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APPLICATION OF CAUSALITY TO SCATTERING
k., H, Carns

february 21, 1956

I. Basic Cornection between Causality and Dispersion

The cavsality rrinciple states that no sirnal may proparate with z
veleeity greaster than the speed of litht. In several nranches eof pavsies
this orinciplie may be uszd to derive & dispersicn relation, whick ia n
simple intesral relation between a 1ispersive and an absorptive jororess,
We will consider two exauples of dispersion relaticus, the propagution of
light through a homogeneous, refractive cwedium, anc a auantun-mec!2niecal
scattering problem.

The connection betwcen causality and dispersion relations arises
frem the fact that the momentum and energy of a narticle (or wave are
variables canonically ceajusate te the position of the warticle iu 3nace
and time., A wave packet nay be expressed in either of the scbs ef
variables (x, ) or (7, E), and these two revre:entations are roliatad
by Fourier transforms. Thus thes causality princinviz, which rastré:ts the
motion of a wave packet in space and time, may alsc nlace lir:taticas on
the hehavior of a reaction process as a functiocn of energy and movzabun,

Dispersion relations may arpl' in rrocesses in which wm incut wave
and an outnut wave are dafined and the oubput wave is 3 linear funchbion o7

the input wave. For exanple, ia a scattering problenr there iz the relation

i

+ . g X STk -
SL = t:?’ . where 8 is the scitberine matrix, In order to simrly

JR

illustrate the comnection between causality and disrersion, we firzt conss |

some gensral reaction process., We limit our atteriton to « fixed roein,
spagea, and agsume Lhat Ve inpol W {L £ ang o wif. wavas i : N




in some way be senarated. [Either wave may be exnres ed ip i

Lime variable or the frequency variable,
=
P o { -1 ot "
Sy-(t) = J e y/(uu)duJ 3 \ 1
-
4 1ot +
Wiew) =2 e gt)de , (2

e

where the constants of vroportionality have been omitted, ITf & (L) 1

taken to be @ real variable, such as t4e magnitude of the clectromnnets

4 : .
field at some poirti, then the transform 90 (e)) smst satisfy the

Es
t ':i‘ E
Wilew) = % () (3
where % 1indicates complex conjigate.
We assume that the outrut wave of a rarticular fremency is related
to the inout wave of the same frecuency by the relation
+ - :
(ipu.u) = S(w) SU(Q)) " (L)

where S(w ) is a complex number, of absolute magnitude no greater than

Gri

From Eqs. (3) and (4), S{w) is defined for nezative frequencies by
e
S(=e) = 5 ()

'Let the Fourier transform of 8(cu) be S(t)3; thus we have

.‘_x:,
o ot
Gilew } o e s{t)dt (6)
-0
Then, taking the Fourier GLransform of the rusntiti in Bg. (L), we Fiad
P {-
l._l,j U ’) - \ !

conditia:
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. 2 ‘e 3 . = -
where a is a positive number. Uince f{w) 1is analytic, we ruyv apaly

Uanchy ‘s theore teo evaluite such an intesral as

J

1 - . dew £l ) (10)

ot (oJ

\
\v
3 ? /:\ A m =5
-w’ (@) b’

If we assume from some vhysical argument that f(w2) on the real axis
increasos no fister than linearly with o as [w[--300 , then the
theorem of Titchmarsh teils us that the contribution from the semicircle

X vanishes as the radius R approaches infinity. Let 1(e2) on the real
axis bhe given by

flew) = alw)+ iblw) (11)
where afw ) and b(wo) are real. Then if fw) satisfies Zo. (5),

3((.-&)) -~ C\(-:Ln)) »

(12)
blw) = ~b(=c)
Lf we assume flco) has no poles on the real axis, then v carrris
out. the integral, Y“q. (10), and wsing Lhe symmetry oolations, Lg. (Ld), we
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or

S(t) =0 when t £ 0 ()

Thus the recaction function 6(w?) is the Fourier transform of a [unction
that vanishes for negative values of the argument. ‘Je call such 1 function

2 causal function.

il. Dispersion helation for a Causal Function

Let a function of freguency f(w) be given by

3 J

it
flew) = S & ft)dt . (%)
0

Though f(w) has been defined only Tor real values of the frequency,
Bg. (9) may be used to define f(ews) for connlex values of «wJ . In the
region above the rzal axis in the complex <o plane, the exponentisal eiLUL
will have magnitude smaller than one, since t 1s pesitive. Therefore it
is reasonable to expect that f(«2) will have some sort of converzence

property as the imaginary part of <2 becomes large, In fact a theorem

1
given in Titechmarsh states that if the integral on the real axis,

E. C, Titchmarsh, Theory of Fourier Intesrals, Oxford, Clarendon Press,

2nd ed,, 1948, p. 128,

oo

1 2
1
§ clcu/.f(w)] - M,
LS
R
is finite, then f£(w) given by Eq. (9) is analytic in the antire rerion

above the real axis, and the line integral

&
v
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a(w?) - a(0) =

p de bl ) i (13,

2 o
-
WJ 0 w (Q‘)Z = ¥ )

where P indicates the rrineipal part of the integral, This is :n exarple

of a dispersion relation,

III. Causality Hestrictions on the Complex liefractive Index of 1 Homoseneo!s

Isotropic Medium

We shall illustrate with the physical example of lisht traveling
through a homogeneous isotropic medium of complex index of refractisn., For
simplicity we neglect the quantum niture and the polarization of the light,
and treat the radiation as a classical neutral scalar field.

In actual practice, in order to semarate the inmut wave fro~ the
output wave, we must consider more than one voint in s ace, If the lirht
wave consists of a plane wave nropagating in the positive X dirsction,
then the amplitude of this wave neasured ot two different points, % = 0O
and x =z x, > 0, may be considered the input and outnut, resvectively,

i
i

wave direction —>

Let the amplitude at x = O (dinrut wave) be yiven by
o St

i

= i -1_(111...‘
ACYRE OV § ¢ Ye T dkw)

Phen the amplitude at. x - x, (cutrut wave) is 2iven by
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"
(5 =
= - ~lewty + ik(w)x,
UL () = W(tp) = (711 (w)e ° dw
P ' (15)
)
where k{w») 1is a complex propagation vector. If we defins a comnlex
dispersion function f£(w) by
f) = klw) -w/e (1)
then f(u>) is relited Lo the real refractive index n(w) and real
linear absorvtinn coefficient ¢ («2) of the nodium by
flio) = w[n(w) - 1] Jetid (w)/2 (17)
We define & new variable T by.

Equation (15), written in terms of T and ff{w), bzcomes

oy

~iwdT 4+ if(w )xo

l})-‘—(’l') - 5 Vju(w)e deo , (19)

Thus the Fourier transform of k}) (T) is equal to

if(w )x,

N i .
c//(w) > ()U {(w)e 3 (20)

s0 that the reaction functicn for this exarmple is
if(ew)x, ‘
S(UJ) = € © (21)

Frowm the Fourier transform of 3S(w2) and !!9’ (), Ba. (19) becores

L)
lj+‘ y \ | \ @ S
('-,, (1) = \ di \ iba) BlE = & (.:,. J
/ a B ,i y
The causal principle st-bLes that ¢ wave carnot Lravel from O o X,

faster than Lhi
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S(T ~ ¢3) = S(t&, - Xo/e = ty) = O when Tty ¢ 0O,
. _ (23)
Tharefore S} is a causal functicn,
# if(a)x,
Since S(w) = e depends on the distance, the vsaful

disnersion relation in this case is an integral relation involving real and
imaginary parts of - f{ew). If S{t) satisfies Eq. (5), then flc) must
setisfy

fw) = -f (<) . (2)

By using this relation, and the boundedness of 35{xJ) {n the upper half

plane, one may show from complex variable theory that n(i) 1is given by

e
fw') =1 o @ / cL(d W, (25)
7’ A L

which is the familiar relation between the real index of refraction and

the absorption eoefficient.

IV, Dispersion Relstions for a Forward-Scattering Amplitude

In this section we sketch‘the connect.ion belween causality and
dispersion for forward scattering,

The seattering of a neutral particle in the forward directicon ia
somewhat similar o the vroblem of bhe‘wlane wave in the homcgeneons
refracting medivm. In the scattering problem that we consider, however,
vhe interaction is limited to a finite region of space, and the ebaervaiions
are made at distances large compared with the size of the interaction repgior

For an elastic process we may write schematically

e /
WwE) = s(E) ¥ (E) , {26)
I i /3 e .
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i ‘\\:
Dost) = DEO) 2 __“_{? P di [ (2] I (32)
f 2 2,
27 0 (7 = w )

This equation applies to the coherent forward-seattering amplitude for

scattering of photons from protens or electrons.
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where S(E) is the element of the secattering matrix correspending Lo

coherent, elastic scattering in the forward direction. (Here, the initial

and final states are described by the same sets of quantum numbers,} We

are interested in the corresponding element of the reaction matrix defined by
T™E) = S{(E) =1 . (27)

2ik
Thavquantity S{E) may usually be defined for negative frequencics in such
a way that S(E) is a causal function. Let T(E} be written in teorms of

its real and imaginary parts,
T(E) = D(E)+ iA(E) . (28)
Then, for the scattering of neutral particles, it may usually be shown that

D{E) D(=-E) ,

"A(“’E) o (2‘;;

A(E)

The imaginary part of the amplitude, A(E), is related to the total cross

gection for all final states by the ralation [Eq, (14) of Leeturs SJ
A(E) = @;Uuﬁ)o (30}

Then, if gg; and D(E)/k are bounded as functions of real energy,
causality may be used to prove ths analytiecity and boundedness of T(E)

in the upper half plane, and a dispersion relation may be derived., If the
mass of the scattered particle is zero the dispersion relation may bs

written in the form simiiar to Eq. (13), i.e.,

s

2 4 - o

Dleo') - D(0) = 2 ¢wd Py deo _ Aay) o, {31)
77 - i
a 2 =y )

or, by Eq. (30),



