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ABSTRACT 

The relaxation to a Maxwellian distribution of a system of 

particles interacting through inverse-square-law forces is investigated 

in the approximation of two .. particle interactions resulting in small

angle deflections of particle trajectories. The time required for the 

relaxation of the distribution in the neighborhood of the aver.age energy 

is found to agree with the self-collision time by L. Spitzer. The time 

required for the distribution to become Maxwellian throughout the range 

from zero energy to several times the average energy is found to be 

nearly ten times the self-collision time. Filling of the high-energy 

portion of the Maxwell distribution is also discussed. 
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Maryland, College Park, Maryland. 

ton leave from Los Alamos Scientific Laboratory at time work was begun; 

present address: General Atomic, San Diego, California. 

§Present address: 1809 Bonita Avenue, Berkeley, California. 



. . ~-~ 

Ii Introduction 
. ' . 

. ·~- ': ... 

The·relaxation_of the electron or ion component 

~f a~ ionized gas to a Max~ellian distribDtion has been 

:· .. 

,. of some, ast.J?Ophysical interest~ Spi tz.erl has an2l yzed 

V~riou~·a~p~cts of the relaxation phenomenon such as (1) 

remoVal pf a~gulat anisotropy, (2) ener~y exchange, (3) 

and lo~s of energy of a p~rticle by "dynamical friction". 

Bohm and All~t~ ~ave p~e~ent~d a d~tailed analysis on the 

relative. importance of electron-electron collisions in 

>~~st~91ishing ·the'·velo.city .distribution of _electrons in 
\ ·. . - ' . 

g_aseous nequl.ae, and stellar atmospheres .. ·Although the 
.;·,. ,·, ... 

general 2Gri~lu~i6n~ reached by these authors is almost 
·. . . 

cert~inly:~orre~t, the discussions were based on the 
. ' . . . 

rates of change of .the distribution function and not on 
. . 

an exp~ici t. solution of the timE:~dependent problem.o 

In this paper we present an equation for the effect 
• 

·of p~rticle: interactions on the one particle distrihutio~ 

-~unction and the res~lts of a numerical integration of 

. .. .~the. equation on an electronic digital computer for a 

-~- -~ 

'·. 

·-. dis.tribu~ion.iriitially peaked abo_ut a particular energy • 

. The :filling of _the high energy portion of the Maxwell 

distribution is treated approximately. 
(. 

.II •. The Ji~TI&. Dependent ggua..!.iQ!I.. 

ln obtaining.an equation which describes the effect 
. ··. 

. of inte-ractions between particles· of charge e and mass m 

. ''· .. ,, 
·j . •• 

. . ·~ ~ 



·upon th~ velocity distribution we. assume that (1) all int2r

actions are a superposition of two body interactions resulting 

in·(2) small angle deflections of particle trajecto~ies~ 

.Although the v~lidity of these two approximations is not 

rigorou'sly established, the work of Spi tzerJ Cohen, and 
i:\ ,. 

McRoutly3 and, of Gasiorowiscz, N~uman, and Riddell4 in-

dicate their e~sential correctness for many phenomena~ 

We shall use. the Ruth-erford scattering law to determine 

the pr6bability of deflecti~ns of a given magnitude. 

Restricting o~rselves to isotropic angular distributions 

we ca·n obtain an equation for the tim€ rate of change of 

the distribution function, either from an expansion of 

the integrand of the Boltzmann collision integral in 

po~ers of the angle of deflectionS, or from the Fokker

Planck equation,6 

. ~ =-~'1Le4 ~_A f ~ -~l- lj''dul(u.)'\J. -t -·- r~ f<u)u-+l 
Yrl:>.. l 3.. "" l:: \r '\)'3 Jo J , 

+ t;: l!:Wd(u)u.- J;..f<uh(,- ~H1+ .t,_)]+l-lj (1) 

A • (3 /~e3) ( ~'T' 3/'itYJe)'l.z 
The quantity f(v)" is a distribution function in magnitud~-

of velocities and has the normalization 

11. = l: elM. t( u. 'J'v. ~ ( 2) 

where n is the number density of particles. The Maxwell 

distribution causes the iight side of eq. (1) to vanish, 

showihg that this distribution is indeed a solution of 

the ·static problemo 

·The eq. ( ~) can be put into dil1)ensionless form by 

obser~ing ~ha~ the distribution function can always be 



,, 

written 

( 3 ) 

where A is a normalization constant, v0 is a "characteristis 11 

velocity, and '1: is a dimensionless time parameter 

( 4) 

The equation satisfied by --h.(~ 1 't') is then dimensionless 

~~ = ~ l ~~" [ s: d-1. -It ('l) 'l ;- t J.~'1 h.('l)'l4] 

-+ ~~ %t U''l{,_('1h- t~J."lf..(")~(i-tJ\'+"5\) 
;- l 'h~ 1 

( 5 ) 

We can rel~e A and v0 to the number density of particles 

and the average energy or kinetic temperature ( i<:.rr') of the 

system by 

'rL :a Ia.A 
po¢ 

T ~ :: J 0 d. ~ ft.(~' L ) ¢; ~ 

I"'": J: &~ ~c~ ~~) s+ 
( 6) 

The integrals r2 and 14 are constants (as one can verify 

directly from eq.(5)) determined by the initial distribution. 

'The dimensionless time parameter in terms of Yl.)f~."\' ,I~ and I"\" 

. 
) 
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is 

t - .1.7Ce4rt. ~A 
'''('(',};, (3 ~~) ~~~ ( 7) 

The usefulness of th{s formulation of the time 

rlepcndent problem is that all solutions of eqo(7) which can 

be obtained by similarity transformations from ~ given 

solution are easily constructed using the !Oolution 

of eq.(5). The solutions 

J. (tr ·f) -= . 11:. (~) :,6. 

of the time~dependent eq.(7) are 

I :I:.._ 3~'r ( ~ )?,f;t h, ( s 0) . 
:J:-'l, I 

~. ~ ( ~~)''~ 
( 8) 

The variable L is related to the time ):'. '·' e q ( 7 ) . ' . • 0 The 

initial distribution is of course 

( 9) 

The quantities 12 and 14 are calculated fro~ 

II I o Numeri ca 1 l!J.J:cgra tion. 

The numerical integration was carried out using the 

(10) 



.. ' ... ,. 

., 

Subscripts refer to space points, superscripts to time intervals. 

The condition for stability of the numerical integration of eqs.(lO) 

and ( 11) is 

(12) 

This condition was used to determine the interva 1 in 1::;' for 

each successive time step. 

An initial distribution was chosen which represents the 

shape assumed by a delta function after a time sufficiently 

short to be neglected ( rt ~ 10), and yet one which has 

sufficient breadth to be treated simply in a machine caleulation. 

The initial distribution was chosen to be a gaussi3n centered 

at ~=·0.3 

it.(~,o) ~ o.o.:L -Uoc.-p t- •o[(~-o.3)/o.3J"} . (13) 

The distribution function -fv(~ 
1 
"'j) was computed for 24 values 

of. ~at intervals of .6.S = 0.03 from l"t = 0 to fL= 484el7. 

This initial distribution is a two-parameter func"ion since the 
I 

center and width of such a gaussian are variable. We did not 

consider variations of the initial distribution of eq.(l3) with 

the consequence that all initial velocity distributions obtained 

I 

) 



'• . . ' ~ . . . 
' ........ '!'llt'I<J "' ··~".II!"'!"•A ,.,....11:,:~~ < • ., •• ...., ... f,' • 

from {(~,"C') by eq.(9) have a half widfh in energy at half

maximum of approximately five-eighths the average energye 

IVo Relaxation to Maxwellian Distribution 

A plot of '"h ( ~ 't;) for a sequence of values of the 
I 

dimensionless time parameter is given in Figure lo For 

comparison the Maxwe.llian distribution ~M ( ~) corresponding 

to the same average energy and number den~itl is also plotted. 

The function -ft.t-1 ( ~·) is the final steady state which should b€ 

approached for sufficiently long times. In Table I the numerical 

values of 'h!ll\,(~) are given for each of the 24 space points along 

w i t h t h e v a 1 u e s 0 f -h. ( s I "C ) f 0 r 1: = 4 84. 1 7. A 1 t h 0 ugh t h e 1 a t t e r 

distribution is rather close to Maxwellian, the low energy portion 

of the spectrum is overpopulated and the Maxwell "tail" at high 

energies is not yet full. An upward diffusion in energy must 

still occur before the Maxwell distribution is achievedo 

These results are more easily interpreted after 0 is 

related to the time. First we shall give the distributions derived 

from { (~,D) 

tl i>-, 0) -

~tv\ llr ') = 

From tM ( -v-) 

velocity by 

and --{ r-.i s) 

'-'·~3 (YI./v-~)-W..y:. ~- \0 [u-/v- 0 -o.3)/o.3}~} 

-11 O • .S \ ( Yl../ v"A) -Wf{- 1~. ~~ S ( lr-/'V"e )~ J 

we find that v
0 

is related to the r. m. So 

'V-o= ~.'i'1" (u-:J..)'/a.. •!L~1b J"3't~/YY\.. 

( l4) 

( 15) 

J' 
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~ 

The time is then given 

(16) 

We can also express t in terms of "'t' and the relaxation time 

called by Spitzerl wthe self-collision time" 

(17) 

We find t = (0.0121 ~ }tc• The relaxation time tc is really the 

average time required for a particle having an energy equal to the 

averaae energy to s~ffer a 90° deflection of trajectory and a 100% 

change in energy. We define a corresponding relaxation ti~e from 

our calculation as the time required for the distribution function 

to achieve the Maxwell value in the neighborhood of the maximum at 

~ = 0.3. This occurs at 'G ~ 60 or t = 0. 73 teo The relaxation 

time defined in this way agrees quite well with th0 "self-collision 

time"o We see from the.distribution obtained at ·-:;- = 484.17 or 

t = 5.9 tc, however, that the concept of a relaxaticn time can be 

misleading. While the distribution in the neighlorhood of the 

av~rage energy is Maxwellian wii.hin ~ few percent, at an enPrgy 

s:·· times the average energy only 75% of the Maxwell amplitude has 

beer ac~ieved. Certainly more time is required for the higher 

energy parts of the Maxwell distribution to be filled. This aspect 

of the problem was not treated in detail by the machine calculations 

although eq.(5) is approximated by a much si~pler equation for 

large values of 0 



Vo Diffusion of Particles into the Maxwell Tail 

For values of ~ above the main portion of the distribution 

an approxmate equation can be obtained from eq.(5) by neglecting all 

integrals from ~ to infinity and extending the finite integrals to 

infinity. 

a-A./ot:,- (~Lr/; ~:..) (a/d~) ( ~-''di./d~ +~""-e..) 

(18) 

The only solution of the static equation which vanishes at infinity 

• (This is also the static solution 

of eq.(5) if A= 4ai 2 {a/rr~) Introduce the function g( ~ 1 17) ) 

defined from 

into eq.(l8) 

The function g( ~~~ 

(19) 

(20) 

) becomes a constant as h ( E ~ I '";)) 1.,. 

approaches a Maxwell distribution. For a detailed analysis of the 

time dependent behavior o~ h( ~ 
1 

'"'C ) at high energies one would 

use for an initial g( ~ '1;' ·) the function reached after the lower 
) \ 

energy portion of the distribution has reached nearly a gaussian 

dependence. The approach of g( ~,u ) to the final constant value 
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at any energy then can be found from nunerical integration of eq.(20)o 

We should expect g to have the behavior of a diffusion 

wave i.eo g is constant for small values of and is ZPTO for 

large values of S with a transition region connecting the two 

asymptotic values of g. To examine the change in g( ~~~ with 

time we can look at the motion of the points on the curve g( € ~ )o 
-'I 

Now let ~ = ~ 3 
and find 

ld'l/2 ") '! c ~~ t .:<"'- ve•t, -.. a'\.'1> (G•,,; fl<j4h /(2'1 /2'/) ~ 
(22) 

The first two terms in eq.(22) clearly represent an upward diffusion 

of particles to higher )\ we can neglect the 

The last term in eq.(22) will tend to increase the 

For large 

second term. 

width W of the transition region in 1 . If yt is the value 

of which corresponds to the midpoint of the transition region 

where (~ 2 )l[2;cf)-c ~ 0 the last term is clearly of order 

YL '1-3 /-vr and is positive or. the left and negative on the 

right. We can write 

(23) 

and by comparing 8·yl/d ~ at the left and. right of 'r(_ we also have 

--~ 



or 

(24) 

Although eq.(24) is only qualitative, it does indicate that the width 

of the transition region in w increases more slowly that~ , the upper 

edge of the Maxwell region in g( ;,1: ). ConsE'~quently g( t:,-'1:. 

maintains l.ts diffusion character. The eq.(23) can. be USE-d to 

estimate the time req'Jired to fill the Maxwell tail to ve-loc.i ty v. 

t= 'M!l.'L~ 1 /11. rre:.4YL~../L (25) 

This time is indrpendent of the average temperature of the gal 

and is approximately equal to the self-collision time for particles 

of velocity v given ty eq.(l7). 

In discussing the filling of the high energy portion of 

the Maxwell distribution we have not considered the effect of 

collisions which result in large angle deflections of particle 

trajectories. The quantity ~./L defined in eq.(l) gives 

approximately 

For an electron gas 

(
frequency of small en e!:_9.Y. exchanges ) 
Frequency of large energy exchanges 

_,t,.,rt.;A ,...._, 10 - 301, and therefore accorJing to 

eq.(25) the ~rge angle collisions resulting in large energy 

exchanges are also unimportant for filling the Maxwell distribution 

at high energiesG 
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:at~E: I. A comparisrH: of the latest riistr>-u"':.i.<iil 1-.( ~ ,..J"::· .. ~.l7) 

with t~iE' Maxv;c~llL;n distril·_:-:.:.~n 

s h 
M 

( s) h { ~ '4 ;j,1 0 l 7) 

0 L76 X 10-2 1 C·t.. ....L... )· ..... X 1('~2 
... J 

Oe03 l. 73 lo86 
OoCJ6 1.,67 lo 79 
0.09 1.58 L68 
Oo12 L45 10 ::)4 

0.15 1.30 1'. 37 
0.18 1.14 l. 20 

10·~3 0.,21 9o77 X lo-3 10.13 X 

0.24 8.17 8o3i3 
'Jo27 6.67 6.76 
0.30 5.31 5.32 
0.33 4.13 4.08 
0.36 3.14 3.05 
Oo39 2.33 2.29 
0.42 1.69 1.59 
0 .·15 1.19 lolO 
o.,:;s 8. 2.3 X lD-4 7.47 X lcr- 4 

:J. ":;1 5. ~,2 ,1. 93 
0.54 3. (·6 3.17 
0.57 2.31.) 1 oc 

Cl" •' 

0.60 1.47 l 0 :_' l 
0.63 9o98 lo-5 7:.15 , ,,.... --- ,. 

X X .lv' -. 

Oo65 5.37 4 .Y; 
'J.69 3.13 2o26 
(';.72 l. 79 1.21 
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