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ABSTRACT

The contribution to the Fokker-Planck equation for the distribution
function for gases, due to particle-particle interactions in which the
fundamental two-body force obeys an inverse square law, is investigated.
The coefficients in the equation, <4}JZ> (the average change in velocity
in a short time) and @ Av), are obtained using the collision cross
sections for such forces. These coefficients are obtained in terms of
two fundamental integrals which are depevndent on the distribution function
itself. The transformation of the equation to polar coordinates in a case

of axial symmetry is carried out. By expanding the distribution function

" in Legendre functions of the angle the equation is cast into the form of

an infinite set of one dimensional coupled nonlinear integro-differential
equations. If the distribution function is approximated by a finite series,
the resultant Fokker-Planck equation may be treated numerically using

a computing machine. ‘Keepmg only one or two terms in the series
corresponds to the appro:zimatiéns of Chandrasekhar, and Cohen, Spitzer

and McRoutly, respectively.
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I. INTRODUCTION

In dealing with the nonequilibrium properties of systems whose
particles obey an inverse-square law of interaction, it is convenient to
make use of the fact that under most circumstances small-angle collisions
are much more important than collisions resulting in large momentum

! This leads to the method often used for treating such systems

changes.
in which one expands the collision integrand of the Boltzmann equation in
powers of the momentum change per collision, -

A more generally valid approach to the problem of treating changes
in a distribution function resulting from frequently occurring 'events,
each of which produces a small change in the momentum of a particle, is
to use the Fokker-Planck equation, which has been discussed by Chandrasekhar. 2
He has used the formalism of this equation to evaluate the collision terms
of the Boltzmann equation under the assumptions that (a) the events produc-

"ing changes in particle momenta aré two-body interactions described by
the associated differential scattering cross sections, and (b) that the dis-
tribution function is isotropic in space and velocity space. Spitzer and
collaboratorssf 4 have extended this calculation to the case in which the
distribution function is of the form fm) + uf(l), where f(o) and f(l) are
isotropic and p is the direction cosine between the particle trajectory and

some preferred direction in space, and f‘l) is assumed to be small.

This work was done under the auspices of the U, S. Atomic Energy
Commission.
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" The quantity (4
| -ﬂ?duced by conisim\% and it is this term with which we are concerned.

’_‘ ','fSiuce the interacticns taka place between molecules thin the same emall
S e region in space, we need only consider the velocity dependence of the dis-
L] tribation function in evalﬂatiug this term. o . v o
o The Fpkker -Planck equatien, which is simply a conservation equation.

. - gives the time rate of change of £ due to ceuisions as

where o is the componem of pa.rticig: velecity la Carteaian coordinates
~and <Av“> is the average increment per uunit time of the p-th eomponene
o oof velacxty of a molecule of type a. The derivation of this equation rests
. on'the approximation that small changes m v* are the most probable and
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It is the purpose of this paper to preaent the mechanice of two-

o "‘bady comsiens in 2 somewhat simplified form. and to derive the Fokker-
v ,,Planck equatiou for an arbitrary distnbuﬂon function. From this general

= ';r‘jequation such special cases as thoge of Chandrasekhar and Spitzer may be
: s eazily obtained. For more complex sltu.atieus the equation is suitable for
1 'Mtegratian by an electronic camputer. .

£

II F’OR.MULA.TION OF THE PRQBLEM

 The Boltzmann equation for the c!umge of the molecalar distribua

i tion !tmction is gwenby : _
YA of, Lu 0f [af)\ -
_.a + {;ﬂ 4+ F, : ( ) - M
A T ax" m avlt \Bt '

e ._,where £ is the number of malacules of type & per unit volume in the phase
R 'j.,'space ef cﬁnﬁguration and velocitv. abd F is an external force field. The

: 't A’R‘ ‘.-jsnmmatmn on repeated Greek indices is. mdqrstood in this paper, while
su.ma on Rom&g 1etters denoting molecular species are ‘explicitly indicated.

t.' " represents the change in the distribution function pro-

s | |
(-;) =_._§_ ( <Av“> )“/2 av"av"_ “(AV"AJ) o)

t
(2)
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that terms imrolving higher powers of Av“ cantnbute negligibly to

R A o '
B (%%) . In the next sectibn we give a more precia-e statement of the
AR O ['] : S, : . » ' :

apfn-o:dmatwn made here. - :
In calculating the averagc values (Av > and <Av“Av > we make the

L naual agsumption that changes in velocity v“ result from two-particle -

mteractions, or collisions during which -patial correlation effects (polar~
isation effects or multiple co’llmions) are unimyortant. Fox many sitba-
tiona this aasumption is believed to be juatiﬁed as is indicated by the

work of Chapman. Ferraro, and Persico, 1 and more recently, Gasl@rowicz, o

..}{gmman. and mddell 5 The expression for <Av* > becon‘xea

(Av“> 2_‘ dv'. £b(v “)[ana (u.muAv o ’v (3)

where u is the magnitude of the ‘relative velocity iv vp' l g (u) is
the diﬁerential scattering cross aection, {2 is the ocattering solid angle,

the scattering particle, and has been summed over all the species of
paruclea Similarly the average value <Avp' Av > a ie given by

<AV“ AV > ;g az [ﬂv# ib (V'“)[dm (u)u A V“A‘V | (4)

The difterential scattering croas sactien that we use in Eqs. (3) and
(4) is that for an inverge- square law of foree.

amb_
my ¥y

is the red\';éed mas'-s 0£ the colliding pér_ticlea
‘ and 8 is the scattering angle in the center»ef-mase eystem. :

" and Avv' is the change in v® resulting f.rom the. cﬂﬁision, The increment

o {Q) (24/4!&.‘&‘ ) (sin 9/2)"4 | | s ?‘5) SRINE
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L m:mvmxom or THE Eoumxon L -

We first dxscnes the kinematica of the collision between a molecuie
,,_.",‘ of type ‘a and velocity Y. aad a molecule of type b and velocaty v’ . G
'_,'I‘he relation between Y “the ve),oci;y x of the centeraof—mass, and. the
”relative velocity n = v .y is o ) o '

! - ‘.an V+ +mbu‘}~

-Avp"-:-' ._Au"'_@ . ) e
We fmd it convenient to 1ntroduce a local Gartesian coordinate
: . S N
e \/(u) +(u) S :
:md in which the relative veloci:y has components “L“’- The changea

'_in the compeneats of u, L produced by a collisioa are eae:ly calculated in :

e | :
| AQL; = 2u sin 6/2 cos 8/2 cos @ . 8) -

‘ 'Auiu3 = 2u aia 8/2 cos 6/2 sin Qs

A diagram of the scattering is shown in Pig. 1.

v-zu sm e/z

¢
. T .-
S ~ N
C g B
5 .
x
A
S
A
¢
o .



of the etder oi a Debye iength LD 5.
N 'loganthm in Eq (12) of
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Tﬁe changeé in th‘e-éo’rﬁpdnen‘ts of the relative velocity u in the fixed
_"v~_'coerdinate system are related te these changea 1n the local system by

(s &,)Au ﬁ.‘ - @

B 0‘
Au Au = (e "90' Hgv 580 ) Au AuL |
We can next catculate the change of relative velocity in the local

o 'ayatem for all collisions by mtegrating over the acattering angiee 6, ¢,
-.-'which will be denoted as follcwm - R .

{M’“‘p} i (dn u v #’ ey
Usmg Eqs. (S)and (8), we have - ~ o ‘

B

ki‘/dmne? , and a value for the

,!n.éZ- -lnncln(l/?.m " )(e“”/kn)'l ’ XD""}V
. m i ’ |

¢

o = . (4«@4/%;: )zn (2/8 ) » (12)
. ';.*_"I'he small- angie deﬂections corracpond to acatterings with very large ' -
'impact parameters and the dwergence arises from the long-range nature o
: of the Coulomb forces. The divergence is eliminated, however, when we .
“take into account the shielding that arises from the polarisatian of charge 3
}{‘aurrounding the scatterer ® This polarization screens the scattering '
‘fl_\"‘ particle and provides a namra.l ¢cutoff on the maximum impact parameber

Cm

. {AuLl}f:" e\ . sin 6/2 sin 6 a” o B (’l'l:)_ )
B . . “ o ‘iﬂ 8/2 : ' | 5;'-. "";""'[‘"’ :

- where we have. perfmrmed the in:e‘gr‘auon over §. The iategral &ivergé’é i
_‘:iogarithmieally at smail anglea. and we therefnte intraduce a cutofi at’



In this equatien kT is- propor:ianal to the average kinetic enm-gy, n ic

» 'i'he qnantity D, which is the ratxo of the Debye length XD to the claasicvv LA
: “diatance of closest approach {] /Z)muzle ) for two particlea of relative - o

; ve‘loc:ity u, in'most cases of mtereat will be a very large tmmber 80 that _

. 'uln D>> 1. From Eqs. {3), (5), and (8) cme can easily see that terma
A of higher order in av®, like (Avp AvY av > will not contain fa D, and.: E
' . that the neglect of these terms ia the Fokker—Punck equation is therefore
. ; "uetifiea The insensitivity of taDto the precise value of u. means that T
the argumem of the mgarithm as bettér dezemined than thia.

i The rema.ining integrations yield o e T R

Lo { L>a { ,L. a A .

>

P R T L2 ‘ 2 ) 4, 22 o
(Au g } =.0, (A“L ) (Au = léme /m u’ )ln D, (l4)
with all. cther secoﬁd order ternis zero (com;;ared to £n D). -

Using theee resuits ‘with Eqgs. (6), (7), and (9), we cad immadiately .
write down the integrals in the fixed coordinate system. ‘

‘ ;{m"}: —-{4304(11313)/& 6 ):u " (15)
{Av""AV} (4n‘hn13p‘m ){a*"’ “u"/(u)} o s

These eq\xatiod& can be aimplified bymtxng that u = [(v -v “) (v - vp)
89 that we hava . : - .

{ﬁvp} Ta—2 2 l-.; av"av ?
- a’o Bv“ |
' ‘ . (awe ln D/m )
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Finally, from Eqs. (3). (4), and (16), we obtam

<Av"'> Z [ dv f(v')%w } Hfa an
LRk (m"m) - ’1?“‘(3 g/@v“&v}y,) S ey
I where _ . . , - '
AR h (y_) mbf vcfb (vt) lv - vtl -1 _ -
g (x) Z dv' zb(y,) v-y . B
" It is mterestiag to note a formal aimilarity with potential theory,'
"';"”".w ; m +
| i@j_h‘ = (»az/av“av*‘)h = .4««2 _mbm" £,0)
. | b o »
| N } _ . (20)
% 9 ‘s -0 “/av"ev*’fav"'av") g=-8v) |
*i : Snbsntuting Eq. (18) into Eq (2), we obtain the Fekker Planck
equation for an arbitrary distributien function.
4':1-'-'..92 .
E "‘Z'.avi 8\" - a’ BV 8-;.
2

In the general caee this fourth-order, three-dimeansional, txme-de;;endent
anﬂ nonlinear partml differential equatiau seems quite difficult to handle. -
In many cases, however. there are simphﬁcatione which result when a.

-:l_: 'coordinate system is adepted that embodies the natural symmetries of a

.

- problem. For examp!e, in many problems there will be a preferred
- ‘direction in space, snch ab the direction of an external applied field, with

‘azimuthal symmetry about this direction. Polar coordinates seem especially

o auitable for such-a probiem
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Iv. TRANSFORMATION OF THE EQUATION

. : Although it is poesible to trausiorm Eq. (2 l) by a straightforwara

B ' .:{ ."_ &haﬁge of variablee, the pracedure is tedious aund nnneceuarily invelved..

' A much simpler and more direct procedure ie to write the equation ijna - L
». ':_ covariant form valid in any set of curvilinear coordiaates q R q y and q3, S
& '}g Let. the expree.sion for. diatance between two pamts whese conrdinatea o

differ by dq", dqZ, and aq3 be |
P | (ds)* v qv dq”, | , |
v‘,"-_where a’w is a metric tensor, and let a‘“" det a be the cofactar of
S ﬂ in thb matrix az= (a ). i. e., PLand™ By = 6* B, We observe that the
’_qnantitxes ¥ . ‘”""* <Av ¥y ana 8P g

'tranaiarm like a ceatravariaut veéctor and tensor reapectively betweem R, »
: h diiferent Cartesian coordinate systems The appropriate tensor exteasiqn T
s oi Eq (2) is therefore - ' L " Lo :

2.

(2?-)

| . . v
o /m ~th ) *7‘“" N R
o i

i where the c:ommas indicate covariant derivatives with respect to the q -

':i"vﬁ_..ln any Cartesian coordinate system Eq {22) has precisely the form of
'_" o Eq (Z) We can aow. write Eq (18) ina covariant iorm, -

'»”""iTh.e'two covariant Jde,rivativ'eu that appeat in Eq (23) can. be.icund ﬁom' .'J‘;@' T

R _ RY7O% - Cgaay
By, -,_-,éha/&qf_ 8 ur 8 g/aqm Bq {w .,} (exfaq ), (24) -
el o V' 1o . | .- S !
B . o - Where {Q ﬂ,} is a Chrietoffel eynib'ol of the secoad kind defined by RN
{ v }: [ . J 5 a"’(aaw/aq +8a Jaq aaw/a.q’.’)) @
T T The covarxant derivative €T “) u can be simply expressed -
o By« a2 /50" ,l/z By ae T ey
(fv'l'a ),p. a o (a/aq Y@ o f Ta, ), a=det (aw). (26)._, .



' and for (£8*Y).
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e

2 Y0 %/0a" 00" !/2 1)

. “v'
€8, ¢ *oa" wl/? e

AREIY

« P

f o _"’I'he writiﬁg of Eq (22) in arbitmry curvﬂinear coordinatea now becomas.v 4
a atralghtforward applicaticu of Eqs. {23), (24), (26). -and (2.7), in that -
order. : : S ‘ -

As an examp!e we can easﬂy write down tha equation in sphericai

o ‘golar coordinates in velacity spaee, ,assuming amimuthal symmetry about
' the 8 =10 aymmetry axis, 80O that we' hava i(v, a) wherc B = cos H.
. "-theae coordinates we have ' S S

-;d" ar? 4220 - Py (dlg) vl u)tcm

AT te _“22 = x%0 . D ’ | ,'833 s r “‘“ )

L aq A=f-_° i i ji

allan, a2 er2uoy?), WP e Pyl

aljgoi '#’ ,

BT R
o From Equ (23). (24). amd (2,6) we. abtain o
__artah o). 'raz a-e uah/aw. B AN N
L ."‘1.'2;-’?5])”a (a/ar)(tr ah /ar) +r“"(a/a;:.) [m - p. )ah /8;1]

(29)

| “The "seé‘dtjé-_rauk tensor SP¥ foilows in the same w'a.y:_

.: P

W(alsa ) [”2 "} fs"‘“’] e em
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s' = p2/0r? , s =xt0-3d [a 8/0u? + x4 (as/ar)

e T S . .““~._l_“f‘2)_ ,33’/&#].’

o8B - B 21 [r Bg/'j"
, *Usiug Eq (26) we calculate the second covariant dati\rative of (£ S*L v
ané can then write down Eq (22) 86 :

s l;'m-l(a f, /a t) -r”f (8—/8r)(§..r "ok /9”;«""“"2@‘/ »8"“)- [f‘:‘("h Mg,ah#f'“J'
- +(Zr) (az/ar e, r 5 3/“’ -

'f-(zzz)w_“(a.%/ou""){t { 21 w22 z/a:n

P

’ H,_?( n)(ag/ar) : Ml wz)(as/aﬂ)}}p

o~

+2 s»r (es/m”

- A

YRR . The equaticn that describea a system of particies interacting
o «_:,.according to an inveraa aquare law of force when there exiats an axis '
i+ of symmetry is. now obtained by combining Eqs. (1), (19), and (31) Thé

’,+@(z r2y (a/an - - p ue»-s/s.n ) - 2 (0g/s £ -

e S‘lz‘”-z( - )[a g/arap-: agk/;w".'v e
~»6s/8n} : | R BT

d w
ﬁ/ap ar) { - p ){08 g/ok 87 - 17 (38/5**)}}' R

.' ;'.“+ (Z rz) (8 /8“){ r*zp('l [.l. )(8 g/ap. ) + Zpr (8 g/ar) | ,

+m (hu 10 %a/p 8x) - 25" (M/WJ} | (3“

: _quantities h and g can be given in terms of two»dimensioual integraie, ?;7 o
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dwf M)A(W BQHL

-dWQWKPﬂQWQFW%ﬂL

. b .0.

w1th A and Q defmed in’ terms of the complete e111pt1c mtegrals K and

E as _follows

A v . e o

v +‘1Y'Z e (w s n"‘) @ -l

R o AR AN

/(u-u)(x-u ).

~v2+v‘2:,- 2vv"/(-l/‘- " )(1 Lt )

- fi >>}“ﬁ

_*4vv /(1 e ‘-u 4

- v"2 ~i~v'2 - 2 v v’ (p,p \/(l - H )y (1 ->l-"~.!'2) (33)

‘.The spat1a11y homogeneous two- d1men xonal time-dependent Eq. (31)is . -
, ' - .'Inot too complex for electromc dlgltal computers More.o‘ver, Eq. (31) "
) :’  fOrms a’ useful startmg pomt for developmg an approx1mate dlstr1but10n v
- B -functmon when axial symmetry ex1sts A method for redumng the Eq.
AT _3(31) to a coupled set of one- dlmensmnal nonhnear \mteg,rocufferenhal
f ﬂequatlons whlch can be trea.ted duite slmply numerxcally wﬂl be gwen.
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V REDUCTION OF THE FOKKER PLANCK EQUATION FOR AXIAL SYMMETR.Y "

L

" The eolution to Eq 1(31) can be expanded in a series of chendre
polynomiala' - 0 : :

) naO w ’ . - - "1

'-, _'Thia cxpansion provides an expansmu of the twe functiena h, (v. p) and
glv, ), which canbe obtained from Eq. (19) We first evaluate the -
K 'mtegral appeating in the’ deﬂnmon of h Qv, u) Let-.ua deﬁne .

AT pma® f gt a, @ e B, (w)[ v-v'l e
. ,, . Then, inaer.tin'gv ' : = : | B

|,,.v.|~- ‘,_” / ;;(v ‘v)'k‘_z
g ‘ ",inte Eq (35) we have , | o

.t‘ré

iy R . - o R A
o “where p'" =cos &, _ez),. u! = cos (v, .gz.).- and ¢ is the angle between
‘{;?71' e § 57 ‘ c “e. oL g . R

AT e the plang of v! and e | and the prlang,oiv)‘,‘g‘v a‘?‘d&z _’”\vg: have

ff’t."” P(»'w*dﬁr.&

o ?‘ - ' -ikv'p." 3 » : .
L 2wl e J (kv \/(l - p,ﬂ )(l p‘ ))P (B )dp . (37)
' Using a formula given by Wauou (12.. 14) we can £iaa1ly integrate this to

: Skew! ' : /‘\ . 7 S o
je P (“ )dl" 4¢ 2'“ (Zw/kv) (,‘i)' 'Pn(ﬂ i 2 ig(‘w') . (35)3

R0 g Z ‘“’MP W, (34) :

pnm)Agh)(v' “) = (Zﬂ'z) I[le an‘(a)(v')/é,kc - x k‘zpn{l.l") ‘36) N _"‘_
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If we write k- v = kv (up+ J(). - uz) (1 - u"z) cos y), where
= cos (v, sz) and y is the -angle between the plane of k, £, and v, £,
we can employ the same formula to integrate Eq. (36) with respect to’

k, obtaining

A B, )=

o o] 0

4 wj avivréa @) (v‘)j ak I, 4y ()3, . o)k Yvv) V2, (39)
0 0

- - The integral over k is found in Watson7 {13.42) also:

. V ‘ | 1 ) V< ﬂ+-z—
jmdkv‘u%aww“%(kv')k = (20 + 1) (—;,—;)

0

where v_ is the smaller of v, v'and v, is the greater. Thus the

final result is

v

2,8 v, W)= 4w 2o+ 17! U

nat2
dv? (Vn!t a, (3)(v|)
v ]

0
+ ® dv! ._v:l____r___am,(a) (v')} . (40’
(Vgl - . ¥
v

The expansion for ha (v, u) follows from Eqs. (19) and (35):

h, (v, b) =Z ;}; (m, +m)m, la Bl e @ - (41)
n=0 '

. The expansion for-g (v, u) can be found in the same way by first using

ik. . v
ly - vl =-u’2jgmk S

If we define
ik (v - X"‘) -4

pn(p)Bn(a’(v)sjgg'.an‘a’(wjdke‘“‘ " TR et (42)



]
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the same steps followed above give

Bn (a)(v) = ‘-,
00 o
2 ' - -3 -
21\’] dv' (v') a (a)(v')j dk Jn +% (kv} I +% (kv') k “{vv') 1/2.
: 0 70 : (43)
The k integral can be evaluated in terms of the hypergeometric
function ,F , (2, b; c; 2) (Reference 7, section 13.4) :
: V 31 n+1/2 n - 3/2 2 1-1
ko“%(kv)Jn,(%(kv')k =g V) vy " -g ) x
0 : 5 _
1 . 3 Ve ,
.X ZFl(n-z, -1,&4‘-2-,:;;2—)- (44)

The hypergeometric function appearing here is actually a polynomial,
and the result for B, (a) (v) is

: v o +2 » T
o @) = ax (402 —1"1U s ania,("')‘%‘z_‘_r(l R )>
: 0

) 2 ’
f dv"an(a’("') 'v:-’ 3| 1- == Y2 2\)]'
(v") i\ ana+3/2 (vY) /

v
(45)

The expansion for g (v, p) follows from Eq. (19) and (42):

[# o]
g {v, u)=;0 ; B (®) (vVIP (). © (46)

The procedure for obtaining an approximate~solution:to Eq:. (31)

is to retain terms in fa(v, #) to some order N,

Z

w7y a ®lwe g, (47)
. n=0
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: S « and ebtam the. correaponding e.xpansitms of :”ﬁf (v, p) and g, (v, y.), which
IR "_'_also are to order N. These expressione are now inserted in Eq. (31)

' ,and the reoult expreosed as a eeries in Legeudre pelyaomiala. Of use
: "»for t‘his pm'pose is- - '
| : {NP m -Z c,,.kf’k(m o SR I
where the C 24 % are given in Condon and Shortley 8 Assuming’ 'apatiaf' o
- ;homageneity, we find that the velocity- dependent term Va 1 / 8v. )

L ,of the ﬁaltzmann differentxal operator Eq. (1) can also be expanded in. EE

Legeadx'e polynomia.ls Equating cceiﬁcienta of Legeadre polynomials = |
- el the name order in the expansions of Eq (1) and (31), one now obtains
‘, a uyatem of coupled one-dimennional nonlinear integrodiﬂerential
equatlona
The two eimplest approximationa are the fcllowing' =
f‘(a) £ (v, W) in h,(v. W) and g(v, k) is isotropic and Eq. (31} is the equation
| _uf_’{:_,i."_‘given by Chandtaaekhar; (b) £ (v. Bl =a (v) +al(v)P (), and Eq. (31) is:
L the equation used by Spitzer and ccllaboratora. 34
o . Thie work was begun while the first two authora were at the
- :{'-‘Univusity of California Radiation Laboratory ‘




.. . J8- . UCRL-3375

. kmmmcﬁs

Ghapman and Cowling. Mathematical Theory of Nou«Uniform Gases, : ;

Cambridge Univeraity Preu. London. 2nd ed., 1952 Pp-. 178-179.

i‘\S Chandrasekhar. Reva Modern Phya. 15, 1(1943)

Cohen, Spitser, and McRoutly, Phys. Rev. 80, 230 (1950) A more
complete list. of references is given in this paper. o '
L. Spitzer and R. H&rm. Phys. Rev 89, 917 (1953) o

’ ;Gasiorowiez. Neuman, and Riddell Phys. Rcv 101 922 (1956)
" The cheice of a cuwff is discu“ed at. length in. Referance 3. , :
-.G. N. Watson, Theory of Beuel Functiaas. Gambridge Univeraity Press,

London, an ed., 1944.

. E. U. Condon and G. H. Shortley, Theory of Momic 5pectra, Gambridge

University Preas. I.nndon. 935. Section 9 7‘ o



