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ABSTRACT 

It is shown that the requirement that the Hamiltonian density 

commute with itself on a spacelike surface precludes the possibility that 

tgree or more different spinor fields, coupled to one an~ther inYukawa

. type interactid~,,' commute with each other. If the Hamiltonian contains 

only two such fields, however, they may be assumed to either commute or 

anticolmIlUte without violating this requirement. 
, , , 

) 

J 
( 



UCRL-3569 

ON THE COMr;,ruTATION RELATIONS OF INTERACTING SPINOR FIELDS 

Richard Spitzer 

Radiation Laborator.y 
University of California 

Berkeley, California 

I. INTRODUCTION 

The form of the commutation relations between field operators 

that represent physically different Fermi-Dirac particles has been 
1 

recently investigated by Kinoshita. He has shown that if the Lagrangian 

contains interaction terms that are bilinear in spinor fields, these 

* fields must anticommute in order that unique equations of motion be 

obtained from Schwinger's variational principle. However, if the equations 

of motion are obtained from the canonical commutation laws 

-i rp = [H, Y'j 1 ' (1.1) 

the results a~e unique regardless of whether the spinor fields commute or 

anticonimute. Since self-consistent results are obtained from the canonical 

formalism, it is not clear whether the inconsistency obtained by Kinoshita 

reflects the impropriety of the commutation relations or the inapplicab~lity 

of the variational principle in this case. It is of interest, therefore, 

to determine whether Kinoshita's conclusions can be obtained without 

recourse to the variation formalism. 

* As used in this paper,' the expression "commutingspinor fields" will 

always refer to different spinor fields. For a single spinor field 

the usual anticommutation relations are assumed. - , 
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The question of whether different spinor fields commute or 

anticommute is of no practical importance when the Hamiltonian contains 

only two such fields, since the physical observables obtained using either 

choice of commutation relations are the same. On the other hand, the 

transition amplitude for a particular process involving three different 

spinor fields is calculated in Section 2 by the formal application of 
2 

the Dyson expansion of the S matrix, and the result is found to depend 

on the choice of 'commutation relations. However, it is shown in Section 4 

that if three or more spinor fields interact with each other via Yukawa

*-type interactions J the -assumption that they commute with one another is 

inconsistent with the requirement that the Hamiltonian density commute 

with itself at two points on a spacelike surface.3 If the Hamiltonian 

contains only two different spinor fields, they.may be assumed to either 

commute or anticommute without viola~ing the above requirement, which will 

henceforth be referred to as Postulate (I!). 

The case of three or more interacting spinor fields is thus 

fundamentally different from that of only two such fields in that 

Postulate (II) places a restriction on the commutation relations in the. 

former case but not. in the latter. Section 5 contains some speculations 

concerning the apparent distinction between these two cases. 

By "Yukawa-type interactions" we merely "mean that an interaction term 

in the Hamiltonian contains the spinor fields bilinearly and the boson 

field linearly. 
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II. TRANSITION ¥.ATRIX ELENENTS 

In this section the transition matrix for a simple process is 

evaluated by the formal application of Dysonls S-ma.trix expansion •. This 

example illustrates a di~f'erence between the cases in which the different 

spinor fields a.re assumed to commute' or anticornmute. 
, 2 

The Dyson expansion expansion of the Smatrix is given by 

o(j ao 

S = g (-it n\ S d4x1 ••• j d4"o p ~ "l(x1 ),··· , "1("0) f ' 
-ao -0111 (2.1) 

where P is an operator,which orders the factors chronologically so that 

time values decrease from left to right. The transit~on amplitude fo~ 

the second-order process corresponding to the diagram in Fig. I,' will be 

calculated for the two cases, 

Case (a) the commutators of different spinor fields vanish, and 

Case (b) the anticommutators of different spinor fields vanish. 

We shall see that in Case (a) the propagator for the virtual fermion of 

Type 2 is not the usual Fe;ynma.n propagator~',::i:4:;, 
.' .. ··!7!\ .? 

The form of the interaction representation interaction Hamiltonian 
- ., :~. ;~f 

is chosen as 

(2.2) 

where the \fIS are different spin-~ fields and the ¢IS are different' 

real scalar fields. The term of the Smatrix corresponding to Fig. :1 .i$ 

(2.3) 
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where 

, 

b _2 3 ..2 
HI (x) = g2 c.p(X) 'f (x) "SIJ (x) ,. (2.2b) 

, ' (2) 
The" expectation value of M, is taken between an initial state of the 

system containing fermiori 3 and boson'2 and a final state containing 

fermion 1 and boson 1, all particles being in plane-wave states and ~he 

fern-dons being in definite spin' states. Then we have 

'.',' 

(2) 

~I , 

QQ 

= -gl g2 S d4x1 d4x2 <"PF I p ~ iji ~X2) '1'2 (x:i)1 (X2) • it? (xi).f (xl)i ("1 ~ /11';) 
-00 

'II\Ci 

= -glg2 S d4xl d4X 2 {Y'F\, P (Xl' x2) , 1fI / j 

.... 00 

the last two lines are a definition of P(~, x2). In order to perform' 

the time ordering we split the Feynman diagram of Fig. I ' into its two 

constituent parts corresponding to propagation by a particle ~nd by an 

antiparticle, Fig~ IIa and I~b, respectively. Then we have 

P(Xl , ~) = 9(x2 - xl) r(~2) r2
(x2) l(x2 ) <f2

(Xl) q'? (Xl) i(xl ) 

+ g(Xl-'X2)~2(XI)~}(Xl) (XI)<fi (x2)r2
(x2) ¢1(X2) , 

(2.5) 
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where 

l+: 
for Xc> 0 

Sex) = for Xc <.. 0 
(2.6) 

e(x) + g(-x) = 1 

J Sex) - S(-x) = E (x) xo 
= I Xo j 

. (2.7) 

1 . 2 
Since ~ and ~ commute with each other (and, of course, with the 

fermion fields), Eq. (2.5) becomes 

T . 6(xl - "2) ~ 2 (xl) (f/ ("2) ]!f / ("1) ';("1) , 

(2.8) 

the upper sign a~p1ying if we have 

[ '1/("1)' ~ \x2) 1 - 0 -

l- 2 'f'~ l(X;2) ] (2.9) o/~ (xl)' = 0 , 
. 1-

[ 'Y/(X1), (f~ 2(x2) ] = 0 ., 
. t 

the lower sign applying if we have 

[ f13
3 
(xl)' 

- 1 1 Cfq (x2) .; = 0 , 
Ji_ 

[fp 2(xl ), - 1 1 <J'cl (x2) ,i_ = 0 , (2.10) 

fo/ 3
(x1), ~c{ 2(x2) J_ - 0 . 

t f.> . 
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It can be noted that the minus sign in front of the second term on the 

right side of Eq. (2.8) can also be obtained b.r requiring two of the 

commutators and one anticommutator to vanish. Making use of the usual 

Fourier decomposition of field operators, we obtain 

. 0tIJ 

~r'2) = 5 d4Xl d4X2 ~p (":i.' x2) [ e(X2 - Xl) <'f", 2("2) '1,/(Xl ) >0 

-00 

~ 

-5 Vl dlf2 ~ f! (Xl' "2) 

where N (xl'~) is a c-n~ber, 
<1f 

x 
iPJ.xl - iPl,x2 iQ2,x1 ~iQl·x2 

e e e e 
! 

With the help of the relationships 

. - (1)] s + (x) - ! l S (x) - i S (x) , 

~ (1) 1 S - (x) - ~ l S (x) -{ i S (x) , 

, 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

I 
j 
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(1) 
5

F
(x) - 5 (x) + i E. (x) Sex) (2.15) 

(2.16) 

where SF(x) is the Feynman propagator, Eq. (2.11) becomes, for Case (a), 
.~ 

(2) S~ (m2) 
~I = - i d4x1 d4x2 ~~ ,(Xl' x2)STq P (x2 - xl) , 

(2.17a) -GO 

and for Case (b), 

(2.17b) 

For (b) we obtain, for the intermediate state, the Feynman propagator, which 

is a Green's function for the Dirac equation, Le., 

For (a) the propagator is the f~ction 5T, which satisfies 

m)Sr(x) = -.2.. 
11 

, 

in which P indicates that one must take the principal value when 

integrating over XC, 

(2.18) 

(2.19) 

From Eq. (2.11) we see that the two propagators differ only in the 

sign of the part corresponding to propagation ~ a negative-energy ,particle. 

This difference in sign is due to the odd number of transpositions of 

different spinor fields involved in going from Eq. (2.5) to (2.8). Thus, 
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the transition probability for the physical process that corresponds to 

Fig. 2.1 depends on the commutation relations of the different spinor fields. 

This dependence does not occur for all processes involving the Hamiltonian 

(2.2). An example of a transition probability the .calculation of which 

involves an even number of transpositions of different spinor fields and 

which is therefore the same for Cases (a) and (b) is given in the next 

section. 
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III. VACUUM EXPECTATION VALVE 

The probability that a vacuum state at t - -00 shall remain a 

vacuum for t = ~ is 

. -i 
~p(e. , 

(3.1) 

where P is the operator that orders the factors in the opposite order of 

times to that of P. 

To prove that the expansion in Eq. (2.1) yields the same:reeult for 
.. 

Wo whether the different spinor fields commute or anticommute, we mere~ 

show that the vacuum expectation value of each term in the eXpansion (2.1) 

of S and the corresponding expansion of is the same for the two 

possibilities. The expression of interest is 

After the time ordering is perfol"lD:ed we have the product of n Hamiltonian 

densities. For convenience, the indicee may be considered to be interchanged 

after the ordering is carried out so that < P(Xn»o becomes 

(l!(Xl) ••• ¥Xn»0 , which is the sum of 4n terms. However, only 

the tenns 'which contain an even number of a. given ¢i and which for ev~ry 

'fi have a corresponding· .~i are nonzero. Thus < P(X
1
) > 0 is 

nonzero on~ if n is even. The order of the factors is now rearranged 

so that all the boson operators appear on the right. By splitting these 

~p into positive- and negative-frequency parts and operating successively 

on the vacuum, we may replace them by c-numbers. Next, the following rearrange

mEmt is carried out. Call the operator on the extreme right 'f ia. Pick 
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out a 
·-1a 
\f1 

1a 
such that betwaen 1t and ~ there are equal numbers 

·-i 
of ''f. and 

-1a 
and commute'f to the right until it is next to 

<-ria •. Call a factor pair • Repeat the procedure for the 

. first rjb 
to the left of the last factor pair formed until all the 

c:pu$bJt'S.: are in factor pairs, all pairs for a g1ven i being grouped 

together. Now (, P(x)'\.. may be unambiguously replaced by c-numbers. 
". n /0 

Since in the formation of each factor pair and later in the regrouping of 

all pairs with a given i to stand together an even nUmber of transpositions 

of different spinor fields is performed, the final result is the .same :for 

Cam (a) as for (b). Similarly <. p _ (~»o is the same for the two cases, 

and thus. the result for the physical quantity Wo is independent of whether 

the different spinor fields commute or anticommute. 



UCRL-3569 

-12-

IV. RESTRICTIONS IMPOSED BY ~COMJ.rorA.TIVITY· -CONDITION •. 

In this section it is shown that for Case (a), the Hamiltonian 

density does not commute with itself on a spacelike surface. We shall' 

evaluate the commutator of the Hamiltonian densities for the interaction 

Hamiltonian (2.2), considering separately the two cases (a) and (b) 

,discussed in Section 2. 

Postulate (II)lmplies that 

(!.p' I [P(x', y:~i) -+, Q(x' , y')] I 0/> = 0 , (l •• l) 

where , 'Tf-) and l1.J" > are any two state, vectors (not necessarily 

physical 'ones), 
,-so ..:. 

X = (x, O),y' = (y, 0); (p+ Q) is the commutator 

of the total Hamiltonian, 

p(x, y) + Q(x, y) = [H(X), H(Y)]_ ' (4.2) 

and 

(4.3) 

Le., all terms in p(x, y) involve the Hamiltonian of the free fields. 

For Caee (a), with gl ='; g2 = 1 for convenience, we have 

(141 ) r -1 2 - 2 1 J' [ - l' ·2 - 2 ~I). 1 
Q(x, y) = ill (x - y)l 0/ (y)lp (y)+ 0/ (y)1.#' (y). 'f (x)'j' (x)+\f' (x)y (x)J 

'. (M ) t" - 2 .• .3 -3 2] [ - 2 .. ) 3 2,1 
-t iit 2(x-Y)i~ (Y)1' (y)+'I' (y)'f (y) f (x)'r(x)+tp(x)9J (xU 

1 ...,2 [, -1 (1I1:l) ") -3' (m2) , 1 ~1 + i ¢ (x)JO (y). 0/ (x)S (x - Y)1' (y).+ ~! (y)S (y .;; x) <p (X)J 

.J. ~ [' - 3 (m2) 1 -1' (m2) "3.1 + i ~ (Y)Jl) (x) 0/ (x)S (x - Y):f (y) +~) (y)S (y - x) 0/ (x)J 

Cont. 
, I 
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1 1 . [ .... 1 (m2) , 1 -1 (m2) 1 
-i¢ (x)¢ (y) CJ' (x)S . (x - y) ty (y)- tp (y)S (y - x) -.p (x) 

-2 (m1) Ill- -2 (ml ) 2 ,1 
-t- \.f (x)s (x - y) r (y) - <y. (y)s (y - -x) 'f (x)J 

;;. ;;. . [ -2 (m3) "f. .7 J. (m) 2 
- iV> (x)fD (y) 'I' (x)S (x - 'y) i (y) - I (y)3 (y - x)'f (x) 

-3 (m2) fa) -3 (m2) . .,.3 ,1 
-+ 0/ (x)s (x - y) r (y) -. Y' (y)3 . (y - x) l' (x~ 

where 

[I(x), I(y)]_ 

[If .,/<x). rf/<Y)] 

(~) 
= i~ . (x - y) , 

Since the ~ and S functions vanish for 

2 
(x - y) = [

.- 4 2 21 
. (x - y) - (Xc - yo) -> 0 , 

only the terms which do not contain either the ~ or 3 function are 

nonzero in Q(x', y'). 

(4.5) . 
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It is convenient to choose 

(4.6) 

where 
'i' ~ , ~ 

bi (Pi) crea~es a meson of type i with momentum Pi' 
-+ e ~ 

&i (Cii) 
, ~ 

creates a'fermion of type i with momentum ~ and spin 8 ,and l'Po> 
is the vacuum state. For later convenience we set 

~ ~ -- .... ~ 

Pl - ~ ~ P2 - -q3- p 

Evaluating Eq. (4.2), we obtain, 

<t- J Q(x', y') I \fJ) 

[ 

r ...\ i (%1\;2), , S ...\ 
X U' (m!' p)S' (x - Y ) u A (my -p) 
O(~ f3 r 

_ ~ ~ - (~), ,s ] + u (ml' p)S A (Y - x ) u em3, --p) , 
~ 'r' ~ 

,where 

T ~ 
S (x, 0) 

j' -j 
, u is a spinor, u its adjoint, and 

( 
~(l) ...\ J = i Sex, 0) - i S (x, 0) 

i (1) (...\' ) 
- - - S x, 0 

2 

...s 
for x.J 0 , 

S-{;, 0) =, i [S{:, 0) + i s(l)(~, 0) ] 

for ~.J 0 , 

(4.7) 

(4.8) 
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J>.~ (4.9) 

e ik'x (k' i- + i m)cos ~'Xc -+ w'{4 sin w. "oj .. 
-<XI 

Then we have 

<Y·J 
, 

Q(x , Y')Jtp) 1 - - -.-;;;..-

·2(211)6 ( 

m m 

, W '\}/ w"J. 

, 

~ich 1s nonzero. Since the terms in P(x~, y) that involve both boson 

fields must contain one of them bilinearly, it is clear that we have 

(4.10) 

<11 j P(x', y') J'.Y> = 0, andEq. (4.2) is violated. For Gase (b), 

on the other hand, all the terms in Q(x, y) involve either the ~ or 

. .' , the S fUnction and so we have Q(x, y') = O. Also we have P(x , y') = 0, 

and thus the assumption that different spinor fields anticommute is the 

simplest one that satisfies Postulate (II)~ 
,~.: 

I 



UCRL-3569 

-16-

It is an interesting fact that if the interaction involves on~ 

two different spinor fields that commute with each other Postulate (II) 

is not violated. This can be verified easily by direct calculation. 

=---,;:..:;.....--~-= ___ ~ _____ ~ _.:..........;;.. __ ~_-=---~--=. _~-=-_..=::........ __ or ~ _"------=- .. =-=-.:-.--...=-_~ •. _0 -=..::..... 
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v .. CONCLUDING REMARKS 

It has been shown that the requirement that the Hamiltonian 

density commute with itself on a spacelike surface implies that spinor 

field operators representing different particles which interact with one 

another cannot be assumed to commute, but that this conclusion can be drawn 

only when there are three or more such fields. The distinction between the 

case of two fields and that of three fields is closely connected to a 

difference in the permutation properties of two and three or more elements. 

This suggests that for three or more fields the commutation relations may 

involve more than two field operators. The choice of the forms of these 

commutation relations can be determined by generalizing the 'consequences of 

, the usual commutation relations for a single field. Since quantizing with 

commutators or anticommutators leads to ensembles of particles obeying 

Bose-Einstein or Fermi-Dirac statistics, and these are related respectively 

to the identical and the alternating representations of the symmetric 

group, the forms of the more complicated commutation relations should 

perhaps be similarly related 'to the higher-order irreducible representations 

of that group. In this connection we note that it is the distinctness of 

the two boson fields that destroys the symmetry of the Hamiltonian in the 

interchange of any two spinor fields, and permits nonzero transition 

amplitudes between initial and final states described by eigenfunctions 

belonging to different irreducible representations of the symmetric group. 

However, the requirement that the eigenfunctions of two physically realizable 

systems belong to definite representations of the symmetric group places 
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severe restrictions on the eymmet"ry properties of the Hamiltonian with 

respect to intercha.nges involving the different spinor fields". This 

fact may perhaps serve as a guide in the further investigation of the 

interactions of several spinor fields. 
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FIGURE CAPl'IONS 

Figure I: Feynma.n diagram for a second order process involving three 

different sp~or fields. 

Figure II: . The Feynm.an diagram of Fig. I divided int.o its two conStituent 

parts corresponding to propagation b7. a particle (a), and .hy 

an antiparticle. (b). 
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