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ON COMMUTATION RELATIONS OF INTERACTING
SPINOR FIELDS AND THE SCATTERING
AND PRODUCTION OF K MESONS

'Richard Spitzer

.Radiation 'Laborat'ory
University of California
Berkeley, California

"November 26, 1956

ABSTRACT

In Part One of this thesis it is shown that the requirement that -

the Hamiltonian density commute with itself on a spacelike surface

precludes the possibility that three or more different spinor fields,

' coupled to one another in Yukawa- type 1nteract1ons, commute with

one another. If the Hamiltonian contalns only two such fields, how-
ever, they may be assumed to either commute or anticommute w1th—
out violating this requ1rement

In Part Two, the cross sect1ons for scatterlng of K mesons

by nucleons and for the product_lon of K mesons in association w1th
heavy fermions are discussed on the basis of weak coupling theories.

- The predlctlons of lowest-order perturbatlon theory are presented

and compared W1th exper1mental results.

.
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Part One

ON COMMUTATION RELAT IONS OF INTERACTING
SPINOR FIELDS .

INTRODUCTION
The form of the commutation relations between field operators
that represent physically different Fermi-Dirac particlés has
recently been investigated by Kinoshita; L He has shown that if the
Lagrangian contains interaction terms that are bilinear in spinor

: . * oy e
fields, these fields must anticommute in order that unique equations

" of motion be obtained from Schwinger's variational principle. In his

proof, the field operator to be varied is commuted either to the left

‘or to the right in all those terms of the Lagran‘gian' in which it appears.,

This gives two presumably equivalent forms of the Lagrangian. If
the operato'rs for the different interacting spinor fields are assumed
to commute with one another, the signs of the corresponding interaction
terms change relative to the free-field terms, Th'e.vvariational
principle then gives different equations of motion, depending on which
form of the Lagrangian is used. If, on the other hand, the intevr'acting
spinor fields anticommute, the variational principle gives the same
equations of motion in both cases. On_ the basis of the inconéiétency
obtained in the first case Kinoshita concludes that spinor fields

interacting in the manner described above must anticommute. This

"same ambigui_ty would also occur if the field were wvaried. first and

then the variation of the field were commuted to one side or the other,
provided the variation were assumed to anticommute with the adjoint

of the operator that is varied but to commute with the other spinor

As used in this the sis, ‘the expression " commutlng sp1nor flelds
will always refer to different spinor fields. For a smgle spinor

field the usual ant1_commutat1on relations are as sumed at all times.
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" operators. However, it is shown in Section 1 that if the equations of -

motion are obtained from the canon'ieal commutation laws
i =[] 197 =1, 3], ’

the results are un1que regardless of whether the spinor fields commute
or antlcommute. Since self-consistent results are obtained from_the
cajnonical, formalism, it is not clear whether the incensisten.cy ob-
tained by Kinoshita reflects the impropriety of the commutation
reiations or the inapplicability of the variational principle in this

case, It is of interest, thereforev, to det‘ermine whether Kino.shitafs

conc1u51ons can be obtained without recourse-to the Varlatlon formahsm.

The questlon of whether different spinor fields commute or
anticqmmute is 4of no practical 1mporta_nce when the _Ham;ltonlan
e_ontains only two such fields, since the physical observables obtained
by using either choice of commutation relations are the same. On
the mother hand the transition amplltude for a partlcular second-order
process 1nvolv1ng ‘three d1fferent spinor fields. is calculated in Sectlon
2 by the formal apphcatlon of the Dyson expansion of the S matrix,
and it is found that the fermion propagators for the 1ntermed1ate states
differ for the two choices of commutation relations. In part1cular,
for commuting spinor fields one obtains a fermion propagator S that"
is not a Green's function for the Dirac eqnatlon as is the Feynman .
propagator SF’ which is obtained if the sp.inor fields are assumed to
anticommute, Since the result for a physical observable depends on
which commutation relations are assumed ferthe different .spinor
fields, it is desirable to try to eliminate one of the choices. _

. We Ashall”exclude'thechoice of commuting spinor fields on the
basis that it does not satisfy one of the requirements for physlcal
theories. These,as stated by Pauh,,3 are

(L) The vacuum is the state of lowest energy. So long as

- no interaction between particles is considered the energy
difference between this state of lowest energy and the
state where a finite number of particles is present is

finite. -

&)



6-

(11) ‘Phy'sical quantities (observables) _combmute" with each
other intwe space-time points with a space-like distance,
:(Indeed, due t§c> the impossibility of signal velocities
greater than that of light, measurements at two such

) “ p-'olints‘ cannot disturb each other.) _

T T ‘ B (II) The metric in the Hilbert-space of the quantum

SR .mechanical states is poéitive definite. This guarantees
the positive sign of the values of physical p'rob'abilitiés.
_Pauli has shown that Postulate (I) is violated for half-integer
spins connected with symmetrical statistics and Postulate (II) is |
vioiatéd for integer spins connected with the exclusion principle, but
Postulate (III) is fulfilled in both cases.,.4 Feynman in his ™Theory of
Positrons™ stated that bosons with spin 1/2 and fermions with spin 0
can be'treated similarly to spin-1/2 fermions and Spin-O bosbn's, but ..
he obté.ined for the prvébability that a vacuum remain a vacuum a value
'larg.er, than unity for the forméf case'._5. As shown by Pauli, this is
| equivalent to a formulation of field quantization in which Postulates
- (I) and (II) are preserved but Postulate (I} is violated. 3
T Postulate (I) does not apply to the theory considered in this
paper because we are specifically interested in interacting fields. As
shown in Section 3 Postulate (III) is not violated for either an_ticommﬁting
or c.om"rhuﬁng spinor fields. However, it will be shown in Section 4
that if three or more spinor fields interact with one another via
Yukawa-type interactions, * the assumption that they éommute with
one another is inconsistent with the xf'equireme‘nt that the Hamiltonian

+

density commute with itself at two pbints on a spaceliké surface.

By ™Yukawa-type interactions'™ we merely mean that an interaction
A : term in the Hamiltonian contains the spinor fields bilinearly and the
boson field linearly.

f

finite volume is an observable. For this reason, in order to deal with

| ‘Strictly speaking, onIy the Hamiltonian density integrated over a -

physical quantities at two different points of space-time, X and X5
one may integrate the densities over suitable regions of space Ry and .
R,,
in (R

so that all points in (R ,’t.') are spacelike with respect to all points
b Npety p p

27 tz )‘-
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If the Harhiltoni.a;n" contains only two different spinor fields,_ they may
" be ?.v_sbs_'}_;me‘d to either commute or anticommute without violating
Postulate (IT). B N | |

The case of three or n:idre interacting spinof'fieids is thus
fundamentally different from that of only two suéh fields in that
Postulate (II) places'aifestriction on the commutation relations for
 three or moré fields but not for two fields. | ‘Section 5 contains some
' 'svp'ec'ulatio,hs ConCe_rni'n_g the .apparent distin_éﬂ'on between these two

" cases.

((: o
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l. FIELD EQUATIONS FROM CANONICAL COMMUTATION LAWS .

The canomcal commutatlon laws are
i g(y) = V)] L, -14» = [H, ¢ (], (1.1)

where _ ‘
H= [dxHx) .
We consider two ™equivalent" forms of the Hamiltonian and show that
the field equations obtained by these canonical commutation rules are’
unique regardless of whether different épinor fields are assumed to
commute or ant1commute '

For S1mpl1c1ty we choose

Hx) = § .lg_o;; DY)y () + 3% x) D) % () + H, )

-1, ...2 Lo =2 1 :
+gb W) ex) + gl (X (x)(x) , (1.22)
where the {'s are different spin-1/2 fields, ¢'is a real scalar field,
D = : 8 + s ) |
() = (v,0, +m) |
H¢ is the free field Hamiltonian "o_f the boson field, and g =1 for
convenience. Because of the symmefry of this Hamiltonian in the
1nterchange of the two ferm1on‘f1e1ds it is suff1c1ent to consider the
field equatlons for LIJ only
_ Slnce qJ commutes with the boson field and is assumed to
either commhute or ant_ic‘orhmute with both qu and :’PZ, the commutator

of qu with the second and third terms on the right side of Eq. (l.2a)
vanishes. Making use of Eqs (A-10) and (A-11), we have

[B 4 ()DL (x)4

o) b 0] =T 0D L () g ), b (1], -[Bg(eh ()], Dl

=y! (x)D X)), ¥g (9], +35, (y-x) D g () g )

saaw-x)Dés () g () = K,y %) 3 A



-9-
the last equa_lit')} defines Ka (y,x). Then we obtain
' 1, 1 2.1 2, .1 1,
B0, ¥y (] _= K_ by, L6002 6000x), ¥ (9] _+ B2 000 60), 41 ()]
= K (08, 00, b (1] _000) + [T ), b (0] Wbl e) -

O +TReIMAe), bg (9)] _60e) +[F200, kg ()] _bh et

K (730 [T 000, 45 ()] Yo+ Bt g0, by ()] 660),

(1.4a)

if the differ‘ent spiher fields commute, and S
S | | TS D TS DU | RN
[H(x), ‘Pa' (y)] = Ky (v, x)+¢a(x)[#a(x), \PO. (v)] 10 (x) -[ilia(x), ll»_‘_d-(Y)_i] +¢Q(X)¢(X)

AT 00, g ()] 40000 - [T 600, b ()] b ()6 ()

= Ky, %) HiSy (v e (), - (1.4b) -

if thé, different- épinor fields anticommute. -
We shall obtam another set of field equations from the- second
form of the Hamiltonian. If the different spinor fields commute, this

"equivalent” Hamiltonian Has the _form

. OH'() = - (Diﬁmwé(xywi() (o B(wﬁ >¢()+H¢()»

+'g¢2<x)$1(x)¢<x) T N (1.2b)

and if they ant1commute, it has the form

H(x) = - <Da6(x)¢_ ‘p‘<X>4‘a(X’ < B(xw x))m () + Hylx)

- g¢2~(x)¢1<x)¢<x) el Lt S (1.2e)

where we have neglected the c-numbers which arise when lIJ th are

1nterchanged in the case i = j.
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y To obtain the corresponding field equations we again note that

¢,1(y‘) commutes with the second and third terms on the right side in

both_(l;Zb)’aﬂd (1.2c). _'Also; because the S function is a c-number,

we have
(D g (e (T4 ), 4»; ()] = '-<D{:ig(x)¢g<~x»[¢ i"" ¢;-<§> ] +
+ (D g () (<)), mj«y)-]ﬂi(x}
: : i‘Dip'(x)q‘é("ﬂsda(y'x) _ K"(Y’XA)V" ». : _ (1.5)‘

" which gives

1 o 2 —1 1 .
[H' (), ¥ p (0] _= Ky (v, 2+ 6260 (), 0, ()] o)+ ), ¢ 1 F2e
Kty 48 L0000 2 T8 08 600 4 ) 0
g’ ra” e -Ta “a a7V T Yo -t
(1.6a)
and
[0, ) ()] =K (.50 - 6260000, 201,660
A - o’ a a” o T+
| | 2 o |
=K,y x x) + 1S, (y-x)¥_(x)é(x). (1.6b)
Comparing Eq: (1.4a) with (1.6a) and Eq. (1.4b) with (1.6b), we see
that regardless of whether the different spinor fields commute or
anticommute the field equations obtained from the two forms of the
Hamiltonian are the same. "It is clear from the nature of the abdve
proof that the uniqueness of the field equations as obtained from the

two "equivalent'" Hamiltonians does not depend on the particular

form of the 1nteract1on terms. \
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_ 2. TRANSITION MATRIX ELEMENTS
In this section the transition matrix for a 51mp1e process is
evafuated by the formal application of Dyson s S, matr.1x_expanslon.
- This example illu‘sfrates‘ a difference Between the cases in which fhe
different spinor fields are assumed to commute or anticommute.

- The Dysto)n expansi_on of the S ma.’crix"2 is gliyen by .

4

§S= Z (-1) f d,x, f dx P {HI(x ..,‘H'I(x’n)}, (2.1)
n=0 Yo'} _ ‘-00 . ] i . o

.Where_ P is an operator that orders the factors chronol.ogic':ally so -
that time values decrease from left to right. 'T_Ihe transition amplitude
| forv the second-order precess eorresponding to the diagram.in Fig. 1
is ca@lc,ulateci for the two cases, ' | _ o v
- Case (A): the commutators of different ‘sp'inor fields vanish; and -
Case: (B): the anticommutators."of differe'nt spivnor' fields vanish.
We shall see that in Case (A) the propagator for the virtual fermion
of Type 2 is not- the usual Feynman propagator.
The form of the interaction representat1on 1nteract10n '

-'Hamﬂt_onmn is chosen as
H(x) = gltl‘ () (X)cb (x) +g2¢ (x)q; (X)¢ (x) +H.C. | _(2-2)

where the tl)'s are dlfferent spm 1/2. fields and the ¢'s are d1fferent

- real scalar f1e1ds., The term of the S matrix correSpondmg to Fig. I,

is
M(Z) | f iy 2P T (xz) H o)) (2.3)
v&herie _
HIa(X)=g1$1(X)¢Z(X)¢1(X), | S : | , | .
HY) = g 000 el @)

‘and the factor -zl-,— 1is cancelled by the 2! diagrams describing the

same process, namely Fig. 1 and the same diagram with X4 and X,
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interch'anged.- The expecfation vahie of M(Z).is taken between,an
‘initial state of the syétei'n coﬁtaining fermion 3 and boson 2 and a

A o fina_l' state containing fermion 1 and boson 1, all particles being in
plane wave states and the fermions be.i_ng in definite spin states. The

s . states of the system are then given by

+r

|4 )= =5 ‘P'3)°Z(qz)"l’o> ’ o
"I’F> Pl) 1(‘11 1% > o - | (2.!4)

. . R ) v . +. +
~where the subscripts on the creation operators a J and .c , which are

defined by Eqs. {A-2), (A-3), (A-8) and (A-9), 1nd1ca1:e the type of

K particle. Then we have

2)—<IP_F'M ,)l"Ir1>

- g8, [Caa, % (T lp{w x 1 ey )0 T2 6 0 6 0% 6 D
182 2 |

- °g1gé {:dxldzx 2<‘I’F‘P X) z"‘l’l T - (2.5)

the last two linés are a deflnltlon of P.(Xl’ XZ)" In order to perform
the time ordering we split the Feynman diagram of Fig. l into its

- two constituent parts corresponding to propagation b;)r a particle and
by an an‘tipartide, Figs. 2a dnd 2b, respectively. Thén we have

2.

Plx),x,) = -6<x'2_-x1)-$1(xéwz<>'<2>¢1.(x2>47,2<x1)¢3<x1>¢ fx)

L e e el ittt @O

” The 8 function is defined in the appendlx. Because ¢1 and ¢2 commute -
% @ . T

with each other (and, of course, with the fermion fields), Eq. (2.6)

‘becomes
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P(’<15xz>=.¢l(xz'>*'?i<x [6<x ) W2 2)¢ ) )F B0y ) Bt lw« N

AR
&

the upper sign applying "if-we'have

| [’~_13(><1>, rp;<x2>1+ |

_ o
Hi (x;) 2)] = 0, (2:8)
- [%(xﬂ».%«xz‘)n_* P
 the 1o§ver .s.i'gn..apply;ing if we have
"[npg(él)_, Jle)]. = o,
'['Tp;(x'l);wi'(x‘?_))j;;' - 0;  o e
[bate)s ¥obsp)l = 0.

‘It can be noted that the minus" s1gn in front of the second term on the
' rig-ht side -of Eq. (2. 8) can also be obtalned by requiring two of the.
' commutators and one’ ant1commutat.or to vanish. Making use of

.appendix equations, we obtain

YM(Z) ;[ d43‘1‘14"21\1 5( 10 %) [6(x,- 1<‘4‘ ?_)m (X1)>O+g "X2)<L—pé(xlwi(x2)>o
o0 — Hmzy— 3 . ) .
'—f d, 4% d 42 N ﬁ(xl,x {6 1)[ IS (x "Xl,)]"". Q(Xl _XZ)[—lsaB (XZ’XIH}s *

N S (2.10) e

where N "(xl,bxz) is a cv—number, '

ap
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N ) 2185 . m1m3‘ _ .1/2‘_ ( —>-)—r( v )
B Xv,X‘ = - . - . u {m,,p u.{m ,p‘ -
_ o172 _z(zﬁ)b mm_lam3 MM, | el LPT1TRYT3I T

@ w

ip,.x, -ip,.x%, iq,.%x; -iq,;.x
X e 3 'le .1 2'e 2 vle ! Z; (2.11)

‘With the help ef Egs. (A-20), (AAZZ),. (A-23), and (A-24), Eq. (2.10) -

becomes, for Case (A),

1@ 2 1/2 A ' XN (xS {ma) 1

LAFT"' /2 f % d %, p(xlxz)STap (x,-%) (2:12a)
e.nd for Case (B), | -

| (m,)

= -l/Zf d4x1d4x2N B( 1% )SFQB ‘(xz-xl).

For (B) we obta1n, for the 1ntermed1ate state, the‘Feynman propagator,

Wh1ch is a Green s funct1on for the Dlrac equat1on, i.e,
_v(ypa»pﬂn)SF(x) = 2i 54(}().‘ - . : B | (;,13)
For (A) the propagator is the function ST,- which satisfies

R L

in which P indicates that one must take the principal value when

- integrating 'over'x‘o. This same difference between these two cases’

arises if the ealculations are carried out on the'basis of time-independent

rather than time—dependent perturbatioh theory. v
 From Egs. (A-29) and (A- 31) we see that both functions S nd

ST can be given causal 1nterpretat10ns in the sense that they represent

p.a.rtlcles traveling into the present for XO <0 ahd partlcles traveling

out of the present for x”0 >0. They differ only in the sign of the part

corresponding to propagation by a negative-energy particle. This

difference in sign is due to the odd number of transpos1t1ons of

dlfferent spinor f1elds in-going from Eq.. (2. 6) to (2.7). Thus, the

transition probability for the physical process that corresponds' to

(2.12b) - .
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F ig. 2a depends on the commutation relations of the different spinor
fiélds. ‘This dependence does not occur for all processes inQoiVing the
Hamiltonian (2.2). An example of a transition probability, the
calc_ul_atio’n of which involves an even number of transpositions of ‘
different spinor fields, and which is therefore the same for Cases (A)

and (B), is given in the next section.

€

/{]



. vacuum for t = oo is

,q; are nonzero. Thus

T .—16—> v f ' | .
\ 3. VACUUM EXPECTATION VALUE .. .
‘The probab111ty that a vacuum state at t=-m shall remam a
@ | cso

. | -if
W, = |<S>OI2_=<vP(.e, >O<P f°° i >0, (3.1)

'where P 1s the operator that orders the factors in the oppos1te order

‘_ of t1mes to that of P

To prove that the expansmn in Eq (2 1) y1e1ds the .same.result
for WO whether the different spinor fields commute or antlcommute we

merely show that the vacuum expectatlon value of each term in the

vexpan51on (2. 1) of . S and the corresponding expan51on of ST is the same

for the two p0551b111t1es " The expression of interest is -

(P o =P ) g

' After the time orderlng is performed we have the product of n

Hamﬂtonlan den51t1es . For convenience, the indices may be considered

.to be 1nterchanged ‘after the ordering is carried out so that

<P >0 becomes < H.( . HI(xﬁ.) > 0 L

-which is the sum of 4 terms However, only the terms’which contain

an even , number of a. given q> and wh1ch for every \41 have a correspondmg

<P<x Do

is nonzero only if n is even. The order of the factors is now
rearranged so that all the boson operators appear on the right. By
splitting these up into positive- and negatitle -frequency parts, and
operating successively on the vacnum, we may revplace them by c-

numbers - Next, the following rearrangement is carried out. Call the

'operator on the extreme right ¢ : P1ck out a tJJ @ such that between 1t

and llJ there are equal numbers of Lp and LIJ and commute Lp to the

jrlght until it is next to L[J Call 41 LIJB a factor pair. Repeat the
' .procedure for the first ¢J to the. left of the last factor pair formed
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until all the operators are in factor pairs, all pairs with a given i

being grouped together. Now-

<P(xn)>0

may be unambviguously réplalced by c;nurﬁbers. Since in the formation
of each factor pair and later in the regrouping of all pairs with a given
i to stand together an even number of tria'nspositions‘ of diffefeﬁt spinor
fields is performed, the final result is the same for Case (A) as for

(B). Similarly L
(Plsaddo |
is the same for the two cases, and t_hué Postulate (111) i.s"nc-g,t yi_blated

for either anticommuting or commuting spinor fields.
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4. RESTRICTIONS IMPOSED BY COMMUTATIVITY CONDITION
. In th1s section 11: is shown that for Case (A),.the Ham11ton1an
density does not commute with itself on a spacehke surface prov1ded
three or more spinor fields interact with one another via. ‘Yukawa - type _
: 1ntera.ct10ns "We shall evaluate the commutator of the Hamiltonian
—dens1t1es for the 1ntera.ct1on Ham1lton1an (2. 2), cons1der1ng separa.tely
the two- Cases (A) and (B) d1scussed in Sect1on 2, -

Postulate (1I) 1mpl1es

<11r' PeLy) Qe 1E)=0, @
where {'@' > and |1]2"‘ > are any two state vectors (not necessanly
- phys1cal ones) x' = (x y0), v (;5, 0), (P + Q) is the commutator of the
total Hamiltonian ~ . o
| Ploy) Q6 y)= HELHE] L o 42)
and ' o ' -
| Qbey) = MBI, @3

i.e., all terms_in P(x, y) involve the Hamiltonian of the free fields. The,
‘use of free-field states in Eq. (4.1) is _censisteht with the ‘assumption.
that a state describing interacting particles can be expanded in terms of
free-field states. To evaluate Q(x,y) we make repeated use of the

relationships

v . (=a[B,Cl_+[aC]l B
[AB;C]- { : : _— :

A[B,C], - [A,C],B,
[4,B],C -B[A,C]_ . (44)

[A,Bc]+ { B ' |
- = [A;B]_C +B[A,C],,
[A,BC]_  =[A,B],C-B[A,C],.

Then f'or- Case (A), with 'gl' = gz' 2 1 for .conirenien'ce;,, we have
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| (M) a2 e e
Qe y=ia L ey B e (082 8] ()11 60w’ e+ G )]
2 ey 2 (0w (18 (007 ()1 19 609”648 (00 )]
B “{m,) - . (m,) R ‘
LA S T L A D T
3 (my) (m,)
+i¢" (6% () [§° (s ?(x-ywl(ywl(ws Fy-a’ ]
Lo ) TN
10l pasl G ey - B y).s 2 (=0 )
(m))
s - W )-Fms (y ] 1
0 (x>s et 22052y
(m,) (m,) 5
+° (X)S (x YN-‘ (y)- 3 (Y)S (Y-XNJ (x)]
420 (x)e «y)[?p 0w’ )+ x)$(x)][¢ ¥ (y)+41 (2]
20 (B0 (40 (% (x)]w oW o ). )

On a spacehke surface Eq. (4.5) reduces to

Q(x',y')= 24" (X )¢ {y' )[ll'( L (x')+\L (x‘)q; (X')]W AT ) (! Wiy

| +2¢ {y' )¢ (x )[\TJ (x 1 ( X)+t1'J (x' )\P ')][‘IJ Y)\P (y )1+ (v N' ty'].

(4.6)
- It is convenienf. to eh'nose
\ + g N
1T)=b) (p))b, rlay (a3) 1) |
)= 2,y 1) “n
where b (p ) creates a meson of type i with momentum ; +S(q.)'

a4 i
creates a fermion of type i w1th momentum p and spin s, and

. |-§;0> is the vacuum state. For later convenience we set
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g, = ; - Evaluating Eq.- (4_. 1‘), we obtain.

,5.1' = :C-J.‘i:f;.z ;_‘q3
o . ) ) ) : 1/2
, QY v = L .57.‘3111.,3 o _
| : +(m 2) o s"v' - o »'—.(mZ) s, .
X[u (ml P)S o (x'-y'ug(mg, -p)tu, (m, p)S op (V' -xug(ms, pll,
) (4.8)
;x.rhere o o
s, 0) = 1/2[s(x, 0)-i sU(E, 0)]
=1 s &0 . fer X 40,
$7(X,0) = 1/2[5(3?,0)+_i s“)(;{, 0)]
- Zi _s(”(;,_p) g | for\;{';!lo., (4.9)
Then we have
| _ mlm‘," 1/2
<'@’3 IQ(X Y)|‘I’>‘ - —(_Z_) ( m, T, M M )
w W w ,
X igtm 5 [s4)C 2’( 0)- S‘Iﬁ"mz’w o tglms. -F)
N m m, 1/2_r o d,k ;1:’.-(;_*)_. .
(277) mlwm‘3u')Ml;oM3 u (ml,P)U'— ;——Ze _ VIR yaﬁ]uﬁ(rn? p)
(4.10)

~which is nonzero. .'S1nc_e the terms in P(x, y) that involve both boson fields
must contain one of them bilinearly, it is clear that we have
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<1:[J"]P(x y )l-@-> = O and Eq (4.2) is violated. For case (B), on the
other hand, we obtain :
Q(x, y)=iA (X Y)[LP (Y Y)NJ () (Y)][qJ (XllJ (X)NJ (X)‘lJ (X)]
. (M) 23 v ®
HA P -y) [$P (0 (Y)+¢ (y)¢ Y)][$ ¢ () + 304 (x)]

S T S | (T“Z) | “n ) 1
16! eI s F ey 3)-F s L y-xe (]
. (m,) L (m,) |
i et B s 2 ey )6t ms % (y-x0e’ o]
L om,) L m,)
it el [T s 2 (x-y)¢1(y>-¢1(y)s 2 (y-x)¢1(x)
o, m) L, L, m)
Wis <x-y)¢2<y)-¢2(y)s Py’ ()]
S, 5 (my) ma) o,
-i6% 0" F S -y () -5 (s 3ty ) (x)
' (m,) - (m,)

s Lyt -BPms 2 e’ ], S (a1

which vanishes on a spacelike surface on aCcount of Egs. (A-39) and
(A-40). Also we have P(x', y')=0, and thus the assumption that different
spinor fields ant1commute is the 51mplest one that satisfies-Postulate (II)
It is 1nterest1ng that 1f the interaction 1nv01ves only two different
spinor fields that commute w1th each other Postulate (II) is not v1olated

This can be ver1f1ed easily by d1rect calculatmn
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5. CONCLUDING REMARKS
| It has ‘be.en shown that the requirement that the Hamiltonian
density commute with itself o.n a spacelike surface implies that spinor
field operators representing\ different particles that 'interact with one |
another cannot be assumed to commute; but that th1s conclusion can be

drawn only when there are three or more such fields. The distinction

‘between the case of two f_1e1ds and that of three fields is closely connected

‘to a difference in the permutation properties of two and of three or wmore

tlements. This suggests that for three or more fields the commutation
relations may involve more than two'field operators. The choice of

the forms of these commutation relations can be determined by

genera11z1ng the consequences of the usual commutation relations for

a s1ng1e f1eld Since quant1z1ng with commutators or anticommutators

leads to énsembles of partlcles obeying Bose- Einstein or Ferml Dirac

stat1stlcs, and these are related respectlvely to the 1dent1ca1 and the

alternatlng representatlons of the symmetric group, the forms of the
‘more complicated commutat1on relations should perhaps be 51m11ar1y

related to the hlgher—order 1r_reduc_1b1e representations of that group.

In this conhection we note"that it is the dist'in'c'tne'ss of the two bosen
'f1e1ds that destroys the symmetry ‘of the Ham11ton1an in the’ 1nterchange
of any two sp1nor flelds, and perm1ts nonzero trans1t10n amplitude’s’
between initial. and final states described by elgenfunctlons belonging
to different irreducible representations of the symmetric group. How -

ever, the requirement that the eigenfunctions of two physmally

realizable systems belong to definite representations of the symmetric

group places severe restrictions on the symmetry properties of the

' Hamiltonian with respect to interchanges involving the different spinor
fields. This fact may perhaps serve as a guide in the further

" investigation of the interactions of several spinor fields: "
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Part Two
YTHE SCATTERING AND PRODUCTION OF K'MESONS

INTRODUCTION
This part of the thesis is an investigation of the possibility of
obtaini'ng qualitative agreement between the results of scattering and
production experiments involving nucleons, pions, and the new particles,
"~ hyperons and K mesons (hence'fvo-rth referred to as. kayonéj,- and the
predictions of weak-coupling theories.

Although methods whose application gives a quantitative-
‘description of the pi'on-nucleon interaction in the low- and medium-energy
ranges have been developed by Chew aLnd_.Lovv,6 I felt that before ex-
~ ténding these methods to the treatment of interactions involving the new
pafticles, I should examine the results of perturbation theory. As
perturbation calculations failed for the pion-nucleon case, th_e: justification
for this approach lies in the hope that the coupling consta.ntré involved in
-the kayon interactions are sufficiently small to Ayi'eld at least qualitative
information, and in the simplicity of the method of calculation. - Because
. the techniques of time-dependent perturbation theory are well known,
the details of the calculations have been omitted. ' All calculations have
been performed With;th‘e. assumption (justified in Part One) fha.t different
spinor fields anticommute. » |

The cross sections for the scattering of K+mesvons‘ by nucleons
and for the associated pr-oductioﬁ of heavy particles by 7 ‘mesons have
~been calculated by lowest-order perturbation theory on the assumption -
that all bosons have spin 0 and all fermions have spin 1/2. The.
pdssibility of either direct or derivative coupling for the kayons has
been included; but the pions are assumed to be coupled directly in all’
cases. The types of interactions that have been considered are
discussed in Section 1. It must be emphasized that these calculations
have been made on the as sumption that there are no parity doublets.

The appearance of the two types of interaction te'rm's_.I_( A T\ and
I—{‘K‘YST\- merely indicates that the possibili;_ies of the two parities pf__

the kayon relative to the /\n system are considered ‘sepérately.

A4
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The forms of the different‘ival"aﬁ'd total _croAs's sections for
scattering and production are given in Sections 2 ahc;i'v3, respectively.-

These sections also contain a discussion of the results. - -



-25-

.. TYPES OFINTERACTIONS
“We shall assume ‘that pions. of spin 0 and kayoné of 'spin 0 are
interé.cting with nucleons, A\'s, and ='s, _ all of which Have spi'n-l-/Z.. The
correspbnding quantized fields a_.‘re taken to be,’ respectively_, a vector,
spinor, spindr, scé.lar, and vector in a three-dimensional isotopic spin
space. [ With these spin and isospin assignments there are six different
"ways in which a scalar can be formed out of three field Qpefat,ors. De-
noting these 'operatbrs by the symbols for the corresponding particles,

we find that the possibilities (spin indices omitted) are:

= Al_AB_B ]
moTy e ‘

I—<A' _ il 7j AB ’T\B

-

_A ~_ A ',
K /\T\ K}
Az ,
=j <k &
eijkz z g

where- A=1, 2; j=1, 2, 3,

1 if i, j, k are cyclic,
eijk =¢ -1 1f i, k,jare CYC].lC, .
0 if i, j, k are not all different,
repeated indices are summed, and the bar indicates the adjoint. For:
boson fields the adjoint is the hermitian conjugate;—¢—=—¢ *  and-for

fermion fields we have

J’ = ¢+Y4;

7 are the usual Pauli matrices.
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It is further assumed that the pion field, as well as being -

coupled by Vg to the nucleon- f1e1d, is coupled directly to the hyperons AR

excludies the term in Eq {1.1) that contains three boson fields.

.'the pOSS1b1e interaction Ham1lton1ans are

g, K=+ H.C.,

| 1g2Rf} Y5 7T i+ H.C. , |
)
i

' & (,-3 R yu77\+H C.,

2 e ) .
w (0K Evsy, Tt H.Co,

!

RAysN+H.C.,

€4
f3’ R

1 0 RAY G
1 n '(3111:(;)7\\15\’11“-" H.C.,

g A T+ H.C.,
ig67\~y.5'2‘n'.+vH.C. )
ig7ﬁ \(5'7?(1.1'..,

igv8‘ ez -n_'.,".

ny

~and =, bu& that the kayon field 1nteracts either by direct or derivative

F1na11y, only Yukawa - -type 1nteract1ons are con51dered th1s

Then

 (1

.2a)
'.Zb).‘.
.2¢c)
czd)'
.3a): '

.35) .
3c)

3d)
.42_;)
.4b)
.5)

)

.6b)
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The g's and f's are dimensionless quantities. A choice of the repre-
sentations of the operators consistent with the requirement that the
charge operators for the free fields be diagonal is that’

gl=L (Ki+1K1) :
2 .

g are real fields) creates a Kt ana annihilates aK,

{where the K2
1=tz
v N2 S0 =
annihilates aX and creates 1ts ant1part1cle, 2~ creates aXx , and YL
| creates a proton )

The 1nteracfion terms-'ﬁ(li.'Zd) and (1';3d') are not unique, because
the order of. Yg and Y, can be reversed. A consequence of such an
amblgulty is that the matrix element for a g1ven process is undetermined
up to a factor of (—l) , where n is the number of times the two interactions
occur in the Feynman diagram corresponding to the process in question.
Therefore, only interference terms arising from two diagrams for one.
of which n is odd and for the other of 'W.hi‘c}{_n:iseven' depend on this
_arbitrarirless. Unless otherwise specified, the results given refer to
the case for which the order of the'--two v's in (I.Zd) and '(1.3d)( is the
same. It must also be noted that at present there is no way in which

the relative signs of the interaCtion"Hamvi‘lto.‘nian_s” can be determined.




x
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2. SCATTERING OF K MESONS BY NUCLEONS

"The three possible react1ons 1nvolv1ng the scattering of K

mesons by nucleons are

K +P-K +P, " S (2.1a)

K" +N=-K +N, R ~ (2.1b)
K++N»K°+P'V.-. L (2.1c)

The lowest- order Feynman d1agrams for these processes consistent with

the 1nteract10ns to be considered are g1ven 1n Figs. 3, 4, and 5. As the
expressions for the cross sections were obtained by standard time-
'dependent perturbation theory, the details of the calculations are o-

‘mitted.

The matrix elements for the processes corresponding to the

diagrams i\n_Figs.- 3, 4, and 5 are, with obwvious notation,

- -7f\3 =My T, s | o | - (2.2a)
i ac 7q.4,‘ (2.2D)
74 '"15a +7ﬂ.5b . 3 | : (2.2¢) .

As a consequence of the charge independence of the 1nteract1ons the')r\'

are related to each other,

s Mgy 111

.

.743b S PRRY. PEEREEE (- 1. e (2.3)

‘The cross sections are, then, of the form

o(K*PF61+¢J+;dk,.‘ ST - - (2.4a)
o(K'N) = 407, ~ (2.4b)
O’(K P) =g . +0° -0, - (2.4c)

- arise from. the squares of)ﬂ 3a and?q 3’ respectwely,
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and .O'k is the interference term. It'is therefore suffic_ient- to consider
‘the ctoss sections for the Reaction (2.1a); the results for the other two
processes can be obtained from the relationships 6f.Eq. (2.4).

The following notation is uSed. M, denotes the nucleon maes,

A B AY
M2 the Z mass, M, the /N mass,m the kayon mass, E1 the nucleon energy -

3
- and E the kayon energy, both in the center-of-mass frame. The
dlfferences in the masses of members of a given isotopic multiplet are

neglected The units are such that

2
8
» 4w
is to be compared with
2
e _ . 1.
I37.
Thus, the ceuplin'g constants are  and L=
UpT _ (4" /2 (41T)1/2

The scattermg Cross sectlons in the center - of -mass sYstem

are express1ble in terms of the quantities

2E.E +M§ M2 - m?

»
1]

1 172 1 ’
S 2 2 2
2, =2E|E, + M, - M| - m",
b = Z;(EZ - MZ), - : | | (2.5).

and certa1n coefficients AZ’ Bl"cl’ and. D! that are given in Table I;
the different values of the subscr1pt 1 correspond to the d1fferent theor1es
that are being cons1dered
The form of the differential cfes's section terms, averaged and

summed over the initial and final nucleon sp1ns, that arise- from the --—

squares of 7. 2y ‘and m. 3b is
e

‘ do.‘e hjz AI Blcos 9+C cos 6 D cos 6 | :
dQ 2(E1+E2) a2+2ba cosG+b cos ‘g (2.6)
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for £ = 1 through 8, n = =1 or 2, and where the quantity h!’ which is

_'also listed in Table I, is the product of four coupling constants. . For

derivative couplings it 1ncludes the mass of the boson, and--in general-- .

it serves as a means of correlatmg a given value of £ with the particular

-theory to which that 0, corresponds.

The 1nterfsere:nce terms /have the form

do. ' h |A -B cos8+C coszef—D-cos36 '
2_ 1277 2 L (2.7)

de_ -’(E1+E2)2 val a2+o(a1+a2)cos 6+ bzc‘os'z 6

. for £ = 9 through__2.4..

Some of the coefficients that appear in Table I can be obtained

. from others by proper subst1tut10ns of M and M3 " In such cases, only

one set of coefficients 1s listed.

" The angular distribution of the scattered kayon for a laboratory

‘k1net1c energy of the incident kayon of 150 Mev is plotted in Figs. A and B.

: :Because the character1st1c features of the

Ly |
a9y, o

that differ only by the ;i'ntercharlge of M2 and M3 are the same, ohly one

dol

- a0 -

The total cross sections can be obtamed by 1ntegrat1ng the

vexpressmns in: Eqs (2. 6) and (Z 7) to y1eld

ag b
LT =R
ST (EHE,)

1B, - 2a.C, .3a_D . a +b . ‘
21 [__H nt,_ = l}ln‘ n },_ C (2.8

. - a2 2
,1'rv:hl [, . [A.‘+A_;h31_+ <2a N )c ; a_(3a_-2b )DI]
.afzi_bz AR ) T )
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for £ =-1,through 8, n.= 1. or 2;and

)

. 2m hz }'_zci, . 2(»al+;a2:v)D‘1”
T 2 Z 3
. (EytE,)” Lb" b
[ a B, alc, aD a +b
L1 U et e S S B I 1
b(a,-a,) { b 2 3 T ITh
2771 L b b~ 1
’ - 2 3
Z a 1-a A T+ aZB‘e + az’c‘e' + aZDI} In 3-2+b
27%1 e b B2 3 -
(2.9)

for £.= 9 through 24. _ v _
- It is also of interest to consider the extreme nonrelativistic

" {Thomson) and extreme relativistic limits of the total cross sections.

- These are-given in Tables. II and III.

. A thorough discussion of the propert1es -of the Ty 'sfor g =1
through 8 has been presented by Peshkln and by Ashkln, Simon, and
‘Marshak, 8 in the application of weak - couphng theories to pion- nucleon
scattering. We therefore d1scuss prlmarlly the interference terms.

: 'In the Thomson l1m1t E1 M1 and E =_ m; all the terms that
correspond to the /A" and T having different par1t1es relative to the
K -1 syqtem are negative, whereas the terms for which the A and =
have the same par1t1es are pos1t1ve For high energ1es the terms for
wh1ch the kayon is .coupled d1rectly to one hyperon but w1th der1vat1ve
couphng to the other hyperon are negatlve, and the other terms are

pos1t1ve .Table VI conta1ns ‘the numerlcal values of the cross sect1ons

' a‘t—dlffer ent—ene Tgie s—of~the—1nc1dent_me S on. We have taken

M, = 1836m , M. = 2325m , M, = 2180m , and m = 967 m .
e 3 e 3 v e e’

- As expected, the cross sections decrease 'With“_‘enerigy for the direct

1

coupling theories but increase with energy for the derivative coupling
theories. Therefore, in the high-energy _limit' of the theory with both

direct and derivative couplings, the term that contains only the latter
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dominates vove"f both-the'i‘nterference term and the ‘on'e‘vthett contains _
only'the former. Thelast ‘conclusion is correct, however, only if the
“ two'coupl_ingA constants are of the same order of magnitude. va we have
g >f, then all three terms can contribute appreciably ‘even at high |
energies. _ - |
o . An effect of the presence of a’ \{5 ina matnx element is to
depress the magnitude of the ¢ross- sectlon near the Thomson limit.
~ This effect is stronger, of course, if the y5v 'atpp'e'ars in both 34 and :
m 3b than if it appears in only one of them.
‘The experimental data seem to indicate an 1sotrop1c angular

.. distribution or possibly a slight peak in the forward direction, 9

" depending on’ how man_y ~of the events in the above -mentloned report .
can.be _accounted'fo.r by Cou_lornb scattering. The angular distribution
~given by Cocconi et al., which consists of 23 events at energies between
- 20 and 100 Mev, is compared with our results in Fig. C. The best f1t
- of thé data can be made with the S(PV) theory for both'm ..... o and M. 135
whzch Would mean that the A and the 2 have the same par1t1es, or,_
more precisely, t that the product of operators 7\2 has the same

reflection:property as 3 =. The total cross sectlon at 80 Mev is then

| R fg 2 ;flz' 2 f1f3
\U:GS+Q6'+019;("°5 I +5.2 T +11.7 ~

" and on the basis of the experimental value of 14 m_bg' we choose

hHooo s 0.9
(41:)1/2' (4m) —I1/2 T

The e‘);p.erimental' daté at this stag'e ﬁa're"not vsu‘ff‘icient', hoWever, to
'exclude the p0851b111ty of other theories. o

We see from- Eqs (2.4b) and (2 4c) that for the theory we have
chosen the Cross. sect1on for direct scatter1ng by neutrons is approximately
the same as for . scatter1ng by protons, but that for exchange scattering

it is almost zero.
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- 3. PRODUCTION OF HEAVY PARTICLES BY. 1ri MESONS
In this sectlon we give the cross sections, calculated on the
, bas1s of the - Yukawa-type interactions discussed earher, for the first

of the three reactions

T+ P a5KQ4-ﬁp,ﬂu o s " (3.1a)

4P =K+ zp,_ . - . - (3.1b)
) . - + ‘ . . . - . \ - .

™ +P->K +.32°, . L (3.1c)

Certain conc¢lusions regarding the other two processes can be drawn,
however, v on the basis of the results of the previous: sectlon
' The matrix elements for these processes, ‘the dlagrams for '

‘which are given in Figs. 6, 7 and 8, are’

, m(} :-W\éa +m>65’_ e o ©(3.2a)
’“\7 7“75'*7“7b’ e
7ﬂs 7r18a+mzab 7"8@ | B CED)

They are related by
'YTL?a:"Y[Sa::(jl): \‘2,

Moy Mgt 2 (D (3.3)

By mak1ng use of the conclus1ons of the prev1ous sect1on and neglectmg
the mass dliierence between the— —and—Z}-—We—ebta1n—the—furth=r "
relat1onsh1ps . ‘ ' '

W\ 6am7a-m8a1 (-‘1) \lT,

mébzm7b:m8b.:mgvcz:.ﬁ>:ﬁ:’1;-.(-.1). : - (3.4)
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It must.be emphasiz'ed that Eqs. (3 4). are vahd only if the same type of
'theory applies. for the KKT\ interaction as for the K Z n interaction
and if the relative signs of the interaction Ham11ton1ans are as g1ven

-earlier. For this case, then, the cCross sect1ons are

o(KO/\ZO) =0 +d" +o, I - (3.5a)

ok =20 =g gt (3.5b)

o(K 2 ) = 2 o, S = (3.5¢c)
where 0™ and ¢ arise from the Squares of TYL and m()b’ and 0'_/t

)

'1s the 1nterference term. v ,
The forms of the o Nits, 0™ 's, and ot’é are, respectively,

do[: hi . p AI_BE cosG_+._C1 cos_G—chos 6” |
diz .(E2+E3F qa- _a§'+ 2d az'cos 6+d2 COSZG . (3.6)

for £ =25 to 32,

do h

dQl =L — [ (E +E ) Z]’—Z‘ Il[A‘e—Blcos 0] (3.7)
: (E +E;)” . 1 _ _
for £ = 33 to 36 and
| . [4 B 2
} _dal ~ th 2.-1 p -AI—BI cosG+_Clcos g
. ,:(E2+E )y s va2‘+d cos 8

(3.8)

‘for 1 37 to 68, where q and p are, respectlvely, the absolute values
. 'of the center-of - mass momenta of the. .pion and kayon, d = qu, and E3
‘is the center-of - mass energy of the /\ _ o .
The coefficients of Al’ Bl’ Cl’ and D'ﬁ for the d'rffer_ent
_,theories are given in Table IV. ‘It turns out, however, that many of

"~ . the.interference terms are zero, for which there are two separate .
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causes. The process of averaging .and,summing over the spins of the
initial and final fermion involves the evaluation of a trace of a product
of y matrices. :Since such a trace is zero if the product involves. an odd
number of y5's, all:interferenée terms for the cases .in which ™M 4
contains an odd number of y5 s are zero. The interference terms are

also zero when we have

X B *
"ga g T - My h4a’

The angular distributions for a laboratory k1net1c energy of the
' plon of 1.30 Bev are plotted in Figs. D and E.

The total cross sections for productlon are -

| | 2 2
. 2mh, : o “a,B (Za —d )C a5 (3a5-2d47)D
. - 4 25{2 [A+ 21, R A A

£ z 2 |™M 7T T3 Z 3
T (ELIE,) ay-d , a“ d
B 2a,C 322D, +d
1| P 22~y a2 az
- - u —t = !Zn a, - ’
d d 2
(3.9)
for 4 = 25 through 32, )
| 4mh, Lo I
o, — [(B,+Ep) M1 B o4, : (3.10)
(E +E,)* _ a :
for £ = 33 through 36, and
4 h ' ' a,B, . a, C a,+d
_ 4 2.-1]1 229 - 22 %y | 2
Ty = 2 [(E2+E3) M] {d_ [AN Tt == 1 In 3—37
(E5+E3) S d=—] 2
273 .
2B,  2a.C o
QUL TR ?‘2 : } - (3.11)
- a ac o

for £ = 37 through 68
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.Th_e total cross sections near threshold are listed in'T.a.b,le V.
. They are functions of Ithev"pr'o'ton threshold momentum and energy,
- which are C o ' . ' ' :
] a2 2 2(1/2
Cagp = My + ] { 0 o) m )2 1}_/,
, ;
]

) : o ‘._(3;.12)-'

1T v [M +m]” [(M3+_m) +M1,-H

where.p is the pion mass, p = 273 ™. Table VII contains the numerical
values of the total cross sections at different energies for Process (3.1a).

- Two characteristic features of the experimental results a_rethe.
+ 10 The

theoret1ca1 results cannot be made to agree w1th such angular distributions

forward peakmg of the KO and the backward peaking of the K

in a manner that 1s con51stent with the conclus1ons of Section 3. Budde
et al. have 1dent_1f1ed 17 events as = s, 18 as /\ s, 3 as Zo's with
vreasonable certainty, and 16 as either /\ 's or Z}O's, If the 16 un-
identified evenfs‘ are divided in the same ratio as the ones that hev'e
beevn'ide‘ntified,' the relative abundance of the three types of events is

0.0, ot

c(KOAY): ¢ (x0= )i o (KT =) 60123, " | (3.13)

whi'c‘li'tzco’rresponds to the relative contributions.

o™ gD g3 4:5. B ‘ ) : (3.14)

" If the same type of theory does not describe both the K AN and REM
interactions, Eq’s;' (3.5b) and (3.5c) no longer apply. However, all but
one of the terms that contribute to _(T(K_‘o Z)O) and G(K+2_) in this case

~can be obtained from the o,'s already calculated by simple 'substitﬁtions.

The term that cannot be obtﬁ.med in such a manner is the one due to the
interference between M 8b and M 8¢’ although its angular and energy
dependence are the same as for the interference term be’cween'}“h’l5a and.
m Sb_'because they differ only in the type of incident mesbn and
emerging fermion. The situation then becomes much more complex

: ,Because' of the many possible combinations of terms for the cross section

for Process (3.1lc).
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Because the use of perturbation. theory in the treatment of the
pion-_;_;gmcleoﬁ interaction at the energies necessary for the production of
hea{ry éarticles may reflect too much optimism, it is beli'ex./édvthat a
better treatment of the pion-nucleon vertex should be at'ﬁ_empted before
‘the possibility is discarded that the same",type of theory does indeed

describe the I_{7\7’( and KZ 1M interactions.

N
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APPENDIX: NOTATION AND REPRESENTATION
OF A AND S FUNCTIONS '

The spinor f1e1d function LlJ(x) and its adJomt @(x) sat1sfy the

Dirac equatwn
8+ =0
(Yp, " m) ¢ 3
8 Iy -mi=0, L (an
: Withﬂ,vk= “iBo Yy TR Y, TV

‘ The following'Fourier decomposition is used for the fermion
field |

| ' N\ 1/2f2 . 4
b= 3/zf d k< > [2 w0 Faltg s = u pgel % k)J
. (Zw - j=1 j=3

. 1 B e SR
b 6= — 5 dk(T £ (k) a k)t = W (ke K .,
| X (2 )3/Z_w 3 <w> le uq_ € N J:3 ua e .

o  (A-2)

and for the scé,lar or pseudoscalar boson field

- ' o 1/2 | |
$(x) = (—;—“)3/2 I d3k_ <Tw> {e R +(k)J ©(a-3)

. _ L -2 2 - -, + J
w1thk0—m§+ kT+m™, kex = k'x -koxo, usu Yy, where the u''s are

four linearly independent spinors. They satisfy

(k- y-im)u(k)=0, j=1,2

1"
w
S

ey #im) ) =0, (A-4)
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i.e., the tw.e solutibns j‘= 1, 2 that descr1be a ferrn1on w1th momentum .
four—vector ku’ ko = @, have been grouped together with the two -

‘ solut1ons that describe a fermion w1th momentum kp, k0 = -w,'-th‘e
latter descr1b1ng an antifermion of momentum +ku’ k0 = w. The _uJ'.s

are normalized so that we have

R
where
k J
ey = 2L, (A-6)
vl‘kol
“and i
2 . . (-ik: y+m)
J -] - B
jf)l u (k) u[3 (k) = 7o s
4 j _j (ik-y+m) 8
ARt S Rt (&

"Here a (k), b‘](k), c(k) and their hermltlan congugates are q- numbers

\ satlsfylng
20, “(k)] '6<1?f1?'")_6i‘j,'
o0, b0 3,2 6@ - F 08, (a8

the other plu'svbrack_ets.in- these quantitie’s'fy_anishing, and

o

e, d)] . = B(F - E, a9

tne other minus brackets in these quantities vanishing.
' : Equations (A-2), (A-T), (A'—8) are .consistent ‘with the commutation

rules

gl Yp]y = L8060 Fgn], =00 S
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[t Bgn]y = -iSggle =¥ (A-11)
where o
S(x) = _1_3 [ eF Xk y+im) s> +ml) e(kyd k. . (A-12)
' - (2m)7 -0 :
We define the interaction repfésé'rité.tidn vacuum state I‘LPO>
by . ' '
Clig, ) =0 (FpbTw =0,
c (k) I‘ITQ > =0, -<TIIO,Icf(k) = 0. (A-13)
' Thén, by direct caiculati‘oﬁ, we obtain
(b6 Bgly) g = ~iSqptx - ¥, (A-14)
and . | o .
(Bl gl D = - 18 5gbe = Y], (a15)
-Where< >O indicates the vacuum egpéctiqn value, and
+ 1 © ix.x a2 2
sTix)= —, [ . e T(k-ytim)d(k +m ) 6(k) d 4k, (A-16)
_ 2m? Lo : t (k) 2, .
- 1% kexy L 2 Tl e
S (x)= ——0py [ e (k- y+im) 8(k” + m")6(-k)d jk, (A-17)
| : (2mw)~ -oo | T .
with d k = kykdk,.
‘ +1 fc;r X >0
0 for Xg < 0, (A-18)
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- G(x) 4+ 0(-x) =1,

6(x) . 8(-x) = €(x).. '(A"-lg)'
: Eqﬁations (A-12), (A-'l,_6)> and (A-17) erebco'nsi‘stent with
- S(x) = S'+-(x)‘+l.s'(yx), .{A-ZQ_

‘whereas from the definitions of the GQ_funetiOn and the relat1onship

2 2 1 I
o(k + mY) = <z [ (ko + @) + 6(1;0 - w)] (A-21)
it 'follew's'that bnly k0 = @ contributes to S+,_ and only 'ko = '—w_coritributes
It is also convenient to defirie the functions
(1) _ |
(X) =i [S S(X)]’ (A'ZZ) '
C My 4 i el Stxc) S
SF(x) - sy +ielx)S(x), L (A-23)
Splx) = €x) Sp(x), : (AA-“24)‘
which have the momentum representations
st ix) = 1 s N e yrim) 0 + m?)dk,  (A-25)
Spx) = —2—,-4 B elk"x (k—-ﬂz_ll) d k, o {A-26)
(2m) " -o00 k +m” - de A
5 ik-x (k- y+im) o
Splx) = 4 f e ) ‘TlT), Celk) dgk ;s (A-27)
_ (2.11') ) k7 +mT-1ie : :

the small 1mag1nary term in the denom1nator merely def1nes the contour

around the poles and is allowed to go to zero a.fter the residues have
been evaluated_ :
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It 1mmed1ately follows from’ Eq {(A- 26) that S (x) is the :

_ Green's function for the Dirac equation, i.e.,
(y a -+ m) SF(X) 2154(x) B (A-28)

SF (x) represents particles to be absorbed traveling into the present
for x,< 0 and particles to be‘,grea’ted traveling out of the present for

X0 >0. This can be seen either with the help of the S+ and S~ functions
$F<>¥)'=.i {s+(>%)[1 Fet ] - 560 I - @]} (a-29)

~or by carrying out the contour :»integrat‘ion ‘in‘Eq. (A;26):

ikex (k- y+im) 4k

xo >0: Sp(x) = __1_3 [ X224k, - (A-30a)
: . (2m)” -0 ' ‘ :

' PP likex (ke V—vin.]) DU
xg € 0: Splx) = - —— [ e __la_____ d;k,  (A-30b)
: (27) -0 :

with kg = @ in'both cases. The last two equations exhibit explicitly the

projection operators for fermion and antifermion states appearing for

xb >0 and xg < 0, respectively. A
The S (x) function can also be glven a causal 1nterpretat10n ’

similar to that for S (x) as is ev1dent from
Spb) =i ST+ e] +57R [1- e B (A-3D)

however, it is not'a Green's function for the Dirac equation. Instead

it obeys

. 2i ik- x 2 1
Ay,0, * m) S (x) = = [ e elk)d k ===8(x) P—,
OB (2-;:)4 0 L T X0

- (A-32)
in which P indicates that-one mus‘tn__"take the principal value when -

integrating over XO .
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_ © For the bbson field we obtain from Egs. -_(A-3'),_.”(Av-9>)-,‘ ;md »

6, o] = iAG-y),  (a33)
'with |
A e b (Pikex g2 2 |
A = - —y [ e 7ok tmT)e(k)dk, L - (A-34)
(27)7 -0 - ' ' .
'and.
Ste) - l(Yp‘G'u"m).A(X)-. - L (a-35)

By perfb'rming_the ko int_egfations we find the three-dimensional

representations’
| o dk = K
Ax) = __._1._' ‘ i elk x sin wxo,- ) (A—36) ’
. @2n’ o © | v
- © dik - - L
S(x) =—s ] == e [wy cos wxy-(k-y +im) sinwx,],
(2m)~ -0 ' E : '
(A-37)

ood:,ﬁk‘ﬂ-(».}—{»_’_> o .
e [(k-yi+im) cos wx + wy4_sinwx0],_

o
|

(Z'n')3 -0 ®

(A-38)

which exhibit the property of ‘A(x) and S(x) that they vanish for .

Xg = 0; 3? 7—‘ 0, and therefore, by ré_asons of -invafianc_e',_ for any x2>0,

a@ 0=0, o (A-39)

SEL0) =iy, 8E). . (a-40)
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The function S(l)(x)', on the other hand, does not \}éniSh'-for x‘2 >0:

SO LT S R e e

. We will also be interested in the combination

2 R L
2 3 >

S(”(:?,O) -’s(.l)(_;{,o)::.
o ‘ .’(Z'rr -0 w

K-V, (A-42)
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N o 7/
_ X2 Xil
i vz e

| Flg 1. ‘Féynman" diagram for a second-order process involving
three different spinor fields. '

s

s

_t2.'>f|‘ - "'Tz<h‘

(@ (b

Fig. 2. The Feyﬁmah diagram of Figure 1l divided into its two
constituent parts corresponding to propagation (a) by a
particle, and (b) by an antiparticle. : ‘
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Fig. 3. Second- order Feynman dlagrams for the scaLterlng of a
K+ meson by a proton

Fig. 4. Second order Feynman alagram for direct scattering of a

KT meson by a neutromn.



-48- .

C _Ko
~ o
. \/\‘
< :

‘Fig. 5. Second- order Feynman dlagrams for charge- exchange
. scattermg of a K meson by a neutron.

Fig."é Second order Feynman diagrams for the production )

of a NO.
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| . Fig. 8 Second-order Fe}'rnman-'dia'gl"ams for the production bdf aZ .

[ N Y
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N T T
[.OF .
I9
o8t
dox -

da” 06

04

02

25 %0 135. ~ 180
‘ eK(deg)

My~ 12578

F1g A D1fferent1a1 scattering cross sectlon terms for a 1abora ory
kinetic energy of the incident meson T = 150 Mev as a function
of 8, the center-of-mass angle between the incident and
emerging meson, for £ =9, 14, 17, 19.and 24. The curves
for the terms with £ equalto 1, 2 and 9; 3, 4 and 14; 5, 6 and
19; 7, 8 and 24; and 11 and 17 are similar, and only one out
of each group is plotted. In order to obtain the angular
distribution for an £ value that corresponds to the square of
Y 33 orn3p from the plot of an interference term, the latter
must be divided by a factor of 2. ‘ '
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- +031 : . ' o | . =

0 . 45 90 135 180 .
- ey (deg) '

MU- 12577

Fig. B. Plot of differential scattering cross section terms for
T = 150 Mev versus 6 for £ =12, 13, 18, 20 and.22.. The curves
~ for the terms with { equalto 10 and 13; 12 -and-21; 15 and 18; 16
and 22; and 20 and 23 are s1nnlar ' ’
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75+76+°9

0 45 90 - 135 180
o ok (deg) |

- My-12578

Fig. C. Plot of | -
fdo.  do,- do

(s, e, 19).
e de  dQ _
at T = 150 Mev versus 0. Experifn'e'nta'l results are shown for
comparison, ' : ' B o o B .
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o o | 1057 ‘ . )
ool __ : | |
Olr
o . . S
45 90 | 135 180
oy (deq) -
R MU-12579

Fig. D. Plot of differential productlon cross section terms for
T = 1.30 Bev versus 6 for { =26, 27, 29, 30, 31, 33, 35,
39, 42, 45 and 59. The curves for the terms w1th £ equal :
to 26 and 28; 25 and 27; 30 and 32; 33 and 34; and 35 and 36

are similar. For
do
dQ2

‘the_upper':sign applies if Y5 and y are in the same 6rdei' in
(2.2d) and (2.3d), and the lower skilgn apphes if they are in .
the opposite order. . : :

42
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0T 90 35 180

MU~ 12580

( Fig. E. Plot of differeﬁtiai production cross section terms for
T = 1.30 Bev versus 0 for £ = 38, 48, 52, 61, 64 and 68.
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Legend for Tables

1) The notation "MZ - M, in £ = 9" indicates that the coefficients for.
for M, in

3 2
those for £ = 9. A substitution made in Aj yields Ai’ and so on, i.e.,

the £-value in question are to be obtained by substituting M

there is no fﬁiking of terms in the sense that a coefficient Ay is never
to be obtained from B.. , :

2) The numeérical:.values in Tables Vi and VII do not include the
‘cbupling constants. ' | _ - ‘

3) The upper sign 1n Y 0‘52 and:%g applies if 'y5 and N are in the
same order in (2.2d) and (2.3d), and the lower sign applies if they are

in the opposite order.
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Table I

Coefficients for Differential Cross Sections for Scattering

- The notation A = B means replace A by B, and A = B means interchange | )
" A and B. o : .

2

2\
=)

=

. f2 \2 o
i . - 5. - in.g =
h ~<m~4) s =2 My I\_AZ inl =19,

MU- 12479

[N
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Table I continued

/ W2
~ 8183
9 \4w
Ag =2[E° +EE, - 3M% - M|M, - M,M,]E E, + [M,M. - M - m*]E?
9 1B E, 1 - MM, - MIMLIE B, M3 - M =1
+ME[3M2 4 2M M, + 2M, M, + M, M, + m2]
113M 1M, M3+ MM,
B, =-[E2 - M2][(E, + E,)%- (2M, + M)(2M, + M_)]
9 = -lEp - MylI(E, + B, M+ My)eMy + My
g =Dg=0.
L2
18184}
10~ Udm
= 2[E? + E\E, - 3M% - MM, + M:M,] E,E, - [M> + MM, + m?] E2
10 1Y E B 1 - MMy MM, E B,y 1 T MM, 1.
+ M2[3M2+2MM - 2M;M,; - M,M +m2]
1 13My 1M, 1M3 - MM,
= (B2 - MAJ[(E, +E,) - (2M, £ M,) (@M, - M 1
10 1 - MllE, +E; 1t Mp)(ZMy - M,
-~
10~ P =0
: 2
" (eyfy
11'_\Z1rm
' 2 2 2, 2.2
11 = “2[2E) 2B\ B, - 4M] - ZMM, - m7] B\ E
' 2 2 2,2 2,42
+ 2] + MM, + 2m ) E B, - m"(M] + 2M M, - MM, +m )]‘_El
2 2, ' 2, 2 o
-2M1[M1(M1+M2) +mo{2My + M, + M3)]E]E2+m M1[2M1M3+MZM3 -M

2
1

+m2]
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Table I continued

11

12

12

B,

11°

2=

12°

= z[Ef - Mf][4E12_+_4E

1B,
+[B2 - MA(2Mi (M, +M,) % mPaml+ 2M My +M,
= Z[EZ-MZ]Z[(E +E)° - 2Mm? - MM ]
= -2[E) - My 1 HEp) - 2My - MM,
0.
NS
e
o2 : 2 2,22
= -2[2E} +2E|E, - 4M] - 2M)M, - m°]ESES
2 a2 2 2
+ [2(MF +M M, + 2m*)E|E, - m*(M] +2M M, +M,

) 2 2 2. 2. 2
< 2M My (M) +M,) + M7 (2M, +M2_-M3)]1§1E2-m MM, +2M

3

+M, M, - mz)]

201522
M, +m )] E;

1

M

= z[Ef -Mf][«mf +4E|E, - 7M‘I‘ - 3_M1MZ]ElE2-2[Ef -Mf][Mf +M,
f

2.2 3.0 2
+E] -Ml][ZMl(Ml+MZ)-M (ZMIM

3

+M

2

M3-3M

2
1

+mz)]

3

M

T2 : ot 22 292
E, -7M)- 3M|M, ]E|E, - 2[E{ - My ][M] +M | M, +2m"]E]

2

273

+M,M, -m

1

2,52
pt2m7IE}
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Table I continued

14

15

15

15

14~

5g2g4\32
:t—_—
\41'r
= 2(E2 +E,E, - 3MZ + M, M, +M; M, ] E, E, £ [M,M, - M < m?]E?
1T E By - 3MT+ MM, + My M | E B, +[M, M, - M, 1
+ M2[3ME2M, M, - 2M, M, + M, M, +m°] '
113M] - 2M M, -2M) M3 + M, M,
= [E2 - ME[(E, +E,)% - (@M, -M,)@M, - Ma)]
1 MIUE +E, 1 - MpHEM; - M,y
Dyy=0
’ ‘.‘2
_/ng3'-.
*\awe
2 2 2,22
= -2[2E] +2E, E, - 4M} +2M| M, - m"]ESES
TS 2 2, 2 2q.2
H2OMT - My M, 2 OB By - m (] £ MpMy - 2M My + B -

-2M, [mPEeM, - M M) MEM, - M) E E, +mZMP[2M, M, - MM, - M2 +m2]
y 1~ M ¥M3) -My(M, - M) JE By +miM ) [2M) My - MM - My
T N S 2 ' : 2 20 2 L2 2
= 2[E] -Ml][4E1+4E1E2-7M1+3MlM2]E1E2 -‘z[E1 -My1MY - MM, +2m 1B}

15

15 =

2 2.0 2.2 : 2 3 )
+[Ey -Ml][m (3M] +2M M, - M, M, -m™) - 2M] (M, - M, )]

) .
2 .2 2 2
-2[E} - M)] [(£, +E,)" - 2M) + MyMy]
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Table I continued

o as2 2
By = 2[;:l -Ml][4E1 +4E

_arm? 2 2..3.3 21022 i 9ns2 2
Apg = s[El +E\E, - M) -nl') ]E{E, -2m [.6Ell-2M1-zM1M2-levM3-m 1E|E,

\ 2
. 8yf4)
16 “\Zrm/
.
Co 2. 2 2. 2.2
Ajg = -2[2E{ +2E E, - 4M] +2M M, -m“]E{ E;

+[2M% - MM, +2mP)E B, +mP(2M, M, + M, M, - M - m?)]EZ
+2M, [M2 (M, - M, ) +m>(M, +M, - 2M}]E, E, - m>M%[2M en? oMM, - m?]
) (M) (M, - My). 2 M3 -2M))]E B, 1[2M Mg + My - MM,

2,2
\E 5 +2m"]E]

2, . 2 24,2
Z-7M1+3M1M2]E1E2fZ[El--‘Ml][MI-MlM

2 2ar 2.2 . 2 3
+ [B] - MT)[m” (3] - 2M, My + MpMy - ) - 2M5 (M, -My))

€16 " C15

Dyg = 0- .
g\ et

hyq Lz—'rrm/ P My == Myin £ =1,

hyg = 1g4)< M, == M, in £ = 15
18 rm ! 2 37 -
V i 2 : . ’ ' 7
R ) ' \
19 " \Frm¥ : - ’

~

2.2

2 2 2 2 . 2 2,12
+ mP(2(M, M, #M M, -2M] +3m°)E, E; -m”(2M M, + 2M, M, -3M] - M,M; -m%)]E]

2 2, 2 2 2 42 a2 2q
- 2m Ml[(Ml+mv)(M.2+M3)-M1(2Ml-m MEE, +m M [M;M,-My +m”]
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Table T continued

‘B

2.2

2 2rs 2.2 . 2
19= -lZ[El-Mll[(Eli-EZ) ‘-Ml-Zm ]EIEZ
2,2 2 2,2 2 nsZya 202
+2m [El-Ml][(12E1-6M1-3M1M2-3M M,+m )EIEZ-(M1M2+M1M3-2M1+3@ E;]
2.2 .2 3 2,00,2 2
+m [EI-MI][ZMI(M2+M3-ZM1)+m (5M+M, M, -m%)]
a2 A 2122, 2 202 2.2, 2 2 2
Cyg = 24[E]-M]] [E{+E{E,-M|]E \E, -2m“[E]-M]] [6E]-4M]-M;M, M M +2m"]

. 2 2.3 2.2
Dlg—-4[E1-Ml] [E+E,)-M]]

f1‘4\\2
h = v
20 Zn’mz,l

a2 2 27.3.3 0 2,2 .2 ) 2,22

Ayg = B[E1+ElEZ-M1-m ]E‘IEZ-Zm [6E1-ZM1-2M1M2+2M1M3-m ]ElE2
2 2 2 C 2paa .2 o 2012
-m [2(2M]-M M, +M M, -3m")E | E, -m “(3M] -2M | M, +2M My -M, M, +m ) | E]

2 2, 2., 2 2 a2 2

+2m ™M [(f1]+m )(M3-M,}#M) 2M]-m®)|E| E, -m MT[M]+M,M; -m°]

N 2 .2 2 .2 21020
B,g = -12[E{-M{][{E| +E,)“-M] -2m“]ETE} ‘

2(.2 2 2 ' 2 2. 2,2

+2m [El-Ml][(IZEl-6Mzi—3MlM2+3M1M3+m JE | E,+2M)-M | M, M M, -3m )E}]

2,2 .2 3 2,00,2 2 :

-m [El-Ml][zml(gMI-MZ+M3)-m (5M]-M,M,-m®)]

2 2.2.2 24 2002 . 2.2, 2 , 2 2
-Cpq = 24[E)-M[] [E[+E E,-M[]E | E, -2m*[E]-M]] [6E7-4M) -M) M, +M M, +2m”]
Dyo = Pyg

2
h —fzg}\ i M, =M, in £ =12
21 \&rmy 3imEE
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hZZ

23~

J24

24

24

. Table I continued.
'fg \2 )
= (s2Ba) - M. in £=
= (.Z__/. ; Mz M3 1n. £ =16.

2.2

2
152

2 2 2,33 0 20,2 o , 2
8[Ef4E|E,-M}-m°]E{E; -2m [6E}-2M| +2M | M, +2M; M, -m’ | E

1M3*M,

2, 2
1He’]

M, +M. M

2777173

200 2 2 22 2.2
m?[22Mi 4, -3m)E, B, -m®(3M2+2M, M, +2M M, 4m?) E]

2 2, 2 ' 2 _2 g 20
+ 2m" My [(M] +m®) (M M, )40 (2M] -m ) | B B, 4o “MT[M,M 5 M

-12[E2 -1\1121‘]'[(1':1 +E,)2 M2 -sz]Eng

n

2002 o 210i a2 o0 2 s 2 2. 2,..2
+2m[E] -M]][(12E]-6M [ +3M | M, +3M | M, +m JE | E,+(2M]+M; M, M M, -3m )E]]

-mz[Ef-Mf][2Mi—(2M1+M2+M'3)'fmz(SMf+MZM3-mz)]
2 21202 29 2702 2 29202 2 aniZ i, 2
= 24[E]-M]) B 48, By -M]1E) B, -2 (] -MT] (0BT 4] M My 4y M 12
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Table II

Extreme Nonrelativistic {Thomson) Limit of

: Total Cross Sections
for Scattering ’ ’ :

/22 2

- 2
g5
o, (NR) = 47(\1%-/ [1+ %1] [M;-M,; +m ]

0,(NR) : g; *g)y Mg=M, in £=1,

2\2 -2 S
G(NR)-41r<g4\[l+m] [M, +M, -m ]
3 = T/ M, 1+M;

04(NR): -Fiad)-#1 M:,’»M2 in £=3, -

2 -2

2
0,(NR) = 4wi\z%) [1+ mﬁll [+ My - m) +md (M2 - M - m)? ]

O (NR) : f3 ~£), M3-’Mzin £ =5,
1
'/fi\z m ' 2, 2.0.,2 a2
07(NR) = 4m ZTr-; [1+Vl] [(M3 -Mp +m)tm ][M3 - (M - m) 1

OB(NR):f4->fZ', M, =>M,in £ =7,
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_Table II continued

) 1‘\’ng4 2 .
0 (NR) = 87 & [+ 'H 1 DMyt M, - m] M+ M

FA -2 -1 -1
(NR) = 8n (i3] [1+2 ] [M,-M, +m] [M;-M, +m]
99 = v/ M, 2"V Tm 3~ MpTm

a1 : |
IO(NR)--S«(“*\ [1+_1 [Mz-Ml+m] (M, + M, - m]

g (2 2 -1 S
o, ,(NR) = s«/gl 2 [+2 ] M, -M +m] [M, - M +m]
11V Tar / ml 2 1 3 1

2 -2 o -1 -1
glf\ -
0),(NR) = -8x (_4"_4/ [+ Fﬁ.l] (M, - My +m) My + My - m]

013(NR) : g) =g, g, 85 M, = M, inl=10.

. o 2 -2 .
0, ,(NR) = 8 g2°4> [L+2 ] [M, +M, ] [M, +M, - m]
14 53 . M1 1. 2 1 3

0,(NR) =

617(NR) : 8 =i, f3+g; M, + Mjin t=11
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Table II continued

0 g(NR) : g, ~fy, f3+g, M, = M, inf=15,

‘t ¢ N2 -2
0 o(NR) = Bl o] [1+2 ] [(M, +M, - m}(M, +M + m?
19 RANCZ I AN v 8 17 p My -m) +m]

-1 -1
M5 -y - w)] (Mg - oy - m))

6.8 \? -z =
0,0(NR) = -8 '\_41“_4} M1 +_%1] [(M; + M, ~m){M; - M; + m)- mz]

P 1 .1
ke vy - m)P] [ME -y - )

Ozl(NR) Pogy -’fz, 14—-g3, M, < M3 in £ =12,

OZZ(NR): gz—*fz, f4-g4, M, <+ M, ind =16,

O,3(NR) : £ ~£,, f,+f;, M, = M, inf =20,

IRAYEE -2 .
0, (NR)= 8m i 2t! (14 2] (M, -M; +m)M, - M, +m) +m’]
24 LT M, 2~ M 3~ M

-1 . -1
x M5 - ey - m)?] MG - vy - m)]
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v S : o ' . Table IN

Extreme Rélativistic' Limit of Total Cross Sections
for Scattering -

272 i
_ (%3] 2,7t 2B
°1‘ER"“<4?) ZB(] W g

OZ(ER): 838, M:,’-OM2 in £=1,

03(ER): 8384 in =1,

0‘4(ER): g3~ 8, M3~M, in £=1,
2 2

0. (ER) = 2«(3 ) el

5 Zam? 1

06(ER):‘ f3 -~_fl in £ =5.}

in £=5.

0, (ER): £,

- OglER): £yt

3 2in‘f =5,

. . 2 .
) : 8183 2. 22,0 2
. ) 04(ER) = (7'1?—> (M, -ME ] [Mz.m
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°10(ER):

_>"11(ER.h=

OIZ(ER)’ .

013(ER):

014(ER):’

OIS(ER):

016(ER)>:

9, 7(\ER):

clS(ER):'

g3-~g"4 in£=9,
(2

on 8183 )

- Zmm

£3-f4‘in1=11.

. g)~g, in £=9,

8178, g:‘}-vlg4 in £=9,

g, ~g, in £=11,

g8y f3~f, inf=1l,

gy~ iy, f3»g3_ in £=11,

gi*fl, f,+g, inf=11.

e
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Table III continued..

f
0)6(ER) = 4r L2 g}
4mm
020.(ER): vi3-f4 in2=19, T

UZI(ER):
UZZ(ER):
023(ER):

024(ER):

g~fy fy~g, inf=11.
gty gy inl=1L
£1~f, ind=19,

£,~f; f,~f, ind=19,

172" "3 74
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~Table IV.

Coefficients for Differential Cross Sections for Production

25

25

25

25

26

26

; 2
(8185 §
=

: i 2 . . 2
[EXEZ-_Mbl(M1+MZ)](E2+E3) - [M3(\;M1+2M2+M3)fm ,]}~:l‘E‘2

+

2 2, p 2:
[(M}+M,)"-m ) E | E5+M ) M M, +M3)[M 3 (M +M, }+m”]

-Pal(E ) - AMy M1

='PZS =0

f'/gl g6\\

T

/

2
i
!

2 - 2
[E)E,-M (M) +M,)](E,+E5)” +[M;(2M ) +2M,-M,)-m ) E | E,

+.

22 ' 2
[(M1+l-M2-) -m ]E1E3-Ml(M‘1+Mv2-M_S)[M3(M1+M2)-m ]

= -pql(E,+E4)° - (My+M, -M;)°]

26 ©

) 2 ‘
B g235\1 .
NT

= . 2 . 2
= [E1E2+M1(M2-Ml)](EZ+E3) - [M3(2M2-2M1+M3)+m ]EIEZ

+ 1M, -M ) e E B 5 -M) (M, M, #M,)[M, (M, <M, ) + 7]
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° .Table IV .continued

2 2,
27-° ‘PQ[(EZ+E3) - (Mz'M1+M3) ]

C,, =D

2770390

\2
_ 8,8¢
hog = \ 77

- . 2 : 2 .
Ayg = [ELE#M My -M)IE, +E;)"-[M; (2M, -2M, +My) + "] E | E,

+ (M, -M)P-mP B B M, (M) M, +M, )M, (M, M, )-m”]

2 2
Bza = -pq[(EZ+E3) -(MI-MZ+M3) ]
Cag = D3g=0
N2
g5 )
hyg = /
29 Zmm /
e 22 2.2 2 ) S 2
Ayq = 4[E B tMMS)EVE;S - 4m EE,E;-m®M) (M, -M,)(E,+E,)
MMM, oM ) (E, +E L) - (M, oM )M 2+m) - 2miML]E B
(M) +M,)[(M, -M HE+ES). - (My-M ) (M3 +m”) - 2m™M,|E | E,
+ mimE (M, -M )2 E, E, +mPM, (M, -M | +M.)[M, (M M }4+m?)
MV IEE, 1Mp-M M) M (M, M,
- 212 2 20 2., 2
1329 = -4pq[2.E.2E3-EZY]EY1 -pa(M, -lel)(E2+E3)_ -4pq['ZM2M3-f-m ]EIEZ
+ 4pgmZE. E, +pqmZ[2M, (M, -M, }+2M, (M, +M ).+m'7‘]'+ MEm2oMm?)
P4 137P4 1™ ¥ 31T PaM 3 ¥, =My
C,o = ~4(p3)2[2E E,-E, E,-M,M,-m?]
29 HPA} (el RpmtyymMpMyTm b
Dyq = 4(pa)*>
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Table 1v continued

f \2
L
hyg = (lhrm )

L 2.2 2.2
Ayg = 4[E E5-MM,]E['E,) -4m E['E,E,

2 2

~m?M, (M, M, )(E,+E;)

£ (M, +M,)[(M, - M, )(E, +E )2~ (M, -M }iM Z+mZ)+2m M ]E’E
y T M (M, -M) ) (E,+Ey 2-MyliM, 15]E\E,

2 2 2 2 2
+m°[m -(MZ-MI)V]E1E3+m MI(MI-M2+M3)[M3(M2-M1)-m ]

o 2,2 2.2 2 " 2
By, = -4pq[ZE2E3-E2]E1 -pa(M, -M; HE,+E;) +4pq[ZM2M3-m ]E\E,
4 dpymlE. E, -pqm?[2M (M, #M,)-2M, (M, -M,)-m? ] +paM Z Ml -M )
Pd 1%37Pd 3(My M IV PiMa My =¥
G = -4(pq)2[2E,E,-E,E + M,M,-m’]
30, Pa 1 ¥ E®aT MaMs
P30 = D29
\ 2
- f285)
31 7 dwm .
_ 2.2 , 2.2 2 2
Ay = 4[E1E3+MZM3]E1EZ-4m E1E2E3+m Ml(M1+M2)(E2+E3)_
. 2 2, 2 2.
+(MZ-M1)[(M14MZ)(EZ+E3) -.(M1+‘1\/12)(M-3 +m~)-2m M3]E1EZ
a2 [(M, #M,)2-m?E| E, -mPM | (M +M,+M MM, (M, +,) +m?]
: 1™2 13 1 MM FM M 5 (M) T T
' a2 T2 I 2
By = -4pq[2E2E3—EZ]E1 -;‘;q(M2 'Ml)(Ez+E3) -4pq[2M2M3+m ]1-:1E2 )
2 2 . 2 2,002 402,
+ 4pqm E,|E;-pym [ZMI(MI+M2)-2_M3(M2—M1)-m_ 1+pa M3 (M, -My)
G317 Ca9
D31 = Da9
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Table IV" continued

»/fzge\\z

h =

32 Zwm/

o 2.2, 2.2 2 . 2
Ay, = 4B E,-M,MJETEZ -4m?EE B, +m M| (M) +M,)(E, +E,)

2 2, 202
+ (Mz'Ml)[(M1+M2)(E2+E3) -(M1+MZ)(M3 +m”)+2m 1\/13]E1x-:2

2 22 2 o 25
- m ) M) VB B b My (M) #M, M) (M (M M) -0
B, = -4pal2E,E,-E2]E 2-pa(M2-M2)(E, +E,) *+pa[2M, M, -m?|E E
32 T TAPAleRpatRa 18y mpaMy oMy iRy Tyl TAPALEM M, “1%2

2 2 . : N N T 2
+ 4pam’E | E;-pam [2M, (M, +M,)+ 2M; (M, -M }-m ] +pam f (M 2:M )

C32 = C39
D3z = Dag
;
o V2
w8387
33 I /
A, = [(E,+E.)2+2M M ;M 21E.E MM (E,+E.)%+2M,M,E E
33 273 13Ty IR R m M Mgt R 1M3E1 5y
2
- Ml[‘Z(EZ+E3)YE3+M1M‘3]
B., = -pa[(E,+E;)?-M ?]
33 - “Pall®p ™, 1
2
(2487
=

by \Tr/
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Table IV

continued

»

K 2, 2 2
A, = [(E2+E3) -2M) My +M] ]E1E3+M1>M3(EZ+E3) -2M1M3El};2

. 2 .
I MJ[2(E,+E)E;-M M, ]

P 2 2 2 2 '
Agg = [ESHE E3-M3][3(E2+E3) E|E,+2M E E -4M, (EZ+E3)E2]

2 172

2 2,2 2.0 ;
-m [E1E3+M1M3][(E2+E3) M, ]+2m MI[M1E3+M3EX](EZ+E3)

: 2 2, 2 2.2 2. 2 2 .2

Bjg = Pq[E3 —M3+m }-paM, [?_E3 -2My +m ]v+pq[(E2+E3). -2My |E,E; .

A

he = §4g7.=

36v— 47m )

- [E24E,E,-M2][3(E,+E,)°E | E +2M2E E,-4M2(E,+E,)E,]
36 372373 PREE RS Tor Aot Tnd Bt W R Lot 4

: 2 2,0, 29,5 2
.-m [E1E3TM1M3][(EZV+E3) +My J+2m MI[M1E3-M3E1](EZ+E3)

B3 = By
. 81858387 .
by = '
16w
[¢] =0

37
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Table IV continued

n 82858387
f3g TonZ

. 2 : T 2 2
=[(E,+E,) -(M1+M3)(M2-Ml)-M3 JE|E4+M  M,E; fMl(ZMITMZ)E3

38
. 2 o .
+ My(M,-2M) +M3)E) E,+M, (2M( -M, +M4)E E-M/ M3(M2-M.1+M3)
o
B3g = pq‘[(EZ+E3) +M1.(MZ-M1+M3)]
Cyg=0
gl'g633g7
B9 T T

' 290 . 2 2
2) M M) -MS]E) Eg-M M4y -M, (2M; +M,)E4

- e aE 12
A39 = [(E2+E3) +(M1+M

; 2
+ M3(2M1+M2-M3)E1EZ-M1&M1+M2+M3)EZE3—MI_M3(M1+M2-M3)

L 2 §
B39 = -pq[(E-2+E3) -Ml(leMZ-M3)]

C39=0
8848387
hyo =
16w
[+ =0

40
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Table IV continued

f1858387
hyy =
16 v°m
Ogp =0
o 288387
42
167°m
Ay, = [2MEZ4M, M, (M, -M,) JE2-M, [M, (M, +M.)-m?]E 2
42 = [2M3E) M M3 (M, -M) B, M, (M (M) M, 3

2 2 20 .
+ [2M2E3 M M3 (M, -M;)-M, (Ml+MZ)-m M3]E1E2
-l'-[(M -M )E-2+(M +M )EZ-MZM -MzoM +M )-mZ(M +M,)]E, E

27 AR T R TR M T W TV, PO 10t Rk}

' 2 .2 ) 2 2 Va2
# (M) +My HZE | -M 7V 4M) My M3 +m "M ] B, E 3 +M "M 3 [M 4 (M) +M,)#m]

_ . 2 2
By, = -Pal(M #M,)E, +(M, -M|)E; ] -2p3[(My-M, )E| E, HM, +M;)E E;+M, E,E,]

. . 2
- qultMs(Mz-Ml)m ]

' 2
42-F “ZM,(pa)

. .

f1868387
hyz =
. l6m"m
043 =0
o o _T2BeB3f7
44 T T
» 161" m
o4q =20 - : ST IR — .
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IV continued

-8

45

45

45

%4 ~

47

48

48

48

45 "

46

47 7

48

€1858487

16w

= [, +E5) - (M, M, (M3 M) - M E By

2
= pq[(E2+E3) -Ml(M1+M

8,858,487
 léw

_ 81848487
167

88,8487
(16w

= -[(E,¥E4) MM, =M My -M ) -M ] E B4 M

. . 2
*"M3(ZM1 -M2+M3)E1E2-M1(MZ-ZM1+M3)E2E3_—-Ml M3(M1 -M

2 .
= pa[(E,+E;)°-M{ M, -M

=0

2

2

+M3)]

+M,4)]

1

1

M

-M M3E2

3

2

2 2
E2 +M1(2Ml -MZ)E

2

+M

4 M3(2M_1 +M2+M3)E1 EZ+M1 (ZM1 +M2 -M3)EZE3 -MIZM3 (M1 +M2+M3)

3)

' 2
M, (2M] M, )ES -

3
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Table v continued

. f1858487 -
hyg =
161°m
049 =0
- 1858487
hgo =
167" m
gp =0
, f1868487
167" m
o ) =0
. .
N £,868487
52.°
b 16 vm
Ag, = -[ZM E2+M M, (M, -M )]E M, [M; (M, #M,)-m ]E
) 2
[2M2E3 -M, M, (M,-M,;)- M3 (M ™M )+m 1\/13]E1E2
+M,-M )E 2o +M2)E Mle M3 (M +M;)+m (M -M;)]E By
(M M )(ZE My 2)+M; M M3-m ’M,]E,E +MIZM [M3(M1+M2).m2]
. 2, 2 )
Bg, = —pq[(Ml'FMz)_EZ +(MZ-M1)E3]+2pq[(M1+M3)EIEZ+(M3-M1_)E1E “M,E,E;] -
. . _ ; ]
+ paM, [M3(M,-M;)-m ] N
€52 =Cy
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‘Table. IV - continued

58

58

53 ~

53 =

54

54 ~

55 =

55 =

56 -

56

57

57

g185f387

16n°m

22851387

~l6mm

€186%387

167°“m

82861387

167“m

_ hiesfagy

16n°m

f

285f387

lbn"m
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Table IV continued

b= f184%387
59 22
167" m
Arg = [ESHM, (M, -M )] (E, +E,] E_+m?M, (2M, -M_)E >
59 = [EyHM (Mp-M ) J(E, +E,5)"Ey#m M, 2M,) -M,)E4

2,2 ’ 2 2, 2 2. s 2
-[(M3 +m -leM3)E1frvil(M3 +m )(MZ-MI)-m M1M3]E_Z

2, 2 2. . S 2y
'[ZMlMa_Ez +2M) M,E;-m M3 (M;3-M,)-2M M, M ']E | E,

1

M,

L2 2 : 2, 2 ; 2,,2
[m (B, +E ;) “+2M | (M, +M3)E ; +m (M, -M WM 4 -M ) -m M ] E B4

(2 +m B E 24M M2 (M, -, ) -m M, (3M, <2M, +M ) ]E, E,

W3 ) TV Mg M My em M My meMy T [ Ry

cmZM M, (M, -M,+M.,)

: 1 M3iMy MM,
Be.g = - [™M M'-fnz](E +E )2'+2 M M, (E,+E ')VE;: -(2M,M -mZ)E E +mZE E.]
59 = PAlMyM, 273l TEPUM Mgk, TRR)E, eM My 172 173

. 2 2
- Pqu[M2M3-'.m (M3‘M1)]

: 20 2 .
Cgg = -2(pa) [, +E ;)" -M; M, ]
2841387
hey =
_ - 167°m
060 =0
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Table IV continued

21851487
hey = —=

161°m,
AL =M [4E2-M, (M, -M, +2M,)|EZ-M, [M; (M, +M,)-m?]E2
1 = "M [4Eg -My(M; -M,42M4) [ E)-M, [M; (M, M, 3

+ [2(2M ) +M,)EF-M 2 (3M4M,)-M, M3 (M, 4M,) -m M, | E{ E,
2 2 ; L2 2,0, 2 e
+ [(3M, M) Z4(M, #M,)E2-M, (M M, +m?) -MZ (M, M) -m?M, | B E;

. 2 2 2 . . . A
'MI{Z(EZ +E3 )-i-M1 -M3(M’1 -MZ+ZM3‘)-m ]E.:2E3

2 2
+M1M3[M3(M1+M2)+m ]
- 2.4
By = Pa[M, (E, +E;) M My (M, M, +M,)]
Cgp =0
85851487
By, = 2854
167“m
062 =0
_ 81861487
63 z
167°m
G320
8,861487

64 lon?
n°m
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Table IVv‘continued

(A

. 2 2 2,2
4= M[4E; —M3(M1+M2j)-2M3)]E1 -Ml[Ml(szI\‘AIHm 1E,
. 22 2
- [Z(2M ) -M,y)E{-M5(3M -M, ) +M M3 (M, -M,)-m"M3]EE,
- [(3Mm -M )EZ-(M -M )E2+M (M. M '-m2)+M2(M -M )~m2M 1E,E
1 MpIE, -{Mp-My R4 TM, (M My 3 MMy 3B By
+ M, [2(E24E 2 M 2 M, (M, #M,42M ) -m?]E, E
BB, E 1M - M3 (M M, +2M 5 2Es
+ MM M, M, -M )-mz]
My MMM, =M,y
- 2 ‘
By g = Pa[M,(E,+E3) - M) My (M) -M,+M;)]
Ces =0
_fesfegg
hes =
, 167°m
%s %0
N f,851437
66 = — 77
. dénTm
% =0
f1861487
67 167 m
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TableIV continued

8

8.

861487

167°“m

(B 2-M, (M M) (E, 4, B m?M, (2, M E L
1 MMM ) E, FES) TR, sm M) (M) +M,)E

2, 2 2 2.2 : 24 2
+[(M3 +m +ZM1M3)E1‘-VM1(M3 +:m )(M1+M2)+m MlMs].EZ

. 2 2 2, 2 )
[2M|M,E, +2M, M,E; -2M<1M2M3 +m M.3(M37M2)]E1E2

2 2 w2, 2 ' ’ 2.2
+ [m (E2+E3)‘_-ZMI(MZ+M3)EZ +m’ (ylsz)(Ml_fMj)-m M3]E1E3

+

2, 202 . 2 . 2
[(M3 +rg E; -M1M3(M1+MZ)-m__Ml(3M1+2-M2--M3)]EZE3

2,520 :
m M M4 (M) +M,-M,)

2 C2 o 2 2
pq[M1M2+m ](E2+E3) +2pq[M1M3(E2+_E3)EZ-(2M1M3+m )ElEZ-m E1E3]»_

2 2
qul-[MZM3 -m” (M +M}]

2(p3)° (B, +E ) 4M | M3 ]
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Table V

Total Cross Sections for Production at Threshold

025(NR) = 2w

2 .
218 -3
. 3,; [45,) gy )

-2 . )
w2 2
[(M1+M3+m) -] Clli

/ \Z _3
{e18\ - ™M) +M +m)
(NR) =.27 I+ _2______2_ [(M;-M +m) " ]2
26 \‘“’Ms/» My, (M, -mn) 1% ar
2 .
'gzg_r,‘\ m -3 (Ml -M +m)
(NR) = 2m ! [+ ] —‘T‘—“TZ (M M +m) -
27 MM, Y TM, M2, -] ( m) o ]
8,8 6. PR 2 2 2. p
s‘NR) =2n T, AT MM, o] (M) M 4m) ) *ql
12 -2
. m p -
029(NR) = 4r} T_ [1+ M3] %

{4(}:‘1

+M —m)E1T+[(Ml+M -m)? —4M ]E

+M1(M1-M2+m)z}
MM (M, -m)° ] o

2

-2
o(NR)—41r figg . nem )R

NESS

{‘“En"

M3 ap

M,-m)EZ o+ (MM +m)2-4M12]ElT-M (M, -M, +m)Z

. :fZgS.
031(N,R) = ‘.1“' \T“

2
. { 4UEy p My -m)E) ¢

M [M -y -m)?]°

2

-2
n+2 P
Mjy® ap

2, 2 o
1My -M, +m)*-aM 1E | M, (M, +4, -m)?

MM -m) 21 -

—————— |

[T

S]
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_ Table V.continued

0, g(NR) =47k, (1 +§;3]‘ {

. ,f \2
, 32(NR) = 4m 1 +T\71

].2

T
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Table V continued
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. Table V continued
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Table VI

Total Scattering Cross Sections at Different Meson Energies

T is the laboratory kinetic energy of the incident meson. The cross
sections are given in millibarns and do not include the coupling -

constants.

T

10.5

T(Mev) ‘0'1 v, o, Ty '05
150 2.9 25 11 072 6.8 5.5
250 1.7 1.5 0.84 ;  0.60 9.1 7.6
350 1.2 1.1 0.74 .  0.55 . 11.3 9.6

- T(Mev)| = 04 Tg %9 %10 711 T12
150 0.48  0.38 5.4 -2.8 7.8 -0.36
250 1.6 1.2 3.1 1.8 6.5 +1.6
350 3.4 2.6 2.2 -1.4 5.7 +2.0
TMev)| 015 = 0y %15 716 17 g
150 -2.9 1.5 - -4.3 +0.10 1.7 -4.1
250 -1.9 1.2 4.6 1.4 6.5 -4.3
350 -1.5 1.1 -4.8 2203 5.7 4.6
T(Mev) 0,9 0y 21 922 %23 924
150 12.3 0.50 - -0.53 . +0.22 0.13 0.90
250 16.7 5.9  +1.5 -1.2 5.5 2.8
350 20.8 +2.0 2.0 10.0 6.6

M

g i}
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Table VII

Total Production Cross Sections at Different Meson Energies

For 04, 052, and 0¢g the upper sign apphes if the order of y

and YS

is the same in the two interaction terms, and the lower 81gn a phes if

their order is opposite.

4

T(Bev) 25 P26 721 728 %29 - “30
0.80 1.4 0.25  0.017 0.31 2.1 0.091
- 1.00 1.9 052 0.15 061 - 4.6 0.39
1.30 1.5 0.64  0.30 072 6.0 0.80
150 | 1.3 0.66  0.36 0.732 6.5 1.1
1.80 1.0 0.67 - 0.42 1 0.728 69 1.4
2.00. 0.88 0.66  0.45 0.72 1.0 1.6
T(Bev)| 03 P32 933 T34 - T35 T3
0.80 | - 0.71 014 0.15 T 015 067  0.67
1.00 2.8 0.47  0.27 0.27 1.7 1.7
1.30 4.8 0.88  0.29 0.29 2.7 2.7
1.50 5.6 .12 0.28 0.28 3.1 3.1
1.80 6.3 1.43  0.26 0.26 3.7 3.7
- 2.00 6.6 1.61  0.24 0.24 4.0 4.0
T(Bev) g 939 4y T 45 748
0.80 -0.047 1.3 £ 1.6 0.90 -0.37
1.00 | -0.12 2.0 + 3.3 1.4 0.84
1.30 -0.20 1.9 + 4.0 1.1 -1.04
1,50 -0.23 - 1.7 +4.14 0.91 -1.05
1.80 -0.26 1.5 +4.13 0.66 -1.02
2.00 -0.27 1.4 £4.07 057 -0.98
T(Be.v) Og, T5gq Cey 064 Teg
0.80 | ¥1.4 0.26 S 1.0 “1.5 £0.23
1.00 | F2.1 0.95  -1.2 2.2 +0.47
130 | L7 1.9 -0.41 -1.6 0.36
1.50 f14a 2.4 '+0.001 1.1 £0.20
1.80 F1.1 3.1 +0.45 -0.59 70.086
2.00 50.85 3.5 +0.66 -0.32 10.028.
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