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ABSTRACT 

The results of a phase-shift analysis of proton-proton cross-

section, polarization, and triple-scattering experiments at ~ -310 Mev 

are .reported. From an extensive search five satisfactory solutions have 

been found, Three additional solutions that give fair fits to the data 

are also reported. 
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I. INTRODUCTION 

The difficulties encountered in field theoretical attempts to 

understand nucleon-nucleon interactions have led to the less ambitious .' 

hope that a phenomenological potential model for these interactions could 
. '. 1 

be found. Although there has been considerable effort along these ·lines, 

no appreciable success has been obtained except in restricted energy regions. 

Because of this failure to correlate the experimental facts by means of 

potential models the value of information that may be obtained from a direct 

analysis of the data has become increasingly important. The importance 

derives both from the insight it provides for the construction of particular 

models and from the possibility of using the information in phenomenological 

treatment$ of more complex problems. 

A standard method of extracting information from results of 

scattering experiments is to find sets of phase shifts that reproduce the 

experimental data, This approach, which has been valuable in the study 

f · 1 . t t· 3 h 1 b d' th '~T' f h' h o plon-nuc eon In erac lons, as a so een use In e ana~ SlS 0 19-

energy proton-proton experiments.
4 

In the hundred-Mev region these efforts 

have been impaired, however, by limitations in the amount of experimental 

data that was available. These limitations imposed severe and unrealistic 

5 
restrictions upon the number of phase shifts that could be considered. 

Now that p~p triple-scattering experiments have been performed the 

2 
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, 
situation is considerably more favorable. Whereas previously the phase 

6 
shifts were effectively, limited to S~ P, and D waves, it now is feasible 

to include also the F, G, and H waves. Such an analysis has beEm carried 

out with the aid of electronic computers, principally the MANIAC located 

at Los Alamos. The results are reported in this paper. 

The discussion begins in Section II with an account of the method 

by which the .experimental data were treated 0 In Section III a discussion 

of equations that express the observed quantities in terms of phase shifts 

is given. Section IV contains a description of the method by which solutions 

were found, and a discussion of the extent to which the search for solutions 

, can, be considered exhaustive. The accuracy to which the phase shifts a.re 

determined is also discussed in this section. The final 'section contains 

a discussion of the results, and comments concerning their interpretation. 
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, II. TREATMENT OF EXPERIMENTAL DATA 

The general theoretical foundation of the analysis is'provided 

by the work 
7 . . ; 

of Wolfenstein, and the experimental details may be found in 
8,9 

the accompanying experimental papers. The purpose of this section, is 

to discuss the manner in which 'these data were used. 

The general policy in the treatment of the data was to leave them 

in the form in which they were originally provided by the experiments, In 

keeping with this approach absolute values for the total cross section and 

the 90
0 

(com.) differential cross section were used as input data, whereas 

at other angles the ratio of the differential cross section, I O' to its 
o 

90 value was used. The observed polarization and triple-scattering 

parameters PJ Dj R, and A at particular scat.tering angles were taken 

4 
directly as input data, as opposed to previous analyses in which, for 

example~' IOP rather than P was used. Another way in which our treatment 

differs is that the differential cross section ano. polarization data-are 

not first reduced to coefficients of a power series expansion in cos e 

but the original measurements at particular scattering angles are used 

directly. One advantage of this is that, in general, better fits to the 

original data are obtained, In addition, the analysis of the errors in 

the phase shifts, arising from errors in the experimental data, is 

simplified because all experimental'errors may be treated asindependent~ 

The values of the experimental quantities are collected in Table I. 

The experimental errors quoted there contain both the statistical and 

estimated systematic contributions. It will be noticed that four of the 

differential cross-section points at small angles are marked by asterisks. 
10 

These data, obtained by Fischer and Goldhablii!r, extend into the region 
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TABLE I 
!': 

~ 

Experimental quantities Q 
q 

Designation Experimental value Calculated value 
~Solution 4~ 

G"total > 20° 22024 ± 0070 mb 22013mb 

I O(900) 3 072 :t 0 .19 mb 3072 mb 

r(80.20) 1.045 t 00039 1.005. 

r(71.4°) 0.971 :t 0.032 1.004 

r(64000) 0.958 :t 0.032 0.991 

r(60.8°) 1.013 t 0.041 0.985 

r(52.4°) 0.997 t 0.035 0.980 

r(44~80) L 008 :!: 0.026 1.000 

r(36.00) 1.'074 t. 0.040 10042 

r(31. 9°) 1.031 t 0.031 1.061 

r(23.4°) 1 .. 098 t 0.033 1.083 
~, ° 
"r(1806 ) 1.024 ± 0,078 1.072 

~<r(14,8°) 1.038 ± 00086 1.041 

~~r(11.3°) 0.935 ± 0.108 1.010 

*r(9.10) .1.078 t 0.091 1.065 

° s(76,2 ) 0.613 t 0.108 0.527 

s(63.9°) 00635 !. 00068 0.568 

s(53.4°) 0 0 633' t 00052 0 0 649 l> 

° s(42.9 ) 00760 t 0,040 00748 
;If 

s(32.3°) o. 837± 00060 0.848 

° s(21.6 ) 0 0 891 t 00067 00955 

Table I - Cont. 



~~1 

,~ 

("., 

f~ 

tt., 

" 

I' . 
I,' 

\ .. 

-6-

TABLE I - Cont. 

Experimental quantities 

Designation Experimental value 

t(80.5°) 0.528 ± 0.063 

t(65.20) 0.497 t 0.048 

t(52.00) 0.467 tci.060 

t06.5°) o. 544 to. 081 

t(25~8°) 0.701 t 0.055 

t(23.00) 0.755 t 0.079 " 

u(80.1o) 0~752 ± 0.114 

u(70.9°) 0.381 ± 0.088 ' 

u(54.10) 0.322 ± 0.058 

u(41.8°) o .111 to. 076 

u(J4.4°) -0.175 "t 0.084 

u(22.3°) ~0.330 t 0.142 

v(76.3°) 0.382t 0.078 

° v(51.4 ) 0.016 ± 0.088 

v(25.4°) -1.542 ± 0.363 

"rex) = Io(x)/Io(900) 

sex) P(x)/stn x co~ x --

t(x) 1 - D(x) --

u(x) - R(x) / cos(x/2) -

vex) - A(x)/sin(x/2) -

UCRL~3494 

Calculated value 
, "(Solution 4) 

0.529 

0.475 

0.488 

0.574 

0.723 

0.779 

0.579 

0.517' 

0.25i 

0.060 

-0.004 

-0.068 

0.386 

-0.004 

-1.414 
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where Coulomb effects and higher partial waves are expected to become 

important and they were not used in the first part of the search program J 

but wereihtroduced only at a later stage J as is discussed in Section IV. 

In addition the three A measurements were also introduced at a later stage J 

for-this experiment had not yet been performed when the analysis was begun, 

It should be mentioned tht.the laboratory-system energy of the p-p 

collision in the polarization and triple-scattering experiments was about 

310 Mev J whereas the cross-section measurements were made at the full beam 

energy of 340 Mev. In our analysis this difference was completely ignored 

and the cross-section qata were treated as if the measurements has been 

made at 310 Mev. This procedure is at least partially justified .by the 

observed insensitivity of the proton-proton differential cross section to 

variations of energy in this region, 

~ 

~ 

~ 

" 

1/ 
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III. BASIC EQUATIONS 

The theory of polarization and, triple-scattering experiments for 
ry 

two-nucleon system has been developed b;V Wolfenstein', and by Wolfenstein 
II 

Ashkin, In their treatment the scattering is described by a matrix M~ 

in spin,space,defined by the equation 

(3,1) 

The are the amplitudes of the various spin states in the incident 

plane wave and the fi(e, ¢) are the scattering amplitudes for these states, 

Summation signs will be'over repeated indices,unless otherwise stated, The 

matrix elements M'j 1 
are functions of the center-of-mass scattering angles 

(e~ ¢), and they completely describe the scattering. Using the formalism 

of Wolfenstein and Ashkin~ the quantities measured in, the polarization a.nd 

The formulas for the observables in terms of phase shifts may now 

be obtained by expressing the Mij in terms of the phase shifts 0 Since 

the phase shifts are related to the S matrixelements~ one needs the 

relation between the, S matrix and the M m~trix, The S matrix may be 

expressed as the sUm of the unit matrix and the R matrix~ where the R 

mp.trix sa.tisfies an equation which in the j s m; ms representation is 

Here fl(f, s m, fiS) and g( 1 s m,e. ms) 'are defined by the following 

equations~15 

(3.2) 
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. TABLE II 

Observables in terms of M-matrix elements 

t ·C~· M10 + R. MOl) M*ss t 
Sln 8 . Sln 8 . J 

- -! Ref ( Moo+ (cos e + 1) r.:::1 ) ( . ~* ;2 M . 
. 10 Mll +- Ml _l t Mss 

Sln A .. 
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'PSC
• (e, ¢, r) 

The £' (j s mj ms) in these eguationsare connected to the fi (e, ¢) 

appearing in Eg. (3.1) . The latter are defined by the equation 

se. . 
if. (e, ¢, r) ':::t 

-m 
1 - s 

r- exp(ikr) fs 
m 

(8, ¢) :x s 
s 

(3.3) 

(3.4) 

where the . fi (e., ¢) in the singlet-triplet representation have been written 

ms 
fs (8, ¢). From the definitions in Egs. (3.1) to (3.4) and the familiar 

.. 16· 
expansions of the incident plane wave into spherical harmonics, one obtains 

.. - 13 
the relation 

M •. (9, ¢) = M • I (e a ¢) l.J . _. s m m' m ' 

where 

s' s 

Sl m I) , 
S = 

-1 . 
(ik) exp [ -i ~ 11~] 

x L" R(f s mj ms; R' s I Oms I) exp [i ~71.t] [11 (2 .e '.+1) ] ! 

0.6) 

The most convenient phase shifts are tho~related to the R matrix elements 

in the f s j mj representation. These matrix elements are. related to 
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the matrix elements appearing in Eq. (06) by means of the Clebsch-Gordan 

. 16 
coefficients 

() iii i ) 
;{ s m" m .,( s 

m.; 
J 

where the prime on the surrunation symbol indicates no sum on I., s, ii, 
and r 

S , The convenience of the s, j, m. 
J 

representation derives from 

the fact that the total momentum j, its z component mj~ and the spin 

angular momentum s are constants of the motion,17 and the R matrix 

therefore contains no off-diagonal elements in these indices, Furthermore 

the invariance of R with respect to spatial rotations implies that the R 

matrix elements are independent of mjo The nonzero R matrix elements 

R(,f 0 R mj ; 

R( R 1 j m" O 

J' 

R(j 1:. 1, 1, 

m. i) 
J 

may therefore be abbreviated as 

R 0 R m.) 
'J Rf 

fl j mj ) - R/j -
j, m .; j + 1, 1, j, m.) - R j 

J J - ± 

o og) 

- R
j 

-

j . j 
where the equality of R+ '. and R is a consequence of the syrmnetry of • 

the S matrix. Using some properties of the .Clebsch-Gordan coefficients 

Eqs. (06) to (3,g) combine to give 
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u m 0 

s f 

I 

o m, )R" s Jd 

- m s' 
m )COI(j, 

S ;{ 1 ' m • s ' 

where R,' = 2j -..,f = £+ 2 = j+ 1. The M(is m,.e ms' Sl ms ') 

that are not of the forms given in Eq. (3.9) are identically zero. 

The matrix elements given in Eq.(3. 9) refer specifically to the 

case of two distinguishable nucleons. WhelU the nucleons are identical the 

a 
antisynnnetri~ed M matrix, ~. = (1 - TS)M , should be used in place of 

13 
M; Here T and S are the spin- and space-exchange operators. This 

replacement takes into account the antisymmetry of the wave function and also 

the fact that the particles are indistinguishable. Explicit formulas for 

the M matrix elements may be obtained by evaluating the Clebsch-Gordan 

'coefficients inEq. (3.9). These formulas, specialized to the proton-

proton system, are given in TableIII. The Coulomb effects are also included 

there. 
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The 'coulomb part of the interaction has been treated in the nonrela-

tivistic approximation. Ihthis approximation the equations above continue 

to be valid provided the quantity (kr) appearing in Eqs. (3,3) and (3.4) .. 

is replaced by 
-1 

(137 ~) :l where 

~ is the laboratory velocity of the incident proton divided by the 

velocity of light. The S matrix defined in this way gives the scattering 

due to.the combined nuclear and Coulomb effects, and in the limit of no 

nuclear potential it becomes the pUle Coulomb-scattering matrix Sc::: Rc + 1. 

COwing to the singular nature of the Coulomb contributions it is 

convenient to express the R matrix in the form 

R = S - 1 

(3,10) 

The matrix ~ --~ S - Sc may presumably be analyzed in terms of 

partial waves, since S differs from Sc only by nuclear effects 9 and 

these are expected to vanish for large ..f 0 The contribution of Rc, on 

the other hand, is not analyzed into partial waves but is treated exactly and 

contributes the Coulomb scattering amplitude, 

= - n 1 exp [- i n £n Hi - cos e)] j (3011) 
k(l - cos g) 

The expressions for the M,. that are given in Table III are functions of 
lJ 

fc(e) and the matrix elements of e{ 
The matrix elements oJ 0{ can b.e expressed in terms of phase shifts. 

Owing to the unitari ty condition the diagonal elements S..e = and 
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TABLE III 

M matrix: elements in terms of 0( matrix elements, .. 

fe', (8) ~ fc(1I- e), + 2( i kfl~.. Po (.8) ( (X: + ~) Ai ' . &tr Ai ~4 -)'-'.£ J.Rt 1 

, t (.2R + l)~, + (~- 1) o! -1 -f; [(.R + 1)( it 2) ] !cy,e+l 
. 4, ,. .. ~,R. 4 ~~, ., : 

, ~.' . 

, r' () J1. R. IJ ' .- it (X - 1) ~2C;-

x ~ (hJ,~ o( + r: f)offJ + ~ [(~ +- i) (i., + 2)J ~6{ Q+l 
(2 / . .i.}i+l> ., '2, )( ~£'-l 

" + ![d- t)(£)]V-1 J 

Table III '-Cont, 
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TABLE III - Cont, 

-1 i¢ ~ 1 I' ( " ) = 2(i k) e"~, PI) (e) - Hi, £ + 2 ~'R 
odd J. A 4 ; R -(- 1 If. , +1 

+ R (2£ of- l)cJ +- R (f -1) ,..j 
-4- lQ(i + 1)' 1.,1. --y;- R.. '11 ~R-l 

JE. (-'.f- 2)~ £+1 - -f2' [1- l)~ £-1,{" 
+ 4 R+-1 cf . 4 \. J... 0{ .) 

MIO(e, ¢) = 2(i k)-l e-
i
¢ L,',', po\e) i(JI!Jo(, d - C", {2\o( 

" / 'oddf. -t , 4 j ~x.+-l 4 -; 1,£ ,e-l 
"" ' 

"1::7 (- f) )~ e+ 1 ' .r;;7 (/J ~ \ ~ t. -1] 
+- T- :tt ~ o{. - T z; J '1 . 

~ , 

M_l_l(e, ¢) = MIl(e, ~¢) 

M_l1(e, ¢) = Ml_l(e, -¢) 

M01(e, ¢) = -Mo_l(e, -¢) 

MIO(e, ¢) = -M_IO(e, -¢) , 
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Slj = RRj + 1 for 1 = j are pure phase .factors. Consequently the 

corresponding matrix elements of 0( may be expressed 

c/ 
'2i~ 2i~ 

- e e 
!( -

c:tR.j 

2i &/. ~ 2i ~ 
j:; - e J for j - - e 3 

(3.12) 

where 
~ 

~ - ~L -1°_ 2: arc tan (n/x) - -- x:;l 
(3.13) 

The matrix elements of oj' between the states with ~ = j ±l may be 

exp~essed.9 following Blatt and Biedenharn,lS by 

2 2i 8 . + 1 ' 2 2i ~ . - 1 ' 
cos B e J- ~J+ sin C

j 
e J+- 3J 

j 

(
', 2i Sj-l ' 

:: ~ sin 2, C, e + ,J 
J 

2ij'j:l 
e J 

(3014) 

An alternative expression for these matrix elements; which is useful in the 

analysis of Coulomb contributions and the interpretat-ion of the results, is 

cos 2 

ar j 
= 

2i 8, +1' e .' e J":'", ,J 
j 

e 
2i!!. +1 

J -

, ( F +-8 ' '\ ] L e' "j+l,j j-l,jl.. . 

.-:", 

, (3.15) 

The phase shifts appearing in this seconddefinition.9Eq, (3015), will be 

called bar phase shifts in distinction to the Blatt and Biedenharn (BB) 

phase shifts defined by Eq. (3.14). The bar phase shifts for the states that 
"i ", 

do not involve mixing are the same as the BB phase shifts defined in Eqo (3.12), 
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The phase shifts defined by Eqs, (013) to (3,15) include both 

Coulomb and nuclear contributions, If there were no nuclear effects these 

phase shifts would become just the pure Coulomb, phase shifts ~ '0 When 

both nuclear and Coulomb forces are present it is useful for some purposes 

to remove the Coulomb contributions from the phase';shifts and consider only 

the nuclear part, Such a separation is possible j however~ only if special 

assumptions are used, If~ for instance~ the Coulomb force can be assumed 

to act only outside the region about the origin in which the nuclear effects 

occur~ and if theWKB approximation is valid in this outside region 3 then 

the bar phase shifts that would be obtained if the Coulomb potential were 

removed (leaving the nuclear potential unchanged) are given by the equations 

-N 
8~ 
- N 
8 Rj 

-N t. 

-~ 

'~Rj ."-"~ 0,16) 

The phase shifts 
-N . 
C defined by thefse equations will be called 

i 

, the nuclear bar phase shifts, The equations for the nuclear Blatt and 

Biedenharn phase shifts derived from the same set of assumptions are 

considerably more complicated than Eqs, (3,16). They may be derived from 

Eq, (3,16) and the equations that relate the BB phase shifts to the bar 

phase shifts, These relations are given in the appendixj where it is also 

shown that for weak potentials the bar phase shifts are proportional to 

the matrix elements of the potential, Consequently they become small in 

the limit of weak potentials y and will--for special types of potentials--

obey corresponding interval rules, These properties are not shared by the 
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BB parameters. For convenience both the nuclear bar phase shifts and the 

original (non-nuclear) BB phase shifts are recorded in the table of results, 

One point concerning the relativistic Coulomb.contributions should 

be mentioned. As stated above, the treatment of the Coulomb effects is 

nonrelativistic, However, the relativistic corrections are not completely. 

neglected. Although the exact relativistic form of the Coulomb interaction 

is not known, Garren
4 

has calculated the lowest-order field-theoretical 

relativistic corrections and finds that they do not contain the singular 

factor (1 - cos 9)-1. which cha~acterizes the nonrelativistic term, If the 

relativistic effects are indeed nonsingular they need not be separated for 

special treatment, as was the nonrelativistic term,9 but may be combined with 

the nuclear effects in the term that is expanded in partial waves. The 

. nuclear phase shifts would then contain not only nuclear effects~ and the 

remnants of the nonrelativistic Coulomb effects that arise from the 

approximations made when the Coulomb contributions were subtracted, but 

also the contributions from the relativistic Coulomb corrections, 
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IV' 0 THE SEARCH PROGRAM 

The formulas collected in Tables II and III allow the various 

observables to be expressed in terms of the phase shifts. These functions 

will be denoted·by Yn( S ) i where n denotes the particular observable. 

The corresponding experimental values will be d-enoted by Yn. Following 

the method used by Fermi,3 a search was made for phase shifts which 

minimized the expression 

~(5 ) L 
n 

where ~n is the experimental error in the measurement of Yne The 

procedures were quite similar to those used by Fermi. Both the grid method 

-(in ~hich only one phase shift is changed at a time) and the gradient method3 

were used. The gradient method was replaced in the later stages by a new 
19-

search method devised by- Davidon.; The search program consists of taking 

a large number of random sets of phase shifts a.rid using various combinations 

of the above searching procedures to obtain from each random set of phase 

shifts a. corresponding solution. These solutions are sets of phase shifts 
o 

such that an increment of ± (1/64) in any phase shift gives a larger 

value of "Yrl. (& ) 0 

The work was divided into three stages, In the first stage the 

results -of the A experiments and the Coulomb interference mea.surements 

were not included in the data, and the theoretical forms included neither 

Coulomb effects nor the contributions of G and H waves. The number of 

random starting sets of phase shifts used in this stage was 3600 The 

corresponding solutions were grouped into 34 tight clusters whose members 
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were the same in all phase shifts to within a"ppr6~imatel.y 0.20
• The various 

clusters evidently correspond to different relative rnirilina." Of thk 34 minima 
, ' 

'.. all but two were obta"ined th;ree or more times 0 Of' the :two'~. one was obtained 

twice and the other only once. TheA data, which were' not available at 

the beginning of the analysis JI were then incorporated and the 34 minima were 

used as the starting points for the second phase, of the search program. Two 

independent search procedures (grid a.nd Davidon) were used independently to 

obtain solutions from the 34 starting points. The solutions obtained from 

a pa.rticular starting point by means of the two procedures were not the same 
- , 

in allcases Jl but from each procedure alone we obtained from the 34 starting 

points just 19 different final solutions Jl and these 19 solutions,were the 

same for the two procedures. Each of these 19 solutions was obtained from 

at least' five of the original 360 random starting points (even if onlY the 

grid search or orily the Davidon search from the 34 intermediate minima is 

considered). Of these 19 solutions the best seven are significantly superior 

to the remaining twelve. The search was therefore continued until these 

seven had been obtained five additional times from new random points,the A 

data now being included. All the solutions obtained'-from the 60 new random 

points were included among the 19 solutions preyiously found. 

For the third and final stage of the search program the Coulomb 

effects and the contribution of G and H waves were intr,oduced into the 

theoretical forms and'the data were augmented by including measurements for 

which e was less than 200
• For these angles the Coulomb effects and 

higher partial waves would be expected to become important. The work was 

shifted from the MANIAC to the IBM 704 to accommodate the increased 

complexity of the problem. No large-scale search was attempted. The 19 

MANIAC solutions, suitably adjusted to account for the inclusion of Coulomb 
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effects~ were,used as starting points for both the grid and the Davidon 

search procedureso The two procedures led to the same final, solutions in 

all but four ca$es. Except ,in these four cases the final solution did not 

dirfer significantly from the corresponding starting points~ th~ 'differences 

being of the order of 30 or less in all phase shJftso From the seven best 

MANIAC solutions eight final solutions were obtained (in one case the grid 

and.Davidon procedures led to different solutions)o These eight solutions 9 

which are significantly better than the other solutions obtained~ are 

recorded in Table IVo The errors quoted in the results were derived from 

the ,error matr,ix o The treatment of errors is the same as was used by 
20 

Anderson 9 Davidon, Glicksman, and Kruse, . and the method is adequately 

described in their paper. The error matrices were computed for the MANIAC 

solutions and have not been recalculated for the final "704" solutfons. For 

this reason errors for the G and H phase shifts are not giveno 

, . 
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TABLE IV 

'. Best solutions at 010 Mev. 

, Type Solution 1 ' (ry = 1709) 

Nuclear Bar BB 

-20 02 ± 500
0 -20.2 r 5000 

2507 t L4° ' 27.6 t 1.4 0 

2000 4060 

-28.6' t. 4.30 
-2704 t 4030 

-5303 t 2.60
' -5200 't 2.60 

-808t2010 ', - 6.5 t 2.1
0 

0 
3.00 0.2 

2.60 
5.5

0 

32.2 t 
,0 

L9 " 33.6 ± 1.90 

106i 2.00 3.8 t 200° 

- L9 t 1.1 
0 

- 705 ±" 40i
o 

, 0 
6.3 t LO +0 9.9 - LO 

2.9 0 ' 4.5 
0 

- 203
0 

-57.5° 

UCRL-3494 

, 

Solution 2 "(rr(= 2L 7) " 

Nuclear Bar 

-39.0 ± 309
0 

8.7 t 1.20 

2.60 

-72.1± 3.80 

"';23.4 ±. 2.0 

0.5 ±. 0.7 0 

_ 2.70 

2.7° 

37.6 i 2.1° 
" 0 

-LO i: 203 

5.0 t L5° 

4.2° 

_ 3.0° 

BB 

-3900 ± 3.9
0 

10.6 t 1.2° 

5.20 

-70.8 ± 3.80 

5.50 

46.3 t 1.50 

- 6.0 ± L8° 

10.2 f1.5° 

, 4.2° 

-f37.5° 
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TABLE-IV - Cont. 

Type Solution 3 ("!l = 23 0 S) Solution 4. err; = 24.5) 

Nuclear Bar BB Nuclear Bar BB 

lS -21.9 ± 4.9° -21.9 ± 409° -53.9 ± J .9° -53.9 t 3.9° 
0 

lD 
2 26.6 t 1.5° 2S.5 ± 1.5 907 ± 1.2°, 11.6 ± 1.2° 

lG 
4 

2.2° 4.So 2.1° 4.7° 

3p 
0 - S.l±- 2.7 ° - 6.9 t 2.7° -50.7 ± 3.So -49.4 ±. 3.So 

3p 
1 -39.5 1:. 1.6° -3S.2 t 1.6° -14.5 ± 2.0° -:13.2 ±" 2.0° 

3F 
3 

- 5.1 t 1.1° - 2.S tl.lo 3.1 ± 0.7° 5.4 t 0.70 

3 
H5 ° loS, 4.7° - 1.7° 1.2° 

3H 6 
_ 1.2° 1.7° _ 1.6° 1.3 ° 

3p 
,2 45.1 t 1.2° 6 + ° 4 .7 _ 1.3 46.2 i 2.1° 51.5 .± 1.5° . 

3F . - 4.0 t 1.1° - 2.0t 1.1° + ° - 4.5i loSo 
2 -2.7_2.3 

E..2 3.5 1: 0 oS ° S.6 ± 2.0° ° -15.01: 1.3 . -33.4 ± 3.1 ° 

3F . ° 
4.2 t 0.9° 5.2 ± 1.5° S.ot 1.5° 

4 1.0 t 0.9 

3H ° _ 0.2° ° 1.0° 
4 

- 2.2 - 1.4 

£4 
_ 1.So -53.5° _ 1.So -31.io 
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TABLE IV - Cont. 

, .. 
Type 

: '. Solution 5 ('1- 34. 2) Solution 6 . (rr; - 34.6) 

Nuclear Bar BB Nuclear Bar BB 

94.4 ± 
. 0 

3.7 94.4 :t 3.70 :I: 4.6
0 .". 0.5 ± 

0 
- 0.5 4.6 

1.8t 0.90 3.6 ± 0.9 
0 

25.7 t 
'0 1.2 27.7 ± 1.20 

5.80 8.40 - 2.10 0.60 

75.0 t'3.7° 76.2 :t3. 70 -129.4 ± 3.80 -128.2, ± 3.8 
0 

,. 

9.9 ± 1.80 . + ° 11.2 _ 1.8 -26.8 t 1.8
0 

-25.51- 1.80 

7.5iL5° 0 
6~1 t 2:2

0 
8.4 ± 2.2° - - 5.2 ±: 1.5 

0.90 2.0° 3.90 0 - - - 1.0 

1.2
0 

4.00 0.6
0 

3.50 

13.4 ± 1.0° 6 + 0 15. - 0 .. 7 16.3 t 1.00 . +- . 0 17.5 --l.0 

-29.8 t 0 0 - 0 . 0 
2.0 , -28.5 1: 2.1 ' - 4.2±:1.4·· ~ 1.9 t;L3 . 

. ,:)~ . .. 
, 0 

° 0,,4 ± 0 
2.1 t6.2 ° 6.7 f: 0.6 18.1 t 3.8' - 1.2 -

2.8 t 0.5 0 8.7:t 0.50 6.5±: O.So 10-.8 t 0.50 

2.3
0 

1.50 4.40 5.40 

. 0 
-,3.6 -90.8 

0 
2.60 73.80 

'. 
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TABLE IV - Cont. 

Type Solution 7 err; = 41.3) Solution 8 <rr;= 52.3) 

Nuclear Bar BB Nuclear Bar . BB 

lsO 23;7t4.1° 23.7 i 4.1° 57.2 ± 5.1° 57.2 ± 5.1° 

1 . ° 1.2 -t 1. 7° 9.5 ± 1.6° 11.4 ± 1.6° D - 0.6 -+- 2.4 
.~ 

~4 3.1° 5.8° _ 0.6° 2.0° 

3p 
0 

7.4 t. 4.6° 8.7 :t 4.6° 134.0 t 6.7° 135.2 ± 6.7° 

3p 0' 72.3 ±. 1.9° 18.9 t 2.2° 20.1± ° 71.0 t 1.9 2.2 
1 . , 

3F -11.5 ± 1.7° ° ° -12.6 ± ° - 9.1 ± 1.4, -14.9 t 1.5 1.5 
3 

3H 
5 

_ 1.1° 1.8° 0.5 ° 3.4
0 

3 . 
H6 1.2° 4.1 ° 1.0° 3.9° 

3 
P2 8 + ° .0 _ 0~7 . 9.2 ± 0.7° 4.3 t 1.1° 5.6 ±. 1.1° 

3F -26.0 +' 1. 7°' . ° -17.5 t 1.5° --15.31: 1.5° 
2 

-23.7 ±. 1. 7 

£.2 - 0.9 -i:. 1.4 ° - 3.1 ±. 4.9° - 1.0 ± 1.6° - 5.6 ± 7.1
0 

3F ° ° 4.5 ± 0.5° 7.3 ± 0.5° 3.2tO.5 . 7.3tO.5 
4 

3H 
4 

0.0° 1.2° 1.6° 4.0° 

£4 - 2.7° -64.3° _ 1.2° -46.9° 

{~. 
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V. DISCUSSION 

The comparison of the values of the experimental quantities predicted 

by the five best solutions to the measured values are shown in Figs. 1 

through 5. Except for the one small-angle point in the A experiment~ the 

fit of all these solutions is good. 

The solutions may also be evaluated by comparing the values ~flrrt 

with the value expected from statistic~l considerations. If the true phase 

shifts for partial waves higher than H waves were really zero, and if the 

errors are statistical, then the most probable value of ~ at that relative 

minimum which lies in the neighborhood of the true solution is the difference 

between the number of observables and the number of phase shifts. This is 

36 . - 14 = 22. There is a 90% chance that rr; will be larger than . ~ 14 

and smaller tban p.J 34. .The probability that rr; > 34 ·is~ 5% and 

the probability that it is greater than 40 is I'Vl%.. The value.s of ~ for 

the solutions listed are given in Table IV. The four best solutions are seen 

to have ~ in the range ,17 ,<' ry L... 24, and the four ·fair solutions 

have rr; in the range 34 < Y(. L. 53. The solutions not listed have 

'rr[ > 62. 

It is natural to see to what extent the phase shifts corresponding 

to the same ~ value obey the interval rules for L'S and the tensor forces. 

If the potential were due toa sum of central and L'S forces, then in the 

Born approximation we would have 

R1 ....- S~O Sll ~ and R3 $32 8
33 - 3 - "4 8

11 
-812 

8
33 8

34 
(5.1) 
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Only Solutions 2 and 4 satisfy these relations even approximately. 

Solutior 4 gives Rl = 0060 ± 0.08 and R3 = 0.70 ±. 0.32; in close 

agreement with the interval rule; and Solution 2 gives Rl = 0.80 ± 0008 

= 0.33 ±. 0053 in fair agreement. However, the mixing parameters, 

which would be zero if only central and L'S forces were present, are rather 

large in the J = 2 states for. both Solutions 2 and 4. A large mixing 

parameter would indicate the presence of a tensor force. The interval 

rules that would obtain if only tensor and central forces were present 

are 

- 27/20 (5.2) 

but neither of these relations is satisfied even approximately by any-of 

the solutions. 

The failure of the simple interval rules seems to indicate that 

either the spin-dependent forces must contain important contributions of 

more than one type or that the forces are sufficiently strong to invalidate 

the Born approximation results even in sign and order of magnitude. The 

latter possibility is being studied by 'Gammel and Thaler, who are 

investigating the possibility that the tensor force is strong enough to 

cause the phase shift to change sign. The 310-Mev data can be 

satisfactorily explained in this way, but it is not known whether an 

energy- and charge-independent potential can be found. 

Additional restrictions on the p~p phase shifts may be obtained 

21 
from a study of the reaction p,.. p ~ 11 + D. The analysis of this 

reaction, which is given in Reference 8, shows Solu,t,ions 5, 7, and 8 to 

be unsatisfactory. The remaining five solutions are 'therefore pref~rred. 

There are several characteristics common to the five good solutions. All 



have negative 
1 

S o 

-28·-

phase shifts and positive 

UCRL-3494 

1 
and G

4 
phase shifts, 

This suggests that in the singlet state there is a repulsive hard core 

surrounded by an attractive potentiaL In the triplet states the '~P 'and 
o 

3p phase shifts are negative, whereas the 3PPhase shifts are large 
1 2 

and positive. This suggests that L·S forces are more important than the 

tensor forces unless the tensor forces are very strong, Indeed it had 

been concluded. previously 'by Gammel and Thaler, on the basis of an extensive 

machine analysis of the solutions reported in an earlier (unpublished) 

version of the present work, that combinations of central and tensor forces 

alone could not produce any of·the reported sets of phase' shifts unless 

potentials strong enough to produce resonances were used. Similar conclusions 
22 

revealso been reached by Wolfenstein from a direct analysis of the 

o 
experiments near 90 • 

The present analysis has been restricted to the Berkeley p-p 

experiments near 300 Mev, It is to be expected that the extension to lower 

energies and, with the assumption of charge independence, to the n-p system 

would provide a means of selecting from among the solutions that have been 

obtained. The use of dispersion relations to select from among the 

possible solutions--a method which has been very useful in the case of 

pion-nucleon phase shii'ts-:has not been possible because the extension of 

dispersion relations to p-p interactions has, 'as yet, not been achieved. 
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. APPENDIX: SUBTRACTION OF COULOMB EFFECTS 

For those partial waves in which the angular momentum is a constant, 

nuclear. phase shifts may be defined by 

~f 
N 

(A.l) 

where the ~ are defined in Eq. 0.13). Under the condition that the 

Coulomb interaction can be considered confined to a region outside the 

nuclear region and that the WKB 'approximation is valid in this outside 

region, the . gN defined by Eq. (A.I) are the phase shifts that would be 

obtained from the pure nuclear interaction alone. The same result may also 

be obtained for the case whe,re mixing occurs if the nuclear phase shifts 

are defined in terms of a nuclear S matrix SN' which is related to the S 

matrix by the matrix equation 

SN = (exp(- i I)] S [exp(- i l)J ' (A.2) 
I 

where /,is the diagonal matrix whose elements are 1. . The nuclear S 
;e 

matrix, SN ~ may be expressed in t~rms of nuclear phase shifts by means 
, 

of the same equations as were used to express the S matrix in terms of 

the original (total) phase shifts. Using Eq. (A.2) the relations between 

the nuclear and total phase shifts may then be derived. The expressions 

for the Blatt and Biedenharn nuclear phase shifts in terins of the Blatt 

and Biedenharn total phase shifts are quite complicated for those phase 

shifts which involve mixing. An alternative method of defining phase 

shifts in the coupled case is to write the S matrix in the form 

S (exp .i e )( exp 2i € ) ~ exp i 8) 
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. where & is the d:lagonal matrix with elements 8,..e ,and C is a synunetric 

matrix with zeros on the diagonal. For the two-by-two case this gives 

, (s) = 
j 

i 8. 1 . J- ,J e 

o 

o 

is . 1 . 
e' J-t, J 

cos 2 C. 
,J 

i sin 2 e: 
j 

i sin 

cos 

o 

(A.4) 

The conversion between nuclear phase shifts and total phase shifts is simple 

when the bar phase shifts are used. One finds 

- 'N 

~j±l = ~ 
j ± l,j - J'+ l J-

(A.5) 

To obtain the nuclear Blatt and Biedenharn phase shifts one may use Eqs. 

(A.5) together with the equations connecting the Blatt and Biedenharn phase' 

shifts to the barred phase shifts. These equations are: 

8. 1 . + 
J 1- ,J 

sin '( 8 . . 1 . J- ,J 

sin c8' ~ j-l,j 

8 
j-l,j S. 1 . + ~. 1 . 

J + , J J- ,J 

S. + l' ,) J ,J 

-
- tan 2 E-j/tan 2 ej 

-
8. + l' ,) J ,J 

- , sin 2 C.jl sin 2 c.j 

The mixing parameter ~ has a simple interpretation. It gives the 

proportions into which an 'incoming beam in one channel (partial wave) 

(A.b) 

divides between the two outgoing channels. It measures therefore the degree 

1:-1· 
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show that £. 
J 

does not to which f is not conserved. Equations (A.6) 

give a good indication bf the degree to which ' j? is conserved, since it 

becomes large when the phase shifts Si j become small in comparison to' £- '. 

Furthermore ,the parameter cSj depends upon the phases of the basis vectors 
13 

in terms of which the S matrix is defined. Its value is, therefore, a 

reflection more of the mathematical conventions than qf the actual physics ~ 

Another set of parameters that have been used to describe the 

scattering in the coupled states are the real parameters 

defined by wrlting the asymptotic forms of tWb independent solutions to the 
, ,23 

coupled equations in the form 

u. l' .(r) J- ,J 

u j+l, j (r) 

u
l

o lo(r) J- ,J 

I 
. 1. (r) u 
J+ ,J 

~ 

~ 

~ 

Fo l(r) + x. 1 . G. l(r) J- J- ,J J-

Yj Gj+1(r) 

Y. Gj_l(r) 
J 

Fj+l(r)+ xj+l,j G·l(r) J+ ' 

, ' 

(A,?) 

Here r-l ~(r) and r-
1 ~(r) are the regular and irregular solutions of 

16 -1) the Coulomb radial partial:"'wave equations and the'r ,~j(r are the 

radial wave functions in th~ .l,j' channel. The fact that YJ is the same 

for the two solutions is a consequence of the Wronskian condition. A chief 

advantage of these parameters is that in the Born approximation they have 
24 

the simple forms ' 

x. 1 0 -' -(j ± 1, j I V I .+ 1, j) 
J ± ,J J - , 

Yj 
- -(j 1, j I V-I oJ + 1, j) ... '-(j + 1 j I V I j 1, j) - - -, 

(A.S) 
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where V· is the potential in units of the center-of-mass energy of the 

system. The matrix elements are defined as (1 j I V I ;.1 j r) 

= 

= S d(Jer) 

o s 
m. m. 

dJL F.Q..(r) Yj~s J (e¢) V Yjlirs J (e¢! F,e.' (r) 

(A.9) 

They are independent of Inj ·ifV is invariant under rotatiOns. These 

parameters are related to the Blatt and Biedenharn phases shifts by the 

25 
equations 

2 ~ 2 
cos ~ tan o. _ 1 . + sin C tan 6 . + 1 . 

J 1" ,J J -, J 
(A.10) 

y. = ~ sin 2 e (tan ~. 1· - tan &. ) 
J. J- J + 1 

The reciprocal equations are 

tan 2 6. - 2 y./(x. 1 . - x'
tl 

.) 
j J J- ,J J ,J 

, 

x -j+l,j ~ tan S'±l . - ~ f x. 1 . + J ,J J- ,J 
2 2 } (x. 1 . - x. . ) t- (2 y.) 

J- ,J J+l,j J 

For small phases shifts, where the sines and tangents of 

(Aoll) 

8. t"l .. may be 
J ,J 

replaced by their argum~nts, one finds from a comparison of Eqs. (A.6) and 

(A.ll) the correspondence 

y. --:.. E· 
J ---'J 

(A.12) 

The barred phase shifts, like the x and y, are therefore proportional 

" to the matrix elements for weak interactions." 
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LEGENDS FOR TABLES 

Table I. The, 36 experimental measurements used in this analysis are recorded. 

The asterisk.denotes the Fischer-Goldhaber Coulomb interference data (see 

Section 2). The values predicted by a·represent.ative solution are also shown 

for comparison. 

Table II. The expressions for the various experimental parameters as functions 

of the M matrix elements are given. The subscri~ts· 1, 0, -1, s· on the 

matrix elements refer to the three triplet states Sz = +1, 0, -1 and 

to the singlet state respectively. The z axis is taken along the incident 

beam directIon. The M· . . ~J are functions of the usual polar and azimuthal 

~enter-of-rnass scattering angles e and ¢. Since the left-hand sides of 
, , 

the above equations are independent of ¢, the expressions on the right have, 

for simplicity, been evaluated at ¢ = O. For a detailed derivation of these 

equations see Reference 13. The dependence of the polarization correlation 

parameters Cnn and CKP upon the M matrix elements are also included 

for completeness. A discussion of these parameters may be found in 

References 13 and 14. 

Table III. The antisymmetrized M matrix elements for the p-p system are 

expressed as functions of the Coulomb scattering amplitude,fc(e) and the 

matrix elements of 0( The amplitude fcee) is defined in Eq. 0.11), 

and the expressions for the matrix elements of 0( in terms of phase 

shifts are given in Eqs. 0.12) through 0.15) . . The O{,( j for j <. 0 

and the o{j for j ~O are defined to be zero. The' 1: mee) are the 

associated Legendre polynomials, p = 11k is the center-of~mass momentum. 
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Table IV. The eight best solutions .obtainedafter the introduction of the 

Coulomb effects, the G and H wave contributions, and the Fischer-Goldhaber 

Coulomb interference data. The values of 2 S are recorded. 
.; 

The column 

headed "BB" are the Blatt and Biedenharn phase shifts defined by Eqs. 0.10) 

through C3 014) of the text. They are the total phase shifts and include both 

Coulomb and nuclear effects, In the absence of nuclear forces they reduce 

. to the Coulomb phase shifts ~ In the column headed "Nuclear Bar"!3.re the 

values of twice the nuclear bar phase shifts defined in Eqs. (015) and 0.16). 

In the absence of nuclear forces these phase shifts reduce to zero. 
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. FIGURE CAPTIONS 

Figure 1: Differential scattering cross section as a function of center-of

mass scattering angle, e, as predicted by phase shift solution 3. 

Nearly identical curves are obtained for solutions 1, 2, 4 and 6 • 

. Experimental values are shown for comparison. 

Figure 3: Plot of D versus e for solutions 1, 2, 3, 4 and 6. Experimental 

values are shown for comparison. 

Figure 4: Plot of R versus e for solutions 1, 2, 3, 4 and 6. Experimental 

values are shown for comparison. 

Figure 5: Plot of A versus e for solutions 1, 2, 3, 4 and 6. Experimental 

values are shown for comparison. 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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