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Several of the formulae encountered most frequently in relativistic particle 

dyr..amics problems are written in a form that exhibits clearly the transition 

between the nonrelativistic and extremely relaNvistic limits. The exact "rela­

tivistic formulae in this form are related to the usual nonrelativistic formulae 

by the mnemonic device, "To the rest energy of each moving particle add one 

half of the total em system kinetic energy. 11 It is pointed out that the exact 

relativistic formulae so obtained are in the form best suited to rapid slide-

rule calculation; the problem of "disappearing significant figures, ~• which 

ordinarily forces one to use a calculating machine to obtain final slide -rule 

accuracy, is automatically avoided. Also avoided are the usually encountered 

radicals with affixed plus or minus signs. Numerical examples are given for 

each formula. 

* This work was done under the auspices of the U. S. Atomic Energy 

Commis sian. 
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Ordinarily, in calculating relativistic particle dynamics, one uses formulae 

expressing the relation between the total energy E, the momentum p, and 

the rest mass m. Two drawbacks in the t;se of these formulae are that (;:,) 

thf·ir appearance 1s quite d1fferer.t from the usual nonrelativ1stic formulae, 

so that the transition between the relativistic and nonrelativistlc limits is not 

readily apparent; and (b) to obtain even slide-rule_accuracy in the final Cjnswer, 
du;;advantage 

one: often must use a calculating machine. The latter/ stems from the fact 

that we are usually mterested in knowing the kinetic energy T to slide -rule 
2 

accuracy; but the first one or two s1gnificant figures of E and of me are 

equal, for moderately relahv1stic energies, so that they disappear in the 
-) 

subtraction T = E -me'"'. 

For these reasons, we prefer to write the correct relativistic formulae in 

tenns of the kinetic energies, and In a. form suggesting the usual nonrelativistic 

formulae. We will show that the formulae so obtained not only have thf" ad­

vantage of intuitive appeal, but are actually in the form best suited for speed 

and ease in slide -rule calculations. 

In the following examples we leave the correct derivations of the relati­

vistic formulae as excercises for the studeTlt. Instead, we rec1te a useful 

m~.emonic rule that enables us to wr.~.te dovn:1 the correct relativistic formula 

immediately--provided that we c<1.n remember the correct nonrelativistic 

formula. The mnemonic is as follows: 

In order to obtain the correct relativistic formula, 

(1) WTite dowr. the correct nonrela!iVlStic formula; 

(Z) to the rest energy of each moving particle, add one-half of the total 

kinetic energy (in the cer..ter-of-mass system). 
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The application of Rule (2) is clarified in the examples. We see that (2) 

expresses one of the fundamental results of relativity, that the ine-rtia of a particle 

depends on its kinetic energy as well as on its rest energy. The factor of 

one -half, in Rule (2) can be "explained," or remembered, by the (mnemonic) 

assertion that "the kinetic .energy only contributes half as much inertia as 

does the rest energy." 

To avoid encumbering the formulae with the velocity of light, c, we let 
2 

p :: c · momentum, and m = rest energy= c · rest mass. (We avoid the 

customary--but sllghtly disturbing--threat, 11we now set c equal to l. t•) 

All quantities in the formulae have the dimensions of energy. We continue 

cal!.ing p and m the momentum and rest mass, for brevity. 

Example 1 

11 Express the kinetic energy of a single particle 1n terms of its momentum 

and rest mass." 

Following Rules ( l) and (2), we write 

2 
Nonrel.: T = ..E._ ( 3) 

2m 
2 2 

Exact Rel.: T = 
p 

= 
p 

2(m + T/2) 2m+ T 
(4) 

Equation (4) is exact. In the nonrelativistic limit the kinetic energy is small 

compared with the rest mass and (4) goes over to (3). In the extreme relati­

vistic limit the rest mass is negligible compared with the kinetic energy, and 

(4) becomes T = p. This is of course the correct relation for particles of 

.1 zero rest mass, which are extremely relativistic at any energy, since they 

always travel with the velocity of light. In this limit, T and the total energy 

E are identical. 

For intermediate energies, Eq. (4) is essentially a ·quadratic in T, and 

could be written in the more customary form of a quadratic equation. How­

ever, Eq. (4) actually has the most convenient form for numerical solution 

of the quadratic for T, given the momentum and rest mass (in this problem). 

We use (4) to find successive approximations for T, writing 

2 
p 

2m+ T n 

n = 0, 1, 2, ... (5) 
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We set To = 0, (the "ridiculous" approximation), to obtain Ti = p
2 
/2m, ., 

(the nonrelativistic approximation), T 
2 

= p'"' /(2m+ T 
1

), (first-order relati·1i·· 

stlc correction approximation), T 
3 

= p 2/(2m + T 
2

), etc. This process converges 

rapidly for moderate energies and, using a slide rule, one actually takes lesB 

time to end up with the final exact answer plus the approximate intermediate 

answers than to express the quadratic in the usual form and solve for T. In 

addition, we avoid the sometimes embarrassing ±sign that appears in front 

of the radical in the usual quadratic solution. 
' As an example we fmd the kmebc energy of a proton (m = 938 Mev) havirg 

a momentum 700 Mev/c. Eq. (5) gives 

0, 261, 229, 234, 232., 232, ... Mev. 
1876+Tn 

For rather relativistic particles, the procedure (5) converges only siowly 

if we use T 
0 

= 0. This is because in the extreme relativistic limit, m = 0, 

T n+l oscillates between T 
0 

and p
2 
/T 

0 
without converging. In the extreme 

relativistic limit, we have E = p. Therefore a good approximation for the 

kinetic energy of relativistic particles 1s T I =- p - m. Equation (5) corL'.rerges 

rapidly for all energies, if we start with 

") 

T I = p'"' /2m , p < m, 

T 
1 

= p - m , p > m. 

As a relatJvistic example we find the kinetic energy of a proton witl-. 

momentum 10 Bev/c. From Eqs. (5) and (6), 

T +I n ~ 
100/( 1.88 + Tn) 

= 9.06':', 9.14, 9.08, 9.12, 9.10, 9.10, ... Bev. 

Example 2 

(6) 

(7) 

''A particle of rest mass m 
1 

and lab kinetic energy T 
1
° is incident on a 

stationary particle of rest mass m
2

. What is the total kinetic energy T ir. 

the em (center of rna ss) system?" 

This is the value obta.1ned when we take T = p - m. 



.. 

From Rules (1) and (2), we have 

'\onrel. : 

Exact Rel.: 

T = T O 
1 
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(8) 

(9) 

Here. we have used the fact that (in the lab system) only particle No. 1 was 

moving. 

Equation (9) is perfectly general. For instance, if No. 1 is a gamma ray, 

then m 1 = 0, and T1 °is the gamma-ray energy. Equation (9) is a quadratic in 

T; but, as in the first example, it is easier and faster to solve'for T by slide 

rule and successive approximations as the equation stands in (9) rather than 

use the usual quadratic solution with radicals. 

As a numerical example, we find the kinetic energy T in the c.m. systetn 

when a proton of lab kinetic energy T 
1
° = 600 Mev is incident on a stationary 

target proton. Using Eq. (9), we have 

T 
n+1 = 600 ( 

938 
) = 0, 300, 278, 279, 279, ... Mev. ( 10) 

938+938+T/2 

1'='~ Eq. (9), T may be given, and it is desired to find the incident lab energy 

T 1° For example, T could be the Q value for an endothermic nuclear 

reaction. In this case we can immediately find T 1° 
r Example 3 

'
1Two particles, of rest mass m 

1 
and m

2
, share the kinetic energy 

T = T 1 + T 2 , in their c. m. system. How do the two particles divide up tl:e 

total kinetic e'nergy T ?" 

Using Rules (1) and (2), we find 

:-~or~ r e 1. : 

Exact Rel.: 

. T 
1 • 

( 11) 

( 12) 
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In this problem, as we have stated it, T is known, so that we can immediately 

find T 
1

. 

As a numerical example, we ask, nGiven A n meson (rest mass 140 Mev) 

which decays at rest into a 1.1. meson (rest mass 106 Mev) and a neutrino 

(rest mass zero); what is the kinetic energy of the 1.1. meson?" The total kinetic 

energy is 140 - 106 = 34 Mev. Using Eq. ( 12), we find for the kinetic energy 

of the muon 

T = 34 ( 0 + (34/2)) = 
1.1. 0 + 106 + 34 

4.13 Mev. 

Lastly we remark that in using Eqs. (4) and (9) to solve for T by succes­

sive approximations, we obtain approximate answers T n that are successively 

too large, too small, too large, etc. For extremely relativistic particles, and 

a poor first guess for T = T 
1

, Eqs. ( 4) and (9) converge slowly. When the 

convergence is so slow that the differences between successive T decrease 
n 

by less than a factor of two when n increases by one unit, the convergence 

can be considerably hastened by nsplitting the difference 11 as one proceeds. 

That is, we replace Eq. (5) with 

Tn+l = (1/2) 
T 

n 

( 5') 

As an extreme example, consider the application of Eq. (4) to a gamma ray of 

momentum 100 Mev/c. We make the absurd first guess T 1 =50 Mev and 

start using Eq. (5) to improve our guess. We obtain (since m = 0) 

2 
Tn+l = ( 100) /Tn = 50, 200, 50, 200~ 50 ... Mev, 

which is obviously getting us nowhere. We therefore turn to Eq. (5 1
), and find 

T = (1/2) ((100)2 
n+1 T 

n 
+ T0 = 50, 1Z5, 10Z, 100, 100, ••. Mev, 

which is the correct answer. 
91Difference splitting" would also have speeded up the convergence in the 

Example (7). On the other hand if the answer is converging rapidly with 

Eq. (5), the use of Eq', (5 1
) actually slows down the convergence, by preserving 

the "memory" of guesses poorer than the latest T . This was the case in our 
n 

example ( 1 0). The same remarks apply to the solution of Eq. (9) by successive 

approximations. 


