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November 26, 1956 

ABSTRACT 

In Part One of this thesis it is shown that the requirement that 

the Hamiltonian density commute with itself on a spacelike surface 

precludes the possibility that three or more different spinor fields, 
. . 

coupled to one another in Yukawa-type interactions, commute with 

one another. If the Hamiltonian contains only two suchfields, how

ever, they may be assumed to either commute or anticommute with

out violating this requirement. 
. + 

In Part.Two, the cross sections for scattering of K mesons 

by nucleons and for the production of K mesons in association with 

heavy fermions are discussed on the basis of weak coupling theories. 

The predictions of lowest-order perturbation theory are presented 

and compared with experimental results. 
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Part One ·.' ,' ... ~ 

ON COMMUTATION RELATIONS OF INTE':RAGTING 
SPINOR FIELDS 

INTRODUCTION 

The form of the commutation relations between field operators 

that represent physically different Fermi-Dirac particles has 

recently been investigated by Kinoshita. 
1

. He has shown that if the 

Lagrangian contains interaction terms that are bilinear in spinor 
. * 

fields, these fields must anticommute in order that unique equations 

of motion be obtained from Schwinger's variational principle. In his 

proof, the field operator to be varied is commuted either to the left 

or to the right in all those terms of the Lagrangian in which it appears. 

This gives two presumably equivalent forms of the Lagrangian. If 

the operators for the different interacting spinor fields are assumed 

to commute with one another, the signs of the corresponding interaction 

terms change relative to the free -field terms. The variational 

principle then gives different equations of motion, depending on which 

form of the Lagrangian is used. If, on the other hand, the interacting 

spinor fields anticommute, the variational principle gives the s_ame 

equations of motion in both cases. On the basis of the inconsistency 

obtained in the first case Kinoshita concludes that spinor fields 

interacting in the manner described above must anticommute. This 

same ambiguity would also occur if the field were varied .. first and 

then the variation of the field were commuted to one side or the other, 

provided the variation were assumed to anticommute with the adjoint 

of the operator that is varied but to commute with the other spinor 

* As used in this thesis, the expression "commuting spinor fields" 

will always refer to different spinor fields. For a single spinor 

field the usual anticommutation relations are assumed at all times. 
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operators. However, it is shown in Section 1 that if the equations of 

motion are obtained from the canonical commutation laws 

i ~ j = [H, y)] 

the results are unique regardless of whether the spinor fields commute . 
or anticommute. Since self-consistent results are obtained from the 

cafnonical formalism, it is not clear. whether the inconsistency ob

tained by Kinoshita reflects the impropriety of the commutation 

relations or the inapplicability of the variational principle in this 

case. It is of interest, therefore, to determine whether Kino~hita':s 

conclusions can be obtained without recourse to the variation formalism. 
. . .... !" 

The question of whether different spinor fields commute or 

ant:icommute is of no practical importance when the Hamiltonian 

contains only two such fields, since the physical obse~vables obtained 

by using either choice of commutation i:elations are the same. On 
:~- J rr.(_ ;o:·, 

the other hand, the transition amplitude for a particular second-order 
.·.<: 

process involving three diff~rent §pinor fields is calculated in Section 

2 by the formal application of the Dyson expansion of the S rr1atrix, 
2 

and it is found that the fermion propagators for the intermediate states \ 

differ for the two choices of commutation relations. In particular, 

for commuting spinor fields one obtains a fermion propagator ST that 

is not a Green1 s function for the Dirac equation as is the Feynman 

propagator SF' which is obtained if the spinor fields are as surned to 

anti commute. Since the result for a physical observable depends on 

which commutation relations are assumed for the different spinor 

fields, it is desirable to try to eliminate one of the choices. 

We shaH exclude- the· choice of commuting spinor fields on the 

basis that it does not satisfy one of the requirements for physical 
. 3 

theor.ies. These, as stated by Pauli, are 

(I) The vacuum is the state of lowest energy. So long as 

no interaction between particles is con.sidered the energy 

difference between this state of lowest energy and the 

state where a finite number of particles is present is 

finite. 



(II) 

(III) 

-6-

Physical quantities (observables) commute with each 

other in t.We space -time points with a space -'-like distance. 
I 

(Indeed, due t6 the impossibility of signal velocities 

greater than that of light, m'easurements at two such 

points cannot disturb each other.) 

The metric in the Hilbert-spac~ of the quantum 

mechanical states is positive definite. This guarantees 

the positive sign of the values of physical probabilities. 

Pauli has shown that Postulate (I) is violated for half '-integer 

spins connected with symmetrical statistics and Postulate (II) is 

violated for integer spins connected with the exclusion principle, but 

Postulate (III) is fulfilled in both cases .
4 

Feynman in his ~11Theory of 

Positronsu• stated that bosons with spin 1/2 and fermions with spin 0 

can be treated similarly to spin-1/2 fermions and spin-0 bosons, but 

he obtained for the probability that a vacuum remain a vacuum a value 

·larger than unity for the former case. 5 As· shown by Pauli, this is 

equivalent to a formulation of field quantization in which Postulates 

(I) and (II) are preserved but Postulate (Ill) is violated. 
3 

Postulate (I) does not apply to the theory considered in this 

paper because we are specifically interested in interacting fields. As 

shown in Section 3 Postulate (III) is not violated for either anticommuting 

or commuting spinor fields. However, it will be shown in Section 4 

that if three or more spinor fields interact with one another via. 

* Yukawa-type interactions, the assumption that they commute with 

one another is inconsistent with the requirement that the Hamiltonian 

density commute with itself at two pbihts on a spacelike surface. t 

* By 111Yukawa-type interactions'm we merely mean that an interaction 

term in the Hamiltonian contains the spinor fields bilinearly and the 

boson field linearly. 

t Strictly speaking, only the Hamiltonian density integrated over a 

finite volume is an observable. For this reason, in order to deal with 

physical quantities at two different points of space-time, x 1 and x 2 , 

one may integrate the densities over suitable regions of space R 1 and 

R
2

, so that all points in (R 1,t 1) are spacelike with respect to all points 

in (R 2 ,t2 )-. 



-7-

If the Hamiltonian c-ontains only two different spinor fields, they may 

· be assumed to either commute or anticommute without violating 

Postulate (II). 

The case of three or more interaCting spinor fields is thus 

fundamentally different from that of only two such fields in that 

Postulate (II) places a. restriction on the commutation relations for 

three or more fields but not for two fields. Section 5 ·contains some 

speculations concerning the apparent distinction between these two 

cases. 
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1. FlELD EQUATIONS FROM CANONICAL COM'MUTATION LAWS 

·The canonical commutation laws are 

( 1.1) 
\.' 

where 

We consider two 01equivalent" forms of the Hamiltonian and show that 

the field equations obtained by these canonical commutation rules are 

unique regardless of whether different spinor fields are assumed to 

commute or anticommute. 

For simplicity we choose 

H{x) 
..... 1 1 1 -2 2 2 

= ljJ ~~~ D (x)ljJ (x) + ljJ (x) D (x) ljJ (x) + Hcj> (x) 

-1 . 2 . -2 1 .· 
+ gljJ (x)ljJ (x) cj>(x) + g ljJ (x)ljJ (x)cj>(x) , (1.2a) 

where the ljJ's are differenLspin-1/2 fields, cj>'is a real scalar field, 

i . 
D (x) = (-y o + m.), 

1-l. 1-l. 1 

Hcj> is the free field Hamiltonian of th~ boson field, and g = 1 for 

convenience. Because of the symmetry of this Hamiltonian in the 

interchange of the two fermion 1fields it is sufficient to consider the 

field ~quations for y; 1 
only. 

Since ljl
1 

commutes with the boson field and is assumed to 

either commute or anticommute with both lJ; 2 a~d lfj2 , the commutator 

of yi 1 
with the second and third terms on the right side of Eq. (L2a) 

vanishes. Making use of Eqs (A-10) and (A-11), we have 

1 l 1 1 -1 1 1 . 1 1 1 l l 
[\jj ci (x)D al3 (x)ljJ l3 (x), l\J <T (y)] _ = ljJ a (x}[D al3 {x) ljJ l3 (x), ljJ 0" (y)] +- [lP a (x},ljJ O"{y)J+ D q'3(x)4JI3(x) 

= ljJ~ (x)D~I3(x)[ ljJ~(x), ljJ ~ {y) J ++iS <T a (y -x) D ~l3 (x) ljJ~ (x) 

= iS (y-x)D~ ~ (x) ljJ~ (x) = K (y, x) 
<Ta a~ ~ <T 

(1.3) 
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the last equality defines KO"(y,x). Then we. obtain 

1 . 1 2- 1 2 1 l 
[H(x), ljJO" (y} J _ = KCT (y, x)+[ljj a (x)l\J a (x)<j>(x), ljJ 0" (y) J _ + [lP a (x)ljJ a (x)<j> (x), ljJ 0" (y) J _ 

-I' 2 1 2 l 2 = K (y,x)+ljJ (x}[ljJ (x),l\J (y)J <j>(x)+[ljj (x),ljJ (y)J ljJ (x)<j>(x) 
CT a a CT - a a: - a 

(1.4a) 

if the different spinor fields commute, and 

= K · (y, x) +iS (y-x)ljJ
2

(x)<j>(x), 
CT cra . a 

( 1 .4b) 

if the. different spinor fields anticommute. 

We shall obtain another -set of- field equations from the second 

form of the Hamiltonian. ,I£ the different spinor fields commute, this 
I . 

~'equivalene;• Hamiltonian Has the form 

2 -1 1 2 . 
+ gl\J (x)ljJ (x)<j>(x) + gljl (x)ljj (x)<j>(x), 

where we have neglected the c -numbers which arise when ljjiljlj are 

interchanged in the case i = jo 

(1.2b) 

(1 o2c) 
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f To obtain the corresponding field equations we again note that 

ljJ
1
(y) commutes with the second and third terms on the right side in 

both{l.Zb)and (l.Zc). Also, because the S function is a c-number, 

we have 

1 1·1 1 1. 1 1 l. 
-i[(D af3 (x}lj!f3 (x)ip a (x), ljJ 0' (y)] _ = - (D af3 (x)lj!f3 (x)H lP a (x), ljJ a (y)] + 

[ 
l l .. 1 ] -1 

+ (Daf3 (x)Wf3(x)), ljJO'(y) +ljJa(x) 

1 . 1 . 
= i(D af3 (x)lj!f3 (x}) Saa {y-x) = Ka (y, x), ( 1.5} 

· which gives 

( 1. 6a) 

and 

=K (y,x)+iS (y-x)ljJ
2

(x)<j>(x). (1.6b) a aa a 

Comparing Eq. (1.4a) with (1.6a) and Eq. {l.4b) with p.6b), we see 

that regardless of whether the different spinor fields commute or 

anticommute the field equations obtained from the two forms of the 

Hamiltonian are the same. It is clear from the nature of the a'blve 

proof that the uniqueness of the field equations as obtained from the 

two "equivalent" Hamiltonians does not depend on the particular 

form of the interaction terms. 
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2. TRANSITION MATRIX .E,LEMENTS 

In this section the transition matrix for a simple process is 

evaluated by the formal application of Dyson's S.-matrix expansion. 
/ 

This example illustrates a difference between the cases in which the 

different spinor fields are assumed to commute or anticommute. 

The Dys.on expansion of the S matrix
2 

is given by 

n=O 

00 
I; (-i.)n 1 n: s = 

.00 00 ' 

J d 4x 1 ... f d 4xn P {HI(x 1), ... , HI(xn)}' 
-m -oo . · 

(2 .1) 

where P is an operator that orders the factors chronologically so 

that time values decrease from left to right. The transition amplitude 

for the second-order process corresponding to the diagram,in Fig. 1 

is calculated for the two cases, 

Case' (A): the commutators of different spinor fields vanish; and 

Case (B): the anticommutators,of difiere:ht spinor fields vanish. 

We shall see that in Case (A) the propagator for the virtual fermion 

of Type 2 is not-the usu~l Feynmail propagator. 
; 

The form of the interaction representation interaction 

Hamiltonian is chosen as 

.,..1 2 1 . 2 . 3 2 . 
HI(x) = g 1 .l!J (x)ljJ (x)<j> (x:) + g 2 ijj (x)ljJ (x)<j> (x) + H. C. (2 .2) 

where the ljJ' s are different spin-1/2 fields and the <!>' s are different 

real scalar fields. The term of the S matrix corresponding to Fig. r, 
is 

(2.3) 

whe:t'e 

· a · ..:.1 2 · 1 . · 
HI (x) ,= g 1 ljJ (x)ljJ (x)<j> (x), 

-2 3 ; 2 . 
g 24J (x)ljJ (x)<j> (x), (2 .2a) 

1 
and the factor 2: is cancelled by the 2~ diagrams describing the 

same process, namely Fig. 1 and the same diagram with x 1 and x 2 
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interchanged .. The expectation value of M(
2

) is taken between an 

initial state of the system containing fermion 3 and boson 2 and a 

final state containip:g fermion l and boson l, all particles being in 

plane wave states and the fermions being in definite spin states. The 

states of the system are then given by 

(2 .4} 

+" + where the subscripts on the creation operators a J and c , which are 

def:i.ned by Eqs. (A-2), (A-3), (A-8), and (A-9}, indicate the type of 

particle. Then we have 

M(2) =( v, I M(2) j-qr. ) 
FI F . I 

(2.5) 

the last two lines are a definition of P(x1 , x 2 ). In order to perform 

the time ordering we split the Feynman diagram of Fig. 1 into its 

two constituent parts corresponding to propagation by a particle and 
: 

by an antiparticle, Figs. 2a and 2b, respectively. Then we have 

(2.6) 

The 0 function is defined in the appendix. Because cp l and cp 2 
commute 

• 
with each other (and, of course, with the fermion fields), Eq. (2 .6) 

·becomes 
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(2. 7) 

the upper sign applying if we have 

[
. 3 -1 
ljJ~(xl)' lj;a(x2)]+ = 0 ' 

' . 

[ :r.2 -1 
"'!3{xl ), ljJ a.(x2)] + 0, (2.8) 

3 ·2 
[lJ;~(xl)' lj;o.~x2)]+. 0, 

the lower sign applying if we have 

. 3 1 . 
[lJ;~(xl)' ~a.(x2)]- = . 0, 

['li~(x 1 ), 'li~(x2 )]_ = 0, (2. 9) 

= 0. 

·It can be noted that the minus· sign in front of the second term on the 

right side ·of Eq. (2.8) can also be obtained by requiring two of the. 

commutators and one anticommutator to vanish. Making ·use of 

appendix equations, we obtain 

(2.10) ... 

where Na.~{x 1 ,x2 ) is a c-number, 
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With the help of Eqs. (A-20), (A-22), (A-23), and {A-24), Eq. (2.10) 

becomes, for Case {A), 

and for. Case (B), 

(2 .11) 

(2;12a) 

(2.12b) 

For {B) we obtain, for the intermedia~e state, the 4 Feynman propagator, 

which. is a Green's function for the Dirac equation, i. e. , 

. ("( a +m)SF(x) = 2i o4 (x); (2.13) 
fl. fl. . 

For (A) the propagator is the function ST; which satisfies 

2 - l ("( a +m)ST (x) =-- o3 (x) P - , 
. fl. fl. 'IT . xo 

(2.14) 

in which P indicates that one must take the principal value when 

integrating over x
0

. This same difference between these two cases

arises if the calculations are carried out on the basis of time-independent 

rather than time -dependent perturbation theory. 

From Eqs. (A-29) and (A-31) we see that both functions SF and 

ST can be given causal interpretations in the sense that they represent 

particles traveling into the present for x 0 < 0 and partiCles travelin_g 

out of the present for x
0 

> 0. They differ only in the sign of the pa~t 

corresponding to propagation by a negative-energy particle. This 

difference in sign is due to the odd number of transpositions of 

different spinor fields in going from Eq. (2.6) to (2.7). Thus, the 

transition probability for the physical process that corresponds to 
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Fig. 2a depends on the commutation relations of the different spinor 

fields. This dependence does not occur for all processes involving the 
i 

Hamiltonian (2.2). An example of a transition probability, the 

calculation of which involves an even number of transpositions of 

different spinor fields, and which is therefore the same for Cases (A) 

and (B), is given in the next section, 



-16-

3 .. VACUUM EXPECTATIOI':4 VALUE 

The probability that a vacuum state at t = - oo shall remain a 

vacuum for t = oo is 

w = .o {3 .1) 

where P isr the operator that orders the fact.ors in the .opposite order 

of times to that of P. 

To prove that the expansion inEq. (2.1) yields the ... same result 

for W 
0 

whether the different spinor fields commute or anticommute, we 

merely show that the vacuum expectation value of each term in the 

expansion {2.1) of S and the corresponding expansionof st is the same 

for the two possibilities. The expression of interest is I 

After the time ordering is performe<;]. we have the product of n 

HamiltOnian densities. For convehience, the indices may_ be considered 

. to be interchanged after the ordering is carried out so that 

n . 
which is the sum of 4 terms. ·However, only the terms which contain 

an even number of a given <j>i and ,which for every lj;i have a corresponding 
-1 
l.jJ are nonzero. Thus 

is nonzero only if n is even. The order of the factors is now 

rearranged so that all the boson operators appear on the right. By 

splitting these up into positive- and negative-frequency parts, and 

operating successively on the vacuum, we may replace them by c

J:tUmber s. Next, the following rearrangement is carried· out. Call the 
I • • 

qperator on the extreme right ljJ1
a. · Pick out a ljj1a such that between it 

ia -i i -ia 
and ljJ there are equal numbers of ljJ and ljJ , and commute ljJ to the 

. h . '1 . . ,~,ia C 11 :r,ia .t.ia f . h r1g t untl 1t 1s next to 't' • a 't' '~'A· a actor pa1r. Repeat t e 
. ~ a ~. 

procedure for the first y;J t.o .the left of t.he last factor pair formed 
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until all the operators are in factor pairs, all pairs with a given i 

being grouped together. Now 

may be unambiguously replaced by c-numbers. Since in the formation 

of each factor pair and later in the regrouping of all pairs. with a given 

1 to stand togei-iher an even number of transpositions of different spinor 

fields is performed, the final result is the same for Case (A) as for 

(B). Similarly 

is the same for the two cases, and thus Postulate (III) is not violated 

for either anticommuting or commuting spinor fields. 
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4. RESTRICTIONS IMPOsE'n,BY COMMUT;ATrviTY coNDITION 

.. In this section it is shown that, for Case (A), .. the Hamiltonian 

density does not commute with itself on a spacelike surfa~e provided' 

three or more spinor fields interact with one another via Yukawa-type 

interactions. We shall evaluate the commutator of t:he' Hamiltonian 

densities for the interaction Hamiltonian {2.2)g considering separately 

the two-Cases (A) and (B) df;scussed. in Section 2 . 

. Postulate (II) implies 

(-qr I[P (x[, yi) + Q(x' ,Y')] It)= 0, (4.1} 

where ly) and I"¥[) are any two state vectors (not necessarily ·- . - . physicalones) x' = (x,p)g y' =(y.,O), (P+Q)is the commutator ofthe 

total Hamiltonian 

P(x,y) +Q(x,y)·= [H(x);H(y)] , (4.2) 
and 

(4.3) 

i.e. , all terms in P{x, y) involve the Hamiltonian of the free fields. The 

use of free -field states in Eq. (4.1) is consistent with the as'sumption 

that a state describing interacting particles can be expanded in terms of 

free-field states. To evaluate Q(x, y) we make repeated use of the 

relationships 

[AB;.CL { : A[B, c ]_ + [A, C l_B 

- A(B, C] + - [A, C] +B' 

{

= [A,B·].+C -.B[A,CJ_ 
[A,BCJ+ 

= (A,B]_C+B[A,C]t', 

(A,BC] = (A,BJ+C -B(.AgC]+.: 

Then for Case (A)g with g 1 = g 2 = 1 for convenience, we have 

(4.4) 
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(Ml) 1 2 -2 1 · 1 2 2 1 
Q(x, y)=i.b. (x-y)[~ (y)l\1 (y)+l\1 (y)ljl (y)] [~ (x)4; (x)+l]j (x)l\J· (x)] 

. (Mz.) 2 • 3 3 . 2 2 3 . 3 .· 2 . 
+iD. (x -y)[ l]j (y)l\J (y)+l]j (y)l\1 (y) ][ l]j (x)l\J (x) +l]j (x)l\J (x)J. 

1 2 1 (m2) 3 3 (m2) i · 
+i<j> (x)<j> (y)[l]j (x)S (x-y)l\1 (y)+ljj (y)S (y-x)l\J (x)] 

1 2 3 · (m2) 1 1 {m2) 3 
+i<j> (y)<j> (x)[l]j (x)S {x-y)l\1 {y)+l]j {y)S (y-x)l\1 {x)) 

-i<l> 1 {x)<j> 1 (y)[l]jl (x)S {m2) {x-y)l\11 (y),..;~"l (y)·~ (m~~ {y""?c)l\11 (x) 

r2 (m 1) 2 2 . {m,1) ( ; ·. 2 · , , 
+41 (x)S (x.-y)l\1 {y)-l]j (y)S , i{y-x)l\J',.(x)], ~ . 

2 2 2 {m3) 2 2 · (m3) · 2 
-i<j> (x)<j> (y)[l]j {x)S (x-y)l\1 (y)-l]j {y)S (y-x)l\J {x) 

3 {m2) 3 3 (m2) · 3 
+l]j (x)S (x-y)l\1 (y) -ljj (y)S (y-x)l\1 (x)) 

1 2 1 2 . 2 .1 . 2 . 3 3 .· 2 
+2<1> {x)<j> (y)['ijj (x)4J (x)tljj (x)4J(x)][ljj (y)l\J (y)+ljj (y)4J (y)] 

On a spacelike surface Eq. {4.5) reduces to 

Q ( x', y' )=Z<j> 1 (x 1 )<!> 2 {y' }[ ljj 1(x' )l\12 (x' )+~2 (x' )4J 1 (x')] [ ~jj2:(y' )l\J3(y') +ljj3 (y' )l\12 (y')] 

· +2<1> 1 (y' )<!> 2 (x' )[ l]j2 (x' )l\13 (x') +ljj3 (x' )l\12 (x')] [ ljj2{y' )l\J 1 {y') +ljj 1 (y' )l\12 (y')] • 

(4.6) 

It is convenient to choose 

(4.7) 

I"¥)= a 1 +r (q 1) I ira). 

+ . 
where bi . (pi) creates a meson of type i with momentum - +s p.,a. (q.) 

1 1 1 

creates a fermion of type i with momentum j:>. and spin s, and 
' 1 

I y
0

) is the vacuum state. For later convenience we set 



,. 

-20-

.... _.,.. ~ ..... ..... 
P 1 = q 1 =p 2 = -q 

3 
= p. ·Evaluating Eq. (4; 1), we obtain, 

(-I!' I Q(x', y') I v) = - 2._ 6 
·. (2'1T) 

where 

+.... I - fl)-S (x, 0) = 1 2[S(x, 0)-i S (x ,0)] 

=-2. s(
1

) (~. O) . 2 

Then ,we have 

<"¥·1a{x1,y')I1Jr\=- 1 

I 2(2'1T)6 

) 1/2 

for; I 0, 

for;fo. 

1. 1/2 

X ur(m ·p-)[S(l)(tn2),;_y- O)-S( 1 ).(m2)(y~-; O)]u.'~(m· -p-). 
. ci 1 ' · af3. ' · ' · 0.[3 ' · f3 3 ' 

(4,8) 

(4. 9) 

7
1/2 

oodk --~ . · -r - . 3 ik · (x -y )-+ .... . s -
U (m 1 , p )[J -. e k. '/ A] UA (~, -p). 

a . - oo w m 2 . al-' 1-' 

(4.10) 

which is nonzerp. Since the terms in P{x, y) that involve both boson fields 

must contain one of them bilinearly, it is clear that we have 
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' (-¥I P(x1
, y') 1-tp-) = 0, ~nd Eq. (4.2) is violated~ 

other hand, we obtain 

For case (B), on the 

/ (M ) . . 
1 -1 2 . -2 1 [-1 2 -2 1 

Q(x, y)=iA {x-y)[ ~ (y)~ (y)+~ (y)~ (y)] ~ (x)~ (x)+~ (x)~ (x)] 

(M 2) -2 . 3 - 3 2 · 2 3 - 3 2 
+iA ' (x -y)[ ~ (y)~ (y)+~ {y)~ _(y) ][ ~ .(y)~ (x) +~· (x)~ (x)] 

1 2 -1 (m2) 3 -3 (m2) 1 
-i<l> (x)<j> (y)[ ~ (x)S (x-y)~ (y) -~ (y)S (y-x)~ (x)] 

1 2 [ -3 (m2) 1 -1 (m2) 3 -
-i<l> (y)<j> (x) ~ (x)S (x-y)~ (y) -~ (y)S (y-x)~ (x)] 

1 1 -1- (m2) 1 -1 (mz) 1. 
-i<l> (x)<j> (y)[ ~ (x)S {x-y)~ (y) -~ (y)S (y-;-x)~ (x) 

' 
2 (inl) 2 -2 {ml) 2 

+~ {x)S (x-y)~ (y) -~ (y)S (y-x)~ (x)] 

2 2 [-2 (m3) 2 -2 (in3) 2 
-i<l> (x)<j> (y) ~ (x)S (x-y)~ (y) -~ (y)S (y-x)~ (x) 

3 (m2) ~ 3 -3 (m2) 3 
+~ (x)S (x-y)~ (y) "'"~ (y)S (y-x)~ (x)], (4.11) 

which vanishes on a spacelike surface on account of Eqs. (A-39) and 

(A-40). Also we have P(x', y' )=0, and thus the assumption that different 
. . 

spinor fields anticommute is the simplest one that satisfies Postulate {II). 

It is interesting that if the interaction involves only two ,different 

spinor fields that commute with each ·other Postulate (II) is not violated. 

This can be verified easily by direct calculation. 
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5 .. CONCLUDING REMARKS 

It has been shown .that t:lle requirement that the. Hamiltonian 

density commute with itself on a spacelike surface implies that spinor 

field operators representing' different particles that interact with one 

another cannot be assumed to commute; but that this conclusion can be 

drawn only when there are thre·e or more such fie ld·s. The distinction 

between the case of two fields and that of three fields is closely connected 

to ·a difference in the permutation properties of two and of three o:t more 

elements. :This suggests that for three or more fields the commutation 

relations may involve more than two field operators. The choice of 

the forms of these c~mmutation relations can be determined by 

generalizi~g the con~equences of the usual commutation relations for 

a single field. Since quantizing with commutators or antico~mutators 

leads to ensembles of partiCles obeying Bose-Einstein or Fermi-Dirac 

statistics, and these are related respectively to the identical and the 

alternating representations of the symmetric group, the forms of the 

more complicated commutahon relations should perhaps be similarly 

. related to the hl.gher ~or'der irreducible' representations of that group. 

In this connection we note that it is the distinctne·ss of the two bbs6h 

fields that destroys the symmetry of the Hamiltonian in the' interchange 

of' any two spinor fields, and permits nonzero transition amplitudes 

between initial and final states desc~ibed by ~igenfunctions belonging 

to different irreducible representations of the symmetric group. How

ever, the requirement that the eigenfunctions of two physically 

realizable systems belong to definite repres'entations of the symmetric 

group places severe restrictions on the symmet~y properties of the 

Hamiltonian with respect to interchanges involving the different spinor 

fields. This fact may perhaps serve as a guide 'in the further 

in\i-e stigation of the 'interactions of several spinor fields~ 
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Part Two 

THE SCATTERING AND PRODUCTION OF K MESONS 

INTRODUCTION 

· This part of the thesis is an investigation of the poss;ibility of 

obtaining qualitative agreement between the results of scattering and 

production experiments involving nucleons, pions, and the new particles, 

hyperons and K mesons (henceforth referred to as. kayons), a:nd the 

predictions of weak-coupling theories. 

Although methods whose application gives a quantitative 

·description of the pion-nucleon interaction in the low- and medium-energy 
6 ranges have been deveLoped by Chew and Low, I felt tha-t before ex-

tending these methods to the treatment of interactions involving the new 

particles, I should examine the results of perturbation theory. As 

perturbation calculations failed for the pi1;m-nucleon case, the justification 

for this approach lies in the hope that the coupling constants invoLved in 

the kayon interactions are sufficiently small to yield at least qualitative 

information, and in the simplicity of the method of calculation. Because 

the techniques of tirrie.,.dependent perturbation theory are well known, 

the details of the calculations have been omitted. All calculations have 

been performed with,the assumption (justified in Part One) that different 

spinor fields anticommute. 
+ The cross sections for the scattering of K mesons by nucleons 

and for the associated production of heavy particles by lT mesons have 

been calculated by lowest-order perturbation theory on the assumption 

that all bosons have· spin 0 and all fermions have spin 1/2.. The. 

possibility of either direct or derivative coupling for the kayons has 

been included, but the pions are assumed to be coupled directly in all--~

case s. The types of interactions that have been considered are 

discus sed in Section 1. It must be emphasized that these calculations 

have been made on the assumption that there are no parity doublets. 

The appearance of the two types of interaction terms K 1\ 1\. and 

K/\'Y
5
f\. merely indicates that the possibilities of the two parities of 

the kayon relative to 'the A Jt system are considered separately. 
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The forms of the differential and total cross sections for 
\ 

scattering and production are given in Sectl.~ns :Z anq'3, respe'ctively. 

The~e section~ also contaih a discussion of the results. 
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We shall assume that piori:s. Of spin 0 artd kayons of spin 0 are 

interacting with nuclecm·s, 1\'s, ·and :E's, all of which have spin 1/2. The 

corresponding quantized fields are taken to be, respectively, a vector, 

spinor, spinor, scalar, and vector in a three-dimensional isotopic spin 

space. 
7 

With these spin and isospin assignments there are six different 

ways in which a scalar can be formed out of three field operators. De

noting these operators by the symbols for the corresponding particles, 

we find that the possibilities (spin indices omitted) are: 

where-A=l, 

- j k i. 
€. 'k :E :E 'IT lJ . 

-A AB B i. 
K T. K 'IT 

J 

2; j= 1' 2, 3, 

€ijk =U 
if 

if 

if 

i, j, k are cyclic, 

i, k, j are cyclic, 

i, j, k are not all different, 

( 1.1) 

repeated indices are summed, and the bar indicates the adjoint. For 

boson fields tne adjoint is tnel'iermiTian-c-onju·ga·h~-.-<j)-=-<j>_±,-a-ncl-f.e'l."--------
fermion fields we have 

- + l\J=l\J -y4; 

T. are the usual Pauli matrices .. 
J 
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It is further assume.d that the.pion field, as well. as being 

c bupled by -y
5 

to the nucleon field, is coupled directly to the, hyperons .1\ 

<j.nd ~. bu~ that the kayon field interacts either by direct or derivative 

~oupling. I Finally, only Yukawa-type interactions are considered; this 
. . l 

excludies the term inEq. (1.1) that contains three boson fields. Then 

the possib11e interaction Hamiltonians are 

ig 2 R ~ 'Y 5 T T\;+ H. c . ' 
f 

1 - - 1"1 i- (8 K) .'E 'Y -r.~.,+ H. C., tn . u! u 

f 
1 ~ (auR) .~ -v 5 ~uT1\+H.C., 

ig8 € ~ ~ 1T, 

(1.2a) 

(l.2b) 

( 1.2c) 

(1.2d) 

(l.3a) 

(l.3b) 

(l.3c) 

( l .3d) 

( 1.4a) 

(l.4b) 

( 1.5) 

( 1.63.) 

(1.6b) 
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The g's and f's are dimensionless quantities. A ch0ice of the repre

sentations of the oper.ators consistent with the requirement that the 

charge operators for the.free fields be diagonal is that 

{where the K~ are real fields) creates a K+ arid annihilates aK~ 

.-1 (~l-i~2) 
~\[2 

annihilates a~+ and creates its antiparticle, -3 ·. 0 -1 
~· creates a~ , and 'Yl 

creates a proton. 

The interaction terms (1.2d) and {1.3d) are not unique, because 

the order of y 5 and y can be reversed. .A consequence of such an 
u . 

ambiguity is that the matrix element for a given· process is undetermined 

up to a factor 0f ( -1 )n, where n is the number of times the two interactions 

occur in the Feynman diagram corresponding to the process in question. 

Therefore, only interference terms arising from two diagrams for one 

of which n is odd and for the other of which n is even depend on this 

arbitrariness. Unless otherwise specified, the results given refer to 

the case for which the order of the--two y' s in ( 1.2d) and ( 1.3d) is the 

same. It must also be noted that at present there is no way in which 

the relative signs of the interaction Hamiltonians can be determined. 
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2, SCATTERING OF K+ MESONS BY NUCLEONS 

'The three possible reactions involving the scattering of K+ 

mesons by nucleons are 

. K+ + p - K+ + P, 

K+ + N- K+ +N, 

K+ + N- K0 + P. 

(2.la) 

(2.1b) 

(2 .1 c) 

The lowest-order Feynman diagrams for these processes consistent. with 

the interactions to be considered are given in Figs.- 3, 4, and 5. As the 

expressions for the cross seCtions were obtained by standard time-
. . 

dependent perturbation theory, the details of the calculations are o-

mitted. 

The matrix elements for the processes corresponding to the 

diagrams inFigs. 3, 4, and 5 are, with obvious notation, 

{2.2a) 

f'l'\. 4 = 1'fl. 4 ' (2.2b) 

{2 .2 c) 

As a consequence of the charge independence of the interactions the "fr\.' s 

are related to each other, 

I"Yl3a: /7l 5a : : 1 : 1 

{2.3) 

The cross sections are, then, of the. form 

+ . :i j k . 
0" (K P):;:,o- + o- + o- , . {2.4a) 

. rr (K +N) = 4o- j, (2.4b) 

0 1 j k 
o- (K P) ::::: o- + o- - o- , (2.4c) 

. where o- i and o-j arise from the squares of "n7. 3a and I?? 
3
b' respectively, 
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and u k is the interference term. It 'is therefore sufficient to consider 

the cross sections for the Reaction (2.la); the results for the other two 

processes can be obtained from the relationships 6f.Eiq. (2.4). 

The following notation is used. M 
1 

denotes the nucleon mass, 
\ 

M 2 the ~mass, M
3 

the I\ mass,WI the kayon mass, E
1 

the nucleon energy •. 

and E
2 

the kayon energy, both in the center-of-mass frame. The 

dif~erences in the masses of members of a given isotopi~ m'!lltipl~t are 

neglected. The units are such that 

is to be compared with 
2 

e 
41T = 

2 
g 
4iT 

l . 
137. 

Thus, the coupling constants are 
g 

(41T) 1/2 
and 

f 

(41T) l/2 

The scattering eros s sections in the center -of -mass system 
. . 

are expressible in terms of the quantities 

al = 2E
1

E
2 

+ M2 
3 

M~ 2 
1 

-m 
' 

a2 = 2E
1

E
2 + M~ M2 2 

l 
-m 

' 

b 
2 .· 2 

= Z(E l - M 1 ), (2.5) 

and certain coefficients Ai.' B 1 , C£' and D
1 

that are given in Table I; 

the different values of the subscript£ correspond to the different theories 

that are being considered. 

The form of the differential cross section terms,. averaged and 

summed over the initial and final nucleon spins, that arise from-the 

squares of 1r( :3:a and fr\.::3b is 

dO 

A£ -B £cos 8+C. £ cos 8-D £cos 8 

[ 

2 3 

2-(-E--E-. -) z..- z 2b -· l) b z 2 l) 
1 + 2 an+' an cos'u + cos u l· (2 .6) 
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for 1. = 1, through 8, n = 1 or 2, and where the quantity h.l., which l.s 

also listed in Table I, is the product of four coupling constants. For 

derivative couplings it inCludes the mass of the boson,.· and- -in general-

it serves as a means of correlating a given value of J. with the particular 

theory to wh1ch thfi-t u J. corresponds. 

··. ) The infe:d:e:rencei·terms ihav:e :the form 

---
hi. 

.. (E +E )2 
1 2 

for 1. = 9 through 24. 

(2. 7) 

Some of the .coefficients that appear in Table I can be obtained 

from others by proper substitutions of M 2 and M 3 . In such cases, only 

one set of coefficients is listed. 

· The angular distribution of the scattered kayon for a laboratory 

kinetic energy of the incident kayorr of 150 Mev is plotted in ·Figs. A and B. 

Because the characteristic .features of the 

du 1 .· 

dQ 

I . • s 

that differ only by the interchange of M 2 and M
3 

are the same, only one 

out of a given group is plotted. 

The total cross sections can be obtained by integrating the ..... 
. expressions inEqs. (2.6) andJ2~7) to yield 

+ an(3a!-2b
2
)n1l 

. b . j 

1 r 2ahC1. · 3a
2 

D J a +b l ···. £ 
+ n J. £ n 

(2.8) - b b+ 
b2 

. . 3 n a. -b 'b ·. n 
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for J. - 1 ,through 8, n = 1 or 2; and 

(JJ. 

[Al 
a 1 B 

1 
2 

aiD~J a 1 +b 1 +. + 
a 1 c

1 
J.n + b(a

2
-a

1
) b b2 

+·~ a 1 -b 
b 

1 

~1 a 2B 1 
. - 2 

3 J a2+b} .. :; a2 c 1 a
2

D
1 

b(a
2 
-a

1
) + + . 

+. b3 in a-:-:b' b . 2 
b 2 

(2.9) 

for J. 9 through 24. 

It is also of interest to consider the extreme nonrelativistic 

(Thomson) and extreme relativistic limits of the total cross sections. 

These are given in Tables .II and III. 

A thorough discussion ·of ·the properties of the (J J. 1 s for 1 = 1 

through 8 has been presented by Peshkin and by Ashkin; Simon, and 
8 . . 

Marshak, · in the application of weak-coupling theories to pion-nucleon 

scattering .. We therefore discuss prifuarily the interference terms. 
- . . . ,. 

In the Thomson limit, :El=M 1 and E
2 

= rn, all the terths that 

correspond to the 1\ and ~ having different parities relative to the 

K+-fl sy~tem are negative, whereasthe terms for Vihic:h the A and~ 
I . . 

have the same parities are positive. For P,igh energies the terms for 

which.the kayon is. coupled <Frectly to one l:l.yperon but with derivative 

coupling to the other hyperon are nega.tive, and the otherFertns are 

positive. Table VI contains the numerical values of the cross sections 

· at-di_f~·er-ent-ene·r,gie-s~e~-'-'-t~he--i-ncidenLme_s_o_n_. _ _._W-'::-'='e_h=a:...::v~e~t:.:::·a~k~e~n~---:----------:;-'---

M 1 = l836me' M 2 = 2325me' M 3 = 2l80me' and m = 967 me. 

As expected, the eros s sections decrease with ·energy for the direct 

coupling theories but increase with energy for the derivative coupling 

theories. Therefore, in the high-energy limit of the theory with both 

direct and ·derivative couplings, the term that contains only the latter 
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dominates ove'f both the interference term and' the one that contains 

only the former .. The last 'conclusion is correct, however, only if the 

two coupling constants are of the same order of magnitude. If we have 

g » f, then all three terms ca.n contribute appreciably 'even at high 

energies. 

An effect of the presence of a 'Ys in a matrix element is to 

depress the magnitude of the cross section near the Thomson limit. 

'This effect is stronger, li>f course, if the y 5 appears in both~ .Ja and 

'"fY\. 
3

b than if it appears in only one of them. 
1 The experimental data ~eem to indicate an isotropic angular 

.distribution or po~sibly a slight peak in the forward direction, 9 

depending on how many of the events in the above -mentioned .report 

:C?-n be accounted fpr by Coulomb scattering. The angular distribution 

given by Cocconi et al., which consists of 23 events at energies 'between 

20 and 100 Mev, is compared with our results in Fig. C. The best fit 

of the data can he made with the S(PV) theory for bothlr( :3;3:· and/1( ::sl), 
which would mean that the 1\ and the ~have the same parities, or,:·. 

more precisely,. that the produc:;:t of operators 7\. ~ has the same 

reflection~·property as f: ~. The total eros s section at 80 Mev is then 

· u = u5 +u6 +u19·= 
. (f2) 2 (f 2\2 (f f \2 

6.5 ;J- + 5.2 irr-} + 11.7 \~rr3J 

and on the basis of the experimental value of 14mb 9 we choose 

0.9. 

The experimental data at this stage are not sufficient, however, to 
' . . 

exclude the possibility of other theories . 

We see Jrom Eqs. (2.4b) and (2.4c) that for the theory we ha:v~ 

chosen the cross .section for direct scattering by neutrons is approximately 

the same as for scattering by protons, but that for exchange scattering 

it is almost zero. 
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3. ·PRODUCTION OF HEAVY PARTICLES BY lT MESONS 

In. this .section we give the cross sections, calculated on the 

b.asis of the Yukawa-type interactions discussed earlier, .for the first 

of the three reactions 

lT 
- 0 "0 .• +P-K + , (3. l a) 

- . 0 0 
(3. l b) lT +P-K +~, 

- + 
~ 

- (3. l c) lT +-P-K+. 
' 

Certain conclusions regarding the other two processes can be drawn, 

however, on the basis of the re s.ults of the previous ·~ection. 

The matrix elements £or these processes, ;the diagrams for 

which are given in Figs. 6, 1 and 8, are 

(3 .2a) 

Tr"\. 7 = 1'11 7 ~ + 1Y\ 7b ' (3.2b) 

(3.2c) 

They are related by 

(3.3) 

.. 

By making use of the conclusions of the previous section and neglecting 

--------~t;:-,hc-e=--=rn=-=a:-:s::-cs::--oa-iUerence oetween. Ure#'\-and-~--,we-ebt-a-i-n-t-he-f-ur-t--he-~'-·---'-------

relationships 

~ 6 :·'h\ 7 ~"»t 8 : : l : ( ~ 1) : ' -f2, a , a a . 

... 

(3 .4) 
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.·It must be emphasized that Eqs. (3Afare valid only if the same type of 

theory;applies for the Ri\ 1\ interaction as· for the :K ·~ 11. interaction 

and if the relative signs of the interaction Hamiltonians are as given 

·earlier. For this case, then, the cross sections are 

u (Ko 1\ o) O'm + o-n +u t (3 .5a) = ' 

& (Ko ~o) am+ aD· t 
(3.5b) = (]' I v 

u (K+ ~'7) = 2 un; {3.5c) 

where O'rn and O'n arise from the squares of 'YYL6~ and m6b' and O't 

is the interference term. ' 

The forms of the O'n 's, O'm 's, and O't's are, respectively, 

dO'£ 
= dn 

for £. = 25 to 32, 

dO'£ 

orr-

for £. = 33 to. 36 and 

(3 .6) 

(3 0 7) 

1'. A 1 -B1 cos$ +C 1cos $ . , 

[

. 2 J 
q 'a2 +d cos e 

(3.8) 

for £. = 37 to 68, where q and pare, respectively, the absolute values 

of the center-of-:mass momenta of the pion and kayon, d = 2pq, and E
3 

is the center-of-mass e,nergy of the/\. 

The coefficients of A 1 ; B £., C £., and D£ for the different 

theories are. given in Table IV. It turns out, however, that many of 

the interference t,erms are zer.o; for which there are two separate 
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causes. The process of averaging and summing over the spins of the 

initial and final fermion involves the evaluation of a trace of a product 

of '{ matrices. Since such a trace is zero if the product involves an odd 

number of -y
5

' s, all interference terms for the cases .in which fr1 
4 

contains ah odd number of 'Y
5

' s are zero. The interference terms are 

also zero when we have 

* I"Y1 4a 1'1\. 4 b = * - ""ht 4b Yrt 4a ~ 

The angular distributions for a laboratory kinetic energy of the 

pion of 1.30 Bev are plotted in Figs. D and E. 

The total cross sections for production are 

(J = i. 

l 
- d 

for i. = 25 through 32, 

4rrh£ 
a J. = . 2 

(E2+E3) 

for i. = 33 through 36, and 

£or i. = 37 through 6-8. 

(2a~ - d
2

) c 1 

d 

i.n 

(3.9) 

(3.10) 

l (3.11) 
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The total cross sections near threshold are listed in Table V. 

They are functions of the proton threshold momentum and eriergy, 

which are 

[ 
. . -1 

= M 3 +mJ {
,l((M + )2-M~- 2]2- 2M2}:1/2 .· 
4 3 rn 1 f..l. · f..l. 1 ' 

. ' . '·' . ' . 

(3. 12) 

where f..1. is the pion mass, f..1. = 2 73 m . Table VII contains the numerical.' . . e 

values of the total cross sections at different energies for Pr'ocess (3.la). 

Two characteristic features of the experimental results are the 

forward peaking of the K 0 and the backward peaking of the K+ 0 

10 The 

theoretical results cannot be made to agree with such angular distributions 

in a manner that is consistent with the conclusions of Section 30 Budde 

et al. have identified 17 events as ~-'s, 18 as /\0 's, 3 as ~01 s with 

reasonable certainty, and 16 as either/\
0
's or~0 iso If the 16 un

identified events are divided in the same ratio as the ones that have 

been identified, the relative abundance of the three types of events is 

oAo· o o . +- ~ 6 0" (K . I' ) : (T (K ~ ) : (T (K ~ ) : : : 1 : 3' (3 0 13) 

whi<di:,corresponds to the relative contributions 

t 
:O" ::3:4:50 

If the same type of theory does not describe both the :R 7\ Y( and R~ '1 
interactions, Eqs. (3.5b) and (3.5c) no longer apply. However, all but 

one of the terms that contribute to <T (K0 ~0 ) and <T (K+~-) in this case 

. can be obtained from the <T £. 's already calculated by simple substitutions. 

The term that cannot be obtained in such a manner is the one due to the 

interference between 7"Yt. Sb and 'YYl. Be, although its angular and energy 

dependence are the same as for the interference term betweenl¥j_ Sa and 

Yrl 5b because they differ only in the type of incident mesori and 

emerging fermion. The situation then becomes much more complex 

because of the many possible combinations of terms for the cross· section 

for Process (3.lc). 
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Because the use pf perturbation_th~pry in the treatment of the 

pion-n\l_cleon interaction at the. energies necessary for,the prod\J_ction of 

heavy par,ticles may reflect too much optimism, it is believed that a 

better treatment of the pion-nucleon vertex should be attempted before 
' 

the possibility is discarded that the same type of theory does indeed 

describe the K.i\ '1. and K~ yt interactions. 
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APPENDIX: NOTATION AND REPRESENTATION 
OF ~.AND S FUNCTIONS 

The spinor field function ljJ(x) and its adjoint ~(x). satisfy the 

Dirac equation 

(y a + m) ljJ = 0, 
f.!.' f.!. 

a ~'( - m ljJ = 0, 
fJ. fJ. . 

ith - "A - A t - '( w . "k- - lt-'~' "4 - t-'• yf.l - fJ. 

(A-1) 

The following Fourier decomposition is used for the fermion 

field 

(A-2) 

and for the scalar or pseudoscalar boson field 

1 00 (1~1/2 [·k "k +] <j>(x) =- 3/2 Jj d3k 2w el .x c(k) + e-1 ·Xc (k) 
(21T) -00 

(A-3) 

. , . l-2 2 - - - ._ + j 
wlthk0 =oo~+1k +m ,k·x~k·x-k0x0 ,u=u y 4 , wheretheu'sare 

four linearly independent spinors. Tliey screi-s~fvy~---------:-------~-

(k · y - im) uj(k) = 0, j = 1, 2 

(k · y + im) uj(k) = 0, j = 3, 4 (A-4) 
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i.e., the two solutions j = 1, 2 that desc~ibe· a f~rmion with momentum 

four-vector ki-1, k
0 

= w, have been grouped together withthe two 

· solutions that de scribe a fermion with momentum -ki-1, k
0 

= -w; th~ 

latter de scribing· an antifermion of momentum +k , k
0 

= w. The uJ' s . 1-1 ' 

are normalized so that we have 

where 

and 

iii uj (k) = €(k) 0 .. , 
a a 

1
. . lJ 

€(k) = 
k. 

0 --. 

2 
:E u~ (k) u~ (k) = 

j=l t-' 

( -i k· y + m)'al3 

2m 

4 . . 
:E UJ (k) 13-J (k) 
. 3 a J= 

= (i k · y + m) al3 

2m 

(A-5) 

(A-6) 

(A-7) 

Here aj(k). bj(k), c(k) and their hermitian conjugates are q-numbers 

satisfying 

[a i(k). a +j (k' )] + = Jl:- -. Jl: v(k - k ) v .. , 
lJ 

{A-8) 

the other plus bracket!? in these quantities vanishing, and 

[ c (k) , c1k 1 
) ] {A-9) 

the other minus brackets in these quantities vanishing . 

. Equations (A-2), (A-7). (A-8) are consistent with the commutation 

rules 
(A-10) 
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(A-ll} 

where 

S(x} = _l_3 lo eik·X(k· y+im) o(k2 tm2)E(k)d4~' (A-12) 

(2'1T) . -00 

We define the interaction repre seritation vacuum state l'tfo) 

by. 

a i(k) lil.r
0 > = 0, ( -tp-

0 
Ia +i(k) = o, 

bi(k) 1¥
0 

) = 0, (-tF
0

Ib+i(k) = o, 

c(k) 1w0 ) = 0; ( 1J!
0

,i c + (k) = 0. 

Then, by direct calculation, we obtain 

and 

where ( ) 
0 

indicates the vacuum ex~ection value, and 

+ 1 I 00 ik. X . . . 2 2 
s (x} = -3 , e (k· y+ lm) o(k + m ) 8(k) d4k' 

(2'1T) -00 

i , OO ik· X 2 . 2 . - . ' 
-------:------s~(x) = .-

3
'---I e (k · y +im) o(k + m )8(-k)d4k, 

(2'1T) -00 

{
0 

+1 for x 0 > 0 
8(x) = 

0 for x 0 < 0, 

(A-13) 

(A-14) 

(A-15) 

(A-16) 

(A-1 7) 

(A-18) 
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8(x)+8(-x) =J, 

B(x) - B( -x) = e(x). {A-19) · 

Equations (A-12), (A-1.6) and (A-1 7) are consistent with 

+ . - . 
S(x) = S (x) + S (x), (A-20 

whereas from the definitions of the 8 ~function and the relationship 

2 2 1 . . 
o(k + m ) = . 

2
w · [o (k0 + w) + o(k0 ~ w)] {A-21) 

it follows that only k
0 

= w contributes to S+, and only k
0 

= -w contributes 

to s-. 
It is also convenient to define the functions 

~q .. + -
Sfx) = 1 (S(x) - S(x)J, 

S (x) = S(l)(x) + ie(x) S(x), 
F 

ST(x) = e(x) SF(x), 

which ha~e the momentum representations 

(A-22) 

(A-23) 

(A-24) 

( 1 ) . OO ik · X . 2 2 
S · (x) = - 1

- f e (k· '(+im)O(k +m )d4k, (A-25) 
(21T)

3 
-00 

2 foo ik· x 
= --4 e 

(21T) -00 

(k · '( + i m) . 
2 2 d4k' 

k 
. 

+m - clE 
·· (A-26) 

2 Joo ik· x 
= -4 e 

(21T) -00 

(k · '( + i m) 2 2 .. E(k) d4k ; 
k + m - iE 

(A-27) 

the small imaginary term in the denominator merely defines the contour 

around the poles and is allowed to go to zero after the residues have 

been evaluated. 
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It immediately follows from Eq .. (A~26) that SF (x) is the 

Green's function for the Dirac equation, i.e. , 

(A-28}' 

SF (x) represents particles to be absorbed traveling into the present 

for x
0 

< 0 and particles to be .created traveling out of the present for 
+ -x 0 > 0. This can be seen either with the help of the S and S functions 

(A-2 9) 

or by carrying out the contour integration inEq. (A-26): 

= 1 Joo eik·x · (k· y+ im) d k 
~ w 3. 
(21T). -00 

(A-30a) 

= i Joo -ik·x (k·y -im) d k 
- (2ir) 3 -oo e w . 3 ' 

(A-30b) 

with k
0 

= w in·both cases. The last two equations exhibit explicitly the 

projection oper.ators for fermion and antifermion states appearing for 

x 0 > 0 and x 0 < 0, respectively. 

The ST(x) function can also be given a causal interpretation 

similar to that for SF(x) as is evident from. 

ST(x) = i {S+(x) [1 + E(x)] +S-(x)[1- E(x)J }; (A-31) 

however, it is· not a Green's function for the Dirac equation. Instead 

it obeys 

2i Joo ik··x 2 - l 
(y a. + m) ST(x) = -·- 4'. . e . €(k) d4k =--CO(x) p-' 

1.1 1.1 ' ' ' (21T) -00 ·1T xo 

(A-32) 

in which P indicates that ·one musttake the ·principal value when · 

integrating over x
0

. •. ' ~ : 
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F'or the boson field we obtain from Eqs. (A-3), (A-9), and 

(A-13) 

[q,(x), q,(y)] = i.6.(i - y), (A-33) 

with 

(A-34) 

and 

s.(x) = ('\./ (]' - m).6.(x). 
'1-L f.L . 

(A- 35) 

By performing the k 0 integrations we find the three -dimensional 

repres~ntations 

1 . en 
.6.(x) = - - 3 I 

(2'1T) -en 

en 
S(x) =-i- f 

( 2 'IT) 
3 

-en . w 

d3k "k- -1 ·x ---c;;- e sin wx0 , (A-36) 

(A-3 7) 

r endk --
( 1 ) ) - i I 3 ik . X [ (k- - . ) . . ] 

S (x - (
2

'1T) 3 -en ~ e · '{ +1m cos c.&0 + w-y 4 sm c.uXo , 

(A-38) 

which exhibit the property of .6.(x) and S(x) that they vanish for 

x 0 = 0, .. ;( f 0, and therefore, by reasons of invariance, for any x
2 > 0, 

...... 
.6.(x,O)=O, (A-39) 

(A-40} 
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The function S(l)(x), on the other hand, does not vanish 'for x
2 

>0: 

(X) d3k 
f -- ---ik·x --+ 

e . (k · y + i rn) . (A-41) 
;oo w. 

We will also be interested in the combination 

--ik ·-x e . - -k . '(. (A-42) 

! .·, . 
, .. ; 
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' 4>' 
' ' ',X2 

Fig. 1. Feynman diagram for a second-order process involving 
three different spin or fields . 

. · /x, 
__ .......,x"'gl. ·. 

;>: ., . 

. , , 

Fig. 2. The Feynman diagram of Figure 1 divided into its two 
constituent parts corresponding to propagation (a) by a 
particle, and (b) by an antiparticle. 
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K+ 
·t K K+, 

/ .,.....K+ ' ' ......... / ....... / . y·· ......... ~ 
/ ......... ......... / .......... 

/ ">.· 4 / ......... 
> 

p (\o p p ro. p 
(a) (b) 

Fig. 3. Second-order Feynman diagrams for the scattering of a 
K+ meson by a proton. 

K+ 

N 

__________ _,~F~ig. 4. Second-order Feynmim diagram for direct scattering of a 
K=F meson by a neutron. · · · • . 

... 
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P r N ... 
(b) 

Fig. 5. Second-order Feynman diagrams for charge.:.exthange 
scattering of a K+ meson by a neutron. 

' K• ' . 

' \ 
' N 

(a) 

'TT
.1 

I 
I 4 
p f\• I+ p 

(b) 

Fig. 6. Second-order Feynman diagrams for the production 
of a 1\ 0 • · 
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/TT
l 

I 
I . 

~ N . p ·. 

(a) 

Fig. 7. Second-order Feynman diagrams for the production of a 2:
0

• 

I 

llT-
1 

I 
N p ~ 
(a) 

I- Io P 
(c) 

Fig. 8" Second-order Feynman diagrams for the production of a 2: 



-50-

OL-~---L------~----~~----~ 
45 . 90 . ·. 135 180 

6K (deg) 
.MU-12576 

Fig. A. Differential scattering cross section terms for a labora!:ory 
kinetic energy of the incident me son T = 150 Mev as a function 
of e, the center -of -mass angle between the incident and 
emerging meson, for J. = 9, 14, 17; 19 and 24. The curves 
for the terms with J. equal to 1, 2 and 9; 3, 4 and 14; 5, 6 and 
19; 7, 8 arid 24; and 11 and 17 are similar, and only one out 
of each group is plotted. In order to obtain the angular 
distribution for an J. value that corresponds to the square of 
M 3a orM..3b from the plot of an interference term, the latter 
must be divided by a factor of 2. 
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+0.3 

+0.1 

-0.1 

03 CTIB 
~.L·------~----~~~ 

-0.4 

0 45 90 135 180 
eK (deg) 

MU-12577 

Fig. B. Plot of differential scattering eros s section terms for 
T = 150 Mev versus e fori.= 12., 13, 18, 2.0 and.Z.2. The curves 
for t.he terms with i. equalto 10 and 13; 12. and 21; 15 and 18; 16 
and 22; and 20 and 23 are similar. 
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d.o. 

2 

0 45 
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90 135 180 
SK(deg.) 

MU-'-12578 

Fig. C. Plot of 

. ( .dcr 5 dcr 6 · dcr 1 9 ) 
--+-- + 

. dO . dO dO 

at T = 150 Mev versus e .. Experimental results are shown for 
comparison. 
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0.1 

45 
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90 
eK(deg) 

135 180 

MU-12579 

D. Plot of differential production cross section terms for 
T = 1.30 Bev versus fJ for 1. = 26, 27, 29, 30, 31, 53, 35, 
39, 42, 45 and 59. The curves for the terms with 1. equal 
to 26 and 28; 25 and 27; 30 and 32; 33 and 34; and 35 and 36 
are similar. For 

d<J 42 

dQ 

the upper ;sign applies if y 5 and '{ are in the same order in 
(2.2d) and (2.3d), and the lower s~gn applies if they are in 
the opposite. order. · 
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+0.1 

0 

-0.1 

'- 0.2'-----------'-------'-----'----'---------' 
45 90 135 180 

eKtdeg) 
MU-12580 

Fig. E. Plot of differential production cross section terms for 
T = 1.30 Bev versus f) for £ = 38, 48, 52, 61, 64 and. 68. 
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Legend for Tables 

1) The notation "M2 - M 3 in l. = 9" indicates that the coefficients for. 

the l. -value in question are to be obtained by substituting M
3 

for M 2 in 

those for J. = 9. A substitution made in A. yields A., and so on, i.e., 
J 1 

there is no mixing of terms in the sense that a coefficient A. is never . 1 

to be obtained from B .. 
J 

2) The mum.er±c:a±Jralues in Tables Vi and VII do not include the 

coupling constants. 

3) The upper sign in o42 , o52 and o68 applies if y 5 and yfJ. are in the 

same order in (2.2d) and (2.3d), and the lower sign applies if they are 

in the opposite order. 
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fable I 

Coeff~cients for Diffe~ential Cross Sections for Scattering 

The notation A- B means replace A by B, and A- B means in~erchange . 
A and B. 

, n=l; M 2 -M3 inL=l4. 

( 

Z \Z 

"4 = :; ) , n = Z; M 3 - M 2 in L = 14. 

, n = 1; Mz - M 3 in L = 19. 

f,;u- 12479 
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Table I continued 

A 9 = Z(Ei + E 1E 2 - 3Mi - M 1M 2 - M 1M 3]E 1E 2 + (M 2M 3 - Mi- m
2
JEi 

2 2 . 2 
+ M 1(3M 1 + 2M 1M 2 + 2M 1M 3 + M 2M 3 + m ] 

2 2 2 2 2 
All= -2(2~! + 2E 1E 2 - 4M 1 - 2M 1M 2 - m ] E 1E 2 

· z z 2 2 ·z 2 
+ (2(M 1 + M 1M 2 +2m ) E 1E 2 - m (M 1 + 2M 1M 2 - M 2M 3 + m )] E 1 

2 2 . . 2 2 . . . 2 2] 
-2M

1
(M

1 
(Ml +Mz) + m {2M 1 + M 2 + M 3)]E 1E 2 +m M 1(ZM 1M 3 +M 2M 3 - M 1 +m 
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Table i continued 

22 2 .·.z z 22 22 
B 11 = 2[E 1 - M 1 ](4E 1 +4E 1 E 2

- 7M 1 - 3M 1 M 2
]E 1 E 2

- 2[E 1 - M 1 ](M 1 +M 1 M 2 
+2m ]E 1 

2 2· 3 . · 2 2 2 
+ [E 1 -M 1](2M1(M 1 +M 2)+ m (3M 1+2M 1M 3 +MZM 3 - m )] 

2 2 2 2·2 
A 12 = -2[2);; 1 +ZE 1E 2 -4M 1 - 2M 1M2 -m ]E 1E

2 

2 ··.2 2 2 2 2 
+[2(M 1 +M 1M

2
+Zm )E 1E 2 -m (M 1 +2M 1M 2 +M

2
M

3
+m )]E

1 

2 2 222. 2 
-2M1[M 1 (M 1 +M2)+M (2M 1 +M 2 -M3)]E 1E 2 -m M 1[M 1 +2M1M

3
+M

2
M

3
-m J 
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Table I continued 

2 2 . 2 2 2 
A14 = 2[E 1 + E 1 E 2 - 3M! +M 1 M 2 +M 1M 3] E 1 E 2 + [M 2M 3 - Ml ~ rn ]E 1 

+ Mi[3Mi- 2M1 M2 - 2M 1 M 3 +M2M 3 +rn
2

] 

2 2 2 2 2 
A 15 = -2(2E 1 +2E1E

2 
-4M 1 +2M 1M 2 -rn ]E1E

2 

. 2 2 22 22 
+[2(M 1 -M 1M 2 +2rn )E 1E 2 -rn (M 1 +M 2M 3 -2M 1M

2
+rn }]E

1 

2 . 2 22 2 2 
-2M1[rn f2M 1 -M2 +M 3) -M 1(M2 -M1)]E 1E

2
+rn M

1
[2M

1
M

3
-M

2
M

3
-M

1
+rn] 

2 2 2 2 . 2 2 2· 2 2 
B 15 = 2[E 1 -M 1](4E 1 +4E 1E 2 -7M 1 +3M 1M 2]E 1E 2 -2[E 1 -M1 ][M

1 
-M 1M

2 
+2m ]E 1 

2 2 2 2 2 3 
+ [E 1 -M1 ][rn (3M 1 +2M 1M 3 -M2M 3 -rn )-2M 1(M

2 
-M 1)] 
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Table I continued 

. 2 2 2 2 2 
A 16 = -2[2E 1 t 2E 1 E 2 - 4M 1 + 2M 1 M 2 .-m ]E 1 E 2 

. 2 2 2 222 
+ [2(M 1 - M 1M 2 +2m )E 1E 2 tm (2M 1M2 +M2M3 - M 1 - m. )]E1 

2 2 22 2 . 2 
+ 2M1[M 1(M

2 
-M1)tm (M2 tM3 -2M 1)]E 1E 2 -m M 1[2M 1M 3 +M 1 -M 2M 3 -m] 

·2 2 2 2 2 2 2 . 2 2 
B 16 = 2[E 1 - M 1](4E 1 + 4E 1 E 2 - 7M 1 + 3M 1 M 2]E 1E 2 - 2[EcM

1 
](M 1 - M 1M 2 +Zm ]E1 

2222 2 3 l +[E 1 -M 1][m (3M 1 -2M 1M 3 +M 2M 3 -m )-2M1 (M 2 -M1 ] 

. \2 

h17 
-\ flg3 i 

M2 - M 3 in 1 = 11. - ,4,m/ 

. \2 

hl8 =(~~~1 M 2 - M 3 in 1 = 15, 

h19 

. f 
- (fl f3 
- 4;rn;7,i 

2 2 2 3 3 2 2. 2 2 2 2 
A 19 =8[E 1 tE 1E 2 -M1 -m ]E1E 2 -2m [6E1 -2M1 -2M 1M2 -2M 1M3 -m ]E1E 2 

2 2 2 2 . 2 22 
+ m [2(M 1M2 +M 1M 3 -2M 1 +3m. )E 1E 2 -m (2M 1M 2+2M 1M 3-3M 1 -M2.M 3 -m )]E1 

2 2 2 2 2 42 . 2 2 
-2m M 1[(M 1 +m)(M2 +M3)-M 1(2M 1 -m )]E 1E 2 tm M 1[M 2M 3-M 1 +m J 
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Table I continued 

.. 2 2 2 2 2 22 
B

19
= -12[E 1 -M 1]((E1 +E2) -M 1 -2m )E1E

2 

222 2 2 2 2 22 
+2m [E 1 -M 1]((12E1 -6M 1 -3M 1M 2 -3M 1 M 3+m )E 1 E 2 -(M1 M 2 

+M1 M 3 -ZM 1 +3m )E1 ) 

22 2 3 2 2 2 
+m [E 1 -M 1](zM1 (M 2+M 3 -2M 1)+m (5M 1+M

2
M 3 -m )j 

. 2 2 2 33 2 2 2 2 22 
A 20 = 8[E 1+E 1E 2 -M 1 -m ]E 1E 2 -2m [6E 1 -2M 1 -zM 1M 2+2M 1M 3-m ]E 1E

2 

2 2 2 22 . 22 
-m [2(ZM 1 -M 1M 2+M 1M 3 -3m )E 1E 2 -m (3M 1 -zM 1M

2
+zM 1M 3 -M

2
M 3+m ))E 1 

2 ,< ,2 2 2 2 4 2 2 2 
+2m M 1[\Ml +m )(M3 -M

2
)+M 1 (ZM 1 -m ))E1E 2 -m M

1 
[M1+M

2
M

3 
-m ) 

22 22 222 
B 20 = -12[E 1 -M1 )[(E1 +E2) -M1 -zm ]E1E 2 

2 2 2 2 _2 2 2 2 2 
+ 2m [E 1 -M 1 ) [(1ZE 1 -6Mi-3M 1M 2+3M 1M 3+m )E 1 E 2

+(2M 1 -M 1 M 2
+M1 M 3

-3m )E
1

] 

222 3 22 2 
- m [E

1
-M 1j[2M1 (2M 1-M2+M 3)-m (5M 1 -M

2
M

3
-m )] 

.. 
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Table I continued. 

M
3 

in f= 16. 

~
f f \ 2 

h = 2 4 : 
. 24 41TTl'l~J 

2 2233 22 2 222 
A 24 = B(E 1 +E 1E 2 -M 1 -m ]E1E 2 -2m (6Ec2M 1+2M 1M

2
+2M 1M

3
-m ]E1E

2 

2 2 2 22 22 
-m (2(2M1+M 1M2+M 1M 3 -3m )E 1E 2 -m (3M 1+2M1M

2
+2M 1M

3
+M

2
M 3+m )]E 1 

+ 2m
2

M 1 ((Mi+m
2

)(M 3+M2)+M 1 (2Mi -m
2
)]E 1 E 2+~ 4Mi(M 2M3'-Mi+m 2 ] 

2 . 2 · 2 2 2 2· t 
B 24 = -12(E 1 -Mi]({E 1+E 2) -M 1 -2m ]E 1E 2 

2 2 2 ·. 2 2· 2 2 2 2 
+2m (E 1 -M 1]({12E1-6M 1+3M 1M 2+3M 1M 3+m )E 1E

2
+(2M 1+M

1
M

2
+M

1
M

3
-3m )E

1
] 

222 3 22 2 
-m (E 1 -M1](2Mf(2M1 +M 2+M3)-m (SM 1 +M 2M 3 -m )] 
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Table II 

Extreme Nonrelativistic (Thomson) Limit of Total Cross S"ections 
for· Scattering 
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. Table II continued 
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Table II continued 

2 - 1 '2 2 - 1 
x [M~ - (M 1 - m) ] [M3 - (M 1 - m) ] 

2 2 - 1 2 2 - 1 
· x [Mz: - (M 1 - m) ] [M 3 - (M 1 - m) ] 

2 2 - 1 2 2 -l 
x [M 2 - (M 1 - m) ] [M 3 - (M 1 - m) ] 
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Table III 

Extreme Relativistic· Limit of Total Cross Sections 
for Scattering . 

(g~ 1,2 2 -1 2El 
a1 (ER) = " :r,;-) [2E 1 ] b1 MJ 
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Table III continued 
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Table III continued .. 
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Table IV 

Coefficients for Differential Cross Sections for Production 

2 . . 2 
A 25 = [E 1 E 2 ~M 1 (M 1 +M2 )](E 2 +E 3 ) - [M3 ~2M 1 +2M2 +M 3 )+rn -]E 1E 2 

2 2 · · 2· 
+ [(M 1+M 2) -rn )E 1E 3+M 1(M 1+M 2+M 3)[M 3 (M 1+M 2 )+rn] 

2 . 2 
A 26 = [E 1E 2 -M 1(M 1+M 2)](E2+E3 ) + [M 3(2M 1+2M 2 -M

3
)-rn )E

1
E

2 

2 2 2 + [(M 1+Mz) -rn ]E1E 3 -M 1(M 1+M2 -M)[M 3 (M 1+M 2)-rn J 

2 2 
A 27 = [E 1E 2+M 1(M 2 -M 1)]{E2+E 3) - [M 3 (2M 2 -2M 1+M

3
)+m ]E

1
E

2 

2 2 . 2 
+ [(M 2 -M 1) -m JE 1E 3 -M 1{M 2 -M 1+M 3!(M

3
(M

2
-M

1
)+m J 
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Table IV . continued 
==========================-· ~~= 

A
28 

= (E 1E 2+M 1 (M2 -M 1 ))6E 2+E 3)
2 

-(M 3 (zM 1 -2M 2+M 3)+tn2 )E 1 E 2 

+ ((Mz -Ml )2 -m2)ElE3 -Ml (Ml -M2+M3l(M3'(M2 -Ml )-m2) 

. 22 22 2 2 
A29 = 4[E 1E 3+M2M 3),E 1 Ez - 4m E 1 E 2E 3 -m M1 (Mz~M 1 )(E 2+E) 

2 2 2 2 
+(M 1+M,2l((M 2 -M 1)(E 2+E 3). - (M 2_-M 1)(M 3 +m ) - 2~ M 3)E 1E 2 

+ m2(m2 -(M2 -Ml)2)E.l E3+m2Ml (M2 -Ml +M3l[M3 (M2 -Ml )+m2] 

.. 2 2 2 2 2 2 
B

29 
= -4p1(2E2E 3 -E2]E1 -pq(M 2 -M 1 )(E2+E 3) -4p'l(2M 2M 3 +m' )E 1E 2 

2 2 · . ·2 . 2 2 2 
+ 4p'J.m E 1E 3+pqm [2M 1 (M 2 -M 1)+2M 3 (M1 +M2)+m )+plM 3 W 2 -M 1 ) 
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Table IV continued 

2 2 2 2 2 2 
A

30 
= 4[E

1
E

3
-M

2
M

3
jE

1 
E

2 
-4m E 1 E 2E 3 -m M 1(M 2 -M 1){E 2+E 3) 

2 2 2 ·2 
+ (M

1
+M

2
)[(M

2
-M

1
){E

2
+E

3
) -(M 2 -M 1)1M 3 +m )+2m M 3 ]E1E 2 

2 2 2 2 2 +m [m -(M
2

-M
1

) ]E
1

E
3

+m M 1 (M 1 -M 2+M 3 )[M 3 (M 2 -M 1)-m] 

22 22 2. 2 
B

30 
= -4pq(2E

2
E

3
-E

2
]E

1 
-pq(M 2 -M 1 )(E2+E 3) +4p'![2M 2M 3 -m ]E 1E 2 

2 2 2 2 2 2 
+4p'l,m E

1
E

3
-pqm [2M

3
(M 1 +M 2)-2M 1(M 2 -M 1)-m ]+p'JM3 (M 2 -M 1 ) 

2 2 2 2 2 2 
A

31 
= 4[E

1
E:i+M

2
M

3
]E E

2 
-4m E 1 E 2E 3 +m M 1(M 1+M 2 )(E 2 +E 3) 

1 
. 2 2 2 2 

+ (M
2

-M
1 

)[(M(i-M
2

)(E
2

+E 3) -.(M 1 +M 2)(M3 +m )-2m M 3 ] E 1 E 2 

2 2 2 2 . 2 
"m [(M

1
+M

2
) -m ]E

1
E

3
-m M 1 (M 1+M 2+M 3 ){M 3 (M 1 +M 2)+m] 

2 2 2' 2 . 2 2 
B

31 
= -4pq[2E

2
E

3
-E

2
]E

1 
-pq(M

2 
-M 1 )(E; 2 +E 3) -4pq(2M 2M 3 +m ]E 1E 2 

+ 4pqm 2E
1 

E
3 

-pqm 2(2M
1 

(M.l +M 2)-2M 3 (M 2 -M 1 )-m
2

] +p1 M;(Mi -M 1
2

) 

D31 = D29 
--~--------~~--~--------------------
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Table IV'. continued 

[ l 2 2 2 2 2 . )( 2 A 32 = 4 E 1 E 3 -M
2
M 3 E 1 E 2 

-4m E 1 E 2
E 3 +m M 1 (M 1 +M

2 
E

2
+E

3
) 

2 2 2 2 
+ (M 2 -M 1)[(M1 +M

2
)(E

2
+E 3) -(M 1 +M 2)(M 3 +m )t2m M

3
]E

1
E

2 

2 2 2 2 2 
-m [(M 1+Mz) -m )E1E 3+m M 1 (M 1 +M 2 -M)[M3 (M 1+M 2)-m] 

2 2 2 2 2 2 
B 32 = -_4pq[2E 2E 3 -E2 ]E 1 -pq(M 2 -M 1 )(E 2+E 3) +4pq[2M

2
M

3
-m ]E1 E 2 

2 2 · 2 2 ·z 2 
+ 4pqm E 1E 3 -pqm [2M 1(M1 +M 2)+ 2M3 (M 2 -M 1)-m ]+p~M 3 (M

2 
"Mi) 

2 2 2 
A 33 = [(E 2+E 3) +2M 1M 3+M 1 ]E1E 3 -M 1M 3(E

2
+E

3
) +2M

1
M

3
E

1
E

2
_ 

- Ml2[2(Ez+E3)E3+Ml M3] 
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Table IV. continued 

. 2 . 2 2 
Aj

4 
= ('(E

2
+E

3
) -2M

1
M

3
+M 1 ]E1E 3 +M 1M 3(E 2+E 3) -2M 1M 3E 1E 2 

- M~(2(E 2 tE 3 )E 3 -M 1 M 3 ] 

z 2 2 2 2 A
35 

= (E
3 

+E
2

E
3

-M
3 

](3(E
2

+E
3

) E 1 E 2+2Ml E 1 E 2 -4M 1 (E 2tE 3)E 2 ] 

2 2 2 2 - m (E
1

E
3

+M
1

M
3

]((E
2

+E
3

) +M 1 ]+2m M 1(M 1E 3+M 3E 1 ](E 2+E 3) 

2 2· 2 . 2 2 
A

36 
= (E

3 
+E

2
E

3
-M

3 
](3(E

2
+E 3) E 1 E 2+2M 1 E 1 E 2 -4M 1 (E 2tE 3)E 2] 

2 2 2 . 2 -m (E
1

E
3

-M
1

M
3

]((E
2

+E
3

) +M 1 ]+2m M 1(M 1E 3 -M 3E 1] (E 2+E 3) 
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Table IV continued 

2 2 . 2 2 A 39 = ((E2+E 3) +(M 1 +M 2)(M 1 +M 3)-M 3 ]E1E 3 -M 1 M 3
E

2 
-M

1 
(2M

1 
+M

2
)E

3 
. 2 

+ M 3 (2M 1 +M 2 -M 3)E 1 E 2 -M 1 (l2M 1 +M
2 

+M
3

)E
2
E

3 
-M

1 
M

3 
(M

1 
+M

2 
-M

3
) 

• 



-75-

Table IV continmid 

2 . 2 . 2 2 
A 42 = [2M 3E 1+M 1M 3 (M

2
-M 1)]E 2 -·M 1[M 1 (M 1 +M

2
)-m ]E

3 

+ [2M 2Ei+M1M 3 (M 2 -M 1)-M;(Ml tM 2)-m
2

M 3jE1 E 2 

2 2 2 2 2 
+ [(M 2 -M 1)Ez +(M 1 +M 2)E 3 -M 1 M 2-M3 ~Ml +M 2)-m (M 1 tM 3)]E 1 E 3 

2 2 . 2 2 2 
+ [(M1 +M 3 )(2E 1 -M1 )+M1 M2M3+m M 1]E

2
E 3+M 1 M 3[M

3
(M

1 
+M

2
)+m ] 

B 42 = -pq[(M 1 +M 2)Ei+(M2 -M 1 )E 32 ]-2p~[(M3 -M 1 )E1 E 2
+(M1 +M 3)E 1 E 3

tM
2

E
2

E
3

] 

2 
- pqM 1[M 3(M 2 -M 1)+m ] 

h = f2g6g3g7 
44 

16" m 

044 = 0 

• 
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Table IV continued 

2 2 2 2 
A

45 
= -[(E2+E

3
) -(M 1+M 2)(M 3 -M 1)-M 3 ]E 1E 3 -M 1M 3E 2 +M 1(2M 1+M2)E3 · 

2 
+ M 3 (2M1 +M

2
+M3 )E 1 E 2 +M 1 (2M 1 +M2 -M3 )E2E 3 -M1 M 3 (M 1 +M

2
+M 3) 

h46 
g2g5g4g7 

16 .. 

a46 = o 

h47 
glg6g4g7 

16 .. 

a47 = o 

2· 2 2 2 
A48 = -[(E2+E3) +(M2 -Ml )(M3 -Ml)-M3]El E3 -M1M3E2 +Ml (2M! -M2)E3 

. . 2 
+M 3(2M 1 -M 2+M 3)E 1E 2 -M1 (M 2-2M 1 +M 3)E

2
E 3 -M 1 M 3

(M
1

-M
2

+M
3

) 

B48 = pq((E2+E3)2 -Ml (Ml -M2+M3)] 

• 
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Table IV continued 

flg5g4g7 

h49 l61r m 

0
49 

= ·o 

h5o 

f2g5g4g7 

l61r m 

050 = 0 

fl g6g4g7 
h51 !61r m 

0 51 = 0 

. 2 2 2 2 
A

52 
= -[2M:JEI tM

1
M

3
(M

2
-M 1))E 2 -M 1[M 1 (M 1+M 2)-m )E 3 

[ 
2 . . 2 . 2 

+ 2M
2

E
3 

-M
1 

M
3

(M
2

-M
1 
)-M3 (M 1 +M 2)+m M 3 )E 1 E 2 

2 2 2 2 2 . 
+[(M

2
-M

1
)E

2 
+(Ml +M

2
)E

3 
-M

1 
M 2 -M3 (M 1 +M 2)+m (M 3 -M1))E 1E 3 

2 2 2 2 . 2 
-[(M

3
-M

1
)(2E

1 
-M

1 
)tM

1
M

2
M

3
-m M 1 )E 2E 3tM 1 M 3[M 3 (M 1 +M 2)-m ) 

. [ 2 2) [ . B
52 

= -pq (M
1

+M
2

)E
2

+(M
2

-M
1
)E

3 
+2pq (M 1tM 3)E 1E 2+(M 3 -M 1)E 1E 3 cM 2E 2E 3). 

+ pqMI[M3(M2-Ml)-m2) 

• 



h56 

056 

h57 

057 

gzg6f3g7 

161Tm 

= 0 

fl g5f3g7 

16,;2m 2 

= 0 

f2g5f3g7 

!6,zmz 
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Table IV co:rltinued 
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Table IV continued 

2 3 . 2 . 2 
A

59 
= (E 1 tM 1 (Mz -M 1)] (E 2tE 3) E 2trn M 1 (ZM 1 -M

2
)E3 

-[(Mi+rn
2 

-ZM 1 M 3)E 1
2

+M 1 (Mi+rn
2

)(M 2 -M 1 )-rn
2

M 1 M3 JE} 

2. . 2 2 . . 2 
-(2M 1 M 3E 2 +ZM 1 M 2E.3 -rn M 3 (M 3 -M 2)-2M 1 M 2M 3 ]E 1 E 2 

2 2 2 2 2 2 -(m (E
2
tE

3
) +2M 1(M

2
+M

3
)E

2
+rn (M

2
-M 1)(M

3
-M 1)-rn M

3
]E

1
E

3 

222 2. 2 . 
-((M 3 +rn )E 1 +M1M 3 (M 2 -M 1):rn M 1 (3M 1 -zM2 tM 3)]E2E 3 

-rn2Ml2M3(Ml-M2+M3) 

f2g6f3g7 

· !6,.Zrn 2 
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Table IV continued 

2 2 2 2 
A61 = -M 1 [4E~M3 (M 1 -M2 +2M3)]E2 -M 1 [M 1 (M 1 +M 2)-m ]E3 

2 2 . 2 
+ [2(2M 1+M 2)E

3 
-M 3 (3M 1+M

2
)-M 1M3 (M1+M 2)-m M

3
]E1E 2 

2 2 2 2 2 
+ [(3M 1 +M 2)E2 +(M1 +M 2)E 3.-M 1 (M 1M 2+m )-M 3 (M 1 +M 2)-m M 3 ]E1E 3 

-M 1 [2(Ei+Ei)+M1
2 

-M 3 (M 1 ~M2 +2M 3) -rn 2
] E 2E 3 

2 . 2 
+M

1 
M 3[M 3(M 1 +M 2)+m ] 

h63 
gl g6f4g7 

l61r m 

063 = 0 

h64 
g2g6f4g7 

l61r m 
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Table IV continued 

. 2 2 2 2 
A64 = M 1[4E 3 -M 3(M 1+M

2
+2M 3)]E 1 -M 1 [M 1(M 2 -M 1)+m ]E 3 

[ . . 2 2 ) 2 1 - 2(2M 1 -M 2)E 3 -M 3 (3M 1 -M2)+M 1M 3 (M 2 -M 1 -m M 3 E 1E
2 

2 2 2 2 2 
- [(3M 1 -M 2)E 2 -(M 2 -M 1)E 3 +M 1 (M 1M 2 -m )+M

3 
(M 2 -M 1)-m M 3 ]E

1
E

3 
2 2 2 . . . 2 

+ M 1 [2(E 2 +E 3 )+M 1 -M 3 (M 1 +M 2+2M 3)-m ]E 2E 
3 

+ Ml2M3[M3(M2-Ml)-m2] 

flg5f4g7 

16,2m
2 

flg6f4g7 

t6,2tn
2 

·- 7'-- ---··--- -~ -~- - ~-- ---·--~ -----

.. 



f2g6f4g7 

t6 .. 2m
2 
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Table IV Continued 

2 .·. 3 . 2 2 
A68 = -(E 1 -M 1 (M 2+M 1)](E 2+E 3) E

2
-m M 1 (2M 1 +M

2
)E 3 

2 2 2 ·2 2 2 2 
+ ((M 3 +m +2M

1
M

3
)E1 -M1 (M 3 

+m )(M1 +M
2

)+m M 1M
3

]E
2 

. 2 2 2 2 
- (2M 1M 3E 2 +2M 1M 2E 3 -2M1M 2M 3 +m M

3
(M

3
-M

2
)]E

1
E

2 

2 2 .22 22 
+(m (E 2+E 3) -2M 1 (M 2+M 3)E 2 +m (M 1 +M 2)(M 1.+M:i)-m M 3 ]E

1
E

3 

2 2 2 2 2 
+ ((M 3 +m )E 1 -MiM 3 (M 1 +M 2)-m M 1 {3M 1 +2M 2 -M

3
)]E

2
E

3 

- m2Ml2M3(Ml +M2-M3) 

2 2. . . . 2 2 c 
·B68 = pq(M 1M 2+m ](E 2+E 3) +2pq(M 1M 3(E 2+E 3)E 2 -(2M 1M

3
+m )E 1E

2
-m E

1
E

3
] 

2 2 
- pqMi(M 2M 3 -m (Mi +M 3)] 
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Table v 

Total CrosS Sections £or Production at Threshold 

l' 
qT 

.·"- ' 

x -{ 4(El T+Mz -m)El2T+ ~~ Ml -Mz+m)2 -~M[l_E~~--:1 (Ml +M2 -in)2} 

M 3[M 2 -(M 1 -m) ] · ~ • ~-- --- --}--------'---------

•· 
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Table V .continued 

.. 

\ 
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Table V continued 

{2m(M 1 +M 3+m)E 1~- [m(M 1 :M2 +,;,)(M 1 +M 2 +m)+M 1
2

M 2 ]E 1 T 

+ mM 1[(M 2 tm)(M
3

+m)-M 1 (M 1 +M
3
)]1 

8 !{ ry6gg-i·. - 2 2- 1 2 2- 1 
a, 7 (NR) = - _2C_ i~ (1 +~ ] [(M +m)

2
-M 1 ] [M 2 -(M 1 -m) ] .~qT 

" mM 3 \ 16 ,< , 1v1 3 3 



• 
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Table V cOntinUed 

'ggfg\ -2 ·.-1 ··-1 
a6 (NR)=-~ (_ 2 64 7i[i+~. ] ((M +m)2-M.2] (M2-(M -m)2] - ~ 

. 4 mM 3 \ 16,z / M 3 3 I 2 I qT 

x ~ [M 1
2

M 2 -m(M2 - M 1 +m)(M3 -M1 tm)] E1 T 
\ 

' -

(

f g6f g ) -2 -1 -1 
a (NR)=~ 8" 2 47 (I+~] ]M+M+m] (M

2
-(M.-m)

2
] ~ 

68 MJ 16, M 3 I 3 2 I qT 



-87-

Table VI 

Total Scattering Cross Sections at Different Meson Energie~ 

T is the laboratory kinetic energy of the incident meson. The cross 
seCtions are given in millibarns and do not include the coupling 
constants. 

T(Mev) (Tl 0'2 0'3 0'4 0'5 0'6 

150 2.~9 2~: 1.1 0. 72 . 6.8 5.5 

250 1.7 1.5 0.84 / 0.60 9.1 7.6 

350 1.2 1.1 0.74 0.55 11.3 9.6 

T (Mev) 0'7 0'8 o=9 0'10 0' 11 0'12 

150 0.48 0.38 5.4 -2 .. 8 7.8 -0.36 

250 1.6 1.2 3.1 -1.-8 6.5 +1.6 

350 3.4 2,6 2.2 -1.4 5.7 +2.0 

T(Me~} 0'13. 0'14 0' 15 0'16 0'17 0'18 

150 -2.9 1.5 -4.3 +0.10 7.7 -4.1 

250 -1.9 1.2 -4.6 .,.1,4 6.5 -4.3 

350 -1.5 1.1 -4.8 ':.:,z:-.3 5.7 -4.6 

T(Mev) 0'19 0' 20 0' 21 0' 22 0' 23 0' 24 

150 12.3 0.50 -0.53 +0.22 0.13 0.90 

250 1'6.7 5.9 +1.5 -1.2 5.5 2.8 

350 20.8 10.5 +2.0 ~-2.0 10.0 6.0: 

----·~---- ·-. -·· ---~~--·~ .... '~---···~--~-~-
·-"~~·~-----~~-~---· 

., 

~ 
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Table VII 

Total Production Cross Sections at Different :Meson Energies 

For CT 42• CT52• and CT68 the upper sign applies if the order of y and y 5 
is the same ih the two interaction terms, and the lower sign aifPlies if 
their order is opposite . 

. , 
T(Bev) (J 25 {126 (J 27 (J 28 (J 29 (J 30 

0.80 1.4 0.25 0.017 0.31 2.1 0.091 

1.00 1.9 0.52 0.15 0;61 4.6 0.39 

1.30 1.5 0.64 0.30 0.72 6.0 0.80 

1.50 1.3 0.66 0.36 0.732 . 6.5 1.1 

1.80 1.0 0.67 0.42 0.728 6.9 1.4 

2.00 0.88 0.66 0.45 .0.72 7.0 1.6 

· T(Bev). 
(J 31 (J 32 (J 33 (134 (J 35 . (J 36 

0.80 0.71 0.14 0.15 0.15 0.67 0.67 

1.00 2.8 0.47 0.27 0.27 1.7 1.7 

1.30 4.8 0.88 0.29 0.29 2.7 2.7 

1.50 5.6 1.12 0.28 0.28 3.1 3.1 

.1.80 6.3 1.43 0.26 0.26 3.7 3.7 

2.00 6.6 1.61 0.24 0.24 4.0 4.0 

T(Bev) 
(J 38 (139 (J 42 0' 45 (J 48 

0.80 -0.047 1.3 :1: 1.6 0.90 -0.37 

1.00 -0.12 2.0 :1: 3.3 1.4 -0.84 

1.30 .:0~20 1.9 :1: 4.0 1.1 -1.04 

150 -0.23 . 1.7 :1: 4.14 0.91 -1.05 

1.80 -0.26 1.5 :1:4.13 0.66 -1.02 
~ 2.00 -0.27 1.4 :1: 4.07 0.57 -0.98 c 

T(Bev) (J.S2 (159 (161 (164 (168 

0.80 +1.4 .· 0.26 - 1.0 -1.5 :1:0.23 

1.00 +2.1 0.95 - 1.2 -2.2 :1:0.4 7 

1.30 +1.7 1.9 -.0.41 -1.6 :t:O. 36 

1.50 .f-1.4 2.4 +0.001 -1.1 :1:0.20 

1.80 +1.1 3J +0.45 -0.59 +0.086 

2.00 +0.85 3.5 +0.66 -0.32 +0.028 
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