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Y. Principal Assumptions Necessary for a Disversion Relation

A dispersion relation rélates a dispersive process to an absorptive
process. In an elastic scattering problem a dispersion relation is an
integral relation between the real and imaginary parts of the scattering
amplitude. We will denote these parts by D and A, i.e., T =D ¢=iA,
vhere T 1is the scattering amplitude and D and A are real. The
symbol A 1s used because the imaginary part of T is related %o the
absorption cross section.

An example of a dispersion relation, which is valid for the
eoherent amplitude for the forward scattering of gamma rays from nucleons,

or for the forward amplitude for nucleon-neutral pion scattering, is

O
) |
Dleo) - D() = 2 kop ) dew o9 AMed) (13
g 022 - k)

where k, w2, and /u, are the momentum, energy, and mass cf the
scatiered particle in the laboratory system, and the symhol P denotes
that the pfincipal part of the integral is to be taken. The constants
-h_ and ¢ are taken to be equal to 1.

The derivation of this equation was disecussed in Lecture 7. The
prineipal assumptions necessary to this derivation are:

1. Causality

The essential assumption on which dispersion relations are based
is that the outgoing wave at any time is determined by the incoming wave
at preceding times, In a relativistic theory it 1s reouired that no

signal may propagate faster than the speed of light in a va:zuunm,
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2. Convergence ab High Energy

In order for a dispersion relation to be valid, the scattering
amplitude must not diverge togﬁpadly at high energies. For example, the

existence of the integral 5T(cu)/&j2

12 d¢e) , where ¢ ls some
positive energy, is sufficient for the validity of Eq. (1). Sinee, for
forward seattering, A(w) 4s related to the total cross section by the

equation

M) = kawkey

. a0 . 2 :
the above condition recuires that the integralch [cy%gg)/hgi] de? exist.
g .

" 3. Symmetry Property with Resvect to a Change in Sign of the Energy

In order to derive a simple disversion relation, which inveolves
only pogitive energies, one needs a simole symmetry property for T,
* 3%
either T(-ws3) = T (w) or T(-ew) = =T Qmé). Eouation (1) corresponds

%
to the property T(-¢J) = T (W) . If TkJ) 1is Fourier analyzed, .
: o
=3/2 F iwt
() = (24) e T(t)ar (2)
<O

then the above two symmeiry properties correspord to the cases in which
T(t) is either real or pure imagainary. In quantum field theory this
corresponds to the recuirement that the scattered particles transform

into themsélves under charge conjugation. Gamma rays and neutral pions
do transform into themselves under charge conhgation, but 77?' and ]V°

mesons do not. In order to derive simple dispersicn equations for charged

pions, one must use the linear combinations T(l) = %¢¢{* STQ and
2 .
.T( ) - %?@ - 2{m s for these linear combinations do transform into themselves

(3)

under charge conjugation. The smplitude T satisfies Eg. (1).
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L. Assumptions Concerning the Interaction

In ordinary guantum mechanics. a dispersion formula may be derived
for the scattering of any particle fom a po‘x‘.enﬁ;:ial° In ouvantum field
theory dispersion relations h_ave been derived, so far, only for beson-
fermion scéttering s in whigh the interaction between fields ié assumed to
be of the contact type, that is, characterized by an interaction Hamiltonian

of the type

3.y
H = J’ dx ﬂ}?(x) %(X} )
where @o(x) is expressed in terms of the fermion field, and @u(x) 4s

expressed in terms of the boson field. An example is the well-known proton

interaction with the electromagnetic field,

A
+ - Ii-N
H « e S . j;dzx 9" (x)o(i L}J(x) Ai(x) s where A(x) i{s the electro-
i=1 :

.
magnetic field, \é!J the Dirac field, and a{ the well-known Dirac overator.
It is not known whether or not such scattering amplitudes as the neutron-

proton and proton-proton amplitudes satisfy dispersion formulas.

II. Reolation of D{«) and A(w) to Physical Quantities.

In order to apply Eq. (1) to Y -% or # =X scattering, we
nust intemret. D{ewr) and A{wW) in terms of physieal cuantities. The
- essential meaning of the forward scattering amplitude is that it is related
to the differential cross. section in the forward direction by the equation
ds-/dom = ! T ? . However, there are two spzcific vroblems which must

be discussed before Eg, (1) is applied. These problems are listed below.
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1. The Nonphysicgl Energy Region

If the scattered particle is a pion, or other finitg-mass particle,
the energy region 0<& W ¢ /a does not cofrespond to a physical vorocess,
for in this region the pion momentum k = (wz - /Muz)% is imaginary.

The. value of M(w) 4in this region must be defined by analytic continuation.
Ir ‘there are no bound states, however it can be shown that the quantity A(cs)
vanishes in the region 0 w (/.c.‘ This may be shown by exvanding Tleo)

in partial waves and making use of the fact that the scattering phase shift
£(k) 4is an odd function of k. Then &(k) 4is imaginary when k is

3213 "1/2ik is real.

imaginary, and T(W) =
If there exists a bound state of the system at some energy in the
region O {w { /u > M{w) will have a pele at this point, and this pole
will give rise io an added term in Eqg. (1). In pion-nucleon seattering,
the state of the real nucleon acts like a bound state and leads to an
additive term in the _dispersio.ﬁ relation. Tﬁis term may be estimated from
neson theory. | |
Since this bound-state term i‘s:- the only term entering into the

nucleon-neutral pion dispersion relation in this energy region, we may

rewrite Eq. (1), for this case,
o0

, \ ' |
D(C.r..)) - D( L) = g}gg Pj desd A(wn) 4= F(&,W} » (3)
7 v ) K 2(k0? - K°).

where [¥(w) represents the contribution from:the real nucleon stats.

2, Relation between A{w) and the Total Cross Section

It was shown in Lecture 5 that , 1f the spins of the particles may
be neglected, the imaginary part of the forward scatiering amplitude is
related to the total cross section by the relation

Mw) = W)y ()
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In pion-nucleon seattering there may be no spin flip for forward seattering,
and so Eq. (4) may be used direetly. However, for gamra ray-nucleon
scattering, there may be spin flio for forward seattering, because of the
spin of the vhoton. The z’ - N forward scattering amovlitude may be

written

- -3
+ ifz(w)ﬁ".e x &

L4 ] g [ o

i

where 31 and 73{ are the polarization vectors of the initial and final
photons. The derivation of Eq. (4) makes use of the fact that the forward

amplitude is a djiagonal element of_the entire T matrix, and thus implies

no spin flip. Thus in this case it is fy(«s) which is related by Eq. (4)
to the total cross section <$5, wirich here denotes the total cross section
for unpolarized initial particles. Using Ea. (L) for the X - N

amplitude fl(uu), we may write the dispersion relation in the form

Re "-f‘l(w)at’l(o)] . o P g dew' &ple0’) (5)
. 2 9 (wuz - wz)

The amplitude rl(o) may be shown to be (ez/sz), where M is the mass
of the scatterer. The dispersion relation and Eq. (4) allow the forward
elastic seattering amplitude to be completely determined f&om a knowledge

of the total cross section at all energies.

III. Difference between Cases of Strong and Weak Interaction

The principal use of the dispersion formula is ouite different in
the two cases, gamma-nucleon seattering, and pion-nucleon scattering,
because the first interaction is weak and the second interaction is strong.
We first consider the weak interaction case. At energies above the threshold

for the photoproduction of pions from nucleons,; the production cross section,
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which is proportional to ez/ﬁc s is much larger than the elastie ¥ =N
scattering cross section, which is proportional te (32/'56)20 Therefore,
if Eq. (5) is used to investigate Y - N seattering in the erergy region
5C to 200 Mev, the elastic scattering cross section may be neglected in
computing the integral, and Egs. (4) and (5) allow a determination of the
elastic scattering amplitude from a knowledge of a different rarsical
process, photomeson production.

If T(w) is expanded in terms of spherical waves, the weak
interaction corresponds to small phase shifts. Expanding T(w) for a
particular spherical wave in powers of the phase shift, and keeping only
the lowest term, we obtain

216 -1

W) = e = Slw) . (A)

2ik k

Therefore, in .this approximation, the real part of T c¢orresponds to the
real part of §(W), and the imaginary part of T(w) corresponds to‘the
imaginary part of & . Below the photoproduction threshold, only elastic
gcattering is possible, and S(w) is ;real. Thus, in this weak interaction
approximation, T(cw) is real also., Above photovreduction threshold, both
§ (@) and T(w) are complex. It may be seen alse from Eq. (4) that
the imaginary part of T(w) vanishes below the photopion production »
threshold, if the elastie scattering total cross section is ignored.

For the pion-nucleon problem the elastic scattering is strong, and
cannot be neglected. The dispersion relations may be written in a simple
form, however, if it is assumed that multiple meson production is neglected,
and only the elastic process # # N —y ¥+ N is imﬁortant. In a charge~
indevendent theory, neglecting inelastic processes is equivalent to the

statement that the phase shifts corresponding to the different wvalues of
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ocrbital anguler momentum, total angular momentum, and total isotoonic spin
are real., Then the real and imaginary parts of the seattering amplitude

for a wave of given f » J, and T may be written in terms of the real

phase ghifts &'f 5T H

D = cop & sin8 = gin 2§
{0 F == .
. 2 (7)

8

Am sinzé; o

k
The dispersion relations now become nonl;near integral equations for the
phase shifts. These eaquations do not have unique solutions, but they may
be used to indicate certain features of the variation of ovhase shifts with
energy. In order Lo write a very simple eguation that still makes some
sense, we consider an energy region in the neighborhood of ﬁhe ﬂ / = 1,
J=3/2, T=3/2 pion-nucleon scattering resonance. We consider the
digpersion relatioﬁ for the amplitude ‘I'(l) = T(ﬂf- (=) » expand in
spherical waves, neglect all waves except the [ =1, §=3/2,7T=3/2
wave, and neglect tsrms of order ( /M/M), where M is the nucleon mass.
The contribution from the real nucleon state is of order (/UL/M) in this

case, and therefore is neglected. The resulting eouation is

[ e
‘ 3 v
sng (ew) = QkB P gdk“ 1 &inz g (e) (8)
33 7,9 - y 2 ) 33 ° ?
' E0 k“ hd k kgz

The right side may be written in terms of the total cross section by the
‘ 20,2

relation J° = 8% sin é)/k » where the factor 8 is characteristic

of the particular values of j and K . involved. Egq, (8) is an

approximation, but it indicates correctly the essential features of the
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phase shift 833 in the neighborheod of the resonange., Sinee the

reszenance is rather sharply peaked, i.e.,

T

W —p
thus, one can see from the energy denominator (k'2 = kz) that sin 2 4533(6«.‘}
- 48 positive when & is lower than the energy of the resonance, and
8in 2 '%3((4)) is negati\?e vhen &2 is greater tha’m the energy of the

resonance, Thus (cw) must go through 90@ somewhere in the neighborhc.d

833

of the resemance peak,




