have proposed a theory of this process, 

which has had some success in accounting for· experimental results. 

Their theory, like that developed herein, may be thought of a~ an 

improvement of a simpler theory in which all influence of the structure 

of the target n,ucleus is ignored except that of the momentum distribution 

of the struck nucleon. However, instead of attempting to evaluate the 

effect of the e~clusion principle while ignoring possible corrections to 

the impulse approximation, these authors proceed in a complementary 

manner by ignoring the exclusion principle while attempting to correct 

the approximation for the effects of the attenuation of the fast nucleon 

beam in its traversal of the nucleus. 

The result of their calculation is an energy spectrum in the 

forward direction of the form 

+ daz 
dE£ 

The second term is an additional correction for double 

scattering, and contributes less than 20o/o of the neutron yield. The 

dominant first term contains a factor f (KR) which corrects for 

attenuation,· and which is a function only of the product of the attenuation 

constant K and the nuclear radius R; the other factor represents the 

result obtained with neglect of attenuation, and is similar to the result 

of an "uncorrected plane wave" calculation of the type made in the 

preceding sections. 

The argument leading to a sum rule for the total neutron 

yield applies to this theory, despitethe fact that e = 0, because with 

uncorrected plane waves the quasi-elastic peak in the form factor 

exists for small angles: witness the plot of N
0

{k, .6.k) in Fig. 5. This 

sum rule fixes the integral of da1/dEf' nearly independently of the 
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assumed momentum distribution of the target nucleons. Since the 

second term is small, the attenuation factor -in the first term is left 

in control of the neutron yield. The main feat\~re's of the ti-teo_ry can 

then be inferred by representing this yield in the approximate form 

"f(KR)· N f;~~O:) \ = f(KR)· ~N f;:(0°)) 
~ a 7 np . . ~ em np 

The original calculations were made with the value 
12 -1 

K = 3.6 x 10 ern . This value results from work on neutron total 

cross sections by Taylor etal.: but has been corrected by ~hese authors 
. 12 -1 . 

{see theu Erratum) to K = 2.4 x 10 em . ·· With this correction, K 

is quite insensitive to energy in the range from 150 Mev to 340 Mev; 

thus, the factor f~KR) is the same for all these energies. {The in-
. . . 

sensitivity to energy also obviates the need to distinguish between the 

values of K for the incident proton and product neutron, at least pro­

vided the target has a sufficiently small neutron excess.) This 

simplifies the application of the theory to the neutron-yield experiments 
18 

of Knox, performed at 340 Mev . 

. In order that the double-scattering term may be corrected as 

well as possible without the extensive calculations required for its 

accurate evaluation, the corrections to the Mandl and Skyrme results 

have been computed from the formula 

d0'{0°} _ da' {0°) f(KR} 
dwf - dwf f(K 1 R) ~. dct .J 1 

~7 em np tda' 
dw 

em 

In this formula, the primed values are those used by Mandl and 

Skyrme, and the unprimed ones are the correct ones for the ca·s·e 

considered. The ratio of the neutron-proton eros s sections, differs 

from unity only for the comparison with the experiments at 340 Mev. 

The original and recalculated theoretical results are presented 

in Table II, together with the experimental data. The ratios of the 

yields to the yield from C have been included explicitly, because 

such ratios can be determined experimentally more reliably than 

absolute yields. (Multiple traversals of the target by the beam make 

serious difficulties in measuring the effective beam intensity.) While 

the theory is perhaps reasonably close to the experiments at 170 Mev, 
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Table II 

Theory of Mandl and Skyrme: neutron yields 

170 -Mev Protons 340-Mev Protons 

Target Theory Experimentb Theory Experimentc 

(Originala corrected) (Corrected) 

-1 
C(mb ster ) 68 113 (81±15) 135 (55±17) 

-1 
Be(mb ster ) 66 103 81 ± 15 123 82 ±26 

Be/C 0.93 1.01±0.06 0.93 1.5 
-1 

Al(mb ster ) lOS 195 192 ± 35 235 115 ± 36 

Al/C l. 70 2.39± 0.12 l. 70 2.1 

a 
Ref. 22 

b 
Ref. 13 

c Ref. 18 
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it is apparent that the predicted yields are far too high at 340 Mev, and 

also that the predicted Be/C ratio is much too low. The former 

discrepancy is weakened by the existence of evidence, reported by 

Schecter et aL, 
19 

for yields at 340 Mev higher than those of Knox; 

in a later section, however, reasons are presented for preferring 

the lower yields. 

It appears, therefore, that a theory including attenuation 

while neglecting the exclusion principle is not impressively successful 

in interpreting experimental neutron yields. There is some indication 

of the nature of the corrections required. The difference in structure 

between Be and C is not sufficiently represented in the model used, 

and some additional means of reducing the forward yields is required. 

Both these objects are, in fact, achieved by including the effects of 

the exclusion principle. 

On the other hand, complete neglect of attenuation is also 

difficult to justify. The product 2KR has a value of about 1.3 for Be, 

indicating substantial attenuation even in this light nucleus. For 

heavy nuclei, Hofmann and Strauch (at about 100 Mev) and Knox (at 

about 340 Mev) have demonstrated that the forward neutron yield 

varies nearly as A 2/
3

, thus showing that attenuation is significant for 

the specific process being considered. It is true that Gladis et al. 
27 

have reported a ratio 4/3 between the yields of inelastic protons from 

o 16 
and C 

12
, but the statistical uncertainties in the work seem to make 

in~ignificant the difference between 4/3 = 1.33 and (4/3)
2

/
3 

= 1.21. 

Only the ratio of about 19 between neutron yields from Pb and C at 

170 Mev, 
13 

which nearly agrees with the ratio of the neutron numbers 
208 (21 for Pb , for example), suggests small attenuation; but this' is 

only one fact, and is difficult to reconcile with results at 100 Mev and 

340 Mev quoted above, which include data on Pb. 

Nevertheless, attenuation receives very little consideration 

in subsequent discussions. The main reason for this neglect is 

convenience, but it can be rationalized to some extent. The concept 

of an attenuated beam is hardly applicable in a light nucleus, where 

the nucleons interacting with the attenuated beam on the far side of the 

nucleus are the same ones whose interaction produced the attenuation 
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on the near side. Moreover, the loss arising from attenuation must, 

except in the forward direction, be largely restored by multiple 

collisions, the argument being the well-known one which concludes 

that attenuation experiments in poor geometry do not detect scattering. 

This argument applies in the case discussed here because the neutron 
. ld d . . dl . h . 1 16' 1 7' 2 0 y1e oes not vary rap1 y w1t scatter1ng ang e. 
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13. INTERPRETATION OF EXPERIMENTS 
II: ODD NEUTRON AND SATURATED CORE 

In reporting the fact that the neutron yield from Be is greater 

than that from Cat 340 Mev, Knox
18 

takes n~tice of a suggestion by 

Chew that the cause is the presence of an odd neutron in Be 9 , con-
. 12 . 

trasted to the saturated character of C . According to a model 

employed by Mullin and Guth 45 in treating the photodisintegration of 

Be 9, the loosely bound last neutron may be considered to move in the· 

field of the Be 8 core; in the application to high-energy processes, it 

must then behave nearly like a free neutron. In discus sing their 

experiments on neutron production at 95 Mev, Hofmann and Strauch
21 

adopt this model of Be 9. In accorp.ance with the A 2/ 3 dependence of 

neutron yields which they found in heavy elements, these authors 

estimate the contribution of the Be 8 cor,e to the neutron yield as 

(2/3) 2/ 3 that of c 12
; they assign to the odd neutron the difference 

between the observed yield from Be and this estimated yield from the 

core, and proceed to show that the spectrum and angular distribution 

of this difference are indeed very like those expected from a free 

neutron target. 

Application of this method to other data is limited to cases 

where information on the relative yields from Be and C is available. 
. 13 

Such cases are found in the experiments of Randle et al. at 170 Mev, 

and of Knox at 340 Mev. By use of the data of Table II, the forward 

neutron yields from the odd neutron of Be have been calculated by this 

method, with and without attenuation, and the results (corrected to 

the center-of-mass system by division by 4) compared in Table III 
-

with the neutron-proton forward (exchange) cross section. It appears 

that the agreement is satisfactory only at the higher energy, and that 

allowance for attenuation makes little difference. The success at 

340, Mev is a point favoring the Knox yield measurement over that 

of Schecter et al. 
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Table III 

Odd-neutron yields 

(1/ 4{Be - (}) 
213c 1 . 2 ( d0(0°)) Proton energy {l/4}[Be - j C] dw em np 

Mev mb sterad 
-1 

mb sterad -1 mb sterad 
-1 

170 4.8 ± 1.0 6.8 ± 1.2 11.2±0.7 

340 10 ± 3.2 11.4 ± 3.6 13.7 ± 2.1 

Since the neutron spectrum from C has not been studied at 

340 Mev, it is only at 170 Mev that this subtraction method can be used 

to estimate the spectrum of the odd neutron yield in the forward 

direction. In Fig. 9 are presented the Be and C spectra and estimated 

incident proton spectrum, as reported by Randle et al. The difference 

Be - i C is also shown, and is seen to be very much like the proton 

spectrum, as would be expected if the neutron were free. 

The poor agreement between odd-neutron and free -neutron 

yields at 170 Mev is puzzling, in view of the similarity of the spectral 

distributions at that energy, and in consideration of the good agreement 

between the yields both at 95 Mev and at 340 Mev. The evidence 

appears, on the whole, favorable to the extended applicability of the 

idea that the odd neutron in Be 9 be}:l.aves as if free. 

The idea of the similarity of the contribution from the Be 8 

core to that from C 
12 

is supported, to some extent, by the experiments 

of Gladis et al2 7 on inelastic proton scattering. The energy distributions 
12 16 

of protons scattered from C and 0 are found by these investigators 

to be the same, the yields being in the ratio three to four. 

Hofmann and Strauch have also investigated Li, and find that 

the neutron spectrum is similar to that of Be, but the yield is greater. 

They suggest th~t this results from the last two neutrons in Li 
7

, 

acting as if only partially free. The partial character of the freedom, 

associated with binding energies of 6 or 7 Mev instead of less than 

2 Mev as in Be, prevents fruitful application of their subtraction 

metlx>d. Other evidence relating to Li is provided by work of Goodell 

et ai.}
5 

who find the neutron spectrum from Li at the Columbia 
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Fig. 9. Odd-neutron spectrum at 170 Mev. 
Vertical lines on the curves for C and Be indicate 
roughly the accuracy of the measurements. 
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5 
cyclotron to be quite similar to that from Be. · Also, Ball and 

DePangher
6 

have found the spectrum from LiD at Berkeley to be 

distinctly narrower than that from Be; it appears unlikely that this 

effect can be ascribed entirely to the deute.ron, since any possible 

difference in the momentum distributions of the loose neutrons in 

D and Be must be too small to account for the observed difference in 

width. 

The treatment of the triton, in the derivation of its sum rule 

in an earlier section, suggests that Li 
7 

may best be handled by 

separating the (essentially elastic) transition to the ground state of 

Be
7
--Li

7
(p,n)Be

7
--from transitions to excited states. The same may 

be done for Be 9 , for comparison; it is then apparent that the ground­

state _transitions must be nearly the same for these two targets, and 

that differences arise from transitions to excited states. The ground­

state trans:ltion produces neutrons in the shadow-diffraction pattern 

(Babinet' s principle), and thus is the source of that part of the strong 

peak found in Be which lies close to the forward direction. This 

accounts for much of the forward neutron production from Li, but 

leaves unexplained how the four neutrons in Li yield, by transitions 

to excited states, more product neutrons in the forward direction than 

the four neutrons of the Be 8 core. 

The fact that two of the neutrons in Li 
7 

are bound with about 

half the energy of the other two, or of the four in the Be 8 core, is 

suggestive. In the spirit of the impulse approximation, it is even more 
0 f' d 0 h k f W'l 30 0 1 ° 

0 

suggest1ve to 1n , 1n t e wor o 1 cox on quas1-e ashe scatter1ng, 

that one of the .protons in Li 
7 

has a much narrower momentum 

distribution than the other two. It may be supposed that the two less 

tightly bound neutrons also have the narrow momentum distribution. 

Half the yield from these two, together with the contribution from the 

ground-state transition, may be expected to be similar to the yield 

from a free neutron or the odd neutron in Be; the remaining two 
0 16 12 

neutrons ought to behave hke those of 0 , C , or the core of Be; 

the peculiarities of Li are then to be ascribed to the other half of the 

excited-state contribution from the loose neutrons. The high yield 

found by Hofmann and Strauch is explained by saying thi,s last 
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contribution is larger than that of a core neutron, presumably because 

of the narrower momentum distribution, but not so large as that from 

a free neutron because of the effect of the exclusion principle. 

The success of these discussions, evenwhen not quantitative, 

indicates clearly the value of considering the specific properties of 

individual nuclei, rather than representing all nuclei as larger or 

smaller samples of the same nuclear matter after the manner of 

Mandl and Skyrme, 
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14. INTERPRETATio'N OF EXPERIMENTS 
III: FORM'-'FACTOR ANALYSIS 

The special fea'tures of neutron production from unsaturated 

targets having been accounted for to some extent, the case of a 

saturated target remains to be discussedo It is convenient to consider 

the angular distribution first, because this does not require knowledge 

of the incident proton spectrum; moreover, there is little information 

on spectra except in the forward direction, where the analysis of the 

spectrum will prove to be unnecessary because the theory of the 

angular distribution is already inadequate 0 Unfortunately, the data on 

the angular distribution from C are limited to a statement, in the 

paper by Schecter et al. 19 that at 340 Mev it is similar to those found 

for Be, Al, Cu, and U at this energy by Miller, Sewell, and WrighL 
16 

Nevertheless, it is possible to test the theory of the angular 

distribution from a saturated target by considering the Be 
8 

core of 
9 Be . This is less satisfactory than C, because the extra neutron 

obscures matters, for example by contributing to statistical errors. 

However, there are not enough data to make an investigation feasible 

except in the case of Be. In addition to the work of Miller et al. , 

f d b h . . . . b D J 17 re erre to a ove, t ere 1s an 1nvest1gat1on y e uren over a 

wider range of angles; it is worth noting that the former authors 

detected neutrons by the C 
12 

(n, 2n)C 
11 

reaction, having a 20 -Mev 

threshold, while the latter author employed Bi fission, with a 50 -Mev 

threshold. Finally, there is the work of Snowden
20 

at 170 Mev, in 

which several neutron energy thresholds were, in effect, employed. 

These data may be compared among themselve-s, and also. 

with the result obtained theoretically by the use of the completeness 

theorem, by first writing the latter result (of Section 11) expiicitly for 

the case of Be 9 in the form 

= 
-2 

= 5 - 4 e -(l/2).0-k o 

np 
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The general form of this relation is tested by the agreeme;nt 

between measurements of the initial expression as a function of .:6.k 

at 170 Mev and at 340 Mev; the specific form of I F(.:6.k) 12 
is tested by 

its agreement with the final expression. The results are presented 

in Fig. 10, which includes not, only the above-mentioned data on the 

angular distributions, but also the normalization of these data to the 

forward yields measured by Randle et al. 
13 

at 170 Mev, and by 
18 

Knox at 340 Mev. With these yields, the various curves in Fig. 10 

agree as to order of magnitude, at leasL 

This agreement would be lost if the neutron yield reported by 

Schecter et al. 19 had been used instead of that of Knox. It is convenient 

to collect at this point the evidence that the- Knox result is to be pre-

fer red, beginning with a more complete account of the data themselves. 

The contributions from Knox are the value 1.5 for the ratio of 

the neutron yields from Be and C as measured by Bi fission detection, 

together with an expression, found by C 
12 

(n, 2n)C 
11 

detection, for the 

yield from Be in terms of the excitation function of his neutron 

detector. The latter result can be written 

-1 
(1 ± 0.30) x 42 mb sterad 

yield of C 
12

(n, 2n)C 
11 

at 270 Mev 

X yield of c 12 (p, pn)C [! at 340 Mev 

The first contribution of Schecter et al. is a value of the 

required yield ratio in the C detector, based on data that had appeared 

in the li~erature subsequent to the work of Knox. The value is 

. 1 2 11 
y1eld of C (n, 2n)C at 270 Mev = (1 ± 0 10 ) 1 9

5 
12 11 " X • • 

yield of C (p, pn)C at 340 Mev 

finding 

They also measured the absolute yield, this time for C, 

-1 
(220 ± 50) mb sterad . 
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20 
Snowden. 170 Mev protons. (Neutron energy:> 50 Mev). 

De Juren':' 340 Mev protons. 

Miller et a1'.
6 

340 Mev protons (where different from DeJuren) 

---- Theory 

/ 

/ 
/ 

I 
I 

/ 

----------
,.,.... Uncertainties in the form of this curve 

/ ore a bout IO'Yo for angles less than 30°1 but 
_..----/--/up to 40% for larger ongles. For absolute 

/ / error at .o:K = 0, see text. 

/ 
I~~ 

6K in Mev/c 
MU-10730 

Fig. 10. Analysis of neutron angular distributions. 
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Substituting the quoted yield ratio in the result- from Knox 

gives the value, for Be, 

d0'(0°) 6 -1 
= (82 ± 2 ) mb sterad . 

dwf 

This is the basis for the values that have been quoted herein as due 

to Knox. 

Any quantity that has been reported on the basis of the Knox 

value can be changed to what it would be on the basis of the Schecter 

et al. value by multiplying by the ratio 

dO'(Oo) ~· 
dwf S 

dO'(Oo) I 
dwf K 

= 220 ± 50 
1 .5 X 82 ± 26 = 4.0 ± 1.5 . 

This ratio ought to be unity, but differs from unity by more than the 

probable error. Unless the probable errors have been underestimated, 

there is a systematic error in the yield determinations. The most 

apparent source of error is that the Be -to-C ratio of 1.5 has been 

measured for neutrons of energy above 50 Mev, while the absolute 

yields being compared have been measured for neutrons whose energy 

may extend as low as 20 Mev. 

The curves of Fig. 10 show that increasing the data obtained 

at 340 Mev by a factor 4.0 would not merely spoil the rough agreement, 

but would indicate yields more copious than from free neutrons (given 

by the high-energy theoretical value)--several times as copious, at 

some angles. Even at the "low 11 threshold of 20 Mev, it seems 

difficult to account for so many neutrons. This difficulty is to be 

constrasted with the fair degree of agreement visible in the curves 

as they stand, and also with the approximate agreement of the odd­

neutron yield with that from a free neutron, as found in the preceding 

section. 

That the value found by Schecter et al. is too large is also 

suggested by the total inelastic eros s section for neutrons on C. This 

value has been determined by Ball? hy two different methods. He 
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obtains (203 ± 33) mb directly by attenuation in poo:r::~geometry, and 

209mb as the difference between the total (elastic:.!plus:inelastic) 

cross section of 288mb found by DeJuren and Moyer 
4 

by attenuation 

in good geometry, and the elastic cross section of 79mb resulting 

from the integration over all (significant) angles of his own measured 

differential elastic cross section. In the absence of an estimate of 

the error of. the second method, it may be considered as a check on 

the first; the discussion will accordingly be based on the value 

a. = (203 ± 33) mb sterad- 1 . 
1n 

The neutron yield leads, on the other hand, to an estimate 
17 

of a part of this inelastic cross section. In the first place, DeJuren 

reports that his angular distribution of neutrons from Be implies 

(through integration over the angles) that the total neutron production 

cross section is 1.05 times the forward differential neutron production 

cross section. Since the angular distribution from C is unlikely to 

be narrower than that from Be, the corresponding factor for C is 

probably not less than 1.05. Thus, a lower bound on the total neutron-­

production eros s section in C implied by the yield of Schecter et al. 

is 

a 
ex 

-1 -1 = (220 ± 50) x 1.05 mb sterad = (230 ± 52) mb sterad . 

The charge symmetry of nuclear interactions leads to the 

conclusion that the last number is also a lower bound on the proton­

production eros s section of incident neutrons, which is only a part 

of the neutron inelastic cross section. In fact, the cross section for 

inelastic scattering of protons ought to be of comparable magnitude. 

The difference of the quoted values, however, is only 

(-27 ± 62) mb sterad- 1 . 

Thus, 35 mb sterad -1, at most, is available for other inelastic 

processes. This is to be compared with the result from the Knox 

yield, which reduces a by a factor 4.0 to 58± 13 mb sterad -
1

, ex _
1 

leaving 144 ± 40 mb sterad to accommodate the remaining inelastic 

processes. 

The large neutron production found by Schecter et al. could 

conceivably be accounted for if the incident proton were able to produce 
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several neutrons having energies above 20 Mev. The data for lower­

energy protons, however, do not suggest such ·multiple production; 

and the fact that the attenuation constant in nuclear matter does not 

increase with increasing energy makes unlikely any considerable 

increase, with increasing energy, of multiplicity from light nuclei. 

The significance of the curves of Fig. 10 may now be 

considered in more detail. Aside from their mutual agreement as 

to order of magnitude, their most notable common feature is the small 

values at small .6.k. This feature of the experimental curves is 

evidence for the operation of the exclusion principle, which is known 

to be the cause of a similar feature of the theoretical curve. However, 

the experimental values at small .6.k are not so small as the theory 

requires. Moreover, the experiments fall below the theory at large 

values of .6.k; the experiments even disagree with each other, in that 

this decrease occurs at smaller values of ..6.k at 170 Mev than at 

340 Mev. 

The break in the high-energy curve at .6.k = 575 Mev/c is 

probably related to the minimum in the neutron-proton eros s section 

(see Fig. 1) at this value of the momentum transfer, as the assumed 

independence of q fails at and above this minimum. The corresponding 

point on the iow-energy curve is at .6.k = 400 Mev/c, where no break 

occur's; nevertheless the greatest decrease occurs for .6.k > 400 Mev /c. 

Thus, much of the difference between the two experimental curves 

can probably be explained by the difference in .6.k at the minima of 

the corresponding neutron-proton eros s sections. 

On the other hand, the reason the theoretical prediction is 

too high for a range of lower values of .6.k (e. g. 300 Mev/c to 550 

Mev/c for the 340-Mev curve) is presumably to be sought among the 

deficiencies of the impulse approximation, such as its neglect of 

attenuation. Similarly, the failure of the low-energy curve to rise 

so high as the high-energy one may be ascribed to a greater influence 

of such deficiencies at the lower energy; this influence appears to 

make the approximation largely u~eless at still lower energies. 
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The discussion of the extra yield at small ~k may be assisted 

by expressing in terms of the variables now being used the discussion 

of yields from core and odd neutron given previously. For example, 

since C and Be yields at (3 = 0 are equal at 170 Mev, the value 1. 97 

of the 170 -Mev curve at ~k = 0 applies to C as well, and 2/3 of this, 

or L 31, to the Be 
8 

core of Be 9 , leaving 0.66 for the odd neutron. At 

340 Mev, the fact that the C yield is 2/3 that of Be leads to the 

partition of the value 1.55 at ~k = 0 into contributions of 0.69 and 0.86 
8 . 

from the Be core and the odd neutron, respectively. It is now 

evident that, while the odd-neutron yields are of the right order of 

magnitude, the core yields are much too large. 

It is true that the theory does not, strictly, predict zero 

yield from the core at -tJ = 0; this result is a consequence of further 

approximations made in order to get a simple form for the angular 

distribution. The yield at (3 = 0 is small, however, and decreases 

rapidly with increasing energy because the forward locus (Fig. 4) 

moves into regions in which the form factor is small. This source 

of neutrons probably can at most explain the difference between the 

core yields at the lower and higher energies. 

Another possibility is that the neutrons in the forward 

direction arise from multiple scattering. The work of Goldberger
31 

22 
on multiple scattering, and the work of Mandl and Skyrme on 

double scattering, however, agree in indicating that this process 

produces relatively few neutrons in the forward direction. 

The character of the difficulty in the forward direction is to 

be appreciated by realizing that the small yield predicted at e = 0 

arises from an interference effect. The free -particle scattering is 

corrected by a term, arising through the exclusion principle, from 

the protons in the state from which the neutron is ejected. In the 

340-Mev data, the interference is not quite perfectly destructive at 

(3 = 0, but reduces the contribution from 4.00 to 0.69. The effect of 

the exclusion principle is estimated incorrectly by 0.69/4.00, or 

about 1 7o/o. An error of this size may well be expected to arise from 

the q -dependence of the neutron-proton interaction, or from corrections 

to the impulse approximation. For example, polarizations of this 

order of magnitude are found in neutron-proton scattering. 
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An interesting related feature is that the curve for 340 Mev 

is parallel to the theoretical curve in the range 0 < l:.k < 200 Mev/c, 

but displaced to the left by 70 to 100 Mev/c. If this type of behavior 

is general, it may help to explain the behavior' of Li 
7 

discussed in 

the preceding section. It was pointed out that two of the neutrons in 

Li 
7 

have a markedly narrow momentum distribution'; these neutrons 

presumably give an angular distribution theory like the one in Fig. 10, 

but correspondingly narrower. With such a curve, the strong 

suppression of neutrons at small l:.k would be largely washed out by 

a shift to the left as large as that noted at the beginning of the para­

graph. This would account for the relatively large neutron yield from 

Li. 

This narrowing of the neutron-deficient region at small angles 

has the appearance of a diffraction effect; the exclusion principle 

produces a kind of "shadow," into which some diffraction may occur. 

The primary diffraction effect is already included in the form of the 

effect of the momentum distribution in defining the theoretical curve 

itself. There is a secondary effect, however, which would appear-­

for example- -in a second-order perturbation theory of the process; 

this is the elastic scattering of the incident-proton and product-neutron 

waves arising from the attenuation of these waves, or what is usually 

called "shadow scattering. " It is difficult to estimate whether this 

effect would be large enough to explain the data. 
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15. SUMMARY 

The theoretical treatment of high-energy processes 1n com­

plex targets has been faced for some time with the difficulty, emphasized 

by the work of Goldberger ,
31 

that the exclusion principle should tend 

to suppress inelastic events_ in the forward direction, but that ex­

periments have failed to demonstrate this effect. It now appears 

probable that this is in part related to the failure of the impulse 

approximation at l 00 Mev, where many of the experiments have been 

made, and Goldberger's explicit calculations apply. The effect is 

actually demonstrable at higher energy, in the form of an angular 

distribution of neutrons, produced by quasi-elastic exchange collisions 

in Be, which is nearly flat at small angles, rather than a steep 

function of the angle as is the neutron-proton cross section. It seems 

likely that suitable experiments would demonstrate an actual neutron 

deficiency in the forward direction. The experiments should be 

performed on C at a sufficiently high energy, and might consist of 

determinations of neutron spectra at several angles. Such an 

experiment has actually been performed with the Rochester cyclotron 
14 

by Nelson, Guernsey, and Matt, but unfortunately the beam 

monitoring was not consistent at the two angles investigated, and 

consequently the relative yields at these angles were left undetermined. 

The few neutrons that occur "illegitimately" in the forward 

direction are not more numerous than imperfections of the theory 

might lead one to expect. They may arise in part from elastic 

scattering of the incident proton before, or of the product neutron 

after the exchange collision; in part from an uncancelled residue in 

the interference between bare -neutron scattering and effects of 

neighboring protons. The spectrum in the former case would 

presumably be that corresponding to the angle of inelastic 'scattering, 

as given by the theory presented herein; in the latter case, the 

spectrum would perhaps be like that arising from uncorrected plane 

waves, determined by the form factor N
0

(k, ~k), but possibly 

modified if the perfection of the interference varies considerably 

over the spectrum. It is thus not possible to predict the neutron 

spectrum in the forward direction with any certainty. The form 
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2 
factors N 0 (k, ~k) il!.t~.~.·_fa}~~.:d di:r~ction, and IF k(~k) I for 

~k = 0.896, represent possibilities; indeed, they seem to be of 

suitable width to account roughly for the c spectra reported from 

H 11 d h ' 1 3 ' 1 4 h f ld d . h . . .. . 'd ' ., arwe an Roc ester, w en o e 1nto t e' 1nc1· ent-proton 
. 1 2 12 

spectra. The broad neutron spectra observed at Berkeley ' ' 

and Columbia, 
15 

which contrast not only with those mentioned 

previously but also with those found at still higher energies, 10 • ll 

are probably to be ascribed to correspondingly broad p_roton spectra 

in the internal beams of the cyclotrons at these two laboratories. 

The analysis leading to these conclusions has been based on 

the impulse approximation, which appears to be fruitful- -though 

perhaps not perfect--if the energy is sufficiently high. To escape 

the limitations resulting from lack of knowledge of the phases of the 

neutron-proton scattering matrix, it has been found necessary to 

subject all arguments to the condition that this matrix be a function 

only of the momentum transfer in the scattering process, but not of 

the energy. Fortunately, such evidence as is available suggests 

that this condition is approximately satisfied within a substantial 

range of momentum transfers; however, small departures within 

the range, and large ones outside it, may be responsible for some 

of the divergence between the theory and the experiments. 
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APPENDIX:. COMPLETENESS THEOREM FOR MODIFIED 
PLANE WAVES 

The first step in, establishing the desired completeness relation 

is to reduce the problem from three dimensions to one dimension by 

expressing the properties of the modified plane waves in terms of 

corresponding properties of modified spherical waves. The hypotheses 

are 

d 1\1\ 
= L (21 + 1) P £ (k· x) j £ (kr) 

£=0 

cfJ 1\ !\ 
L (2£+l)P

1
(k·x)f

1
(k,r) 

£ =0 

oP 

J r 
2 

dr j£ (kr) j £ (k' r), 
0 

-d' 

f k 
2 

dk j £ (kr) j £ (kr ') 
0 

The first two equations relate plane waves and modified plane waves 

to spherical waves and modified spherical waves, while the last two 

assert that the modified spherical waves have the same orthogonality 

and completeness properties, and the same normalization, as do the 

unmodified spherical waves. The notations ~and~. represent unit 
A 1\ - -vectors; thus k· x is the cosin:e of the angle between k and x. 

By the addition theorem for spherical harmonics, 

-- l\1\ 1\A P
1
(k'·x) = P 1 (k'·k) P 1 (k·x) +terms containing azimuth angles. 

Moreover, the azimuth-dependent terms are such that their integrals 

over all azimuths vanish. There follows from this 
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cP cP 
t- /\ f 2 = 4'1T !: (Zi. + l) Pi. (k · k 1

) r dr f n (k, r) f i. (k 1 , r) 
i.=O · 0 £ 

= 4'1T 

~ _... ~ ...... 
ik· X ik 1

• X = (e , e ) 

In a similar way, the addition theorem, in the form 
1\ II 1\ /\ II. II 

P
1

(k·x 1
) = P

1
(x·x 1

) P
1

(k·x) +azimuth-dependent terms, 

can be used to show that 

--ik· x 1 

e ) 

--ik· X 
Since the plane waves e constitute a complete orthonormal -set, it follows that the modified plane waves ljJk(x) also constitute :;uch 

a set, provided the functions f 1 (k, x) satisfy the conditions of the 

hypothe aia. 

The one -dimensional problem has a continuous eigenvalue 

spectrum. This creates dif£icultie s which can be avoided by imposing 

an upper limit on the variable r. The problem then has a discrete 

eigenvalue ;:;pectrum, yet pas ae s into the original problem when the 

bound is increased indefinitely. The usual custom will be followed 

of supposing tha~ completeness of the eigenfunctions defined by the 

problem with bound implies completeness of the eigenfunctions defined 

by the problem without bound, without attempting a rigorous treatment 

of the passage from one problem to the other. 

The comparison functions j £ (kr) are defined by the variational 

condition 

o {(j1 (kr), n1 j 1 (kr))/Q1 (kr),j1 (krD} = o. in which the operators n 1 

have the form -d
2 
/dr

2 
+ £ (i. + l )/r

2
. Instead of this explicit 

formulation, it will be more convenient to introduce the eigenfunctions 

ljJk and eigenvalues k
2 

of an operator n, using the conditions 
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(l!Jk, n l!Jk) = k 2 . 

(ljjk' ljjk) 

These conditions will be said to constitute the "free problem." The 

following properties, common to the operators n1 , will be used: 

(a) the operator n is Hermitian; thus, its eigenfunctions constitute 

a complete set;; 

(b) its eigenvalue spectrum is discrete; 

(c) its eigenvalues are not degenerate; 

(d) its eigenvalue spectrum is bounded below by zero, but is 

unbounded above. 

The functions f 
1 

(k, r) will correspondingly be replaced by the 

eigenfunctions () of a "constrained problem" defined by the same 
q 

variational condition 

l~ n ~ ) 
6 { n?' i 1 ) = 0 • 

q' ·q 

supplemented by the orthogonality condition 

(f' ~ ) = 0 . q 

The function f will be subjected to the following conditions: 

(f, ljJk) :j: 0, all ljJk ; 

(f, f) = L 

The first condition could perhaps be relaxed, but simplifies the 

argument without affecting the applications that are contemplated. The 

second condition entails no loss of generality. 

The usual variational argument leads to the equations 

QljJ . = k2 ljJ 
k k 

n () = q
2 ~ + ~ f, 

·q -q q 

in which k
2

, q
2

, and ~ are Lagrangian multipliers. From these 
q 

equations follows not only the usual expression for the eigenvalue of 

the free problem, 
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but also, in view of the orthogonality of ~q and f, the same expression 

for the eigenvalue of the constrained problem, 

2 
q 

= (~q. n ~q) 

( ~q' ~q) 

It is known that the expression (g, !:2g)/(g, g) is minimized by 

the choice for g of the eigenfunction of the free problem corresponding 

to the lowest eigenvalue. Consequently, the lowest eigenvalue of the 

free problem is a lower bo~nd for the eigenvalues q
2 

of the constrained. 

problem; and the known lower bound, zero, of the eigenvalues of the 

free problem is also a lower bound for those of the constrained 

problem. 

The orthogonality of f and ~q also permits application, to 

the functions ~ q' of the argument by which the orthogonality of the 

functions ljJk is usually inferred from the Hermiticity of !:2. The 

finite range of r permits normalization of these functions. Thus, 

(~ > ~ ! ) : Q V • ·q q qq 

If now h is a function orthogonal to f, and also to all 

functions ~q belonging to eigenvalues q
2 < 0 2

, then the ratio 

(h, nh)/h, h) is minimized by the ·cho:ice h = ~Q, and its minimum 

v.alue is thus a 2
. Any such h whatever, therefore, has the property 

(h, h)~ (h, nh)/Q
2 

Since the completeness property is associated with expansions, 

it is necessary to introduce an arbitrary function g, together with 

its -partial expansion 

• 
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Since the functions ~ are all .orthogonal to f, it is essential 
·q 

, to add the function f to the set ~ . The remainder p
0 

in the ex­.q 
pansion of g is thus to be defined by the equation 

g = f (f' g) + ~ + p . 
Q Q 

It now follows readily from the orthonormal property of the 

functions f and ~ q that Po is orthogonal to f and to all the functions 

~ q included in ~ . It is thus of the type of the function h in the 

preceding result, and consequently has the property 

/
. 2 

(Po· Pal ~ (Po· n Po) a . 

This inequality relates the norm of p
0 

to the quantity 

(p
0

, f2·p
0

). The latter quantity may be investigated by considering 

the expression 

([ g-f(f, g)], n [ g-f(f, g)J) = ([~a+ p0 ], n [~+Pal) 

Several of the terms on the right can be evaluated. Thus 

and similarly 

= 2~ 2 (pa,[ q2 ~q + 13q f])(~q' g)= o, 
q <Q 

Moreover, since 

there follows 

(~0 • n ~0 ) = ~ ~ ( •q· n $q,)(g, ~q)(~q'' g) 
q2< 0 2 q'2< 0 2 

in which the last step depends on the fact that zero is a lower bound for 
2 

q . 
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As a consequence of these relations, Po has the property 

(p 
0

, n p 
0

) ~ <[ g - g (£, g) J , n [ g - f (f, g) J ) . 

Combining this with the inequality for the norm of p
0

, it is found that 

(p
0

• Po) ~ < [g - f(f, g)], n [g - f(f, g)] )/o2
. 

Since the numerator on the right is a constant, and since the 

completeness property is just that the norm of the remainder Po can 

be made as nearly zero as desired by including more terms in the 

expansion, it is apparent that completeness will follow if the eigen­

values q
2 

(of which 0
2 

is one) are unbounded above. 

To show that the eigenvalues have th~s property, it is necessary 

to return to the relations Q \)Jk = k2 
\)Jk and n ~q = q 2 ~q + j3q f, which 

have been obtained previously. From them follow the equations 

2 . 
(n y;k, ~q) - k ( l!Jk, Pq) = o, 

(l!Jk, n ~q)- tl (l!Jk, ~q) = 13q (l!Jk,· f). 

Because of the Hermiticity of n, these equations lead to an equation 

for (ljJk' ~q)oftheform 

2 2 . 
(k - q ) (ljJk' ~ q) = j3q (ljJk, f) 

Since by hypothesis (ljJk' f) I 0, the: vanishing of k
2 

- q
2 

implies 

that of j3 . Thus, n ~ = k
2 ~ , and since the eigenvalues of the free 

q q q 
problem are not degenerate, ~q can only be ljJk itself, which contradicts 

the orthogonality condition ( ~ , f) = 0. The contradiction can be 

avoided only by forbidding k 2q= q 2 . It is then permissible to divide 

by k
2 

- q
2 

to obtain an expression for (ljJk' ~q). There then follows 

from the completeness of the set of functions ljJk the expression 

ljJk (ljJk' f) 

k2 2 
- q 

The supplementary condition now leads to an equation for the 
. 1 2 e1genva ues q 

(f' ljJk)(ljJk' f) 

(k2 _ q2) 

" • 
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2 
When this equation is differentiated with respect to q , the 

denominators take the positive definite form (k
2 

- q
2

)
2

. Thus, the 

slope of the right side of the equation is negative everywhere. The 

expression has simple poles at the points q
2 = k 2 

clearly it descends 

from + .,p at each pole to -~at the next, passing through zero once· 

and only once on the way. That is, one and only one eigenvalue of the 

constrained problem occurs between each pair of successive eigenvalues 

of the free problem. 

Since the eigenvalues of the free problem are unbounded 

above, the eigehvalue s of the constrained problem also have this 

property. This comple.tes the pro:of of the completeness of the set 

constituted by the function f and the eigenfunctions ~ of the 
q 

constrained problem associated with f. It may be noted that the 

eigenvalue spectrum of the constrained problem is discrete . 
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