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DISPERSION RELATIONS FOR SCATTERING PROBLEVB 

R. H. Capns 

l-1arch 20, 1956 

. lo Principal Assumptions Necessary for a Di~ersion Relation 

A dispersion relation relates a dispersive process to an absorptive 

process. In an elastic scattering problem a dispersion relation is an 

integral relation between the real and imaginar,r parts of the scattering 

amplitude. We will denote these parts by D and A , io e., T ::;; D f' iA, 

Where T is the scattering amplitude and D and A are real. The 

$.YIDbol A is used because·the imaginary part of T is related to the 

absorption cross section. 

An example of a dispersion relation9 which is valid for the 

coherent amplitude for the forward scattering of gamma rays from nucleons, 

or for.the forward amplitude for nucleon=neutral pion flcattering, is 

2 rdu/ w~ A!oJ) D(w) = D(f-) = 2 k p (1) 
1f 9 

k92(k02 
2-. 

0 = k ) 

where k, u..;, and ?- are the momentum, energy, and mass of the 

scattered particle in the laboratory system, and the symbol P denotes 

that the principal part of the integral is to be taken. The constants 

~h and e are taken to be equal to 1. 

The derivation of this equation was discussed in Lecture?. The 

principal assumptions necessary to this derivation are: 

l. _causalitz 

The essential assumption on which dispersion relations are based 

is that the outgoing wave at any time is determined by the incoming \'lave 

at preceding timeso In a relativistic theory it is reouired that no 

signal m..~y propagate faster than the speed of light in a ?a ;.!Utun. 
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2. Convergenee at High P.nergy 

In order for a dispersion relation to be valid, the scattering 

amplitude must not diverge too badly at high energies. For example» the 
. 0.0 

existence of tho integral ~ j T(w)/«•
2 12 

d(A) , where 0( is some 

positive energy~ is sufficient for the validity of Eq. (1). Since, for 

for~ard scattering8 A(~) is related to the total cross section b,y the 

equation 

A(W) , 
Qll() • l 

the above conditi@n ·requires that the integral J [ c;(w )/w} d1',p.) exist. 
di;{ 

J. SYi1J!et:ry Proper-ty wil_h Resnect to a Change in SiWt of the Energy 

In order to derive a simple disnersion relation, which involves 

only poaitive energies, one needs a simnle s~1etr,y property for T, 

* * either T(=~) : T (~) or T(=~) ~ =T (~). Eaua.tion (1) cor~esponds 
~~ 

to the property T(~w) : T ("'-J) • If T(w) is Fourier analyzed, . 
~ 

~3/21 W»t 
T(w) :;; (2f/) e T(t)dt 

-co 

then the above two s.ymmetry properties correspond to the cases in which 

T(t) is either real or pure imagainary. In quantum field theory this 

corre3ponds to the reauirement that the scattered particles transform 

into themselves under charge conjugation. Gamma rays and neutral pions 

do transform into themselves under charge corijlgation, but 1/t- and 11~ 

(2) 

mesons· do not. In order to derive simple dispersion equations for charged 

pions, one must use the l~near ~Combinations 'r (l) :: 't.x-+ T, = and 
(2) 71 ;f 

T - 'r~ = T • for these linear (:ombinationa do transform into themaeh~es 
= w. 11= ., 

j (1) i ( ) under charge con ugat.ion. 'l'he a.mplitude T sat sfies Eq. 1 o 
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!±:,_ Assumptions Concerning the Interaction 

In ordinar,y quantum mechanics a dispersion formula may be derived 

for the scattering of any particle :ftom a potential. In auantum field 

theory dispersion relations have been derived, so far, only for boson= 

fermion scattering, in which the interaction between fields is assumed to 

be of the contact type, that is, characteri~ed b,y an interaction Hamiltonian 

of the type 

where ~F(x) is expressed in terms of the fermion field, and ¢8(x) is 

expressed in terms of the boson field. An ex~nple is the well=known proton 

interaction with the electromagnetic field, 

4 5 3 H Q e ') '.. d x 
i;;;l 

+ ~ .,..\. 
~ (x)o(1 ~x) A1(x) » where A(x) is the electro-

..,.), 

magnetic field 9 'f' the Dirac field, and o( the tiell~-known Dirac operatoro 

It is not known whether or not such scattering amplitudes as the neutron-

proton and proton=proton amplitudes satisfy dispersion formulas. 

~Relation of D(U)) and A(~) to Physical Quantities. 

In order to apply Eqo (1) to ?{ = N or 11 ~ N scattering 9 we 

must interoret D(w) and A(w) in .terms of physical auantities. The 

. essential meaning of the forward scattering amplitude is that it is related 

t,o the differential cross section in the forward direction by the equation 
2 

de>/dCL- ~ I T j • However, there are two spacific nroblems which must 

be discussed before Eqo (1.') is applied. These problems are listed belou. 
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lo The Nonphysical Energ.r Region 

If the scattered particle is a pion, or ~ther finite-mass particle, 

the energy region 0 4 w 4.)1- does not correspond to a physical nrocess, 

for in this region the pion momentum k = (w2 
- fA-2)~ is imaginary. 

The. value of M(w) in this region must be defined by analytic continuation. 

If there are no bound states, however it can be shown that the quantity A(v1) 

vanishes in the re~ion 0 t:.. w <}'--• · This may be shown by exoanding. T(w) 

in partial waves and making use of the fact that the scattering phase shift 

~ (k) is an odd function of k. Then 5 (k) is imaginary 1'Jhen k is 

imaginary, and T(W) :g e2iS -l/2ik is realo 

If there exists a bound state of the system at some energy in the 

region 0 <. w ( .f- , M(w) will have a pole at this point, and this pole 

will give rise to an added term in Eq. (1). In pion=nucleon scattering, 

the state of the real nucleon acts like a bound state and leads to an 

additive term in the dispersion relation~ This term may be estimated from 

meson theory. 

Since this bound=state term is the only term entering into the 

nucleon-neutral pion dispersion relation in this energy region, 111e may 

where r (w) represents the contribution from:the real nucleon state. 

~ Relation between A(~} and the Total Cross Section 

(3) 

It was shown in Lecture 5 that, if the spins of the particles may 

be neglected, the imaginary part of the forward scattering amplitude is 

related to the total cross section by the relation 

A(W) ~ (k/411")\!"'T (4) 
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In pion~nucleon scattering there may be no spin fliP for forward scattering& 

and so Eqe (4) may be used directly. However, for gamrr.a ray-nucleon 

scattering, there may be spin tlin for forward scattering, because of the 

spin of the photon. The 7f - N forward scattering amnlitudtt may be 

written 

'l'(w) = r
1
(w) "3 • o 1' it2(w)G" .. '3 

= t 1 t 

where 8\ and flr are the polarization vectors of the initial and final 

photons. The derivation of Eq. (4) makes use of the fact thut the forward 

amplitude is a diagonal element of the entire T matrix, and thus implies 

no spin flipo Thus in this case it is r1(~) which, is related qy Eqo (4) 

to the total cross section <ST, w~ich here denotes the total cross sectie~ 

tor unpolarized initial particles. Using Eoo (4) for the 7f- N 

amplitude r1(~). we may write the dispersion relation in the form 

2 = w p 
;.;7 r 

0 

dwr. (\)T(W1') 

2 2 
(w1' - w) 

(5) 

2Ju_2 The amplitude r1(o) ~be shown to be (e 1~ ), where M is the mass 

of the scatterero The dispersion relati@n and Eqo {4) allow the forward 

etasti~ scattering amplitude to be completely determined from a knowledge 

cf the total cross section at all energieso 

IIIo Difference between Cases of Strong and Weak Interaction 

The principal use of the dispersion fonnula is ouite different in 

the two cases, gamma=nucleon scattering~ and pion-nucleon scattering, 

because the first interaction i.s weak and the set~;ond interaction is strongo 

We first consider the weak interaction case. At energies above the threshold 

for the photoproduction of pions from nucleons, the production cross section~ 
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which is proportional to e2/il~ 1 is much larger than the elastic f ... N 
2 2 

scattering cross section, which is proportional to (e /'lie) o Therefore9 

if Eq. (5) is used to investigate )( - N scattering in the e~ergy region 

50 to 200 Mev~ the elastia scattering cross section may be neglected in 

computing the integral, and Eqso (4) and (5) allow a determination of the 

elastic scattering amplitude from a knowledge or a different ph~sical 

process, photomeson production~ 

It T(W) is expanded in terms or spherical waves, the weak 

interaction corresponds to small -phase shiftso Expanding T(w) for a 

particular spherical wave in powers of the phase shift 1 and keeping only 

the lowest term8 we obtain 

2i' ~ 1 
T(W) : ~e __ _ 

2ik 
:: ~(w) 

k 

(A) 

Therefore, in this approximation» the real part of T corresponds to the 

real part of §(w), and the imaginary oart of T((A.)) corresoonds to the 

imaginary part of 8 o Below the phot.oproduction threshold, only elastic 

scattering is possible, and & (W) is real. Thus, in this weak interaction 

approximation, T(~) is real also~ Above photonroduction threshold, both 

S (w) and T(w) are complex. It may be seen also from Eqo (4) that 

the imaginary part of T(W) vanishes below the photo-pion production 

threshold, if the elastic scattering total cross section is ignored. 

For the pion-nucleon problem the elastic scattering is strong, and 

cannot be neglectedo The dispersion relations may be written in a simple 

for.m, however, ~ it is assumed that multiple me~on production is neglected, 

and only the elasti~ process 1l-t N ·-'11l '#'" N is important. In a charge-

indeoendent theor,y, rtcglecting inelastic oro~esses is equivalent to the 

statement that the phase shifts corresponding to the different values of 
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orbital angular mom~ntum, total angular momentum9 and total :l.sotonic tl'pin 

are real. Then the real and imaginary parts of the scatte~lng amplitude 

for a wave of given .R 8 j, and T may be written in tenns of the real 

phase shift.s (;£ jT 

DijT = «:ODS sin 8_ - ein 2& - "" 
k ·a 

AJ{Jr 2~ 
"" sin · 0 = 

k 

(7) 

The dispersion relations now become nonlinear integral equations for the 

phase shiftso These equations do not have unique solutions~ but they may 

be used to indicate certain features or the variation of nhase shifts with 

energyo In order to write a very simple equation that still makes some 

sense, we consider an energy region in the neighborhood of the J?': 1 9 

j :; 3/2 , T :: 3/2 pion-nucleon scattering resonance. We consider the 

dispersion relation for the amplitude T(l):: T(+).,_ T(..,), expand in 

spherical waves, neglect all waves except the ~ ~ 1, j = 3/2, T : 3/2 

wave, and neglect terms of order ~), where M is the nucleon mass. 

The contribution from the real nucleon state is of order ~M) in this 

case, and therefore is neglectedo The resulting eouation is 

= ~ p 
71 

l ain
2 b3l(W9 ) 

kg2 

0 (8) 

The right side ~ be ~~tten in terms of the total cress section by the 
2(> 2 

relation 0~ : 8 11" :dn a /k , where the factor 8 is characteristic 

of the particular values of j and /(. involved. Eqo (8) is an 

approximation. 11 but it indicates correctly the essential features of the 
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phase shift ~33 in the neighborhood of the resonance. Since the 

resonance is rather sharply peaked, ioeG, 

2 2 ~ 
thus, one can see from the energy denominator (k' = k ) that sin 2 o33 (G~t.'~} 

· is positive when GV is lower than the energy of the resonance, and 

. sin 2 ~) (w) is negative when W is greater than the energy of the 

resonanceo Thus 8
33

(w) must go through 90° somewhere in the neighb~rhc..d 

of the resonance peako 


