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ABSTRACT 

UCRL-3464 

We consider the time dependence of the probability distribution function 
G(A, t) for the amplitude A of the vertical oscillation of a charged particle 
circulating at a radius R in a cyclotron, under the influence of multiple Coulomp 
scattering by residual gas atoms. If the amplitude A becomes equal to the 
dee half aperture d the particle strikes the dee and is lost from the circulating 
beam. It is found that G obeys the diffusion-type differential equation 

8G 
IT = 

The diffusion constants D are calculated and it is found that we have 

4n 

where n = - (R/B)8 B/a R is the usual magnetic field index and (e2(tV is 
the mean-square multiple-scattering angle, projected on the vertical plane, 
accumulated during the time t. It is found that an equilibrium is established, 
after which G(A, t)dA = const x J 0 [2.40 A/fd - .6d)] exp ( -h.t), where J 0 is 
the zeroth-order Bessel function, and .6d - 0.05d is a small correction to 
the effective dee aperture due to the divergence of the single Coulomb scattering 
cross section at zero scattering angle. The decay cOnstant h. is given by 

' 2 2 
h.= 1.15 (2.40) D 1/d , 

where the factor 1..15 is a correction factor arising from single Coulomb 
scattering. Good agreement is found between the theoreticalprediction for 
h. and the experimental values found during beam storage experiments by 
Crawford and Stubbins . 
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I. INTRODUCTION 

UCRL-3464 

The storage of large amounts of circulating beam is of current interest 
in the design of some new types of accelerators. 1 With a different motivation., 
beam storage experiments were carried out in 1954 by the author and Warren 
F. Stubbins. 2 During those experiments, the rate of destruction of stored 
beam by gas scattering was measured for various storage radii. It was found. 
that gas scattering caused the am_ount of stored circulating beam to decay 
exponentially as a function of time, with a mean life of a few seconds. No 
deviation from a simple exponential decay law was ever observed, although 
the decay of stored beam was often followed for over twp decades. This fact at 
first suggested that single catastrophic collisions were res.ponsible, since it 
is well known that exponential !fecay laws usually represent "one -shottr 
processes. Consideration of possible single collision processes (nuclear 
scattering, Rutherford scattering, and electron pickup) showed that they were 
all too improbable to account for the observed mean lives. The calculation 
below shows that a combination of small-angle multiple and single Coulomb 
collisions accounts quantitatively for the observed storage-lifetime data. The 
results of the calculation are contained in Eq .. (62), which expresses the mean 
life of the stored beam as function of the relevant parameters. 

1 
D. W. Kerst et al., Phys. Rev. 102, 590 (1956); C. K. 0 1Neil, Phys. Rev. 

102, 1418 (1956). 

2 
F. S. Crawford, Jr., and W. F. Stubbins, Beam Storage in the 184-Inch 

Cyclotron, UCRL-3463, July 1956. 
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II .. EQUILIBRIUM DISTRIBUTION OF VERTICAL 
OSCILLATION AMPLITUDES 

UCRL-.3464 

We consider a group of particles that has been accelerated to a radius R 
and left circulating there by turning off the- rf accelerating voltage. The rf 
voltage remains turned off in what follows. The particles start out at time 
t = 0, rf turnoff time, distributed in vertical oscillation amplitude A in some 
manner determined by their past history. Each particle retains its initial 
oscillation state until it makes a collision with a gas molecule. In general, a 
collision introduces a sudden change in both the phase constant 6 and the 
amplitude A that characterizes the oscillation. In any one collision, the 
amplitude A can either increase or decrease, so that, for small-angle scatters 
where A is not changed appreciably by one collision, we expect each particle 
to execute a random walk in amplitude A. Whenever A becomes as large as 
the half aperture d of the dee, the particle is lost, so that we might describe 
the process as a "random walk near a cliff. 11 

After a certain amount of time, an equilibrium distribution of vertical 
oscillation amplitudes is established, the shape of which remains constant. 
Particles slide down the slope of the distribution and 11over the cliff" (hit the 
dee) at a constant rate, so that the whole distribution decays without changing 
its shape, and therefore decays exponentially in time. 

The results of this section are embodied in Eqs. ( 14) and ( 15); 

Let G(A, t)dA be the number of bearn particles having vertical oscillation 
amplitude A, in the increment dA, at the time 't. Then by Taylor's expansion 
and a suitable averaging process we obtain3 

ta G(A! 0)/a t =<A(t) - A(O)) . a G(A, 0)/aA + <tA(t) i. A(Or) a 
2

G(A, 0)/aA 
2

, (1) 

where the angular parenthesis represents an av·erage over the small-angle 
scatters which occur during the time t. 

For our particular problem, we s'how in the next section that 

D l =: ~A(t) - A(0))
2
)fzt 

and D 2 =: A(O) (A(t) - A(O~ /t 

( 2) 

( 3) 

are independent of the time t, and of the initial amplitude .A(O), for small t 
and arbitrary A(O), so that they ma"y be introduced as constants in Eq. ( l). 
After introducing these constants (whose values we will later calculate 
explicitly), we obtain 

aG(A, 0)/a t = (D2/A(O)) a G(A, 0)/aA + D 1 a 2C(A, 0)/~A 2 ~ 

3 
Joos, 11 Theoretical Physics" (Hafner Publishing Co., first edition), p. 563. 

.. 
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Since there is riow nothing speCial_ abo-ut the time t = 0, we may rewrite this 
as 

(4) 

Equation (4) is a fori:n of the usual one--dimensional diffusion or heat-flow 
equation. D 1 is the usual diffusion constant. Since n

2 
f 0, the rrnow" is 

nonisotropic. 3 Aside from this fact, our problem corresponds closely to that 
of a conducting bar whose two ends, located at A = ;1: d, are maintained at a 
temperature G ~ 0. (There are no particles with vertical oscillation amplitude 
A greater than the dee .. half aperture d.,) 

Strictly speaking, we expect n
1 

and n2 to be, not constant, but slowly 
varying in time, 1 ·since the storedbeam gradually loses energy by ionizing 
collisions, and D 1 and D

2 
will turn out to b~ energy-dependent. Practically 

speaking, however, n
1 

and n2 may be regarded as constants. 

Equation (4) is, as usual, solved by separation of variables .. We let 

G(A; t) = y(A)T(t) 

and find a solution 

T(t) = exp (-At). 

Then y(A) satisfies 

where a prime represents differentiation with respect to A. 

It will be seen- in the next section that in our problem, 

D 1 = D2 : D. 

If we substitute (} .. /D)A 
2 

: x
2 

ahd Eq. (8) into Eq .. (7), we obtain 

xy11 (x) + y'(x) + xy(x) = 0, · 

(5) 

(6) 

(7) 

(8} 

(9) 

where the prime now represents differentiation with respect to x. This is 
just Bessel's equation of zeroth order. Therefore we have the solution 

y(A) = C ;(x) = C J.o~£0\/~ AJ (10) 

where C is a constant, and J Q is a Bessel function of the first kind, o! order 
zero. (Since y(A) is finite at A= 0, the second solut~on of Bessel's equation 

'• is ruled out.) 



-7- UCRL-3464 

The boundary conditions on the solution are such that there are no particles 
with amplitude greater than A = d. That is, 

y(d) = CJ0 [(A./D) l/
2 

d] = 0. ( 11) 

Equation ( 11) is satisfied by A. = An, where An is given by 

I 1/2 (A. . D) . d = z , n = 1, n n 
2, 3, . . ' (12) 

where z
1 

= 2.40, z
2 

= 5.52, z
3 

= 8,65, , and Jo(z ) = 0. ·n 

The solution also depends on the initial distriqution G(A, 0). If we take 
an initial square distribution G(A, 0) = 1, we find4 

. . 2 2 
G(A, t) = 1.60 J 0 (z 1A/d)exp(-A.

1
t)- 1.06 J 0(z

2
A/d) exp(- (z 2 /z 1 )A. 1t) 

+ 0.86J0 (z 3A/d)exp(~ (z 3
2
jz1

2
) A. 1t)- ... (13) 

. 2 2 2 2 
S1nce z 2 /z 1 = 5.3, and z

3 
/z

1 
= 12.9, we see that all terms except 

the first one in Solution (13) soon become negligible. Since G = 0 at A= d 
after equilibrium has been established', .the effect of the transition between 
the square wave G(A, 0) = 1 and the equilibriUm shape 

G(A,t) = 1.60 J
0 

(2.40A/d) exp (-A.lt) 

is most noticeable for large A. If we examine the rate of approach to 
equilibrium of G(A, t) at the point A = 0.8d, we find that G(A, t), as gi.ven 
by Eq. ( 13), is within 25% of the first (equilibrium) term after A.'l t = 0.3, 
within 10% at A.1t = 0.5, and within 1% after A,;Jt = 1.0. 

In summary, we find that, independent of the initial sl{ape, when "equili
brium" has been achieved the stored beam has a distribution of vertical 
oscillation amplitudes A given by/ 

y(A)dA = codst x J
0

(2.40A/d)dA, (14) 

and the total number of particles decays exponentially with a mean life 'T 
given by 

-1 2 I 2 
7' = A. 1 = ( 2 .40 ) D d , (15) 

where D is given by Eqs. (2), (3), and (8). We will later find that single. 
Coulomb scattering, which does not contribute directly to the above ''diffusion" 
process, increases the decay rate by approximately 15% over that given by 
Expression ( 15 ). _· 

4 
Churchill, Fourier Series and Boundary Value Problems (McGraw-Hill, 

1941) 1st ~dition, page 167, problem I. 

.. 

t 
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III. CALCULATION OF DIFFUSION CONSTANTS 

In order to find numericaLanswers for the decay rate of the stored beam 
given by Expression { 15), w,e must evaluate 'the diffusion constants D and D , 
defined by Eqs. (2) and (3), respectively, and.mU:st verify Eq. (8). Tlhe resthts 
of this section are contained in Eq. {35). · · 

By squaring out the term in parenthesis in Eq. {2), we find 

D 1 = {<A 
2
(t)) ·_ A 2(0))_/2t - D2 . (16) 

This is a more convenient expression for n
1

, to which we return in Eq. (27). 

The vertical oscillation of one particle {between gas collisions) is given 
as a function of time by 

Z = A sin {n 1.tzw0 t + 5), (17) 

where w0t is the azimuth of the particle, n = ·_ ~ ~B is the magnetic -field 
index, and A and :5 are the amplitude and phase ccfnstant of the oscillation. 
Let Bz be the angle between the particle orbit and its projection on the median 
plane, at any instant. Since Bz < < 1, we can write 

where s = R w0 t. 

Let 

and 

e = dz = (nl/2 A/R) cos (nl/2 w t + 5) 
z ciS:· 0 ' 

Then we can rewrite { 17) and (18) as 

Z = A sin (cp + 5) 

and a ez =A cos {cj> + 5) 

(18) 

(19) 

(20~ 

(21) 

(22) 

The treatment of scattering is complicated by the fact that the new 
amplitude A and phase constant 5 generated by a given scatter depend on the 
phase cj> + 5 at which the scatter occurs, as well as on the scattering angle. 
For instance, an ''upwards" scatter through the angle A/a generates a new 
oscillation having A' = 0 provided the particle was passing rrdownwards" 
through Z = 0 at the time of the scatter, but instead generates an oscillation 
with A' = 2 A provided the particle was passing rrupwards" through Z = 0 when 
scattered. 

We now consider in detail the changes in amplitude A and phase constant 
5 resulting from an arbitrary sequence of successive small-angle collisions, 
m in number. After obtaining a general expression for A(m), we average over 
suitable probability distributions for the scattering angles and for the phases 
cj> + 5 at which the collisions occur, and finally obtain expressions for D 1 and 
D2. 
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Let us specify Eqs. (.21) and (22) more completely by writing A(m) and 
o(m), for the amplitude and phase, respectively, aft~r m collisions. Let 
Zm and cf>m be the values of displaceme.nt and of n 1; 2 w0 t respectively at the 
instant of the mth collision, and let e be the scattering angle (projected on 
the vertical plane) of the mth collisioW. For brevity, we hav.e dropped the 
subscript z from e . During the (m + 1) st collision, Z remains fixed, and 
the angle is changed_Zby em+l· That is, from Eqs. (21), and (24), respectively, 
we have .. . · 

A(m) sin (cpm+l + o (m) ) = Zm+l = A(m + 1) sin (cpm+l + 6 (m t 1) ) 

and 

A(m) cos (cpm+l + o(m) ) +a em+l = A(m + 1) cos (cpm+l + 6 (m + 1) ). 

Squaring and adding, we obtain 

2 2 2 2 
A (m + 1) =A (m) + 3 em+l + 2aem+l A(m) cos (cpm+l + o(m) ). (23} 

We now use Eq. (23) as a recursion formula to obtain, by repeated application, 

A 
2 

( m) = A 2 
( 0) + a 

2 
( e i + e ~ + . + em 

2
) + 

+ Za {e 1A(O) cos [<1> 1 + o (08 + e2A(1) cos G>z + o {10 +. 

+ emA<m - 1) cos [em + o <m - 1TI} (24). 

- A
2

(o) +x
2

, 

where x
2 

is defined by Eq. (24). Equation (24) specifies in complete detail 
the development of A(m) during the m collisions. So far, there has been no 
averaging. 

We now average both sides of Eq. (24) over a probability distribution for 
collisions such that positive and negative scatters are equally likely, and 
such that all scattering events are independent of one another. We also neglect 
the effect of energy loss in changing the scattering cross section. Then we 
have · 

(ek) = 0, and ~~) = ~~) = . . . = (e!:) , so that 

(A 
2 (m~ = A

2
(0) + ma

2 ~i) . ( 25) 

All the terms in Eq. (24) enclosed in the braces average to zero. For example, 

(e2A( 1) cos [cf>2 + o ( 1~) = (e2)(A< 1) cos ~ 2 + o( i]) = o, since (e2) = o. 

.. 
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That is, A(l) does not depend on~:e2 , although it does depend on e 1 . This is 
obvious from the physical meaning: the amplitude after· one collismn does not 
depend on the second collision~ which has not yet occurred .. 

We now recogni~e that m < ei) :: < ®
2
(m)) , (2.6) 

where ( ®2(m}\ is the mean-square multiple -scattering angle after m scat~ers. 
We can how r/place m by the time t during which the m scatters occur. 
Equation (25) becomes 

(27) 

Substituting (27) into Eq. { 16}, we obtain 

n 1 = a
2 (®2

(t))/2t .. - n 2 • (28} 

Since ( e 2(t>) is proportional to the time t, we see that the first term in 
Eq; (2S) is a constant. 

To obtain D2, defined in Eq. (3) we must find fA(m)) . ·To do this, we 
first take the square root of both sides of Eq. (24), ~d then expand in a power 
series, to obtain · 

. . r: 2 ' 2] 1/2 
· A(m) = ~ (0) + x 

2 \ 
= A(O) Q· + X ·_ 

2A 
2

(0) 

4 
X 

6 
X ]· (29) 

~re we assume that we have A(O) I 0, and that m .is small enough so that 
x is small.fompared to A2(0). The expansion (29) carries us through terms 
of order /f) 1 ,· which is found to be sufficient for our purpose. 

We~fi~\t find (A(m) \ on~y to order· ( e. 1z') .... We later show that terms. of 
order fJ1 ;are negligib1e. To order (e 1' . 
Eq. (25 becomes · ·. · 

2 (x~~ m a2 ~i) = a2 (®2) . (30} 

To order (e 1 ) ,. 

(x4
) = (Za)

2 
A 

2
(o) (e~ )fos2 ~ 1 + 6(~iJ + .•. + cos 2 

[$m H(m-t)J 1· 
Her~ we have used the facts that (<ekA(k - 1))2) = < ek2) A2(0), to order 
(ek ) , and that < ek2). =. ( e 12) for a.ll k. Now average over the phases 

<Pk + o(k -1) of the cofhs1~s, assummg randoihness, so that . . . 

cos 2. [<i>k + o(k - 1}] i.s replaced by 1/2: Then;. since the braces in(x4) contain 
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m terms, we obtain 

~4) =2a
2

A
2
(0)m ~f) =2a

2
A

2
(0) (®~. (31) 

The remaining conttibutions to the expansion (29), ~6), (x~ etc. do not 
contain any terms of order (e 12). 

Inserting Eqs. (30) and (31) into (29), we obtain, ,to ~rder ~i) , 
A(O) (A(m) - A(O)) = a2 (®2) /2 - 2a

2 ~~ /8 = a
2 

( ®
2
(m)) /4. (32) 

Or, replacing the collision number m with the corresponding time t, we have 

Inserting (33) into Eq. (3), we thenobtain 

n 2 = a
2 

( ®
2
(t)) /4t. ( 34) 

Comparing Eqs. (34) and (28), we find that, to order (ei), 

D 1 = n2 ~· a
2 

( ®
2
(t)) /4t. (35) 

We now sh~w that higher te'rms through (ei) make a negligible contri
bution to {A(rn~L , and therefore to D 1 and ~2· Because positive and neg
ative scattel,"s are equally likely, (ei) an~ 1jare zero, and we need only 
consider terms of order (-e 14) . · 

We find, for the terms of (A(m)) of o~der (ei), 
~4) = a 

4 
[ m (ei) +2m (~ - 1) (ef )

2
], (36) 

(37) 

(38) 

Inserting Eqs. (36), (37), and (38) into (29), and collecti.ng terms, we find 

(A(m) - A(O)) (order 9i) =(a 
4

/64A 
3

(0)) [in (9i)+ 3m(m-l) ( 9i )
2 

-Z5m(,:: I >(!Ji)
2J. (39) 

We can show that 

<4 ') <4>. .z
2 

e (m)·=m el +3m(m-l)(el)'. (40) 

so that, lettit~g m - 1 :::::: m in· the last term of Eq. (39), we obtain 

( ) 
4 ··. '4 ·' 3 < 4 ) I. 2 )2 -A (m) - A(O) (order ® ) =.-J'q, . ..j64A (0)) ( ® (m) - 25 \® (m) ). (41) 
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We now assume that the distribution law for multiple scattering is given 
by a Gaussian curve. Then one can show that 

(42) 

We now replace m by t, in Eq. {41), insert (42) into (41), multiply 
the fourth-order expression (41) by A(O), and add it to the second-order 
expression (33), divide by the time t, and obtain ali expression for n 2 through· 
the fourth order, given by 

n2 
a 2 (®2(t)) 

(l -
11 a2 ~G3/) ) = 

4t .8 A (0) 
(43a) 

2 ( IIP 2
(t)) 11 ~) a 

(l -= -
4t 8 A (0) 

(43b) 

But expansion (291 depends for its validity on the condition that x
2 

be small 
compared with A (0), so that the correction term (ll/8) ~x2 \jA2(0) in 
(43b) can be consistently neglected. Its neglect correspontis {o the neglect of 
(t2 /2) a 2G(A, t}/8 t2 compared with ta G(A, t)/8 t in the derivation3 of the 
differential equation (4). 

At the boundary point A(O} = 0, expansion (29) does .not hold. This is 
also a singular point for the differential equation (4). From physical consider
ations, we do not expect this to influen·ce the result (35). 

We may summarize and combine the results of the last two sections by 
inserting Eqs. (35)and (20} into (15) to obtain thepartial decay constant 
X.(m. s.) due to. multiple scattering (m. s~) alone, 

* 2' 2 ( 2 ,\ 2 X.(m. s.) = x. 1 = {2.40) .. R ® (t); /4d nt, 

where 2.40 is the first root of the zeroth-order Bessel function, R is the 
storage radius, d is the dee half apert~re, n is the magnetic-field index, 
t is an ar?itrary time interval, and (® (t)) is the mean-square multiple
scattering angle accumulated during the time t; (®2(t)) /t is independent 
of t. 

' 

(44) 
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IV. CONTRIBUTION OF SINGLE COULOMB SCATTERING 

A single scatter of sufficient magnitude can cause a particle to strike the 
dee. We find that single Coulomb (Rutherford} scattering of particles having 
small vertical oscillation amplitudes (compared with the dee half aperture) 
contributes an additional 5o/o to the rate of loss. of stored beam, compared with 
the loss rate due to multiple scattering. Single scattering of particles having 
vertical oscillation amplitudes almost equal to the dee half aperture contributes 
another l O%. 

If we square both sides of Eqs. (21) and (22}, and then add the:.results, 
we find, after solving for ez. 

·. . l/2 2 2 . 
8 (A,.Z) = ± (1/a.) (A - Z ) . (45) z 

For a given Z, the largest value of 8 consistent with missing the dee is 
obtained by setting A = d,. to obtain z 

2 2 l/2 
8z(d, Z) = ± ( 1/a.) (d - Z ) • (46) 

The plus and minus signs correspond to ''upwards" and "downwards" motion; 
at a given Z. 

The largest single scatter (projected on the vertical plane) consistent 
with missing the dee, for a given initial amplitude A and displacement Z, is 
obtained by subtracting Eq. (45) from (46). We omit nothing essential if we 
consider the particle to have initially Z > 0, and 8 > 0. Then there are just 
two maximum scatters .6.8z(max) possible, corresponding to scattering up,. 
and scattering down, to hit the dee. The absolute magnitudes of these limits 
are given by .6.8z(max) = Bz(up), and .6.8 (max) = 8z(down), where 8z(up) and 
ez(down} are given by z 

-1 0 2 2 1/2 2 2 l/2] e (up) = e (d, Z) - e (A, Z) = a. (d_ - z ) - (A - z ) , z z z 
{47a) 

and 

(47b) 

respectively. 

We now consider the scattering cross section for particles to hit the dee 
and be lost. We consider Z and A fixed, in the following. The single 
Coulomb (Rutherford) cross section may be written, for· small-angle scatters, 

where 

du(e, <!>) = B 2 dq,de = B 2dq,d <-{ e- 2 ), 
e3 

B = 2Ze
2 /pv, 

(48a) 

(48b) 

(I 
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and where () is the polar scattering angl:e, <1> fs the azimuthal scattering angle, 
Ze is the electric charge of the target nucleus, and p and v ar·e the proton 
momentum and velocity. We call <1> = 0 for a scatter:upwards with no radial 
component to the scatter. · ' 

Consider a fixed value of <j>. Scatters through a poh.r angle. () hit the 
dee for (} greater than 

O(max) = :i:l.e (max)/cos <j>. z . 

Holding <1> fixed, we integrate Eq. · (48a) over all polar angles greater 
than e(max), and obtain 

dO" (8 > e(max), <I>) = 
2 ()(max) 2 

(49) 

where .6.()~(max) is equal to (} (up) over half of the azimuth <j>, and to ()z(down) 
over the other half. We now l.~tegrate over <j>, noticing that we can merely 
replace cos2<j> by its average value of 1/2, to obtain, the cross section for 
hitting the dee, for a given initial Z and A; 

. '11' 2 . -2 -2 
u (Z, A) = -:r B (8 (up) + e (down) }, 

~ z z . 
(50) 

where ez(up) and Oz(down) are given by Eq. (47). Since, for a given amplitude 
A, the collision can occur at any displacement Z during the o·scillation~ we 
must average the expression (50) over 0 < Z < A. Since the collisions occur 
randomly in time, the proper weighting factor is proportional to dt; and since 
we have considered all Z to be > 0, and all (} > 0, we should average over 
one quarter cycle. The probability of a collis!on at Z is then given by 

2 2 -1/2 
dP = dt/4T = (2/'11') dZ (A . - Z ) • (51) 

where T is the period of vertical oscillation. We thus find the time-averaged 
cross section for single Coulomb scattering loss, for a given vertical oscil
lation amplitude A, by averaging Eq. (50) over the distribution (51), to obtain 

u (A) =f= (52) 

where (53) 

is the cross section for striking the dee Vlrhen A.= 0. 
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To obtain the total contribution of the single scattering, we must average 
the cross section (52) over the equilibrium distribution of vertical oscillations 
given by Eq. ( 14). We first observe that if the single scattering is anywhere 
large enough to attenuate the beam apprecia-bly in, a time that is short compared 
with the .,equilibrium time" Te::::: 0.5 x.-1 (m. s. ), then Eq. (14) does not hold, 
and the equilibrium shape readjusts to something different. This is in fact 
what happens, although we shall see that the consequences are not very 
important for thE} total attenuation rate. We first notice that the single Coulomb 
cross section a' (A) given by Eq. (52) becomes infinite ·for A = d. Even when 
we multiply by the equilibrium distribution function ( 14) and integrate over 
A, the weighted cross s.ection still diverges, despite the fact that G goes to 
zero at A =d. Of course this does not mean that the decay time should becorne 
very short, because only a small part of the beam sees this ''infinite" cross 
section. What happens is that if we start out with a distribution given by Eq. 
( 14) and then suddenly "turn on" the single scatteri.ng, the portion of the dis
tribution very near to A = d is wiped out almost immediately, and a new 
equilibrium distribution is reached, in a time of the order of T e. Since the 
single-scattering cross section quickly becomes reasonably small, away 
from zero scattering angles, the new distribution should look very similar to 
the old one, except that in Eq. ( 14), we should replace the gap half aperture 
d by an .,effective gap aperture" d' = d - .6.d. In the region between d' and 
d, there will be a "transition fillet.'' That is, the new distribution does not 
actually go all the way to zero at A = d ', since the eros s ·section is not yet 
actually infinite. In terms of the heat-flow analogy, the effect of the divergence 
of the single scattering near zero scattering angle is to change the boundary 
condition from one that merely holds the ends of the bar at zero temperature, 
to one in which, in addition, the region~ the ends is maintained at a 
temperature close to zero. 

In order. to see how the decay time is affected we must estimate d', which 
enters the multiple-scattering decay constant through Eq. (43). After this, 
we have an additional contribution to the decay obtained by averaging the single
scattering cross section over the new equilibrium distribution,. inside A = d'. 

The boundary d' fs located roughly at the point where the scattering out 
due to the single scattering can just keep up with the "flow rate" from the 
diffusion of particles. Put differently, the single-scattering cross section. 
must be able to dispose of any particle that finds itself inside .6.d, in a time 
of the order of the·equilibrium time T , since otherwise the region would 
start filling up. This condition may b€ written 

N a(d') T v = E, v e (54) 

where E gives the probability of removing a particle during T e• Nv is the 
number of gas atoms per unit volume, a (d') .is given by Eq. (52) with A = d', 
and v is the proton velocity. 

The equilibrium time T e is given by 

. · Te = f/X.(m. s. ), 
where f ::::: 0.5, according to the discussion following Eq. ( 13). 
d 1 is obtained by setting e ::::: 1. 

(55) 
The boundary 
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Setting A= dt·= d-Ad, in (52), and assuming .6.d .<<d., we can·write 

(56) 
. . 5 

We also write, for the projected mean square scattering angle, 
\ 

(®2
(x)) = [(15)

2 
/(pv)

2J (1/X0), (57) 

where ?V .is in Mev,. 1 is the.'t,mount of gas travers~d in g cm-
2

, and X is 
the rad1at10n length m g em -2 Then we can combme Eqs. (5~), (55), (~6), 
(57~, (48'), (43), and (20) to obtain · · 

-3 2 1/2 
.6.d/d = 7.6 x 10 (fx0 z /e W) • (58) 

where W is the atomic weight. ·We see that the effective fractional narrowing 
of the gap is independent of the gap, of the gas pressure, and the energy of the 
protons, and depends only weakly on the atoTic number of the gas. Choosing 
f = 1/2, ·and e = 1, and using x 0 "" 5tLg :em for hydrogen and 38 g em -2 and 
nitrogen, we find Ad/d = 0.041 and 0.062. for hydrogen and nitrogen, respectively. 
Since the decay constant; according to Eq. (43); goes as d -Z, the decay-rate 
corrections are roughly 8o/o and 12o/o for hydrogen and nitrogen, respectively. 
Since· this calculation does not provide the exact values to choose for f and e, 
we neglect the smaH dependence on the gas and say that the correction due to 
single scattering of particles having large vertical oscillation amplitudes is 
about 10%. ' 

Finally, if we average the single-scattering cross section u (A) over the 
modified vertical oscillation amplitude distribution. Jo(2.40A/d')dA, we obtain 

where u.{O) is given by (53). 

Let 
A.(ss) = Nv ( u(A)) v 

be the corresponding single scattering (ss) partial decay constant. Then, 
using almost the same procedure as was used. to obtain (58), we find 

I -4 2; A(ss}. >..(ms) = 4.7 x 10 ·. (X0 Z W). 

(59) 

(60) 

(61) 

Result (61) is independent of the ·gas pressure, the dee gap, and the proton 
energy, and is almost independentof the gas, for any gas except hydrogen. 
The corresponding correction to >..(ms) amou~ts to just 2.7o/o for hydrogen, 
and 6.3o/o_for nitrogen. 

? E. Segre, Experimental Nuclear Physics, yol I (.John Wiley and Son, Inc., 
New York, 1953), p. 285. 

6 
ibid., Table 8, p. 266. 
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Because of the approximate nature of the correction, we can neglect the 
small difference between hydrogen and other gases, and combine the corrections 
due to (58) and (61) to obtain an over-all correction of about 15o/o to 'X.(ms), due 
to single Coulomb scattering. 

We summarize all of the results of this report by'writing the corrected 
decay constant for Coulomb scattering _of stored beam, 

-1 2 2 (' 2 )! 2 -r = 'X. = ( 1.15) (2.40) R ® (t) 4d nt (62) 

where the symbols are as defined after Eq. (44). 

V. COMPARISON WJTH EXPERIMENT 

In one measurement by Crawford and Stubbins
2

, the quantity 1. in Eq. (57) 
was measured indirectly by essentially measuring dE/dx at the particle orbiL 
This was done by measuring the time for protons stored intially at a known 
radius to lose sufficient energy by ionization collisions to spiral inward.to a 
slightly smaller known radius. Measurement of dE/dx yields the electron 
density N , independent of the type of gas, except for a small correction which 
we call c,e and which is due to the z dependence of the ionization potential. 
The above measurement yielded 

13 -3 
Ne = C x ( 1.3 ± 0.2) 10. electrons em , (63) 

where_·c = 1.0 and 0.84 for air (or oil vapor) and hydrogen, respectively. 

The conditions corresponding to (63) .were given by p = 690 Mev/c, 13 = 0.59. 
Inserting these numbers and (63) into (57) yields 

(®2(t)) /t = 5.25 x 10-
4 

CW/zx
0 

radian
2 

sec-
1

. {64) 

Inserting the corresponding storage radius ·R = 63.5 in.,· field index n = O.Q29, 
dee half aperture d = 2.5 in., and (64) into Eq. (62), we obtain the mean life 

-r = 0.052 zx0/CW. (65) 

Assuming thatlhe main residual gas was air (-nitrogen), we insert Z = 7, 
x 0 = 38 g em- , C == 1.0, and W = 14 into (20) to obtain 

-r(N
2

) = ( 1.0 ± 0.2) sec. 

If, instead, the gas was pure hydrogen, we have Z = 1, x 0 = 58 g 
C = 0.84, W = 1, and therefore 

-r(H
2

)· = (3.6 ± 0.7) sec. 

-2 
em 

• 
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Similarly~ if the gas was pure oil vapor (- CH
2

), we have 

A (CH2) = (6/8) A (G) + (2/8) A(H 2), which yields 

T'(oil) = ( 1.3 ± 0.3) sec . 

The experimental mean life obtained under these conditions was 

T'( e xp . ) = ( 2 . 5 ± 0 . 5:) s e c . , 

where the error represents lack of reproducibility in measurements taken on 
different days, rather than errors in individual measurements. 

We see that the experimental mean life lies between the calculated extremes, 
so that we can say that the experiment agrees with the theory. T:tle experimental 
and theoretical values coincide if we assume that 85o/o of the gas molecules at 
the proton orbit consisted of hydrogen molecules, and 15o/o were air molecules. 
Alternatively, we may assume 75o/o hydrogen molecules and 25o/o oil vapor 
"CH2 units. " 

The relative amounts of hydrogen, air, and oil vapor were not known; 
however, the reading on an ion gauge located at one side of the vacuum tank 
ordinaril7 is lowered about 20o/o when the hydrogen supply to the ion source is 
shut off. The gauge is half as sensitive to hydrogen as to air, so that the 
above gauge observation represents :a 40o/o effect. Since the proton orbits are 
closer to the hydrogen source than is the gauge, while the gauge is correspond
ingly closer to the air leaks, it is not unreasonable to assume 80o/o hydrogen 
at the orbit. 
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