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ABSTRACT
The field theoretical derivation of dispersion relations for forward_
pion-nucleon scattering has been generalized to apply to the case of a
fixed finite momentum transfer. The generalization is facilitated by use of
the special Lorentz frame, in which the sum of the momenta of the initial
and final nucleons is gzero. In this reference system the relations between
dispersive and absorptive parts of the scattering amplitude are independent
of momentum transfer and are similar in form to the forward—angle relations.
At energies below the minimum energy necessafy to allow a particular

momentum transfer, the scattering amplitude has no direct physical meaning;

~ it is interpreted as an analytic continuation of the physical amplitude to

scattering angles corresponding to cos 8 £ -1. The resulting equations
are expressed in terms of the amplitudes for individual angular momenta
and are given in two forms, corresponding to the inclusion or neglect of

nucleon recoil.

#* :
This work was performed under the auspices of the U.S. Atomic Energy

Commission,
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DISPERSION RELATIONS FOR FINITE MOMENTUM-TRANSFER PION-NUCLEON SCATTERING

R. H. Capps and Gyo Takeda

1. INTRODUCTION

1,2,3 have investigated the consequences

Recently, many authors
of causality for boson-fermion scattering problems. The requirement of
causality in a scattering problem may be stated in the following manner:
If the scattered wave at a space-time point X1 t, 1is dependent on the
amplitude of the incoming wave at the point Xx,, t2 , then the time té
must be previous to t; , as observed from any Lorentz system. (Lorentz
systems where the direction of time is reversed must be excluded from
this definition, of course.) The Lorentz invariapce of this requirement
implies that the separation‘between the two points must be timelike; thus
causality requires that the wave does not proﬁagate with a speed exceeding
that of light in a vacuum, | In a field theory the condition may be imposed
that field amplitudes corresponding to points separated by a spacelike
interval must commute; this condition is equivalent to the requirement
that no aisturbance may propagate with a velocity greater than c.

Gell-Mann, Goldberger, and Ihirringl and Goldberger2 have shown
that the requirement of causality in a field theory may be used to derive
useful dispersion_relations for photon-nucleon scattering and pion-nucleon
scattering. These equations relate the-dispersive part D(eo) of the
forward amplitude for elaséic scattering to an energy integral of the
absorptive part A(w ). If use is made of the Well;known relation between
A(w) and the total cross section, i.e., A(W) = (k/uf)ch , the |
dispersion equations make possible the determination of the forward .

scattering amplitude from a knowledge of the total cross section at all
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energies. The equations essentially are equivalent to the classicéi v
dispersion relations of Kramers and Kronig.

It is reasonable‘to investigate whether or not the amplitude for
finite-angle scattering satisfies a simple dispersion relation. One might W
attempt to generalize the forward-scattering relations by considering the
energy dependence of the amplitude for a fixed, finite center-of-mass
scattering angle. There are two important difficulties with such a
procedure, however. First, such a finite-angle relation must depend on
the size of the scattering region. This difficulty is especially discairaging
in such problems as gamma-nucleon or pion-nucleon scattering, whefe there
is no definite boundary to the scattering region, and the extent of the
region is not too well known. The second difficulty has to do with the
fact that, as the energy of the bombarding particle varies, the energy of
the target particle in the center-of-mass system varies also, giving rise
to a complicated energy dependence of the scattering amplitude.

In this paper a generalization to finite angles is made by considering
the energy dependence of the scaﬁtering ampiitude for a fixed center-of-mass
value of the momentum transfer. This procedure overcomes the above-mentioned
difficulties. That a fixed moméntum—transfer dispersion relation is
independent of the size of the scattering region may be“seen most easily
in the scattering of a particle from a fixed potential of range a. In
this case'the quantity that satisfies a dispersion relation is
S exp [2 iak sin (3 8)] , where S 1is the scattering matrix, Hhk is
the momentum, and © is the scattering angle; If the momentum transfer,

2 k sin (% 8), is held constant as k is varied, the exponential factor
is constant and S satisfies a dispersion relation which is independent

of a. The second difficulty is overcome by expressing the scattering
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amplitude in a special Lorentz system, defined by the condition that the
injtial and final momenta of the target particle are equal and opposite.

If these momenta are held constant as the energy of the projectile varies,
clearly the térget particle energy remains constant. The difference between
the final and initial target momentum, i.e., the momentum transfer, is

equal to the momentum transfer in the center-of-mass system.

The method used in this derivation is based upon the method of
Goldberger,2 and the assumptions made concerning the high-eﬁergy convergence
of the scattering 'amplitude are identical to those in Reference 2. The
derivation is given for pion-nucleon scattering, though the method is
applicable to other boson-fermion scattering problems.

The advantages of a fixed momentum-transfer dispersion relation
over a fixed scattering-angle relation are partially nullified by an
important disadvantage; namely, a minimum pion kinetie energy is necessary
in order to transfer a specific amount of momentum to the nucleon. The
scattering amplitﬁde corresponding to energies less than this minimum
energy must be determined by an analytic continuation process, if the
dispersion relations are to be useful. In order to make this continuation,
and in order to express the ééattering amplitude in terms of convenient
quantities, the amplitude is expanded in terms of waves of differeﬁt
orbital angular momenta. The analytic continuation into the nonphysical
region is then made by the simple process of continuing the Legendré
polynomials into the region cos 8 € -1, It has been pointed out by

Symanzik5

that this continuation procedure is not rigorous in all cases.
It is hoped, however, that the error will be unimportant in the low-energy

applications of the relations.
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The results express the dispersive part of the amplitude for a
particular partial wave in terms of a sum over.angular momenta of energy
integrals of the absorptive parts of the various partial-wave amplitudes.
The form of the dispersion relation depends on the asymptotic behavior of

the scattering amplitude at high energies.

R
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2. THE CAUSAL SCATTERING AMPLITUDE

Dispersion relationé for scattering problems depend upon the
principle that no disturbance may propagate with a veldcity greater than
that of light in a vacuum. Goldberger? has made use of this causal principle
in giving a field theoreticai derivation of dispersion relations for pion-
nucleon scattering in the forward directioﬁ; “In thié‘paper the method of
Goldberger is generalized and applied to scattering at finite angles.

We shall consider a pion—nuclebn scéttering event6 in whiéh a pion
of four-momentum k is'scattered into a state k' , the nucleon ﬁndergoing
a transition frém a state bf>momentum Ap to a state p!'. The Greek sub-
scripts ¢ and @' are used to denote the charge states of fohe initial
and final pion. The élement of the scéttering matrix corfesponding to this

event may be written in the form

Syeq (65 5 ) = 3T (/) x

. *
del,.,.dxn igdp,, 3/ (k') P [H(xl),-m}{(xn)] 2g0 (k).‘ ¢p} . (2.1)
The quantity P [H(xl), ceo H(xﬁ)] denotes the time-ordered product of the
operators H(xi), which represent the interaction Hamiltonian density at

the space-time points x;. The symbol ¢p or p! represents a state

of the nucleon with momentum p or p'. These state vectors are ndfmalized

by the equation
By #) = 8Gp-p) . )

The symbol aqv(k') _denptes an annihilation operator for a pion.of four-

momentum k' and charge state &' , while %#w(k)' represents a creation

.
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operator for the state (k, & ). The operators and state vectors have the
time dependence of the interaction representation.
It is assumed that the Hamiltonian density representing the local

interaction between the pion and nucleon fields may be written in the form

H(x) = ZP¢‘-5(X) OP(X) ) (2.3)

where ¢'B(x) is the pion field operator for the charge state /@ , and
O@(x) is some nucleon field operator. In symmetrical, pseudoscalar meson
theory with pseudoscalar coupling, OP(X)» is given, in conventional notation,

by

Oﬁ(x) = ig L/J(X) 7)’5 ’ZTB I}J(X) . | (2..1»)

The method of Low7 may be used to write the S matrix in terms of the

operators Qg (x) in the Heisenberg representation.

S (e, Pk ) = & 80 -k 8 - )+ [(-1)2/<27/)3(4wd>%]
°f’7 ) 3 &Ly p orq o ~ | 3 5 R

' -ik! ik . ‘ ‘
B UOCRE RSN (VNS [
-0 ) ‘ 1

‘ 2
= Sy S -X) S -+ () U4 p -k -

@ 7 oG, g 2], f

(2.5)

4 0%
x 7/(w«>’)2 5 dz e

-0

-1 3kt k)2 {

The symbols LP and ? ' represent exact nucleon eigenstates of the .
p' p . L .
total Hamiltonian in the Heisenberg representation. When the nucleon current

contains terms depending on the pion field, Eq. (2.5) must be modified to
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include other terms. This complexity is neglected he_rie,'sinvce, .as shown
by Goldberger,2 the extra terms do not alter the caﬁsal pfoperty of th‘e
scattering matrix.

A matrix U, | similar to the U matrix of M;éller,8 may be defined

by the equation

-1 : :
%@ = §q +i(27) 30o+p—k'-w)(w,pflgq]19px

We shall define a scattering amplitude, which is invariant to Lorentz

transformations, in terms of

G
(', p' | B, | k) = el o | | . )(Ecvﬁé
PP Gy [P = s P By [ K5 P |

-1 (k4 k')z

S22 a @) Sdz o W@, P Loy Go, g3 | W)

(2.6)

where m 1s the mass of the nucleon.
Following the method of Goldberger, we obtain a causal scattering
amplitude by replacing the time-ordered product P LQ:(/ (%z),"(‘)a‘ (,=%z)] .

by the quantity Vl(z) LQ"S/ (3 Z)"Qe( (-3 z)] , where

Y‘L(Z)
The modified scattering amplitude is given by

o b -i 2k + k")z
., k', p's k, p) = iZ?ﬁ(EE')Zmlj‘dzel% * Z\?(Z)

ot " |
x _?30},, [.sgm-;— SHENE >] zppf S

1 for = 2z, > o ,
~ . (2.7)
= 0 for zo &£ O .
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‘The two matrices %¥,q, and ﬁ#’e{ differ for negative enefgies, but not for
positive energies. The modification of the amplitude causes negative—energy
pions, as well as positive-energy pions, to propagate from past to future,
thus assuring the causal nature of the scattering amplitude, }Qyﬁﬁ .

Though we have not considered the nucleon's spin coordinates,
quantities such as F&rk’ depend on this variable. An alternative point of

view, which is adopted here, is that %#Qv is a matrix in the spin space

of the nucleon. The Hermitian conjugate of this matrix is denoted by M:(’c{ .

A physical scattering event corresponds to a positive value of pion
energy. Thus, in order to derive a useful dispersion relation, we must

find some symmetry property relating the negative-energy part of M, to

e
the positive-energy part. Since M is expressed in terms of a matrix
element between two nucleon states of momenta P and ,Bj’ the symmetry
properties of M may be expressed simply in the Lorentz system defined by
the condition that the momentum ’E«f‘fg = 0. This system is called the g
system, and the momentum :2 :vgf is dencted by ft Conservation of
momentum and energy may be used to show that the vectors jﬁ-ﬁ}l and E:+-}£
are equal and are perpendicular to the vector gq. Thus we define two

oo,
perpendicular vectors, q and Q,

Q = -p = p' ,

Ann ~N\ o

(2.9)

Q = k-q = kt+qg .

o~ Lans TN SN [ane B )
The orientation of these vectors for a typical scattering event, and the
corresponding vectors in the center-of-mass system, are shown in Fig. 1.

The momentum transferred to the nucleon during the collision is the same in

either the g-system or center-of-mass system, and is equal to 2q.

v
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. The magnitude of the vector Q depends on the pion energy W ,
Pa Y

Q - Q(w_)é . . (2.10)

Loy

where € is a unit vector. The function Q(e) is given by

Qw) = (wz- qu)é ) (2.11)

where -Q) is defined in terms of q and the meson mass /u. by the
q 5 % -
q)

G

2
relation w2 = (/U-« + . The scattering amplitude may be expressed

Q
in terms of the variables of the g-system,

M,",‘ (&, Q, w) = i 27/2(Eq/m) S dz \?(z) ex.p(-i ,.Q;'E.\+i O)zo)
T AR NNC ) ;I/_q} , (2.12)
1
where Eq is given by Eq = (m2+ 22)20 The symbol yjnq denotes a nucleon

state of momentum -q and energy E_.
: . - q

and the corresponding amplitude in the center-of-mass system is discussed

The relation between M , (q, &, W)
e 30 2

in Section 5.
The variable O in Eq. (2.12) may be considered as complex, thus

defining for complex values of the energy. In the complex energy

M
o4
plane, the function Q(W) has branch points at ¢0 - '_l'a)q. The
complex & -plane, including branch cuts, is illustrated in Fig. 2. We
define the function Q&) in the upper half eJ-plane by analytic

continuation from the region corresponding to physical scattering, i.e., the

region Im =0 , Re w >“"q° This leads to the result -

Aw) = -Q(-ad) . (2.13)

For real values of e, Q&) is positive when < > wq’ positive
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imaginary when _“)q L W <& Wy> and negative when & ( -wq. o

The implications of causality with respect to the analytic properties

of M (a, €, «w) 1in the upper half w-plane are discussed in Section 4.

of'of m

~F

)
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3. SYMMETRY PROPERTIES OF THE CAUSAL AMPLITUDE

If use is made of the Hermitian property of the operator
i ['Qo{'(% z) ,'_b‘ (-3 z)] , the amplitude q, q(q, é, ) defined by

Eq. (2.12) may be shown to have the symmetry property

qq(q,é W) = My g &, - @) (3.1)

This property permits us to write dispersion relations in terms of quantities

 corresponding to positive values of &&. only.

The validity of Eg. (3.1) depends on the fact that the nucleon
states ]Fa’ and ;V_q are related by a reflection of the spatial
coordinates; therefore the initial and final nucleon must be in the same
charge state. For definiteness we assume this charge state to correspond
to a proton; thus qﬁﬁf refers to the elastic scattering of pions by protons.

The pair of indices <{’c1 s whlch denote the charge states of the plons,

may assume nine different values, since and ' ran e from one to
bl

three. Charge conservation, however, llmlts the number of processes to
three, 7/+ —;77/++P 7I’+P——f/‘7+p, and 79" # P=—T "+ P.
We define three independent amplitudes which are simply related to these

three processes.,

' = M+ Myy) = %(M#,P'I' ‘147,_P) )

u®) _ L, - M) - B, -8 p) o " (3.2)
3

M() - M33 - MWO‘P °

An important property of these amplitudes is their symmetry with respect

to interchange of the indices q{ and o' of the quantities M%é('
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Under the transformation S &> e/’ , we have

MO”‘_.,S/7 M(m , (3.3)
where
1 A = 1 or 3
e/l - -1 - A= 2. (3.4)

In a charge-independent theory, there are only two independent amplitudes,

corresponding to total isotopic spins & and 3/2. In such a theory,

(1) (3)
M - M = Ll(2M M ,
(3.5)
(2) 1
o= 3 Uy - M)
The quantities Me{'oﬂ of Eq. (2.12) may be separated into dispersive and
absorptive parts,‘
M, =D 1A, , (3.6)
TR PN -

where D and A are defined by

g = 17 O (e ) et gar twn) {‘%, [o @, g4y 1
(3.7)
A - 77'2(E /m) S dz exp(-i Q-z + i w.z ) [O /(%z), O (-%z)]
#/4 o= Aol P ~.~a | 0 pqﬁ ,“O( 2 J,_q ?"q o
| (3.8)

The function &(z) of Eq. (3.7) is defined by the relation €(z) = -1+ 2)2(2).,
A)

Similariy, "the amplitudes M( '
M(l) =D(2)

may be written in terms of dispersive

(A) (1)

and absorptive parts, 4+ i A(h), where D and A may
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be expressed in terms of the operators "Q’f and 'pq" - if use is made of
gs. (3.2), (3.6), (3.7), and (3.8). Later it will be seen that this

division of the quantities M(Z) corresponds to a separation of the entire

scattefing amplitude into Hermitian and anti-Hermitian parts.

If use is made of Eq. (3.2), the symmetry property, Eq. (3.1), may

be written in terms of the quantities D(Z) and A(/l ),
D()L)T (aq, 6, Cl)) = ’5 D(z ‘)(“’Cb‘ 5 ’ -w) 3
A 0 W) = -6 A Mg e, -0
—- A A -

This symmetry condition alone is not enough to determine whether or not

D(?L) (1)

and A s which are matrices in nucleon spin-space, are Hermitian.
A
Another useful property of M ) may be obtained, however, from the
symmetry of the operator 946{(2) = [O , (3 2),0 (-=2z)] with respect

to the transformation z&— -z, i.e.,

H

& 1 -?) —95{;@ (3.10)
() |

From Eq. (3. lO) and the symmetry properties of M with respect to the

()

exchange a{(——-)e/ , Eq. (3.3), it can be shown that D(z) and A

satisfy the equations

D(l)(ﬁ‘: é.:: W) = 67LD()')(““’ §I“s -@) for IU:), >UJq
(A) :
329 '(g:-f:,—w) for ’w}< w, >
0 (3.11)
A(l)(q: 63 w) = “s A (2‘3 é: —6()) for lw‘ > wq
a (A) |

-E)LA q,-i,-w) for Iw’ ‘4 w,
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This symmetry condition is different in the two energy regions,i‘ ' a)' > 4qh

and ,w , 4 ), because the function Q@) = (a.J2 - wq )E is real and

odd in @& for ]u)} > wq, and is imaginary and even for I UD, £ wq.
The symmetry properties of M may be more simply expressed, if

the scattering amplitude is written as the sum of spin-independent and spin—'

dependent parts,

(A) (A) . (A)
M (Cb 83‘0) = m (q’ 69 w)l+’1 d-'qXQm (q’ &; w) s
(3.12a)
(2) (A) (A)
D (Ch 5, w) = dN (q’ E, w)l""i G‘qXQdS (Qs 8, w) )
A, M A, o Laa W) ~~ e e
(3.12b)
(A) (A) (A)
A7 (g, £, W) = 2y (a, & w)l+ic"°quaSZ (a, E, @) .
L s T -~ R TR s~ b NN
‘ (3.12¢)
Here ™~ is the nucleon spin-matrix and 1 is the unit matrix. The
~ o~
guantities 73&,8’ dN,S and aN,S are simple functions, rather than
two-by-two matrices. Since the scattering amplitude used here is Lorentz

()

invariant, the amplitude in the g-system, (g0, £, w), must be invariant
-

to spatial rotations and reflections. Therefore the functions 7n s d
N,S N,S

~and ay. g are invariant to spatial rotations and reflections. Since the
2

vectors q and &€ are orthogonal, these functions are quadratic in q ,
~— ~ -~

and quadratic in & , and hence are functions of only the energy, and the
~ .

magnitude g of the vector q. In terms of these functions, the symmetry

~ properties, Eq. (3.9 and Eq.?B.JJ), become
de)*(q, w) = 52 dN(”(q, —w)
aN(Z)*(q,w) _ 'Ez aN(Z.)(q’ _-w) | | 5.1
a5 P, @) - €, (0, )
as(Z)*(q,w) = € 5(2)(% —w) o,
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() )
dN (q, w) = 8,2 dN (q, ~w)
(2) N
ay (.Q; CU) = "62 » ay (qs —CO) ) (3°1h)
(2) | ),
ds (,QS CO) = = /1 dS (Qs —60) 3
(2) (2) |
| : . , (a)
From Egs. (3.13) and (3.14) we see that the functions dy s and
() ' ’
ay 3 ;1 are all real. Thus the separation of M(;Q) into dispersive and
) . -
absorptive parts corresponds to a separation of the scattering amplitude
into Hermitian and anti-Hermitian parts. The reality of the functions
(A) () o :
dN S and aN 3 , together with either of the relations, Eq. (3.13)
3 3

(A)

or Eq. (3.14), represent the symmetry properties of M in the form

that is used in the derivation of the dispersion relations.-
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4, ANALYTICITY AND DISPERSION RELATIONS ‘
The causality principle may be used to show that, for a fixed &,
the scattering amplitude Me", (a, €, <) has certain analytic and
boundedness properties in the regio: R+ s which denotes the upper half ?
complex <&J-plane. The causal principle, that no disturbance propagates

with a speed exceeding that of light in a vacuum, requires that the

commutator L‘%{,(% Z)"Qsﬂ (-3 z)] vanish for spacelike values of the

ace-time variabl . Theref the fact LO i 0, (-3 -]
sp im riable z ere ore,‘ e factor Yl(z)(g}q ~c{’(22)’~°(( iz) ?—q)
in Eq. (2.12) may be finite only for values of 2z satisfying the two

inequalities,
zg 2 O and zy 2 ,zl . (4.1)

The amplitude in Eq. (2.12) depends on the complex energy &J only

M
o'

through the factor exp (-i EE\ + i wzo), where Q 1is given in terms of
O by Egs. (2.10) and (2.11). For a value of z in the region defined

by BEq. (4.1), the exponential factor is bounded in R+ s l1.e.,

exp(-i 2 + iw‘zo) < exp(wq Zg) - (L.2)

z
Since this bound is not uniform as a function of Zos W must use
the technique of Goldberger,2 and interchange the order of a space-time
integration, and an energy integration, in order to derive dispersion
relations. A discussion of the justification of this exchange for forward
scattering is given in.Reference 2. Intuitively, one expects a greater
high-energy divergence problem for finite-angle scattering than for zero-
angle scattering. However, if the momentum transfer is fixed, then as

& —poo, the scattering angle approaches zero. Thus the convergence
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- properties of M(q, cO) as G2 —9o0 are similar to those of M(0, ev),

the difference being that the "effective pion mass® is .wq’ rather than/u. o
Instead> of actually carrying out this exchange of integration order,

we arrive at the same result more simply by treating exp(-i Q,\g_‘—ﬂ— i. w zo)

as if it were uniformly bounded. We may then apply a theorem of T°11‘,chmeu‘c*:'h,9

e

to show that the amplitude (q, €, ) of Eq. (2.12) is analytic in
S Peny

R+ , and that the divergence of M(w)) as the real part of < approaches
infinity is no worse above the real axis than it is for real values of the
energy. The spin-flip and non-spin-flip amplitudes defined in Eq. (3.12a)

must also be analytic in R+ ;s 8ince they may be expressed in terms cof

M(Z_)(q, €&, cw) by the equations,
~ .

WZNQ_)(q, w) = %;Tr%M(M(g, g, w)} ;

o 773(7”«1, w) = 3r §_i(gagxg> M‘Q)@_\, &.w)f/qz . (4.3)

The form of the dispersion relations depends upon the high-energy

(2)
convergence of the amplitudes .mN S . If the Lesbegue integral
2 12 0 o a
’ 77?/60 ’ dew exists, where ?Yz is any of the six amplitudes
L ()
'77N s Z s and of 1s any positive number, a dispersion relation may be
3

obtained by considering the contour integral

'.,__'j:_ 7’{2 (q;, e') deo' - O s - (4.h)
r G, (' - @)’ - @)

where the contour C+ is shown in Fig. 3. The energy a)o is arbitrary

and may be chosen for convenience,
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If the scattering amplitude converges rapidly enough that the integral d
S 2
I'}Q I dw exists, where cy again is any positive constant, a
stg%nger dispersion relation may be obtained by considering the contour

integral,
- i f 'Zn(q, W) g = O . (4.5)
v f w' -
-

Because of the boundedness property of 777 in R+_ ; the contributién to
the integrals of Egs. (4.4) and (4.5) from the semicircle in C, will vanish
as the radius approaches infinity. The two types_of dispefsion equations,
those derived from the integral of Eq. (4.4) and those derived from Eq. (4.5),
will be referred to as type A equations, and type B equations respectively.
After suitable approximations have been made, the type B eguations v
may be directly compared to Low's equatiors for pion-nucleon scattering.
Since it 1s questionable whether or not the high-energy convergence of
7h? (g, w) 1is sufficiently rapid to justify this procedure, we discuss the
type A dispersion relations, which follow from Eq. (4.4). If use is made of

the symmetry properties of the 77?(q, w) functions, Eq. (3.14), the

dispersion relations corresponding to 52 = 1 () =1 or 3) may be
written
=0 ,
(1,3 (1,3) P w? (1,3)
dN ’ )(q9 w) - dN (q) QJO) = 2(‘0 wo ) P w dw' ’aN (q, ’w')s .
4 < w® - wew? - af)
0
| (4.6) .
s (1,3) 2 (1,3) 2e0 (@ - w D)
q dg (g, w) - w q d4 (2, @) = - 0
“b 72 s (1,3) ’
x P deo' q ay (q, ')

2 2., .2 2
0 (W' - @) ew!” - o) (4.7)
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where the symbol P denotes that the principal part bf the in’begral is to
be taken. Similar equations may be derived for the case'%.: -1, which is
discussed later.

The integral in these equations involves the absorptive part a(q, w)
as a function of energy for all energies in the range 0 < <CoO L0 .
However, a(g, ) may vanish for certain regions of ¢« in thié raﬁgeo
In order to see this we expand the matrix element % }Dq’["‘%f/ (%z)',’%‘ (=%z)j ?q}

in Ao{’ef , Eq. (3.8) , in a complete set of intermediate-states, (Pn R

which we take to be eigenfunctions of the entire Hamiltonian,
2 L] 9
A /o( = 7 Eq/m dz exp(-1i Qz+i wzg)

&
x ZE [{%»%/(%z) %H %94 (-32) g/bq} ) % P9, (-22) tpnz
’ {L_pn,_qq,(%z)gz_q}] e (4.8)

_ -1 Py i Pz
If use is made of the relation ‘90( (z) = e ,Qo‘ (0) e , where P is

the total momentum-energy operator, the space-time integral in Eq. (4.8)

may be carried out, and Aol {,(
L
Ae{'o( = (27) Wz(Eq/m)Z;; [{g/qﬂnoo(' (0) IPHQQZ {q)n,d‘%{ (O)gjmq}

x S(w+ B - EH?Q) - {l]Uq’Qe( (0) %,@}5 Dy, -g ©) g/“q}

x §w- B + EngQ)] , (4.9)

may be written

where 'sU 40 denotes the state ?n with total momentum <+ Q , and
n, .

En Q is the total energy of such a state.
b
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Because of the energy delta functions in Eq. (4.9), the spectrum of v
%qéx depends simply on the spectrum of the states Qpn. If the momentum--
energy four-vector corresponding to the state y%bp is denoted by QE, En,P)’
the Lorentz invariant proper mass of the state 441 is given by
Mn = [(En’P)2 -‘£2 :]%. We assume the following energy spectrum for Fhe
proper mass M, of the states SP%:

(i) A point spectrum at the energy Mh = m corresponding to the
real neutron or proton state;

(ii) A continuous spectrum in the region /a <M < o0
corresponding to sﬁates consisting Qf a nucleon, plus one or more other
"particles," where the term "particle" denotes either a pion or a nucleon
pair.12

It has been assumed that no bound state of the nucleon-pion system
exists. States involving no nucleons have been neglected, since they do

not contribute to Eq. (4.9).

The énergy spectrum of %d (w) may be determined from the spectrum

Y
of the states g%f Because of the two terms of Eq. (4.9), a state of

proper mass Mn will contribute to the spectrum of at two energies,

A,
o |
one being the negative of the other. Though the integrals in Egs. (4.6)
and (4.7) involve only positive energies, it is useful to compute the

spectrum of A é*(CU) in the entire energy region - oo & &«<=¢, When the

| .
index n. refers to the real nucleon state, the quantity Eﬁ Q in Eq. (4.9) B
3
2, 24 .2 2 2 2
is equal to (m 4+ Q )°. If use is made of the relation Q° = w - M- a7,
-~ ~ .

it can be seen that the spectrum of (cw) corresponding to the real

%o

‘nucleon intermediate state is given by
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PP

w =.twb
(4.10)

2 1 | 1
= B- (af -3 PR = Pk 3 KR

The positive sign corresponds to the second term of Eqg. (4.9). Note that
Wy, must be a positive quantity, sinée q2 2 0. |
The continuous spectrum of ﬁpn contributes two continupus spectfa.
to 0‘0‘ (w) The end points, ) and - of these spectra correspond
to an intermediate state (IDn of proper mass m +/u, . The determination

of ¢ 1is analogous to that of ¢, and yields the result

b
( E T - B | g (4.11)
Wy :mm+/uq -q:(m/c-q a . - L.
Therefore, the two continuous spectra of A by (ew) are given by
-0 Lew & -w, and W, £ W L #e0 .

The complete spectrum of (c2) is shown in Fig. L.

e ' (1)
The contribution of the real nucleon state to A () or A (w)

.. f o
at the energy ¢o = o, is denoted oy §(eo - <) (q, @)
b

or S(w wb)a,(h)( a, )o The quantity a(ﬂ )(q, a.)b)- may be

expressed in spin-independent and spin-dependent parts, i.e.,

- = )
a,(a)(q, w,) = g/ L[;m)(q) + 1T g xgb-/vs (q)] ’ (4.12)

2 2 i
where the magnitude of Q is given by the relation Qb (o «q = /uz)2
(X
The quantities /_1; s (q) may be estimated from a specific meson theory.
s _ :
The energy wa,which indicates the end points of the continuous

spectra of A(W), may be positive or 'negative, We shall consider the two

cases separately.
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If q2 < m/u, , then ¢o, 3> 0, and the absorption integrals in
Egs. (4.6) and (4.7) may be limited to the range W L w<eo. If Acfés(co)
is expressed in the form of Eg. (l».9), only the first term of this expression
contributes to the absorption integrals.
Case II
If q2 > m/u, then ¢ ¢ 0. In this case both terms of A4 ,, (&)
| : 4
contribute to the absorption integrals in the energy range 0 <&O & - &,
while only' the first term contributes in the range -&) <« <c<e=0 .
However, since the two terms of Aq:,‘(“)) are t;ransformed into each other
under the transformation w—3 -, the absorption integrals may be
extended to the energy range @, < <) <40 , provided that the contribution s
of the second term in A’{,a( (w), Eq. (4.9), is neglected.
From the above discussion it can be seen that the lower 1limit of the
absorption integrals may be taken to be wa. in either of the two cases
w), ; 0, provided A(c0) is properly interpreted in the anomalous region
W, LW L -, , which exists in the case <), & 0. If the arbitrary
energy wo is taken to be a)a, and the real nucleon contribution is written

]
in terms of the functions /N S( )(q), the dispersion relations, Egs. (L4.6)
: )

and (4.7), may be written in the form

O
. _ 2 2 ' (1,3) ’ -
dN(l,B)(q, w) - dN(l’B)(q, w,) - 2@ - Q") W' dw  ay (q,4)
74 @? - P - .
/7(1,3) w? o2
+ 2 1y la) vy A( e R (1) .
w2 waz)(wbz _ B

b
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2l
2 (1,3). 2 (1,5) ‘ 2 cu(c02 -’c‘)z)
q dS (q, ) - _3)_ q ds (qs Caa) = a
; , o, . W/
o0
2 (1,3 2 (1,3 2 :
- dw @ 2PV qen | @2 (PP’ - e
2 2 2 2 2 ,
('™ - ew ) (w'™ - w*) w ° - w? 2 of
& a ( b a%_)(¢~$ )
(II)
The dispersion relations for the case é;l = -1 may be derived
in a similar fashion. The form of the equations is different ih'the‘two
cases, 62 = * 1, since the symmetries in enérgy of 772(/7)(61, c0)
are different [:qu (3,lh)] . The equations corresponding to the case
& = -1 (A4 =2) are
A
(2) (2) 2 2
w - W
dy (@, @) - @ dy (g, @) = 2e 2 )
), 77’
)
. (2) (2) 2 2
x P dw' ay () <) o2 /;g(q)w(w, - )
2 2 2 2 2 2 2 2
W - e - w) (e, = ) (e, ” - @)
(I11)
2 2
2 (2) 2 (2) 2w - wW*
q g (4, @) -q dg (a, @) = 2% - 4)
- ' m
2 (2 \ 2 (2) P P
cp | waw Pa e P2 [T e )
< 2 2 2 2 2 2
@° - ) (wr” - e . w” - S
by 3 ) @) - @ - )

a
(1V)
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The dispersion relations for forward scattering may be obtained from
Egs. (I), (1I), (III), and (IV) by letting -q2 approach zero. An important
distinction between the finite momentum-transfer equations and the zero-g
limit is the existence of the energy region cua L w & coq, which shrinks
- to zero in the limit as q-—»0. OSince the momentum E& is imaginary in
this energy region, the scattefing amplitude cannot be directly related ﬂo
physical processes. The interpretation of this nonphysical region is
discussed in Section 5.

In order for the dispersion equatloﬁs to be useful, some estlmate must
be made of the functions /—7 (2')(q), which represent the contribution
‘to the equations of the real nucleon'state. We shall assume symmetrical,

pseudoscalar meson theory with pseudoscalar coupling, in which theory the

operators qﬂ (x) are given by Eq. (2.4). If the operators Oy s O
and Q are defined by the equations 04 = {O 0+ 1 2(O); ‘

_(23 = 93(0), then Eg. (3.2) and Eq. (4.9) may be used to express the bound

state contributiors a()“) 'in the form

1 ‘ L2 |
@( )(q, a)b) a(Z)(q’ %) = -(2m) 7 (Eq/m)('q/q, 9+ ;Q-QbN)

N
(P 08 P

(4.13)

3) (b2 d
(a, eq) = -7 7 E/m(Y,, 9 3”—‘% )QP_Qb 293 Y )
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The state y) corresponds to a real neutron of momentum Qb ;s while
. m
b , ‘ -
TIDQ corresponds to a real proton.

b 2 : :
If terms of order (/M/m) are neglected, matrix elements of the

operators "Q_,_ 0O_ and ’93 between real nucleon states may be evaluated,

yielding the result,

N P P N P ) P
W, > &%) = Ws 00 W - Py 0 W)

. sem (/7277 1) [S{"’(g—}g)] ; (4.14)

where f 1is the renormalized coupling constant characteristic of the pseudo-
14 -
vector interaction. = Therefore, in this no-recoil approximation. the .

quantities a’(z )(q, Cdo) are given by

A w) = B w = dP6, @)
(4.15)
= WD [(f - q,) - 21T g x 2&]
From this equation and the definition of /:\]’ S(z )‘, Eq (4.12), the
values of /;II,S()) to lowest order of (/»(./m)2 in pseudoscalar meson

theory with pseudoscalar coupling are

(1) (2) (3)
LR

(fz//‘(g)(q2 - = f [1 + (24 //.« )]

(4. 16a)

(1)
/s

2 (3)
/;( ) = s -2 fzéfx? . . (4.16b)



UCRL-3397

~27-

5. PARTIAL WAVE ANALYSIS OF DISPERSION EQUATIONS
In order to express the dispersion relafiorsin.terms bf experimentally
measured quantities, we shall transform Egs. (I); (11), (III); and (IV) into
variables of the center-of-mass system. Thé g-system energy and momentum

variables are related to center-of-mass quantities by the equations .

i
b
=

Eq W

q ¢ c ?
-1
w = Ec wc Eq - Eq ) (5»13)
2
26° = k. (1-cos8y) , (5.1b)

where W gnd W, represent the total energy in the g-system and center-of-
mass sysﬁem, and k, , 6, , and Ec represent the center-of-mass values
of the magnitude of the particle momentum, scattering angle, and nucleon
energy. In general the subscript c¢ will be used to denote a variable of
the cénter-of-mass Lorentz system. The vector product gq x Q 1is related

~ o~

to the scattering angle by the equation

1]

g X Q = qQn

R o0

(Ww./2 E))(x, x k')
/% e T Je (5.2)

5 v
(W6/2 Eq) ke (sin‘ec)fi s

where n represents a unit vector and k., and Jﬁlc are the initial and
o~ ~—

final values of the pion momentum in the center-of-mass system.

» )
The center-of-mass scattering amplitude M, A (ke,
Peal

k'c) may be
separated into spin-independent and spin-dependent parts in a manner similar

to the separation of the g-system amplitude (_Eq° (3.12a)] ,

) () ()
My (ke k') = Myt (ke &'c>i+i§°5c x}_c"c CSZ Qcc,g'c).

(5.3)
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(A)

‘ Because of the invariance of M (k }5_: ) under three-dimensional

)
rotations and reflectlons, the functions W N(Z and )’)ZCS(Z) depend

only on cos ec and the energy u.)co The center-of-mass quantities

. m (7” c’ «),) and YY)CSOL) 6.5 ¢g) may be related to the
corresponding g-system amplitudes, if use is‘ made of the fact that the
entire scattering amplitucie is Lorentz-invariant, i.e., the amplitude
relating any specific initial and final states in the g-system is equal to
the amplitude relating the same states transformed into the center-of-mass

system. The resulting transformation eguations are

m(?t)(q’w) _ Eg +mE rnE, y’]N ;“Jc)

E(m+EC)
- 2 2
. | o By - E w208(/7)(90, w)
_ Eq(m-f—Ec)
(5.4)
) ()
) = 1 |- 6o, c3) + 2 + o2
ms 4 W_c' m+Ec ch » ¢ m m+E

- Q) o
X .ms I CL)C) .

These equations are derived in Appendix A. The complexity of the equations

results from the complicated manner in which the Dirac spinors transform

3]

under Lorentz transformations.
If the nucleon mass is considered to be large, and only terms of
zero and first order in an expansion in powers of m_l are kept, then the

s | relations between g-system quantities and center-of-mass quantities become
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very simple, i.e.,

-1 2 2
W = CL)C+'m (kc "Q) s -
2 2
2q°= k, (1 -cos6,) , (5.5)
qu{. = 3(1 + wc/m)("lfc X,E'c) .

.The Lorentz transformation does not mix the spin-independent and spin-
dependent amplitudes in the limit of large m. The transformation equations

reduce to the form

()

VYZN (a, w)
ms(h)(q’ )

It is interesting to notice how the center-of-mass values of the

| 1) |
Ww ™ (0es )

(A g

(5.6)

201 - e/ W' (o )

energy and scattering angle vary, as the momentum transfer is held fixed

and the g-system energy varies between the limits of integration in the
dispersign equations. From Egs. (5.1) it is seen that as & approaches
infinity, the center-of-mass momentum becomes infinite and cos 6. approaches
the limit 1. In this limit the scattering is in the forward‘direction. At
the point W = v

q

same, and the quantities k, and cos 8, are equal to q and -1. In

the g-system and the center-of-mass system are the

the nonphysical region Q)a< O 4081 > cos B, is less than -1. The

functions Q(wo) and sin 6, of Eq. (5.2) are imaginary in this region.

As ¢y approaches «J, , the center-of-mass momentum approaches zero, and '
cos ec approaches -Q0. Thus‘ the nonphysical energy region <',ua< w £ a{l

corresponds to center-of-mass écattering angles in the range -©0 £ cos Oc .

£ -1,
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In order to evaluate the contribution to the.equations of‘the non-
physical region, we must remember that the scattering amplitude in this
region is defined by analytiC'continuation from the physical regien w >¢ua°
A convenient method for interpreting the center-of-mass scattering amplitude
in both the physical and nonphysical regions is the method of expanding the
amplitﬁde’in terms corresponding to different values of orbital angular
momenta. In such a formalism, the analytic cohtinuation may be made.by‘
analytically continuing the Legendre polynomials into the regien cos B £ -1,
This continuation method is qguite simple; however, as.is brought out later,
it is not rigorous in all casee.

The magnitude of the reletive orbital angular momentum, as well
as the total angular momentum, is conserved in a pion-nucleon colllslon
For each value of the orbltal angular momentum. 1? (except /é? O), there
are two scattering states, corresponding to the two Values of the total
angular moemeﬁtu.m, J = Zi’ 4. The amplitudes for these two terms afe
denoted by €Z*9z )(kc); they are related to the scattering phase shifts
twhich'are’complex if inelastic processes are possible at the momentum kc)

by the equation

() -1 2 |
fft (kc) = kc exp [i ( )(k )] g ()) . ‘ (5.7)
N (A) o

e amplitudes «64' may be related to the spln—dependent and spln-.

independent amplltudes 1f use is made of the prOJectlon operators ?Z+ s

deflned by

B L+i1+eH/eley) ,
t - (5.8)

. = (K-gd/edry

1}
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where c,i is the orbital angular momentum operator. The operator Bf'/'

or Bf- » when operating on a pion-nucleon state vector of orbital angular
momentum f projects out the term corresponding to. J= ,Z + % or

J = ,( - 4. If use is made of Egs. (5,8), the scattering amplitude may be

expanded in partial waves, i.e.,

7770(2')% K = Gigm) S { : (2)[(21"1?‘3@ (cos &)

] A
-2 o (A) -
+ k. 19"50 x }: . P/’e (cos GC)J + ff‘ [_f IZ (cos ec)
- kc“2 iS’*}Ec x E'c I:e (cos GC)J} - | (5.9)

The functions P( (cos 8,) are the Legendre polynomials, and Pz(cos o.)
are their derivatives, i.e., P»Z (z) = (d/dz) PZ (z). The expansiorsof

'h?N and )’)78 are given from a comparison of Eq. (5.3) and Eq. (5.9).

(2)

76LN ‘(e?, C”c>

(A)
Mes (0> )

(W,/m) ZX [ (L+ 1) f£+() )»y—ffz_(ﬂ )] qu(cos 8.) >

(5.10a)

i, ZE [fﬂm 1, % )JPI (05 8,) .

(5.10b)
The equations, Egs. (5.4) and (5.10), may be used to expand the

scattering amplitude in partial waves, The center-of-mass quantities

mcs(ﬁ )’ )’VCN(Z ), and fzi_()) may be separated into real and
W) (A)
cN -

imaginary parts, 7)'? doy +1ay s

(1) ] (A) i
Mcsh - dcs()l)+lacs s and ft()-):dzt()).}.lazr(h),
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Since the coefficients of Egs. (5.4) and (5.10) are real, these equations
remain correct if the complex amplitudes are all replaced by their real parts,
or by their imaginary parts.

The partial-wave expansion of the scattering amplitude provides a
straightforward method of analytic continuation to the nonphysical region,
since the functions PZ (cos 8) and %((cos 6)' are well defined for values
of the argument in the range -0 ¢ <cos © € -1. The dispersion relations,
Egs. (I) - (IV), involve the threshold energy ¢, both in the dispersive
terms and the absorptive terms; hencel the behavior of the Legendre expansions
must be examined in the limit W —y<y,. For values of <o close to ),

k, is small, and the leading terms of the Legendre polynomials and their

derivatives are given by

-2
% (-2 2 X elgy CR T
(5.11)

: - L.
Py (1 -2 W) % e 41 [c2- 1)1]2(q2/kc2> 1 :

(A)

t
terms of the real and imaginary parts of i"é‘t(kc) are given by

() -1 ) ) 2 A (D) 24
d;ei' (kc) = k. cos %J‘.’- sin é.ef A(:ﬁ' ke s

. .__ - 2
a’z;))(kc) - kclsinzézi_()) -~ [Afi(-/])kCZ»Q] ke s

where the symbols Az+()l) represent constants with the dimensions of

For small k (kc) are real, and the leading

. » the phase shifts 5%

(5.12)

length to the power (24 + 1). From Egs. (5.4), (5.10), (5.11), and (5.12)
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" ' . ()
it can be seen that as & approaches cug , the leading terms of ay (q, w)
and as(/la (9, e&) correspond to KA -0 and are proportional to kg. ‘The

quantities dy(q, <) and ds(q, «),), on the other hand, are given by

infinite series of finite terms, i.e.,

| | Q)
q ())(q, wa) i (m +/u)(m2+ qu) % (—l)[ (2%){1}2"‘ l) Ajr "f"@‘())]q?j

N :
2Eq m2 (ﬂs)z

b

. | ' (M)
; (m +/4)q2 % (_l)[ (20): [Az_,_ i A/(_())] qu

2Em f!(f—l)!

(5.13a)

() L ap [heod,V +80, P 24

dS (a, wa) = - '—]:_5 Z (-1) ’ Q+ : _ q
2nt L (L)
- (1+_‘f__) (-1)‘( (24 AQ.]-()) ) A/(-()j q2([—l)

2 n® Lk - 1)

(5.13b)

In order to simplify the writing of the equations we define partial non-spin-

flip and spin-flip amplitudes by the equations

(A) (
S (k) (L +1) 2,

2
e + oy Py (5.142)

)
Y f@(z)(kc)-fe_())(kc) s (5.14b)
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() (A) ()
AZN 4+ 1)4124_' + ,ZAZ_ , BENCETD

A ) () ) . ‘

Afs - Af% - A,(‘ : (5.14d)
The real and imaginary parts of the amplitudes f/e-’f)‘) , sz(h ), and
L) *
fs

and superscripts.

are denoted by lower-case d's and a's with the proper subscripts

If use is made of Egs. (5.1) and (5.4) the dispersion relations may
be written in terms of center-of-mass quantities. Equations (5.10) may then
be used td expand the scattering amplitude in terms of partial waves.
Application of this procedure to Eqg. (I) yields a.rather lengthy equation;
to simplify this equation we express some quantities in terms of the g-system

energies <« and «' , which are related to the center-of-mass variables

: -1 » g ! -1
‘ . - - [ -
by the equations W = Ec W, Eq Eq ; and ' = E o W o Eq B

q "
In terms of partial waves, Eq. (I) may be written

(1,3 ’ 2 , :
:E:: QQN )(kc) ﬁ( (cos 8,) - 2 qz(Eq - Ecz) :E;%es(l 3)(kc) 5?(008 o.)

X k(B +nE) L

Eq(m+ Ec) m d: (193)

(a, w,) =
(E2p mE) W, B
q T mic/ Yo

(Eq. 5.15 cont.)
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2 \ 1;3
N E +mE c Z a;(N( ) (kvc) P/Z (cos e'c)
Em+E) %

2 2 23 :
_ 24 ,(Eq -E, ) :E: €?s(l’3) (k'c) P, (cos e'c)
k' °E (m +E' L £
¢ Ey(m +E';)

(1’3) 2 2
2/;,1 (Deg, (W - ) Eqm +E) m (5.15)
* 2 2 2 2 2 ’
(W™ - W, )Wy - &) (Eq + m Eg) W,

where the scattering angles ©, and eé are determined by the momentum

transfer and the respecti&e center-of-mass momenta, k, and ké s by

c
l .
Eq. (5.1b). The functions dN( ’3)(q, CLQ) are given in terms of partial

wave amplitudes by Bq. (5.13a).

Equations similar to Eq. (5.15) result from application of the
above procedure to the dispersion relations, Egs. (II) - (IV).

The procedure outlined above is not rigorous for all values of q.
Symanzik5 has pointed out that if the momentum transfer is large enough so
that q2 ‘;> %/OL s> the Legendre polynomial method of analytic continuation

is not justified. In this case the g-system threshold energy CLA is
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negative, and the energy region ¢, <& «w - & -=C%. is anomalous because the
causal amplitudé and the Feynman amplitude are not identical in this region.,

The scattering amplitude has a branch point at the poéitive energy - e, . At
real energies below this branch point, the causal amplitude is determined by
analytic continuation above the real axis, while the Feynman amplitude is
determined by continuation below the real axis. This energy region is -
discussed in Séction L, where it is shown that, for &« (£ - W, only

part of the absorptive amplitude should be considéred in analyzing Egs. (I) -
(IV). If the center-of-mass energy e, is held fixed, this branch point
becomes a branch point in the q2-plane at the value q2 = %(m/u-;-(_ucEc-f- kcz)o
Thus, the Legendre polynomial expansioq of the absorptive amplitudes

appearing in the au'c integrals is not Jjustified for..q2 > %(%/44~4%Eé_+ kéz)o
If CU'C = /LL, the branch point occurs at q2 = %/a s which implies that

the expansions of Egs. (5.13) are nof'justified, and may not converge, when

q? > 3/{»

A further difficulty arises because'of the pole in the scattering
amplitude at the g-system energy cdga If the center-of-mass energy is held
fixed, this corresponds to a pole in the q2—plane at the point
Aq2 - %(Ec cuc + kc2 - é/u?), It is not clear whether or not the expansions
of IYOCN and \WQCS are justified for q2 ’largér than this. If
@ = l(%/& - %/J~2)jt € , vhere € isa smali positive number, the pole
at the qg-system energy & of the factor (602 - “gz)—l, and the pole at
cob of the scattering amplitude are close together. 1In this case the
residue of the pole at ¢b% contains the large factor (cugz - ccgz)nl as
seen from Egs. (I) - (IV). It appears that the quantities dy(q, w,)
and ds(q, ¢‘A), which respresent the residues of the poles at <J,, may

also be large, and the expansions of Egs. (5.13) may not converge when
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q2 > %(%/A_ - %/A?). It should be noted that if alternate dispersion
relations were derived from the contour integral of Eg. (L.5), the troublesome
factors Gk)bz - caéz) and dN;S(q"°é) would not appear.

The nonrigorous nature of the present procedure for too large values
of q2 may be seen most clearly from the following considerations. The
partial-wave anaiysis is made by expanding the various quantities of the
dispersion relations in ﬁowers of q2 = % kcz(l - cos 8). In Section 7 it

is shown that, in such an expansion, some of the guantities which refer to

the anomalous energy region ¢U £ }’Cbh , have radii of convergence of
2

o =mu or qf = Blma - Bu).

If the eﬁergy is low enough the above arguments do not apply, since
we have q2 < kc2 for scattering at any angle. In this case the
quantities %QN(kc) of an equation of the type of Eq. (5.15) may be
separated by multiplying the equation by the Legendre polynomials and
integrating over all angles. Fér energies such that kc2 > '€>L“ " one
may still derive different dispersion relations by taking various derivatives
of the quantities with respect to q2 or cos 8, and evaluating in the forward
directionol6 The various dispersive amplitudes occurring in these equations
may be separated:only if it is a valid approximation to consider only a

finite number of angular momenta. It is hoped that future research will

clarify these points concerning the validity of various dispersion relations.
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6. HEAVY-NUCLEON EQUATIONS

Since the analysis of equations of the:typé of Eq° (5.15) is iong
and complicated, we first discuss the simpler case in which the nucleon
mass is considered to be large compared with the other energies.involvedo
If the quantities of Eq. (5.15) are expanded invpowers §f mfl , and térms
of order higher than the first neglected; the non-spin-flip and spin-flip
amplitudes are no longer mixed, and the coefficients in the equation are
simplified. An equivalent method of obtaining this “heavy—nucléon limit®
is to use Egs. (5.5) and (5.6) in transforming the dispersion relations to
the center-of-mass system. If, for convenience, both energy and momentum
variables are used, the "heavy nucleén" limit of Eq. (5.15) mayABe written
in the form |
= (1,3) (1,3)

. - Pt Z 1 22
S 4 k )P, (cos 0,.) - (1 - &% ~ A L1y @A) Ay
7 in (k) By (cos &) (l e )2§=0 (-1) (2»1)2.1 —

‘ [ '
-2k, p _ (2 DL

: 2
Zf k'c2@u)'c - <‘%2) met (e, + e )

M

ded 1+ (w'c - wc)(wc .("‘J"Hc +/“'2)

P - W) (M- e+ 1) [ s s IR, (oos 1)

/4

med (e, + wc)(wc-f/u)(wvc-r ) _] =0

(1,3) 2 2.2 |
2 (Da™+ 3wk, (6.1)

+
‘m /*2 c~a2
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The dispersion equations would be more useful if the various partial-
wave amplitudes were separated as much as possible, If Eq. (6.1) is valid

(2)

for all values of q2 in the range 0 & q < k cs & particular %?N | c)
may be separated from the q?ﬁ( )(k ) corresponding to other angular
momenta by multiplying the equation by % 3? (cos ec) and integrating with
respect to cos 6, between the limits -1 and 1.

In carrying out this procedure it is helpful to think of cos éc =
1- 2(q2/kc2) and kc as the independent variables and to express q and
cos 8'¢ in terms of k'c, ke » and cos &, . If cos 6, and cos G'C

are denoted by z and z' , 2z' is given as a function of z, k, , and

k'c by the equation,

A R Y A Y W R L (6.2)
(1,3)

The equation for the amplitude QZN (kc) s which results from the above

procedure, is

(1,3) - w3 g
oy (k) G- ‘/"-‘)T o< (kc) A.Q'N 22
20 41 n 4= 44 24" +1

i I 2 pr 1 e ) 2 k° I
/ A k'c) AN - + m CL; )746 (k

s (ke
£ 4t 24 + 1
(1)
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I - I I
The quantities o{ z/ s Af ’e, , and y/( v Iare‘ .given by the integrals
, , . :

‘ 1 ' | N
. (k) = ('—:lx L'+ 1)1 S dz P, (2) (L-2) , - (6.3a)
Qf,@f' T 2 (041 Y4 £ (152) .

1
I ; '
Azz,( e ko) 222""1 g dzP(Z)I:e, (z')
-1
2 1 ' 1 :
x |14+ ¢ (wc - c‘)c)(/u _wc);(ch+'\wc+ﬁ) 5 (6.3b)

m w'c(w'c-/- wc,)(wc-f-/u)(w'c-f»/a)

I . L
V (kc) - 3 S dz PX (z) [l + _2___33 ] o, ' ~(6.3¢)
g z

where q is equal to 3 kg (1 - z) and the quantity z' of Eq. (6.3b)
is given by Eq. (6.2).
It may be seen by inspection that the functions defined by Egs. (6.3)
1 . .
satlsfy certain "selection rules", i.e., c( 2/ vanishes if ,Q' ,4 ,(,

@ 2 vanishes if ,@ £ Z -1, and 22 vanishes 1f Z) 2: 0 If

terms of order m T are neglected, , and Q{,@ Q van:Lsh 1f »6/4 Z .
’
-1
It is shown in Section 7 that, if higher orders than the first in m are
v I I
included, the functions that correspond to A_ and
/i Q‘ C g ?f

do not satlsfy such rigorous selection rules. In Appendix B, the integrals
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in Eqs. (6.3) are evaluated for the smallest values.of I L - ya / and [ .
An equation similar to Eq. (I') may be derived for the spin-flip

amplitudes, f;es(l’}) . The derivation involves using Egs. (5.5) and (5.6)

to transform Eq. (II) to the center-of-mass system, and expanding in partial

waves by means of Egs. (5.10b), (5.14b), anq (5.14d). The quantities %8(1,3)

corresponding to different values of ,@ may be separated by making use

of the following orthogonality relation for the functions lﬁ’e(z) =d Iie(z)/dz :

324 +1) § dz(1 - zz)[d E’e(z)/dz][d P/e.(Z)/dzJ :.‘ Z(R+1)§
-1

2L
. i , (1,3), .
The resulting dispersion relation for ffs (kc) s, correct to first order
in m+ , is
(1,3) | (1,3) ,:zﬁv
d k) - % ( ) Z Ofg ( o) A '

) Z%kcz Pf aes [-I-(w co)(,u-f-c% +2ww)7
2
k )

7/ i C(w'cz- C-UC mC"'Jc(c“)c +wc) J
= , 2 4 2 27 11
x Z A II(.k ,k ) a (1’3)(k' ) - bE ko4 @ +M (x.) ,
1 L ¢’ ¢ /@S c —_— ——— c
J =1 1’1 /_é‘a)c W, m

S, | ., I
where Z and /@ are both greater than zero. The functions 0/ / (kc),

II , II 4
Iy (kc’ k c) , and 7[ (kc) are given by

24
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IT , |
Ay g () 8t g -nrees)
) : 5
(2 -] 2ckr v
1 : |
..l - .
2 i m wc/‘ )
C (6.4a)
1 . .
" . ' d Py (z) d Pp,(z")
ATk, k) 22X+ 1 ds(1 +2)(1 - 2') $ e (2 2
24 | 2 0(L+1) | iz oy

X i+_q2(c_ac_w‘c)[/"(2+/u(q)c+w'c)+(3¢%'+2%)(.4)0_1] K
m (e, + e, + (e '+ u)

- (6.4Y)
1
II '
)7[ (k) = 2Xt1 S dz (1 (Z)
| 2L+ 4
2 2 2. '
x |14 TR\ T g ptu . (6.4c)
| m g (0, + )
II IT
From Egs. (6.4) it may be seen that e{ and f,e' satisfy
I
the same angular momentum selection rules as are satlsfled by ’e ,Q
I

II
The gquantity Yzf , on the other hand, behaves differently from }7[



UCRL-3397
-4,3~

IT
V&e vanishes when j) 2, and, if terms of order 1/m are neglected,

vanishes when ,@f 1.
y?z

(2 2) o
The partial scattering amplitudes i:eN and i/'(s( ) s which

represent the difference between the corresponding partial amplitudes for

7f+ - P scattering and 7%/~ - P scattering, satisfy ecuations similar

(2) (2)
to Egs. (I') and (II'). The.equations for i:eN , and f‘es may be
derived from Egs. (III) and (IV) by following the same procedure as used

for the cases A =1, 3. The resulting equations are

(2) ‘ | . (2) |
on o) | e [1-;— M, /“)}L ﬂ/ (k) AZ'N kc2(
24 +1 M mo&, £'=0 £ 241+ 1

i 2 ’
14 (@, + M) (e, - @)

[+

[~V ) )
2¢) x 2 dew'
- c.c P} “r
12 '2 2 : . '
55 Ji k, (C.uc - @ ) m wc(cuc + W)

-0 —_— (2), 2 2 2 1II
2 v, (ks ko) S D) il (2t &)VI (k)
£'=0 20+ K "4

(II1')

and
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Zw v (2) 2,k (1)
A ' k., k' (kt _2f k (k .
i A'=1 4 (.c C)_ .a'?s C) ™o 6:2 VX °
()
_ III, IV III,IV CITI, IV
The functions Oj . s A s ‘7 ,e are similar
0.4 44
to the corresponding functions of the case 62 =1() =1or 3). They
are defiﬁed by the integrals,
1
III ' ] 1 v
P D L G
’ 2(411) Y
X [_1 f O - ] , (6.5a)
m UJd /.4_ _
!
111 Do , | '
Aj"fl (kgs k') = 212-*'1 g dz P’( (z) P, (')
-1

x [1 + (W, - ') [/"2"‘/‘*(“00* o )t (3°~>'c+2wc)t—%] ]
m (e, +w'c)(wc+,u)(w'c+/u)
(6.5b)
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III A ,
YZZ (k) = g = B () +22)
Y A
x [l.'. q2(2"‘4c2+wc /“"f'/*z) ] (6.5¢)
" o ¥

and

O/ ,Iv(k) = (-1_)@"-1 (24 - 1)t 24+ 1)

Cc
1
X g dz(l—z2 dPZ (l—-z Q"'l (6.62)
\%' > ) Tz > ) b o
-1
) l ' ' (z')
A ' (k:k') = __2__{_-#_—__1___ dz (L +2)(1 - z') dPﬁ(z) dl:'[, z!
[9[ c c 2,@(,@-/— D % e —
o -1

x |1+ q‘?(cuc - w ) (W, —,ot)(2w'c1-wc+,<4) ,
m oW (w', + @)W+ )W+ u)
(6.6b)

1

- @A+ 1) az (L-22) d4Pp(a) (1428 .
71 20(4+ 1) % (2 / dz ¢ —,P)

(6.6c)
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The value of the angular integrals of Egs. (6.3) through (_6?6_) corresponding
to small values of I 1 - f' l and f are given in Appendix B.
‘Equations (I') through (IV') represent the "heavy—nucleon limit" to
the dispersion relations for pion-nucleon scattering, analyzed in terms of
orbital angular momentum and spin dependence. If Egs. (5.14) are used,
these dispersion relations may be expressed in terms of the amplitudes

L DL

II_ = di.t 4 i aﬁ.t ;'which correspond to orbital angular
momentum 4/ and total angular momentum £+ 4. The absorptive part of
these equations cannot be expressed in terms of the total cross section, as
can be done for the forward scattering dispersion relations. However, the
imaginary parts az(tz) (kc) © . of the amplitudes f[i()l )(kc) may be

expressed in terms of partial cross sections by the equations

o3 )

(B+1) 8, " k) = e/umGG, " o)

(6.7)

) .
Lo ") = kaM S, (k;) -

()

The symbols sz ' represent partial cross sections for waves of
orbital angular momentum I and total angular momentum Z % % ; they

are total cross sections in the sense that they include both elastic and’

, : ' 2
inelastic processes. The partial cross sections GZt(l) and G-:e.t( )
are defined in terms of the corresponding 'quantities for 77 4 P scattering

and 77 + P scattering by the equations

SRNCH I " T
S, - ioy, )+ o, #0f
4 (2) . : 7T+ _ -,

<, %[Gz':t (M4 ») -5, +P)]
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If terms of order m-l are neglected, the dispersion relations

M)

express J'c,he‘ real parts of the partial-wave amplitudes in terms

%t

of the partial-wave cross sectlons corresponding to angular momenta equal

to or greater than /(, since, in this appreoximation, the functions

1,6'-
of Egs. (I') - -(IV,'_) vanish if Z' 2 ,@ . If terms of order m_l are
included, on the other hand, the€ partial cross sections C-)Z/ O‘ )

contribute to the equations for d{if)') ir & )f The generalization

of this rule when terms of higher order are included is discussed in Section 7.

may

Only the energy and momentum variables of Egs. (I') - (IV') have been expanded
in powers of m‘l, since the m dependence of the absorptive amplitudes
depends on the nature of the meson theory used. In most simple meson theories,
though, the partial cross sections G‘l;‘ (A ) generally are smaller than
Q-Z _t()) by a factor of order (kcz/mz)j' ”é., This relationship applies
to pseudoscalar meson theory with pseudoscalar coupling, provided both /Q
and f’ are greater than zero. Hence, if a simple meson theory is used
to expand the partial cross sections in powers of m-'l , and only the lowest-
order term is retained, approximate dispersion relations may be written
which, in many cases involve only one angular momentum. However, if the
experiméntally measured partial cross sections U:et (2) and U:ZHSZ)
(where ,@' > [){ are of the same order of magnitude in a particular -
energy region, both partial cross sections should be included in the
dispersion relations for d’ej(:) ), of course.

It should be .noted that if the sums over angular momentum are cut
off at some finite number, all quantities appearing in Egs. (I') -Q@vr')

are finite even at energies such that k m/-( The energy range in

which these "heavy nucleon" equations are approximately accurate is not
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known at present.

If the scattering amplitude is sufficiently convergent at high
energies, dispérsion relations of typé B may be. derived from the. contour
integral of. Eq. (4. 5) The partial-wave analy51s of these relations leads

to equations that are simpler than Egs. (I') - (IV') in that they do not

D s 2, D).

The partial-wave dispersion relations are most useful at low

involve the threshold constants A [

energies, where few angular momenta are important., Since only S and P
ﬁaves seem to be important for low-energy pion-riucleon scaitering, we study
‘the form of the dispersion relations in the approximation that angular
momenta of two or more units are neglected. Charge independerice is assumed,

| . ). | ()
so that the amplitudes O-}-) s, I (2) , and f " may be expressed

1- 1+
in terms of SCattering amplitudes for total isotopic spins % and 3/2 by
equations similar to Eq. (3.5). At low energies elastic scattering 1s the
dominant reaction process, s0 wé neglect inelastic processes, In this
approximation the scattering phase shifts are real and, if the ;spin and

isotopic spin values of these phase shifts is dencted in the conventional

manner, the relevant absorptive amplitudes are givén by the equations

L 3 (1,3) 2 . 2a
. ke agy = kg 804 ? = _3:_L_(2 sin 531- sin Sl) s

(1,3) a, 3) (1,3)
k. ay kc [2.311- a_ J
%-.(b, sin2 S + ?sin 5.31 +’2'siﬁ2 5134- sinz'.cg
Lo (1,3) K, [ 1+(l »3) al_(l,B)J

1 (2 _ 2 2 _
3 (2 sin 5\33 2 sin 831 -[- sin é‘lB sin Sll') 5
(6.8)

11) ’

B
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2 2
k, aON( ) = kg ao+( ) - i (sin2 8'3 - sin2 5‘1) ,

2) T @ @1
kcalN = kg [,2a1+"+-alv_- J : ,

w

_ 1 (2 sin? L2 2 2 |
= 3 (2 sin 533 +- 31n. 5\31 2 sin " 513 vsin ;Sll) s
(2) @ @7
ke 315 -=kc[a1+"al-'_l |

- i (‘sin2 8'33'- sin2 831'

|
W

2 o
- sﬁ.n2 313 4+ sin Sll) .

(6.8)
Formulas for the corresponding dispersive amplitudes may be obtained from
. . . 2 .
the above equations by replacing the functions sin” 5.1 by % sin (2 S i)’
i.e., . A '
. (1,3) ; 1,3 .S 28 )
ke doy = kg dgy = 7z (2sin 294 4 sin 29,) , (6.9)
and so forth.
If the above equations are used to express the scattering amplitudes
- ' ‘ ' - I-IV
in terms of phase shifts, and the values of the functions %f g
I-Iv. I-1v ’
c%}? 7 , and ’F corresponding to angular momenta of O and 1
3 : '
‘are taken from Appendix B, six equations for the six S and P phase
shifts may be obtained from Egs. (I') - (IV'). Since this procedure is
straightforward, we do not list the six equations here, but list instead
the corresponding type B equations which follow from the contour integral
of Eq. (L4L.5). These equations are given below, expressed in terms of the

quantities of Eqs. (6.8) ar’id-"(6.9):v .
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o0
(1) .
- 2k dk
ke don (ke) = 2% P c

77‘ 2 2

O.(k'c "kc)

2 2
x |1+ (', - w)hw', + &, + 6wcw'c+/u2)
2m-dc (w'c + wc)

klc aON(D(kYC)

o0

2 2 2 2

+ ke p S dk', 1+ (12:4.:'c + 6/,& +18wcf.dc)(w'c - W)
0

" k .

1)

J

‘e 6 m Cdc(w'c-f— wc)2

-2 2 .2 . 2 . 2 .

k k' - k ! (l) 1 f k

+ < (3 : c b < ) ) k c alN (k c) - /‘ Cc
6m we(w, + w),)

— + T :
M 3/“ (6.10)

SO

(1 3 |

ke diy )(kc) = 2k P S dk ¢
0

' ¢ 2 2 C 2
(|14 ez O EaT bl 10 | Mo

! i
2m W (W', t+ )

2, 3
(k'c)-{- 2f k.,
2

3 | | X
- ke k', ! (1)

a
c “ON
7fm ;,j ! 2
c(wc + wc)
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(1) 3 '
ko dg (k) = 2% dz c
! 2
8 0 @ k' (k'S - c2)
[ 2 2 3 2
X 11 + k¢ W, - <) k'c- als(l)(k'c) + 2 f kg (l - ke ) 3
2mwc(w'c+¢oc) 2"% 2m <)
o0 (6.12)
(2) 2 w. k dk’
ke dON (k) = cc P c
1 t 2 2
‘ 77/ 0 w k- k")

2 2 '
X [1+4 (W' - Q)Buw, +2°‘)c°‘}c ’f") | k' a (2)(1{' )
2m (e, + o)

oL
2 ’ 2 2 2 2 2
2 wckc P g dk'q 1+ 6(0’8 +wcwc)(‘°'c -« )+kc (Bk'c 'ch?]

<
7/ !k 2
e '
.0 c ¢ 6m u)c(f-t)c-f-wc)

Z m e P
o0 (6.13)
’ 3 '
k, d (2)(1() - _wp kT p k'S, ,
1N e - 7 2 2 2
W, k2 -k )

x[l-{- (cu'c - C%)(chz-f— 2a, e, —/of) k' a (2)(k 3

¢ “IN c
2m o (e, + ;)
_ 20
3 » 1 2 2
k dk'y ' (2) (e 2 £ 249 |,
+ e P 37 X ZXVKC a0y (kc)]_,_ S ke l-{-/“L d H
mo0 et ) Ve 2 m e
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(2) 7
2 . 3
d (k) = 2k p - dk'g
¢ 1s c -——7/ - " 21{' 2 2),
0 T ¢ ( c ke

' ) s 2 2, 2 | y
X |14 (' - c'uc)(uuc - W, Fha W M) k', als(z)(k'c)

2m w (), +wg)

+ c . ' (6.15)

m/uz
If Egs. (6.8) and (6.9) are used to express the dispersive and absorptive
“amplitudes in terms of the phase shifts, the above equations represent six

simultaneous nonlinear integral equations for the six phase shifts, CS; s

Cgé s 511_, éng s é;Bl , and 633.' Although there is not a unique
solution to these equations,17 they may be useful in analyzing the iow-
" energy pion-nucleon scattering data.
Equations (6.10) through (6.15) become particularly simple if terms
of order mt ére neglected. In such a limit Eqs, (6,11),'(6.12), (6,lh),
and (6.15) involve only P-wave amplitudes; these equations have preﬁiously

18 ’
> 19 and are known as Low's equations for

' been derived by Low7 and Oehme,
P-wave scattering. To zero order in mfl, Egs. (6.10) and (6.13) involve
both S and P waves. Equations which involve only S waves may be derived,
however, if use is made of the following facts. If the scattéring
amplitude coﬁverges rapidly enough at high energies so that Egs (6.10)
and (6.13) are valid, dispersion relations of type A are also valid; in

particular the forward angle equations of Goldberger,2 which are of type A,

are valid. It may be shown that in the low energy approximation used here,
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(neglect of inelastic processes and orbital angular momenta greater than one)
these forward angle equations may be combined linearly with Eqs..(é.ll)

-1

and (6.14) to give equations which, to zero order in m™, involve only

S waves and are identical to S wave equations derived by Oehme.19
The factrthat the S and P amplitudés satisfy separate dispersion
relations to zero order in mfl does not mean that these amplitudes are
independent to this-order° The equations, Egs. (6.10) and (6.13), express
relations between the S and P amplitudes that must be satisfied if the
assumptiéns made in this section are correct. ‘The solutions of the S and
P wave dispersion relations are not unique;17 Eqs. (6.10) and (6.13) may
be considered as additional conditions on these solutions.
| Important examples of low-energy dispersion relations, which
illustra£é the interdependence of orbital angular momenta zero and one,
may be obtained if Egs. (6.10) and (6.13) are divided by k, ,.and kg
is set equal to zero. The resulting equations express the scattering lengths
for isotopic spins 4 and 3/2 in terms of energy integrals of S and P
wave phase shifts, Reference to the experimental data shows that the P-
wave contributions to these equations are quite important.
The fact that the low-energy dispersion equations, Eq. (6.10) -
(6. 15), are integral equatlons for the phase shifts results from the neglect
of inelastic processes. The situation would be quite different if the
methods of the present paper were applied to the problem of the scattering
from nucleons of gaﬁma rays of energies in the range 50 Mev to 300 Mev.
Because of the dominance of the meson-production cross section, which
results when gamma rays of sufficient energy are used to bombard nucleons,
it is an excellent approximation to neglect the elastic-scattering

contribution to the cross sections which appear in the absorption integrals
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of the dispersion relations. Gell-Mann, Goldberger, and Thirringl have
used the fofﬁard-difection disperéion relation to detefmiﬁe épp?okiﬁately
the ehergy behévior of the coherenﬂ amplitude for forward photon;proton
gcatﬁering froﬁ the ekperimentél data on the enérgy deﬁendence éf‘the total
cross section for photopion production from protons. The method of this
paper couid be used to determine the general naturé of the‘angulaf ‘
dependence of the elastic—scaﬁtéring amplitﬁde, at varioué energies, from
experimental data on thé angular dependence of the_photopfoduction cross

sections,
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7. vDISPERSION EQUATIONS AT ENERGIES COMPARABLE TO THE NUCLEON MASS

If terms of order higher tﬁan the firét in aﬁ expansion in powers of
m—l are‘inciuded, the non-spin-flip and spin-flip amplituaes are mixed by
the transfofmation to the center—of~mass system, and thelequations for the
partlal—wave amplitudes are quite compllcated ferﬂaps the most useful
procedure, in thls case, is to linearly combine Egs. (I) and (II) or Egs.
(III) and (IV) in such a way that the center-o f-mass dlsper51ve amplltudes,
(Zj(k ) and d S(;i)(k ), do not appear in the same dispersion equation
after the transformation to center-of-mass quantities has been made. This
procedure results in extremely lengthy equations; therefore we follow the
alternate procedure of analyzing the first dispersion relation, Eq. (I),
in terms of partialéwave amplitudes. The effect of the inclusion of higher-

-1

order terms in m is then studied.

Equation (5.15) represents the expansion of Eq. (I) into partial
waves, correct to all orders of m™L, The functions 3?N(l’3) ~ corresponding
to different values of ,( may be separated by the same method as used
in Section 6, multiplication by the set of Legendre polynomials and
integration over the scattering angle. The angular integrals are complicated
because the functions q2 , ¢« , and <' all depend on the center-of-mass
scatteriﬁg angle 6, , as well as on k,. Because of the dependence on 0.

of the g-system energies @ and <' , it is useful to define two functions

2) and V', which are independent of cos 8, , by the equations
¢
- 2
L) m l(k

))/

+ B )

11

-1 [2 ' 1
m (k . + E', CLJC) .

I
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Since q2 = 0 corresponds to cos Gc = 1, it may be seen from these equations
and Eq. (5.1a) that when cos ec = 1 , the g-system energies c¢o and e

are equal to ¥ and 3/ ‘o1r Eq. (5.15) is multiplied by % Pf (cos 8,)

and integrated over cos ©; between the limité 1 and -1, the result may

be written

(1,3) | 2 (1;3)
%N (kC) + ) kC Y djrs (kc)
24+ 1 m(m + Ec) g7 L1 \
| | (1,3) > (1,3)7 24
- mt N RA: ke (ko) A, ]k.
W, %/ O{ZZ/ ’ 2404+ 1 * m? @lf' ) A[S °

SO

_‘ 3
2 (v ~/42) dew'c W'e 5’
T . mWoE! (7)12 _/’3)(\)12 _})2)

o
(1,3) i 1 2 ' '
A, (k., k') %N (k'¢) ko B, (k.,k'.)a (1’3)(1{'
* fZ f,[/ cof 2L +1 * m(m +E' ) L &
+ 2 f2</c2/2m)( Vv? . /f ) m (k)
[WZ/Z“)Z ] /Mz :] [(/Az/zm)z _ \)2] W \Z@

(")
The coefficients BZ 2, s Q‘)Z f’ s ﬁf,)@’ s A:Z’f' ) B[,fg

and ’e are defined in terms of complicated angular integrals. The writing

of these integrals is simplified by defining 2z = cos 8, 2! = COS BE, and

by expressing some quantities in terms of the functions q2 -4 kcz(l - z),
-1 1 1 1 -1 < s

w = E; WC Eq - Eq, and &) = B, W, Eq - Eq. The coefficients

of Eq. (I") are given by



UCRL-3397
~57~

¥ o (k) g 4z B (2) Py '(z) (1 - 4 mm 4 E) (7.1a)
. -
J q c
1
(ko) = (~1) L'+ 1)t ©dz Pp(z)[ 1 - z>
o,;[/f’ ¢ 2(?/1)2 2 2
=1

2, -2 -
)( (m™ + Eq ) Eq(m +Ec) , (7.1b)
2m Bq (B°+ m B)

- i § e

s 2[(['-1)1]2 9

X M ) (7.1c)
E2+ mE, ’

/(kc5 k' ) = 22' t1 S 2 (Z) P 1(2 ) dz Eq(m TEc)m
(Eq2 +m Ec)Eq

fﬁ

2 2. 4 4.2 , 9
X (W - ) w (Y —))2)(\) : "/f)(qu'f’mE'c) ] s (7.14)
2 2
(V2 2V (aw? -wzxco'z ) B (n 1)

BI,Z'(kC’ k') = 3 i az B, (z) 4Bg:(2") <1 _ g12) [ Bylm + B m?
-1 2 (E + mE )E

N (@ - W PP b , | (7.1e)
(V2 _ 48 Y w? _aFyeor? _eg? |
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"
v

x (1;3) : _ ,_ |
W%kc) 3 g ta B (2 7w, | e - § oo 200

- £ /2n) (V1002 - o)
2 2 ))2f |
S - smyz) | (7.19)
(w, - )& "+ m B

If the quantities of Eg. (I") are expanded in powers of (1/m) and
only the zero-order and first-order terms retained, the spin-dependent terms
vanish and the equation reduces to Eq. (I'). To this order the functions
O&)’e, s IAE,Q, and Y?( are eqlual to thg functions Q&/ Q’I , Af,gnl ,
and /e defined in Eqgs. (6.3).

In order to investigate the nature of the angular momentum selection
rules: that apply when terms of higher order in (1/m) are retained, we
assume the energj is low enough so that the integrands of Egs. (7.1) may be
expanded in powers of q2 -3 kcz(l -~ z). To illustrate this expansion we
choose é?a@'(kc’ k'c) as a representative example, and write this

coefficient in the form

1
A[’z'(kc, k') = 124"+ 1) S 'IZ(Z) P:e,(z') dz ({ (k,, k', 0 .
. -1
If the function a(kc, k'c, q?) is expanded in powers of q2, it is
found that the coefficient of (q2)n ‘is of order ‘n or higher in the
quantity (l/m). Therefofe, if %g;if is expanded in powers of (1/m),-
i.e.,

i i
A[’fp = Zi Af,zr (1/m) ’
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then we have
22, (ke kK'g) = O if ,2’<f-i .
The functions %z/ 5 /8/6, ,6/ 5 Xﬂﬁ’ s Bﬂz, 5 and. h,ﬁ may

. i -3

be expanded in similar series, i.e, = ] m ete.,
| P gz DaHg s m

It may be seen that the coefficients of these series satisfy the following

angular momentum selection rules,

°‘1,2’1=° | £ L
X 2{ Q (7.2)
i i
’BF’F RV andBp,f -0 it 4 <Z-i-1(, |
7.3
\’z‘i -0 | ' it A >241

Equations similar to Eq. (I") may be derived from Egs. (II) - (IV). The
coefficients in (1/m) éxpansions of the functions occurring in these equations
20
that are analogous to the functions and satlsfy the rule
Y. " Vg 47 ’
Eq. (7.2). On the other hand the coefficients analogous to ﬁ/ 2, R

h,?/./ , and BQQ s which represent the mixing of the spin-independent

20

and spin-dependent amplitudes, satisfy the rule,“~ Eq. (7.3). Thus, if the

-1

partial-wave dispersion equations are expanded in powers of m and terms

%)

of order higher than n  are neglected, the dispersive amplitude d/( N (kc)
3

depends on aﬁ'N(Z) [or OT@'N(A) j and AIQ'N(K) only if,Q/Z f-— n.

Furthermore, le(kc) depends on a5 and AZ'S only if n > 2 and
,@' > A -n+1. Similar relations hold if the roles of the spin—dependent
and spin-independent amplitudes are exchanged.

The above conclusions are based on the assumption that the momentum

transfer is small enough that the quantities occurring in the angular
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integrals may be expanded in powers of m-l.

If ko, £ m, so that g < m,
it may be shown that most of the quantities occurring in the angular
"integrals may be expandéd in convergent series in powers of (q2/a)cm)‘ and
(q2/m2). Some functions occur in the angular integrals which have smaller
radii of convergence, however. Two examples of such functions ai'e

2)—1 2 2.~1

and (wb - &) ) . The first has a radius of

2
1
(W' - w 2

~a
. - 2 1 2 1 T . . o » :
convergence of q = %(m/u-p-k c +E ., w c), which, in the limit as
W 2 ' . 2 2 _
w'c /*, becomes q< = I}u. The factor (o.)p - e ) has a radius
of convergenée of q2 = %(m/&- %/A'?) At energies such that

kc2 > %(m/ou - %/u?), the integrand of Eq. (7.1f) is infinite at the
point z = 1 - kc-z(m/u, - %/U.Z) Therefore, at these energies, one

~ cannot use the analysis of this section. One may use the alternative

procedure of taking successive derivatives with respect to q2

of equations
of the type of Eq. (5.15) and evaluaing inthe forward direction, or one may
use the heavy-nucleon equations of Section 6, consider only a finite number

of angular momenta, and hope that the resulting equations are accurate even

2 2
at energies such that k" » %(m/u\— %/,L ).
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8. CONCLUSIONS

The principle of causality is used in a derivatipn of dispersion.
relations for pion—nucleon‘scattering in the case of finite momentum transfer
between the particles. If the relations are analyzed into partial waves,
the resulting equations express the real parts of the scattering amplitudes
corresponding to different values of the orbital and total -angular momenta
in terms of energy integrals of either the various parﬁial cross sections
or the imaginary parts of the various amplitudes. In general, the rea} part
of a particular amplitude is dependent on the partial-wave cross sections
corresponding to both spin-dépendent and spin-independent scattering, and also
to all values of the orbital angular momentum.

If the vafious functigns of the particle momenta and energies are
expanded in powers of (1/m), where m is the nucleon mass, the dispersion
relations are simplified. The spin-dependent and spin-independent amplitudes
do not occur in the same equation if terms of higher order than (l/m) are
neglected. If terms of order higher than (l/m)n are neglected, the real
part of cne of the amplitudes corresponding to angular momentum 167 can
depend on partial cross sections of angular momentum /(" only if.{';?‘i?- n.

The derivation of the dispersion relations depends on certain
assumptions concerning the rate of convergence of the scattering amplitude
at high energies, and the rate of convergence of an expansion of the
amplitude in terms of partial waves. Comparison of the results derived
here with experimental data will provide a partial test of these assumptions.
The fact that the forward-scattering dispersion relation is consistent with
the low-energy experimental dataZl may be evidence that the assumptions

made here are justified.
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The method used here may be generalized to other bosOn4fermion
scattering problems. It is likely that useful results could be obtained

from an application to the scattering of gamma rays from nucleons.
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APPENDIX A. LORENTZ TRANSFORMATION.OF THE SCATTERING AMPLITUDE
If the scattering amplitude M expressed in terms of four-by-four

Dirac matrices, the Lorentz invariance of the amplitude implies that the
quantity H(B', of "M u(g, & ) is invariant, where u(g, & ) and E(R', ')
are four component Dirac spinors which represent the nucleon in initial and
final states of positive energy, momenta 2 and B' and spin directions

9/ and & '. The scattering amplitudes of this paper have been-written
in terms of the two-by-two matrices 9" and i , which operate between
the two component spinor functions Z(O{ ). A nucleon is defined as having
spin up (or down) with respect to an axis in the direction oi‘ a unit vector n,
ii‘,v in its own rest system, it is an eigenfunction of the four-dimensional
Dirac operator ,,G:fﬁ\ with eigenvalue one (or minus one). Therefore, the

scattering amplitudes of this paper may be expressed in terms of four-by-four

spin matrices in the following manner:

() M X()

(0, c(')()'?N L4 o-'equ?s) u(0, 4 ) (A1)

) P e e

PAGRR N (CD

wo, °(')<77cm 1% iT ke xk'; 7;33) u(0, o) .

(A2)

The matrices in Egs. (Al) may be considered as two-by-two matrices since
the small components of the spinors u(O, 0‘ ) and (0, o").vanish, These
spinors u(0, e") and u(0, o"), which represent nucleons at rest, are
related to u(g,e{) and H(,E" a,‘) by

u(p, o) = AN (e) ~ u(o, of)
[3a+2m ]2

(13)
E R I T RVA PCO R
[3a +5/m]?

-
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where the projection operator /\+' is defined by the equation

/\+(P) = m_;_mTEE . (AL)

The scattering amplitude may be expressed as a linear combination
of two Lorentz-invariant scalar quantities; For this purpose we define the

invariant quantities,

TI—(E', ') U(E,O() ’

[
t

(45)

IQ u(-.}?," b") _2_(_9_ u(p,c‘) s
. m -

where b/ represents the four Dirac gamma matrices and the four-vector Q@
is defined in terms of the four-momenta of the initial and final pions by
the equation

Q = 3k + k') . - | . (46)

If use is made of Egs. (A3), the quantities I; and I  may be

Q
written in terms of the spinors u(0,<( ) and (O, c{') and the varibles

“of the g-system, i.e.,

I, = Wo, ) Eg w0, o) ,
m

(A7)

[
l

Q = u(o, o{'){-—g_) + 18 :.qzx =Q} u(0, o ).
i m . .

The corresponding quantities, expressed in terms of center-of-mass variables,
are -

L - Tl'(o,o(')z(l b P ik X Xe) woy)
m(m 4+ E,) 2n(m 4 Eg)

(48)
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. . 2 a :
IQ - Tl-(O,Q(') '__CUCEC-l-kc n 9;6_ + wc
. m2 m m 4 Ec

+ 1ok x K é.-'- _ % u(O;h( ) .
| 2m? | m +E¢ /
(48)

Since only positive energy states are involved, the scattering
amplitude may be written as a linear combination of the quantities I, and

IQ,

Wp, of )M ulpe) = FI o4 ? I > (A9)
where -F and )'Z are spin-independent scalar quantities. The quantity
U Mu is Lorentz-invariant; hence it refers to the scattering amplitudes
in both the g~-system and the center-of-mass system. If use is made of '

Egs. (Al) and (A7), the g-system amplitudes. 77N and )78 may be expressed

in terms of f and 7 s-1.€0,
771\1 Eﬂ - (EC c - Eﬁ,) > (A10)
m Eq m m

WS - __lg

m
In a similar fashion, Egs. (A2) and (A8) may be combined to give corresponding
equation§ for. YYZCN and Y?CS s

: B 2
= 1+ 92 ,§- CL%:Ec'*mkc - g 1+ e s
b [ m<m+E.c>] T % ( /)

(A11)
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y?cs=-———g L) +*%€+ch, )Yl (a11)
2m(m+-Ec) 2m' m+E, 4 L .

The relation betweeh the center-of-mass amplitudes and th?, g-system

amplitudes may be obtained by solving Egs. (All) for the constants f and
» and substituting these values in Egs. (A10). The resulting equations

are identical with Egs. (5.4).
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APPENDIX B. VALUES OF VARIOUS COEFFICIENTS
In this appendix the values of the functions defined in Egs. (6..3) -
(6.6) are given for low valués of I,( - f‘/ and f ' Since all quantities
refer to the cénter-of-mass sysﬁlem, the subscript c o'fv ke ana ), 1is

' . 2 .
omitted. The ratio (kc/k'c) is denoted by /\ . The integrals calculated
,I’O and A, ,I
| 01 |
second superscript denotes the order of the integral in the parameter (1/m)

s1

here are denoted by such symbols as Iy , where the
2,

I 1,0 2 gt oy G 2
o' e o e § e ()
° -1
_ (B1)
= 1 - X=X
= (24 +3) L' = £+l
= (@ R45)(Lw2) . ' = R+2
A 1,0 24+ 1 > dz B, (z) P, . (2') : | (B2)
e 2 oy
£
= /N ) | A=
= @ALFMAQ-N) £r= £+1
- eLispta -/ L= Re>
x [(/(1"1) - (2+2)/\] .
y Bt 21€'+1l dz P, (2)P. (2') q° (B3)
o4 -—;—-—S Y A S |

- -%<k2/m>/12'1[1/<22+ 1)] K= h-1
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%m%mf‘l [(£+DA-L ] PO

‘Mot

—%C-Uzkz//b\,h

(w//ol‘ +1 (k//g)l‘

(

0

a0mnt L(f+ D°A° - (LF D)L+ DA

+ (2 &+ 3)12/(2£+1)] 0= A+,

1 5 2
S dz P, (z) [11—39__] | O (ma)
£ A2 _ , .

-1

it

/

V4

2/1_5)(1:‘*//«3’) | A
| X >

(-l)fe""‘l (2 Z; _ l)!(z/e'f'l) dZ (l- ZQ) dl:"z (l Zf
L& -0 0 + 1) _1‘

| - (B5)
1 | | VW4
-(2L +1) a - WAEDLY
24+ 1)(L+2) . Q- A2

Wt el - vielen g dz<l ) Zz)
S E(z' - 1)1]2‘[(17" DI 2

.Z| - l 2
% dP! 1 -3 q
dz 2 m

(B6)
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30 /m) (- 1)/(2 £- 1) L ps -
20 /m) K o -4
3(<°/m) [(21 + DL+ 1) (L4 2)/(21+3)]
/e' o /(‘f’]u
1
(24 +1) g dz(1 + 2)(1 - z1) 9B (2) dPyi(a)
ZZ(rQ'f 1) dz dz'
-1 (B7)
n% £ =L
(2 K+ l)A’eu -/ £'=R+1
e L+ ¥ -/ [(24- 1) - (L+ 2)/\].
X = K42
1 o | ‘
(24 + 1) g dz(1 4 z) (1 - z) 9Fp(2) Py (2') gi '
204 + 1) “ dz dz' m
(B8)
—%(kz/m)/\f'l(f— 1)/(20- 1) K= H-1
s0mA Al L L - X

2l [Nt DAL DL/ L43)

MMkt +LL-1] .
/é' = /e'f‘l



I

)Z(II,I |

YZ(III,O

VIHI ,1

UCRL-3397

-70-

1

_2f+1 g dz(l - 22) d Pyle)
2?(14— 1) 2 dz

-1

dz l-z dP}(Z) gi
21(£+1) )

1 x%/m | o =1
-(1/12) ¥*/m » f -2

0 | ,(>2

dz P((z) 1+ gg;)

I
I
—HC

Q}Z//Az | 1:0
..% k2//4,2 A=
0 2!

1
b eyl 2) S

t
(@]

3(<%/m) [1,+ (a1<3)/(3,o«2)]
2 2 2
—%(k /m)(1+ 2 K5/ u°)

N

1/15 (6%/m) (6%/ 1)

0.

NN NN

\'4
o

(B9)

(B10)

(B11)

(B12)
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Iv,0 1 '
y7 O L eh+) S dz(l-—z2 d Pp(z) (1+39;) :
2 , .
2 1 dz , .
7 £L+1) 4 M (813)
2
- 3 ‘Uz//“ 1 =1
I T -2
= 7% 7 AL -
= 0. [ > 2
The angular momentum indices Z and 1 " in the integrals referring
(
to the spin-flip equations may assume all positive integral values, but not

- IIT
zero. The angular integrals that appear in the expression for ﬁ/[ 1, s
3

Iv III IV .
g/ . 9 1 , and A, p, are identical with those in the
4 & I II (’)el

expressions for c( , X7, A, and At .
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FIGURE CAPTIONS
Relative orientations of the pion and nucleon momentum vectors

for a typical scattering event. The vector jﬁ denotes the velocity

of the center-of-mass in the g-reference system, while W represents

the total g-system energy. The subscript c¢ refers to momenta in

the center-of-mass system.
The complex W -plane for the scattering amplitude %71*(Q, fi,cd).
lamBE N

The contour integral of Eq. (4.4) in the complex &J-plane. The

symbol R denotes the radius of the semicircle.

The energy spectrum of the absorptive part of the scattering

amplitude in the g-system, shown in the two cases qI2 < %/‘ and

q2> m/yg.
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