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ABSTRACT 

The electromagnetic field equations in rotating systems are derived 
from the generally covariant tensor formulation and used to calculate the emf 
in rotating material media. The electrostatic field outside a rotating bar 
magnet is shown to be zero, neglecting end effects. The emf in rotating 
magnetic insulators is also derived and compared to the value derived from 
the Minkowski equations for uniformly moving media. Some extra terms 
representing current and charge density appear in the ordinary vector 
formulation of the field equations in rotating coordinates, and the physical 
significance of these quantities is discussed. 
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I 

I. INTRODUCTION 

The phenomena connected with rotating permanent magnets and 
rotating conductors in magnetic fields have fasCinated physicists and electrical 
engineers since the time of Faraday, and many experiments, some quite 
ingenious, have 'been proposed and carried out to decide whether or not the 
"magnetic lines of force" rotate with the presumed sources of these lines. 
(For a list of these experiments, including a detailed analysis of several of 
the experimental results, both from the standfoint of the "fixed field" and 

"rotating field" theories, see E. G. Cullwick. ) Whether or not the magnetic 
lines rotate was shown to be. meaningless in a comprehensive review of the . 
electrodynamics of moving media by Swann, Tate, Bateman, and Kennard, 2 
i.e., magnetic field 11 lines" have no physical reality independent of the 
electromagnetic field, or to quote Panofsky, 3 "Any observed phenomena 
which depend on a field description must be describable in terms of the 
behavior of the field quantities alone, independent of the nature of the 
mechanism which produces the field quantities." 

·The review article of Swann et al. 2 was apparently not given sufficient 
publicity, for experiments continued to be performed on rotating magnets, 
solenoids, and dielectrics, and some shar'p interchanges were aired in the 
Journal of the Institute of Electrical Engineers (London) in the late 1930's 
(see Cullwick for references). The subject of "unipolar induction" was then 
more or less dropped until the study of moving plasmas in astrophysics, from 
the standpoint of acceleration of cosmic rays, revived it. Alfven4 gives a 
concise review of the importance of the relativity of electric fields in cosmic 
physics and treats the problem of the rotating magnet from both the "fixed
field" and Pmoving-field" theories, showing that they lead to the same 
results for the voltage induced in a wire, one end of which is connected to 
the axis of rotation of the magnet, the other sliding on the outside surface. 

All authors derive their results from the Lorentz transformation 
equations for electric field E and magnetic field H which hold only for 
uniform motion (see, for example~ Alfven, p. 6; Panofsky, p. 149 and 343; 
Cullwick, p. 109; or Sommerfeld, p. 360}. Thus the radial electric field 
at a distance r from the axis of a rotating magnet is given by 

~ . - - -E = -(w x .r) x B. (1} 
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Th~ various a~thor s %uoted above all draw att.ention· to the fac~ that 
divE = 2w· B :j 0, and Backus . makes this the basis for his disagreement 
with Alfven's derivation of Eq. (1) above. At this point, most of the authors 
state that problems involving rotation cannot be discussed consistently 
without recourse to general relativity, and go no farther. 

It is the purpose of this paper to set up the general relativistic 
electromagnetic field equations in rotating media and point out their application 
to some of the classical problems of spinning magnets and dielectric cylinders. 
It will be seen that some interesting differences arise between cylindrical 
and rectangular coordinates, even without reference to any rotation. 

II. THE FIELD EQUATIONS IN ROTATING SYSTEMS 

The Maxwell equations are written (in rationalized MKS units) 

(a} -div B = 0, -- aB {b) curl E = - at ' -
(c) - - aD 

curl H = j true + 81' and 

(d~ 
. -+ 

div D = pt , rue 

with the additional relations 

-+ - -+ D = e 0E + P, and 

~ .-... ~ 

B = f.lo(H + M). 

These can'be concisely written in tensor notation 

+ = 0, and 

{2) 

(3) 

(4) 

(5) 

(6) 

where, in rectangular coordinates; the antisymtnetric electr.omagnetic field 
j· 

tensors, F and H, are given by 

0 cB . -c)3 E 0 cB -cB -E z y X z y X 

0 cB .E 
Fij= 

0 cB -E 
F .. = 

X y X y 
lJ 0 E 0 -E , (7) 

z z 
0 0 

\ 
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H H H H 
0 

z _:t D - - 0 
z _:t -D - -c c X c c X 

H H 
0 

X 
D - 0 + 

X 
-D 

c y c y 

H .. = 
lJ 0 D z 

Hij~ 
0 -D ) (8) z 

0 0 

and Jk is the current four -vector 

{9) 

The relation between the contravariant components Fij and the covariant 
componen~s F ij ~s 

F .. 
lJ 

P.k = g. n·g .kF 
1L J . 

where the g .. are given by the line element 
I lJ 

2 2 2 2 22 ik 
ds = dx + dy + dz - c dt - - gikdx dx , 

so that 

gik = 0 for i f k 

= - 1 for i = k = 1 , 2, 3 

= +1 for i = k = 4 . 

( 1 0) 

(1 q 

(12) 

The relations (5) aiD.d (6), being tensor equations, are valid in all 
reference frames that preserve relations (11), which include all uniformly 
moving Lorentz frames,. but they are not valid in stationary coordinate 
systems other than rectangular Carte STan. · 

For the pU:r.pose ~f treating problems in rotation, it is very convenient 
to work in cylindrical coordinates, therefore we shall now fi:rid the tensors 
equivalent to (7) and (8) and the relations analogous to (5) and (6). In polar 
coprdinates r, ~. z, and ct, the line element is given by 

-ds2 =dr
2

+r
2

dB
2

+dy
2 

c
2

dt
2

, (13) 
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so that 

-1 0 0 0 

0 
2 

0 0 -r 
g .. = 

lJ 0 0 -1 0 
( 14) 

·o 0 0 1 

and, if we define g.ij as the conjugate minor of gij divi~ed by the determinant 
g of g .. , then 

lJ 

-1 0 0 0 

gij= 0 -1/r 
2 

0 0 
( 15 ~ 

0 0 ~1 0 

0 0 0 +1 

Now we define 

cB 
0 crB -cB 8 E z r 0 

z 
-cB 8 -E -r- r 

0 crB r£
8 , and Fij=g il gJTI?F lm F .. = 

r 
= 

lJ 

cB Ee 
0 

r --
I -r r 

0 E 0 ·E z z 

0 0 
(16) 

wit~corr~ponding relations for Hij and Hij in terrris of H/c and D instead 
of cB and E. Then Eq. {5) may be t,<lken over without change, while (6) has 
to be written 

k 
rJ . 

The reason. for this will appear shortly. 

(1 7) 

Ndw that we have expressions (15) for the field tensors in cyiindrica1 
coordinates, let us consider a transformation from an inertial frame R, ®, 
Z, cT (unaccelerated with respect to the fixed stars) to another frame r, B, 
z, ct rotating with uniform angular velocity w, i.e.' ' 

/ 
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R = r, 

a = 8 + (w/c}ct, 

z = z, 
. ( 18) 

cT = ct. 

(For a discussion of the implications involved in s~tting T = t, see M~lle~, 7 

p. 225.) In these new rotating coordinates, the line element is given by 

where 

and 

2. i k 2 2 2 2 2 2 2 2. 2 
-ds = -gikdx dx = dr + d8 r + dz · + 2wr d8dt - (c - r w )dt '· (19) 

-1 

'o 
gik = 

0 

0--

-l 

0 
' ik 
g -

0 

0 

0 

2 
-r 

0 

.2 
wr --·C 

0 

0 

.;.1 

0 

2 
r 

0 

w 
c 

0 

2 
wr --c (20) ' 
0 

2 2 
1 

r w ----z 
c 

'--
'· 

0 0 

w --c 
(21} 

:..1 0 

0 +1 

It can be shown in general relativity (Tolman·, 
8 

p. 262; M~ller, 7 
p. 302). 

that t'he field equations can be expressed in a covariant fo.rm by means of 
Eqs. (5·} arid the extension of (6) to covariant differentiation, i.e. , 

(22) 



-8- UCRL-3636 

Because, from (14), we have '(-g = r, we see that (22) gives Eq. (17). Now 
fg is equal tor even in the rotating coordinates, therefore our.~ield 
equations become (5) and (1.~), where F U is given in {16). and H 1 is obtained 
from Hik by means of the g 1J given in (1~). hence 

H
ik _ ij klH 

- g g jl. (23) 

Conseque.ntly we have 
rH -H 

0 
z . e 

D -- --c ·. c .r 

rH 

Hjl= 0 r 
(24) -.-.- rDe c - . 

0 D z 

0 

and 

.. H -He 
~H b z w 

D -D 2 + - --c r c c z r 
c-y r 

H wD -De 
0 

.r z 
--z -

Hij= 
cy r c r 

.0 ~ H - D c r z 

0 (25) 

in which we have used the abbreviations . 

f3 = wr I c and 1 I y = ~ 1 - j3 
2 

. (26) 

Equation (5) beco~~s 

-' (a) div 'B = 0 · 

(b) - ai3 curl E = - lft (2 7) 

just as in stationary coordinates, while (22) becomes 
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. ) 

1 aH aH8 an an 
-~ 

aH ~2 dH 
(a) 

z ;r r r Z: + z - 1fF- az = J +ar - wae at av-· r c r 
(' 

(b) 
a Dll 2w

2
rH .e u z d" roD,.. = ;r J + at - 2 + wr 1 v · 

c 

. ~~ (rH8) 8Hr] an 
- ~2 aH 

~ 
aH an .z z r r z 

(28) {c) r .ar - '}f8 = J +at --ar+ at - w Fe r c 

) 2wH (&H, a Hz) 
(d) - z ~ div D = p +' --z- - -c az ar 

c 

The first three of these can be written 

-- an+- (13.
2 

cur 1 H = j + ~ a r r 
8H z 
1f8-

8Dr (3 8Hz). . -
w arr· - - -- + wrpae o o c .at · 

+k(~ 8Hr- w 
\C: at 

an z 
1flT 

- 132 
r 

aH) r ae , 
_.,. _.,. -f> . 

where a r' a e· and k are unit vectors, and where we have used (28) to -

:(2 9) 

' simplify the coefficient of a e· Intheiparticular case of steady rotation of 
axially symmetric systems, where all derivatives with respect tot and 8 
vanish, we have 

-div B = 0, 

·-·curl E = 0, 

div D = p + 2wHZ/c
2 

- 13/c(curl H) e/ (30) 

-1:> -+- .:..+. 
curl H.= j + wrpa0 . 

These equations are worth some scrutiny. The first two are unchanged from 
those in inertial systems, but the third and fourth involve respectively an 
i'e::lFtra''· charge density and current. The extra current, ~rpa8 , looks just 

. like a circulating current due to motioD:s of a volume charge de'nsity p at a 
velocity wr. However, it must be remembered that'p is the charge density 
measured in .the rotatin&..system, and at .rest with respect to ·this system .. 
If we assume, that p and j, the "true" charge density and current, both 
vanish, we can eliminate the. "extra" current but not the extra charge density, 
and Eqs. {30) become 

'- \ 



- . div B = 0, 

-curl E = 0, 

-curl H = 0, 

. - I 2 div D = 2wH c . 
z 
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(31) 

III. MATERIAL MEDIA AND CONSTITUTIVE EQUATIONS 
' 

-. _..,. -llo- .....,. ~ 

The equations relating E, B, D, H, and j are usually written in 
inertial systems · 

- -D = Ke 0E, - -B = f.LH, - -j = O'E' (32) 

which may be expressed in covariant tensor formulation (Tolman, 8 p. 263) 

. H .. dxilds = K€
0

F .. dxilds, (33) 
- 1J 1J 

(g .. Fkl+ g.kFl .. + g. 1F .k)dxilds = f.Lc
2

(g .. Hkl+ g.kHl. + g. 1H.k)dxilds, (34) 
1J . 1 J 1 J 1J . 1 J 1 J .· . . 

and 

(35) 

where again K, f.L, and 0' are, respectively, the d,ielectric constant, absolute 
magnetic permeability, and electrical conductivity of the material measured 
in the rotating system, and dx1lds is the macroscopic velocity of the medium· 
at the point of interest. N_ote from (19) that for a point which is stationary 

( 
in the rota,ting system, dx1 lds is equal to 'I when i = 4, and otherwise zero .. 

· ~e thus obtain from (33) 

(36) 

which is the same as the first equation (32), while equation (34) becomes 

and 

Be= f.LHe, 

. 2 2 . 2 
B + wr E y I c = f.L (H + -y wr D ) , ; z · r · e; r 

B . 2 . E . I -2 (H 
r - 'I wr c -= f.L z _ r 

2 
- 'I wrD ). . z 

r 

(3 7~ 
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These equations bear a striking resemblance to Minkowski'' s equation fo·r 
uniformly moving media (cf Sommerfeld, 5 p. 281 ), 

..... ..:. - 2 . ·- - -B - v X' E I c = f.l (H - v X D)' (38) 

-but there is a considerable difference in interpretation. The v in (38) is the 
velocity (uniform) of a material medium of permeability f.l relative to the 
frame (usually the laboratory system) in which the field vectors are m~as:ur~d. 
In (37), on the other hand, wr is the velocity of the material medium, ·relative 
to an inertial frame at rest with respect to the fixed stars, and the field 
vectors are measured in this moving system. In uniformly moving media, 
if we measure the field quantities in the moving medium, we always obtain 
exactly (32). We have already meCa--:sTmilar difference between uniformly 
moving media and accelerated systems in the extra-current term of (30). 
This is a consequence of the differences between relativd.ty of uniform 
translational and uniform rotational motion. 

The last constitutive Eq. (35) gives 

J. = uE 
r . r' j = uE , z z 
. . . 

(39) 

where the extra factor. of 1/r in je arises from the dimensionaldifference 
in (r, z) and B. This is discussed more fully in a later section and involves 
the difference between covariant and contravariant vectors in all coordinate 
systems other than rectangular cartesian. 

IV. PHYSICAL LAWS IN ROTATING SYSTEMS 

It should be remembered, in regard to the physical significance of the 
quantities occurring in. Eqs. (30) and (31), that so far their only meaning is 
that determined by their de.finition as the components of the tensors (16) and 
(25}, which transform in a known way under t:P,e transformatiol!.of coordinates 
(18) {Appendix II). Thus it is not yet obvious that the quantity E, for example, 
is the force acting on a stationary unit charge in the rotating system. To , 
exa~ine this question, we must consider the transformation laws for covariant 
and contravariant vectors. It i(> shown in Appendix I that in considering the 
work done in a displacement ox1 by a force,. we must take the covariant com-
ponents ofF.. · 

1 

·As shown in Mpller, 
7 

p. 305, the electromagnetic four -force acting 
on a particle with charge e · is 

where uk is the four-velocity 
. d 1 u1 = ~ 

- dT = 

(40) 

(T = s/c), (41) 



-12- UCRL-3636 

u a = dxa /dt ~being .the contravariant components of spatial ve1.ocity, and 

Here, we have 

2 2 
r w 
~...---t· Z I 

c 

1/2 u2 ]1/2 
- 2 

c 

Thus for the rotating coordinate system in which 
. 2 

-ds
2 

= dr
2 

+ r?d8
2 

+ dz
2 

+ 
2:w d8dt - c

2
dt

2
/•/, 

we· have 

'I = {0, +!3'fr, 0), . a . 

-yll=+1; 

. 2 2 
'I 22= +-y r ' 

'I 3 3 = + i , and 

'I a!3= o for a i 13; 

where ·!3 and 'I q.re defined in (26}. 

We thus; have, for the components of the four-force, 

F 1 = le(r_ B 8 '- B 8z + K.). . z r 

F 2 = r lefBzr ·+ Brz + E 8 ), 

F = fe(B
8
r - rB B + E }, and 3 r z 

F 4 = -le(Err + rE8 B + Ezz) 

(42) 

(43} 

( 1 9) 

'(44) 

(45) 
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where 

' [ { ~~ ~rz 2 2 r 1 r w ~:r8 : and = - -. -2-. ~ 

I c 

·., ,( :. 

the dots· referring to time -differentiatiot;l. 

For a charge at rest in the rqta,ting frame we have 1/ I= 1/y, and 

Fl = yeE r 

F2 = yerE 8 = (yF ' 0), 

F3 = yeE Cl. 

. .z 

F4 = 0 

and we see that the quantities Er, Ee, ·and Ez are indeed the components of 
the electr,i_£ field strength in th~ moving system, because the work done by 
the force F (real three -dimensional) in a displacement or, o 8, oz is . a . 

W = F oxa = e(E Or + rE·llOB + E Oz)o a · r o z 
.... 

Similarly B is the magnetic induction, and if we consider the forces on a 
" .-f> I -f> • . . ' , 

hypothetical m~gnetic pole, Hand D can be shown to represent the usual. 
magnetic field intensity and electric displacement vectors. As a check, if 
we let i: = Z' = 0 and e = -w, I which thus represents a particle at rest in the 
laboratory frame, we have, using (26), 

I 

1/r = (1/v + ~2y2).z - 132Y2 = 1, 
and the four~force becomes 

:F -
2 

= e(E + wrB ). z r 

Comparison with Eqs. {A22) in Appendix II shows that this is the right force 
law, in the labo'ratory system, if E and Bare the usual electric and 
magnetic field strengths. 

\ ' 

/ 
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V; SOLUTION FOR ROTATING MAGNETIC INSULATOR 

. . ., --.. _. -+ : ...... 

Now that we have identified the vectors E, B., D, and H in (30) with 
the usual electric and magneticfield vectors, our problem reduces to the 
solution of these equations with the constitutive Eqs. (36), (37), and (39), and 
the transformation back to the laboratory system. Consi1.er an infinitely 
long, cylindrical magnetic insulator with a uniform field B parallel to the 
axis of rotation. All derivatives with respect to z and e thts vanish. We 
have, from (37), 

B - !J.H = 'I 2 
wrEz(Ke: 0Fi l/~2) -r r 
2 . -

l/c
2

) B - ~J.H = -'I wrEr (K e: 0 f.L -z z 
(46) 

and, from (3ld), 

l a 2wH 
(rD ) 

z - ar = -z-r r 
c 

or (4 7) 

l a 2wH 
(rE ) 

z - or = _2_, 
' r r 

Kc 

so that 

H z wr 
(48) =----

i 
Substituting i:ri the second Eq. (46) (reverting to._our original use of primed 
coordinates; to typify the rotating system of Appendix II), · 

E = ·r 

c~B 
I 

z 
{49) 

Now, in the laboratory frame, we have for the tensor F .. , from Appendix II 
. lJ 

so that 

F .. = 
lJ 

0 crB z 

0 

I 

-cBe 

crB 
1 

r 

0 

I I 
E - wrB r z 

·I 
E ·-·+ wrBr. ·z 

0 



. E (lab) = E , 
r r 

wrB 
z 
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This is to be compared witl::i the corre spending term derived from the Lorentz 
transformation of special .relativity ~Appendix III), 

2 
E = wrB (1 - 1/Eof!KC ). r z 

2 
Note that, for free space, EoKfl - 1/c in our units. 

VI. FIELD OF A ROTATING MAGNET 

(51) 

Consider now a permanently magnetized spinning cylinder, of 
radius a, ~ither conducting or insulating. We shall assume that the magneti-' 
zation M is uniform and in the z direction._Then from the first Eq, (30), 
B is uniform and in the z direction, and thus H is likewise, because p = 0 
throughout the body of the cylinder. (This says nothing about any possible 
polarization charge that may exist on the surface of the cylinder.) If this 
cylinder is uncharged, we may integrate the third Eq. (30) over the whole 
volume enclosed by a cylindrical surface infinitesimally larger than the 
rotating magnet and of unit height in the z direction; we then have 

J divD'dr' = /D~dS' = J p' dr' + l/c 2 J 2wH~ dr', 

D' 
r = waH '/c2 

z ' 
(52) 

just outside the spinning magnet. Because in the vacuum,. D'= EoE', and 
B'= floH', we have 

E' = waB' r z' 

and from (A22) 

E = E 1 
- wall 1 = 0. r r z 

(53) 

This proves the more or less self-evident assertion that there is no electric 
field outside a spinning magnet, measured in the laboratory frame, and 
neglects any end effects of "dipole -type" polarization-charge distributions 
in magnets of finite size. 
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. APPENDIX. I 

' Consi<:ler a general transformation of coordinates in space time, 

I i . I i( k) 
X. =X X (Al) 

or 
dx 'i ,i k k 'i k } = a kdx = dx 0 X /oX • 

. . 'k 'k . 'k 
dx

1 
= ~dx = dX ox

1 
/ox 

(A2) 

A contravariant four -vector ai is defined as a collection of four quantities 
that t'ransform according to the equation 

'i i k 
a = a, a , 

K 
(A3) 

and a covariant vector a. is a similar collection in which the transformation 
is according to· the equatfon 

_(A4) 

To give a specific example, let us consider the transformation from rectangular 
coordinates x, y, z, ct to polar coordinates r, 8, z, ct. We have (letting the 
primed system refer to the _polar coordinate;s~ 

' ' 
l .1 1 '2 

X = X = r COS 8 = x· COS X , 

2 
sin 8 

I 1 .'2 
X = y =-- r = X sin x 

3 ·' 3 X = z = X 

4 
ct 

'4 X = = X 

Thus the transformation matrix. a.~ is given by 

and 

·..._,row 

a col 
= 

cos 

-sin 

0 

0 

cos 

sin 

0 

0 

8 

ejr 

e-
e 

sin e 0 0 

cos ejr 0. 0 

0 1 0 

:0 0\ 1 

"'r sin e :0 6 
r cos e 0 0 

0 1 0 

0 0 l 

(A5) 

(A6) 

' 

l (A7) 



-lS- UCRL-3636 

Let us see how a four -vector in rectangular· coordinates transforms into 
polar coordinates. Specifically, let us consider the four-velocity 

i i -U = dx /dT = (yu, cyL '(AS) 

-where u is the spatial velocity vector with components dx/dt, dy/dt, and 
dz/dt, and 

is the Lorentz contraction factor. The covariant components of the vector 
are given by 

u. =g .. uj = 
1 lJ 

-(-yu, cy). (AS') 

In polar coordinates, the contravariant velocity components become 

,I l ur l 
uk = y(u cos 8 + u sin 8) and u = -· ak X y 

'2 8 2 k . ' (A9) 
u = u = a:k U = y(-ux sm 8/r + u cos 8/r), 

y 

while the covariant components of velocity are 

u = y{u cos e + u sin 8} and 
r. . x y {AlO). 

u 8 = y(-r sin 8 ux + r cos 8 uy).· 

The polar components of velocity in elementary mechanics are 

and these do not agree with either of the above, (A9 or AlO) being a sort of 
geometrical mean of the two. However, if our four-vector had been a force,. 
instead of a velocity, and we had considered the work done in an elementary 
displacement Os (the' 8-component of which is r~it is seen that the 
covariant fore~ components Fi, when multiplied by the corresponding dis
placement ox\ give us the correct value for the workdone. As pointed out 
by, Eddington, the elementary definitions of physical quantities refer in 
general only to rectangular components, and must be suppleme,nted before 
we can decide whether the physical vector is covariant or contravariant. 
Thus, if we define force as ·:"the product of mass and acceleration, " the 
force turns out to be contravariant, while if we define force by "work equals 
force multiplied by displacement," the force is covariant, as we have just 
seen. This is expressed mathematically by 

and 

. 2 . 
F

1 
= c d/ds(m 0dx

1
/ds) 

i 
·.OW = F. Ox ~ invariant. 

1 

(Al2) 

{Al3) 
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. · 'T.o c,omplete our notation, we defirie a contravariant tensor Fij as a 
collection of 16 quantities that transform (under the coordinate transformation 
(2}) according to the equation · 

F
'ij _ i j Flm 

- a1 am , 

and similarly for. a covariant tensor 

F.,. 
lJ 

1m 
= a i a j F lm. 

APPENDIX II 

(Al4) 

{A15) 

We shall now derive the transformation coefficients between two 
system_s rotating with respect to each other with a uniform angular velocity 
ti). •. Let-~ be an· inertial system .(fixed with respect to the distant stars~ R, ®, 
z, ct, and let ~· be a_ system r, e, z, ct rotating with respect to~. 

Thus if xi = R; ®, Z, ct and x'i = r, e, z, ct, where 

R = r, 

® = e + wt, 

.>··. z = z, 

cT = ct, 

then dx1 = 0: i dx'k where ' k . ' 

v row 
a col 

and 

= 

r.ow = 
a col 

1 0 0 0 

0 1 0 w/c 
0 0 1 0 

0 0 0 

1 0 0 0 

0 1 0 -w/c 

0 0 1 0 

0 ;0 l ' 

{Al 7) 

{Al8} 



-20- UCRL-3636 

For the transformation of a covariant tensor from the rotating system into 
the lcibor~tory £!-arne', we have · · 

(Al9) 

I 

and for the first electromagnetic stress tensor F.k' using (16) for :flm (in 
the primed system) we get, in the laboratory system, 

' I I 

0 crB -cB
8 

E - wrB· z r z 
I I 

. F ik= 
0 crB rE9 {A20) r 

I 

0 E + wrB z r 

0 

where the primed quantities are those measured in the rotat~g syst~m. By 
the same reasoning used iri Part IV of the text to show that E · and B are 
actually the usual electromagnetic forces on a test charge, we see that the 
components of the electric and magnetic field measured in the fixed system 
are 

- -B = B 1
, 

I I 

. E. = E - wrB r r z 
V I 

E = E + wrB z z · r 

(A21) 

and (A22) 

The second set of these equations looks very much like the transformation 
equations for electric field strength in special relativity, 

... ~' _,... -+- v 

E.L = "Y(EJ. - v x B.J.) and E 11 = E 11 , (A23) 

where 11 and~ refer to the components of E and B paralle 1 and perpendicular 
to v. The first set, however, is quite different. The magnetic field vector 
is unchanged by the rotation, whereas in special relativity the transformation 
would be 

and 

I 

B 11 =B 11 

- _, - - .. 2 * 
B 1. = " (B .J. - v X E .J. I c ) . 

(A24) 

* - -In connection with these transformation equations for E and B and for 
most practical applications involving pl~ma physics, it should be noticei 
that; because of the good conductivity, E will be considerably less than B , 
and because of the factor of c 2 in the deno~nator of (A21), it is generally 
found that, to a very good approximation, B is equal to B 

1
, even for 

unifor-m motion. 
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·.We have already seen other consequences oLthe nonrelativity·of rotary motion. 
An apparent paradox that the equation {A21) above leads to is .afforded by 
considering a ring of charge at rest in the laboratory frame and an observer 
whirling around the axially symmetric distribution.withan angular velocity c.o. 
We know that if the ring is rotated an observer in the laboratory frame will 
see a magnetic field, but our equations tell us that the obse.rve.r rotating 
around the fixed-charge ring will see no magnetic field, because in the labora--tory frame the only field is electrostatic, and B is 'unchanged by rotation. Thus 
the two cases of rotating observer and rotating charge distribution are not 
symmetric. We have neglected, however, the effect of the charges of opposite 
sign at ·infinity, which are, of course, in violent motion with respect to the 

·{rotating) observer. This po,int will be discus sed .more fully in a subsequent 
paper. A similar problem that avoids the question of charges at infinity, has 
been considered by Schiff, 9 who considers two concentric oppositely charged 
spheres with an observer rotating around them. Because, in the rest frame, 
all components of the stress tensor vanish here, they must similarly vanish. 
in all systems. 

APPENDIX III 

I have been unable to .find in the literature an explicit derivation of 
this Eq. (51), but at one time a great deal of importance was attached to the 
results of an experiment performed by H. A.· Wilson 10 to check whether the 
correct factor in the brackets was {1 - l/f! KE 0 c2) or (l - 1/K). A derivation 
of the correct factor is given below. · 

. Consider two parallel conducting plates in the laboratory system, 
parallel to the y-z plane, and of infinite extent. Let these be separated by a 
distance L, and consider a slab of insulating magnetic material, infinite in 
the y and z directions and of thickness (L - 2a} in the x direction, to be 
moving in the positive y direction with velocity v. Let a magnetic field B 
that is directed in the positive z direCtion exist Tn the laboratory system, 
and let the dielectric constant and permeability of the slab .be k and fl. 
respectively (i.e., if primed quantities refer to a system of coordinates in 
which the slab is at rest, then 

D' = KE(>E', and 

B ' = " :H' = K " HI r mro ' 

where K is the relative permeability}. 
m 

We shall let the subscripts "0" and "i" refer to quantities measured 
in the space between the plates and the dielectric slab, and inside the slab, 
reSpectively, a·nd unprimed quantities refer to the laboratory system. We 
then attach an electrostatic voltmeter {of very large capacitance, s~ that we 
don't have to concern ourselves with cha.rge division between the conducting 
plates and the external voltmeter) to the two plates (clearly, this will be a 
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. "Gedanken" experiment, if the leads are to be brought around the infinite 
slab). We then have 

- - - -(a) El = y (EJ... + v x B), .L. .J,. - . - ·- - .2 (b) B' = y (B .L - v x E1_/c ) , j. 

{c) -Bl -=f.LH', and· 

(d) -Dl -= KEoE'. 

In our case these equations become 

(a) E. I = y(Ex + vB), 
X 

(b) B' = y{B + vE /c 2
), 

X 

(c} Bl = f.lHI, and 

(d~ Dl = K€ 0 E 1
• 

If the capacitance of the measuring instrument is large enough we 
shall have no charge density on the plates, so that if (]' denotes the charge 
density measured in the laboratory system, then 

cr = (]' I = Eo = o . 

From (A2 7a) and (A2 7d), we find 

EO = 'lvB 0 = D0/e 0 = Di/€ 0 = KEf 

and thus 
I I 

Ei = -y (Ei- vBi) 
3 I I 2 2 . 2 

= (y v/K)(B 0 - vEJc ) - y v(Bi + vE/c ) 

= vB 0/K ~ vB. 
. 1 

2 . 
= vBi{f.l-0 /Kf.l- l)/(1 - 13 /Kf.l). 

As € f.l = l/c
2 

in our units, we see that, neglecting terms in second order 
of {v7c~, this is just Eq. (51). 



-23- UCRL-3636 

APPENDIX IV 

It is evident that Eqs. (30) depend upon the definitions of Fi· and 
1 

Hij with which we started, i.e., Eqso' (16} an~. (24) .. We could equahy well 
h~ye started with the contravariant tensors F 1J and H 1J, letting, for. example, 
F 1J be as defined in Eq. ·(16). In this case, calculating Fij from F 1J in the 
usual way and substituting into Eq. (5), we would have obtal.ned 

~ 

c.>r wE 
- - z div B = -z(curl E)e - - 2-

'c c 

-(curl E) = o·, 
z -· (curl E) = 0, and 

. ·' r -(curl E) e 
2 2 

2w ry 
2 

2 -E - c.>ry div B, 
z 

c 

qnd ~f Bij is similarly defined as in (16) (with H/c and D replacing cB and E), 
the second two of Maxwell's equations would have been exactly as given in. 
(2c) and (2d). In this case, however, the field vectors would not have had 
the usual meaning·: we assigned them in Part IV. 

. . Or, in a similar way, we could have started with either Fij or :Fij 
defined as in (16) in the laboratory system, and calculated the corresponding 
tensors in the rotatingsystem from (Al9). I:t: this case, assuming no e 
dependence for the fields, Eqs. (2) will be found tope preserved exactly, but 
tl;?.e sin::?,Ple relation (36) no lo~ger oE.tains, but is replaced by a relation between 
D and'H on the one hand and B and E on the other, similar to (33), 

Thus it is seen that there are many ways to attack this problem, and 
indeed this flexibility is present in all general relativistic transformations. 
They must all lead to the same physical results, however, although the 
nomenclature may be different. 
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