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ABSTRACT

The scattering of high-energy deuterons from spin-zero targets

is treated in the framework of the impulse approximation, using the

polarization formalism of Wolfensiein and Ashkin, which is here extended

to the case of spin-l particles. The contributions of the deuteron

D-state are included and are found to be important in large-angle

scattering. The contributions to the deuteron scattering due to the

simultaneous scattering of both particles of the deuteron are also

included. These contributions are treated by a mulﬁitime fqnmalism
similar to that used in thé Bethe-3alpeter and Levy-Klein approach to

the relativistic‘two-bOdy wave equation, butAhere a slightly different
assumption regarding the relative pime dependence is made. It is found
that these contributions are important at both large and small scattering
angles, and account for the large disparity between the expe;imental and
theoretical values of the differential cross section obtained in previous

calculations.
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INTRODUCTION

In recent experiments the ?ifferential cross sections and the
polarigation effects in the scattering of deuterons by carbon and various
other nuclei have been measured.l An attempt to interpret the
experimental results on the basis of an impulse approximation has been
made by Baldwin.l’? For a typical case of 157-Mev deuterons on carbon
the differential cross section he obtains is larger than the measured
value by a factor of about 2.5 for small scattering aﬁgles, and at
large angleq/%gcomes smaller than the measured value by.a factor of about 7.
The predicted polarization reaches a maximum of about 5%,)whereas the
experiméntal value rises to about 508. It has been suggested1 that the
discrepancy at large angles may be due, in part, to the effects of the
deuteron D-state contributiéns; which were not considered in Baldwin's
treatment.. The D-state contributions are, of course, suppressed by a
factor of the D-state amplitude, which is ~~20%, but at large angles

they might be expected to become important for the following reason. A

dominating factor in the large-angle differential cross section predicted
on the basis of the impulse approximétion is the sticking factor.3 At
large -angles this factor, which is essentially the Fourier transform of
the square of the deuteron wave function, becomes quite small when only
the S-state part of the deuteron wave function is included. Since the

D-state wave function is sharply peaked, compared with the S-state wave
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function, the D-state parts of the sticking factor might be expected .
to have larger high-momentum components than the pure S—staté contribution.
As high;momentum components correspond to large scattering angles, it.is

Apossible that at large angles the D-state parts of the‘sticking factor

-may become large enough to compensate for the small D-state.amplitude.

In order to investigate this possibility, the impulée approximation
for the scattering of deuterons by carbon has been-extendedtto include the
D—staté contributions. The calculations, which are carried out in
Section II, show that the“D~State conﬁributions at large angles afe

almoét eQual in importance to the S-state contributions but that they

.are not sufficiently large to produce by themselves the large changes

recuired to obtain agreement wiéh the experimental results.

A second process that would evidently contribute significantly at

large angles is the simultaneous scattering of both particles‘of the

deuteron. In Baldwin's treatment, which includes only the effects of

prpcesées in which a single particle of the deuteron is scattered, the

'sharp decrease in the large-angle differential cross section caused by
- the sticking factor reflects the large probability that the deuteron will

- become disassogiaﬁed if one particle of the deuteron receives a large

impdlse. However, if botb'particles receive large impulses of apprbiimately

equal magnitudes this tendency to break apart should be reduced, and at

sufficiently large angles this type of contribution might be exnected to

predominate over those in which only a single partiéle is scattered. The
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theory for the simultaneous scattering is developed in Section III, and

it is shown that for large scattering angles the effects of the simﬁltaneous
scattering indeed becomes the dominant contributioh:__
| Thé effects of the simultaneous scattering are important also in

the small-angle region. In Baldwin's treatment the particle that is not

-scattered remains, in effect, undisturbed in some plane-wave state. The

fact that Baldwin's result is too large in the smali—angle region can be
explained, qualitatively, by noting that the amplitude for the "unscattered”
particle sﬁould evidently be reduced to account for the fact thét some of
these particles Qiil be scattered and-hencé femQVed from the uﬁscattered
beam., Simple estimates show that Baldwin's results sﬁould be reduced to
approximately the experimental values when this effect is considered.

The quantitative treatment of this effect is obtained by considering
the interference between the processes in which a single-particie and those
in which both particles are scattered. The evaluation of the interference
term requires a knowledge of phase of the scattering’amplitude for the
nucleon—carbdn scattering. 1In the forward direction this may be determined
by the use of the optical theorem. The differential cross seciion
obtained if one assumes this phase to persist at all angles is in good
agreement with the experimental results for angles less than lho. At
larger angles the predicted values become considerably too small, owing

to the large destructive interference. If, as a more reaiistic approximation,

the phase angle predicted by the Fernbach-Serber-Taylor model of nucleon-

nucleon scattering is used, the interference becomes constructive at large -
angles, and the theoretical and experimental differential cross sections
at all angles are brought into reasonazble agreement; for angles less than

lho the experimental and theoretical cross sections are in virtually perfect
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agreement, whereas at large angles the predicted value is about 50% larger
than the experimental value. The ﬁodel of Fernbach, Serber, anﬁ Taylor

is not a completely reliable basis for detailed considerations at large
angles because, for one thing, polarization effects are not included.

The results Aemonstrate? however, the importance of the simultaneous
scattering processes in the scatteriﬁg of deuterons both at large and

at small angles. Results obtained by using more realistic mbdels of the

. : : N
nucleon-nucleus interaction will be discussed in a subsequent paper.
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SECTION I. POLARIZATION FORMALISM

Iﬁ.this section the general formalism for the description of the
nonrelativistic scattering of spin~l particles by spin-0 targgts is
dévaloped. The treatment is along the Qame general lines as that used
by Wolfenstein and Ashkin5 in their treatment of spin-3 particles, and
is based upon the usé of the dénsity matrix and the M-matrix.

The M matrix that describes the scattering of a spih-l particle
by a target of zero spin will be three by three, and may be written in

the following form:

Mo, §) = AS, §) + By(6, )s; + c'ij(e, Mgy -« (1)

A summation convention is to be understood, and 1 and J run over

'_ X, ¥, and z. The 'S4 are the usual matrices,

~ /fo 1 o\ | jo -0
1 1
S - n—a— 1 0 l S“"": at—— i O —i
X Y : ’ | J {2
\o 1 0 | ‘ \ 0 i 0
/1 0 o‘\
83 = 0 0 o/ ,
o o -1/
while
- : 2 ;5
S.. = A8, s 5,8,)-2 1¢ .
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These matrices, together with the unit matrix, form a.coﬁblete set in

the space of three-by—three‘matrices. The cij(e, #) are made unique
by imposition of the condition that the matrix C(©, ) with elements
cij(e, @) be symmetric and traceless. - —

The spin state of the scattered beam may be described by the

. density matrix  @(8, ¢), which is related to @ inc @ the density

matrix before the scattering, by

et H = %o, ) e, Mo, B e, . (@2

whers
M is the hermitian conjugate of M. With this definition the

differential cross section may be written
I(e: ¢) = Tr e(G: ¢) s . (3)

and the average value of an operator A in the beam scattered in the

direction (8, @) is

<A>e¢ = Tr(e(e, g)a)/tr (e, #) . (4)
Using Eq. (3), one can wfite the expansion of 'ET(G, @) in terms of the
Sy and sij-

e(e, #) = 1(s, ¢)(§ +4 pi(0, Sy + T,4(8, ASgy) ,  (5)

- . and symmetric.
where Tij(e ¢) will be taken to be traceless/ From Eq. (4) one then

finds

(31

(813 >e¢ = 1569,
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’ where the elementary properties of the Si and SiJ summarized in

Table A have been used.
The vector with components Pi is a measure of the spin angular
momentum in the scattered beam, and will be called the vector polarization.

These -components of vector polarization, together with_,Tij, which will

“be called the components of tensor polarization, specify the state of

polarization of the particles in the beam. In an unpolarized beam both
the Pi and the Tij are zero-and the density matrix is a multiple of
the uhit matrix, If the incident beam iS'unpolarized, Cinec may De

taken as the unit matrix and

g(ey ¢) = %M(g’. ¢) F‘I-(Q’ ¢)

Equations (4), (6), and (7) then give

Pi6, #) = Tr 3 W, ) W(e, Psy/ir e, B Wo, B) (8)
1500 9) = L, 9) e, M, /1r Luco, B) o, ) (9)

These equatioﬁé give the vector and tensor polarizations as functions of
the M(e, g).

. In a double-scattering experiment the beam is first scattered
through 9,A¢ and is then scattered thréugh a second angle, which will

be denoted by 8', @#'. The M matrix corresponding to the second scattering

| is denoted by M'(O, ¢'), and the density matrix after the second

scattering is, corresvondingly,
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pee, ¢')

(e, g') o (6, #) u' (o1, #0)/r g, 9)

I(0r, #)(G +3 Pryfer, g8y + Ty g0, B1)s, )

i . | - ( 10 )

’ The‘differential cross section after the second scattering is then

13

I'(e', #')

r (e, g")

Tr M'(0', g') M1(6', '¢')(!3L. + % Pi(6, B)Sg + Ty4(e, #)S, ;) |

Tr(X' (0", g') M1 (0", ')

l‘-l’ 1 ] |v 1 A1
Tr%ﬁ'(e': gr) ur(e', gv)

1

1iar ' (gt o ’
+ 1y (8, ) Tr 3 M'(8', @) Mr(e', #')8,, :
Trgfi'(e', gr) ur(e', g

(11)
6
If in analogy to Egs. (8) and (9) one defines

;i(e" ¢')

i

Lo, gowier, gsy/1e Ji e, gmicer, 91)

-(12)

Lu'(e', gnu'(s', ¢') ;

1 1 | ! ] !A t
Tr 3 M' (8", #')M (Q,ﬁ)Sij/‘I‘rg. |
' (13)

T 0, 9)

then the differential cross section given in Eq. (11) may be written
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I(e', #') = 3 1'0(6', g') [33:+é P, (8, ¢)'Pu'i(9', gr)
+ 1,08, B) T 50, ¢')} ,
(14)
where ' :
I' (8", g) = Ltru'(e', @) Mr(er, B') .
0 3 A (15)

The v?fe, ¢) and Eie, @) given in Egs. (12) and (15) may be called the
vector- and tensor-analyzing powers, since they give the degree to which-
the vectbr and tensor polarizations of the incident beam affect the |
differential cross séction after the scattering. |

The quantities that appear on the right in Eq. (14) may, with the
aid of Egs. (8), (9), (12), (13), and (15), be expreésed in terms of the
parameters A(®, @), B;(e, ¢), and cij(e,'¢) which determine the M
matrix. It ié conveniént,_however, to first reduce these,parameters to
the fdnmg thét are imposed upon tﬁem by the feéuirements of invariance

under spatial rotations and time reversal. Arguments simiiar to those

1used by Wolfenstein and Ashkih5 show that one may write

A(Q,, ¢) = | a(e) , (16)

.Bi(g’ ¢) = b(e)Ni iR

while cij(e, #) must be a linear combination of the terms



A

UCRL~3657
~11-

x

L3
Cpe) (0y Dy -1 859
Cx(®) (B By -2 &y .

Here

=
i

Pt .-Ein X }Sout/ l}5:'|.t1 x,lfout, ’

2, kéut + ...lfin / ’.Eout + -»Ein i ’

E = Kut - Kin /1 Kout = Xin i ’
where the vectors 'ﬁ:gin and -ﬁ,gout are the incident and final momenta.

Using the relation gﬂi.gj t Dy Qﬁ + By Eﬂ) = §;j one may write the

matrix C as

ij -
Cyy = c(O)(Ny Ny - % 8;5) + a(e)(py Dy - Ey EY) I @an
and the M matrix is reduced to the form

He, ) = a(0)+ (@ 53+ § c(@)M; Ny -F &

+ a(0) (D Dy - B EJ); S5 -
(18)
The scalar coefficients a(@); b(0), ¢(B), and d(6) give a complete

description of the scattering, and the cross section and polarizations

-may be expressed in terms 6f them. Carrying out the required matrix

multiplications, one obtains

Io=aa*+§bb*+%cc*+§dd* , (19)
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I, By o= TP o= % [2Renariat]n (20)
Iy Tij - -]3:. { g (alf%c)c* + (a+ %‘-c)*c - cci + §d*fbb*f (NiNj - 813)
1 -3 ;
tlatlamrario 2 ®©vy-5 5
+2 In do* (Dg E,+ By Dj)] ,
(21)
~ ! ,
I0 Tij same except for sign of last term. | (22)

These equations, when substituted into Eq. (14), will give the.differential
crbss section after the second scattering; this is the quantity measured
in the polarization experiments. The result of this substitution may be

reduced to the form7

I'(e, g') = I'O(Q')(i-+ 3t + %(uu' —.VV')COS @+ % ww! cos 2¢') ,
| (23)

where @' 4s the azimuthal angle for the second scattering in the right-

. handed coordinate system in which the intermediate beam moves in the 2z

direction and the normal to the first scattering is along the y axis.
The parameters t, u, v, and w are functions of the scattering
angle O, and are given in terms of the scattering parameters by the

equations

0

: = % 2 ¢ 2 2 4% ' :
I aa.-}—g.bb*{-.g.cc*—l—?.dd , o (24)
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Iot - 2 cos O Ke d(a +—% c +li b tan )% - % Re c(a +-% c)*
- Lagar - Loox + 1 ce 2
3 3 3 5 (25)
Igu zznema+%cﬁ , (26)
I = 2cos @Red(-ib + atanef%ctane)* , - (27)
1 *
Ig¢ = =~ 2cos 8 Re d(a + 3 c + 1ibtan 8)
—2Recla + Le¢) - ad® - bb* + cc* . (28)

3

The-primed parameters are given by the same equations, but with I, _and
the quantities on the right replaced by the corresponding quantities for
the second scattering.

An expression for VI'(O', @') having the same general form as
Eq. (23) has also been deduced by Lakin.8 In Lakin's expression the
paraméters t, u, v, and w are expressed as expectation values of .
certain spin-space operators in the intermediate beam, and the t'!', u',
v', and w' afe defined in a similar way. The expressions for these -
parameters given in Egs. (24) through (28) are more complicated than
Lakin's, but they are expressed directly in ténns of the scattering
matrix amélitudes. The latter are the gquantities obtéined directly from
particular models for the interaction. In the following sections and naper

these expressions are used toddbtain the cross section and the asymmetry

parameters predicted on the basis of the impulse aporoximation.
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SECTION II: IMPULSE APPROXIMATION WITH DEUTERON D-STATE INCLUDED
The transition matrices T, and T, for the individual scatterings
of the two pérticles of the deuteron by the target nucleus, which is

assumed to have zero spin, are defined by

¥ (e, §) = :~E-;i (5;! Ty f x') = g; (g;ﬁ T3 | k'), (*z1,2) ,
e | (36)
where the m; are the masses of the two particles and the M(e, #) are
the correanonding-M.matrices. The quantity (E.EITi } gﬂ) is the matrix
element of .T; between the single-particle initial and final momentum
eigenétates. In the first Borfn approximation the Ti mey be identified
with that part of the Haﬁiltoniah{which represents the interaétion begween
the target nucleus and the individual particle of the deuteron. The
transition matyix T for the scattering of the entire deuteron is

defined, analogously, by

Mo, §) = =2B(KITHK) - (37)
L1 A |

1 ®lT) R,
n .

where m and M(©, @) are respectively the mass and the M matrix for
the deuteron, and (K J T | K') ,ié the matrix element of T between

the initial and final deuteron momentum eigenstates. The matrix element
of (ﬁ,' T{ X'") (which is a matrix in spin space) between the deuteron
states o and o' will be written (K o | T{ X' o'). In the Born

approximation T becomes the sum of the two interaction Hamiltonians,

T =T +1, . (38)
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The impulse approximation is obtained if Eq. (38) is considered to be valid,
not only in the Born approximation, but in general. '
The momentum-space matrix elements of Ty must, according to

invariance arguments, take the form9

Gy [ 1l = ng [£0800) v 1y x0ye07 glax)] . (@=1,2)
where Akié ngi - k'y |, £,(A k) and gi(A ky) are scg}ars, |
and the o7 are the Pauli spin-matrix vectors for the two particles.

The normaliiation factor ny is included in order that fi(A K) . be the
usual scattering amplitude. Introducing the relatiire moxnéntum }é: é(_lgl —}52)
and.the total momentum K = (k, + ky) and using Eqs. (38) and (39), one

may write the matrix element of T in the relative-total momentun

representation as
ek {7l k' K) = nkk /] k' K)
v { K xK'S +2kxk!S

FARx K+ kxKD(9q -op)| kK [g) KK,

(40)
where S = %(p—l + §,), and where, in operator not.ation,lo
- n : '
(75.}5.,“ J kg s L £,04K)K fexp L AKx [K)
+ =2 A0k [ew (AR [ k) . (41)

Here x is the relative coordinate Xy - X, , AKZK-K', and

o

AKXz |4 K| . Tne operatér g is defined in the exactly analogous
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way. If the deuteron state is labeled by the symbol °f and exp(iA£e£/2)

. is abbreviated by e, the matfix element of T may be expressed as
AL P RN BT S L PO Y
= m AR | o | of ) # 0y 1,80 | ] 1)
+m g@n { brxxof [es [on

ot |y =g oe e o] oty - Tmx I

T > |y xx(g] - T2)e !"(')z

+ n, gz(AIS)f bxxf | ots 1o
+2 )Y (@D - | g - x|

(42)

- L | g xkeo - ot |of 0( -

Since the deuteron wave functions are ail states of positive parity, a
transformation Xx-—»-x may be performed in the f,(AK) and g2(A )

terms to eliminate e"l.

L x|r|grx) = tARE feolyn

Then one obtains

" g(AVK)%égix_gg'?(w‘i es | o2 |¥ x @ars %op)i ,
- (13)

" where
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gax) = 2 £(AR) + 2 5040

and similarly for g(A4 K). The terms proportional to (g -‘32’2),
which appear in Eq; (42), are zero in virtue of their spin-space dependence,
and have been drobped from Eq. (43).

Thg calculation of the matrix elements gppearing on the right in
Eq. (43) may be carried out in coordinate space. In this representation
the deuteron wave function is

3

(D ule) 4 w(x) 5087 1, 6, @)

-3

(x ’ C‘j)

- WA @)+ W) s o | ()

(s(r) + a(r) sp@H o,

where Xi are the three triplet-state spin functions, 812 is the tensor

opgrator,
-2 . ’
S F 3 @RS, - ST, (15)

and s(r) and d(r) are the radial S- and D-wave functions. These

satisfy the normalization conditions
o

cSd.r";sz'(r) = LS dr u2(r) - (S-state probability) = 96%,
' 0 o - (46)
1?‘@'-
2 ’ 2 , ~~
£gdr d (r) = L} dr w°(r) = (D-state probability) = 4% .
- N ' (47)

When.Eq. (44) is substituted into Eq. (43) and the angular integrations
and matrix multiblications are carried out, the M matrix reduces to the

form
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where the unit vectors E and N are defined above Eq. (17), S 1is

defined above Eq. (41) and a,, by, and ¢, are given by

‘ 4
ap = HAK) }(ao E25%,, + (0E3H >ddj

TR { 614K <Jl(rAK)/r>dd; :

(49)
bo = (&ﬁé#) K2 sin 6 §<JO(rAK) . + __ <32(_é_)>ds
-3 <32(£-§_’S>>dd -} (jo(rgx)>ddf
(50)
o = rmx){ &, <rm<>> +3 "M%f

3 (!‘AK)
+ @K (5 7 /2727 g
[ g IT ds

3, (ZA K
-721<32(£.{5LK.) .:5> +9iAK<l 2 >
ad 4

r

The jn(rg K) are the usual spherical Bessel i‘unc’c..’wns,l2 and

for any A
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<A >d z Sd};d(f\)‘ As(r) . (52)
s )

The <A >ss amnd <A> 44 are defined analogously. When the D-state

contributions are neglected only the terms vroportional to
rx i
<<j0£“1?“);>ss remain. This factor is the square root of the usual
stiocking factor.
The expression for the M matrix given in Eq. (48) may be out in

the form given in Eq. (17) by using the identity

The coefficients a, b, ¢, and 4 appearing in Sec%ion I are then

expressed in terms of the coefficients defined in Eqs. (49) through (51)
by the relations

a a

= o ’
b = b
° (53)
¢C = - CO/Z R
d - - 00/2 .

These relations, when used in Eqs. (23) through (28), give the differential
cross section and polarization effects in terms of the S and D radial
deuteron wave functions and f(A K) and g(A K), the two parameters
which describe the scattering of the individual particles of the deuteron.
In order to obtain estimates for the various expectation values
appearing in Eqs. (49) through (51), some assumption regarding the forms

of the radial wave functions must be made. The problem of determining
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S~ and D-state wave functions that are consistent with the known properties
of the deuteron--in particular its binding energy, quadrupole moment, and

1
effective range--has been studied by Sugawara. 3 He uses the forms

-Ar -Br
u(r) = R(e - e ) (54)
-%r]° - =X £ 2
wir) = N {l—e r} eq{1+3§1~er)+3(l~e:)]
o r _ (4 )
(55)

If the percentage D state is taken as 4% and the deuteron effective range
is approximated by the triplet n-p effective range, then Sugawara finds

for the parameters in Eqs. (54) and (55) the values

0.23171 x 105 em ™t

!
F

]

5.751 5 (56)

2.922 q *

Using these values one obtains for the various expectation values
appearing in Eqs. (48) through (51) the values given in Fig. 1. A
second apparently reasonable form for the deuteron wave function was also
investigated, and it gave similar results.

If the values given in Fig. 1 are used, one finds that the
contributions to the coefficients a, and by 4n Egs. (42) and (50) are

changed by less than 35% at angles less than 30o unless ;% g(A K)'
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26 ) 1is larger than f(A K). In the same

(measured in units of 10
~ angular range, ¢ --which was zero when D-state contributions were
neglected-~becomes roughly a g:-% + % g(4 K) f—l(A K)J . Equations (53)
and (24) then show that the D-state contributions may significantly affect

the differential cross section, but not to the large extent required to

fit the experimental values. For instance, if one assumes #$g(AK) = i £f(AK) ,
then the effect of the D-state contributions at AK = 1.8 x lO13 em™t

(i.e., 8 = 31°) 4is to increase a by ~~32%, to leave b virtually

unchanged, and to change both ¢ and 4 from zero to

- [-0.35 +1.15 4i( % 2(AK) £H(a x)j - 0.75a . The cross section

is then increased by aﬁout 75%. However, the increase in the differential
cross section needed to fit the experimental values is about ten times as
large as this representative increase due to the D state contributions.
Although the D-state effects are evidently not primarily
. responsible for the large differential cross sections at large angles,
they must evidently be considered in any quantitative treatment of the
large-angle scattering for which the contributions corresponding to the
S-state terms considered in this section are important. In particular,
since the interference between the contributions considered in this section
and the contributions of processes in which both particles of the deuteron
are scattered is very important at both large and small scattering angles,
the D-state contributions must be considered in any quantitative treatment
of large angle scattering. Detailed numerical considerations are given

4
in the forthcoming paper.
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SECTION III: THE IMPULSE APPROXIMATION FOR THE SIMULTANEQUS SCATTERING
OF BOTH PARTICLES OF THE DEUTERON

The contributions to the scattering calculated in the precé%;ng
section are linear in 'I'1 and T2 and contain no term proportional
to Tl T2° Terms of the latter type would correspond to processes in
which both particles of the deuteron were scattered. In order to treat
processes of this nature it is convenient té use the time-dependent
formulation of scattering theory. This section begins with a short
formal description of that theory.

with a slight generalization of Dirac's notation,lh the time-

dependent Schroedinger wave function for a single particle can be written

Wo, ) o2 (x| Py (57)

Since the vector ] q/> corresponds to a function in both space and
time, it is not the usual state vector. The usual time-devendent
Schroedinger state vector is rather '<t. ; \}J> = ' k}" (t)) , the
projection of ’ q/;> upon the vector <:t.} . 1 The time-dependent

Schroedinger equation may be written

E-0)]y> = v q!> , (58)

where E £ 14J/9t and H+ V is the total Hamiltonian of the

particle, which is assumed for the moment to move in a given potential V.

16
A formal solution of Eq. (58) is

Itlj} - ]yxo' +E%—H'VILF> , (59)

where (E - H)I HP’°;> = 0. Iteration gives
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’L}J> _ il-{-é?}, L}/°> , | (60)-

where
¢ - 1/(E - H) : (61)
and ;, A
~S
= V4 VGT
- V4V —L v . : (62)
E-H-YV ' . :

1

The pole of G is to be resolved ih the usual way be assuming the mass

to have an infinitesimal negative imaginary part. The tilde above '?j
is to distinguish this time-dependent operator from the similar time-
independent operator of earlier sections;

In a scattering problem the quantity.df interest is the 1limit
as t«~7°°- of af(t), the amplitude at time_ t of final state

qvf(x, t). This amplitude is, by definition,

fo 2 @i Lye) 2 e iy, ©

where the dot‘in E t:>o<:t | signifies that the integral over dt
that is othefwise implied is not to be performed. The vector ,a q/€;> s
like , 9U°;> s is to bé g.solution of the homogenous Schréedingér
equaéioh,

(E - H) | &}Jf> = 0 . | - (64)
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Substituting Eq. (60) into Eg. (63), one obtains

(65)

ORI (THON RY40) RNV th'ﬂL}f} ,

where éi abbreviates f t ). <:t | . This expression for af(t),

when i? is expressed in its power series form and t 4is evaluated at

+ o0 , will be recognized as the one used extensively by Feynman.17 The
time-dependent Green's function operator G is just (ih)“1 times the
free-field one-particle Feynman propagator. This propagator-vroperty of

G 1is expressed by the'equa.tionl8

YIS el = et e (v, (66)
where ©, 1s the operator defined by
o [t = |t e, (67)
9(x) being the usual step function

8(x) = 51;0} for x §>o; <o§? .

With the aid of this property of G the expression for af(t) becomes

af(t) = <\yf[ 3, | y° >+ (%)™ <qu | 6, T | Yy . (69)

Taking the limit ¢ —» >, and assuming the initial and final states to

(68)

be orthogonal, one obtains the transition matrix element
- £  EPREORIL 3 § o
ME Z lm a(t) - <ai} | T(ih) [)b> . (70)
t e
If V 4is time-independent, the computation of the time part of the matrix

element ME 1s trivial. Expressing the operator G in the representation
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' 1
where E 4is diagonal, one obtains immediately ?

(2 a4 ' (o] f

ME : c/( e-i(w " w )t wl o (L}If(o? lT(ih)-l l q,o(o))
\ —~* ' , | " (71)

~ _
where T is T with the operator E replaced by EC, the energy of the
state l'¥)°;> . The frequenc¢iss ¢« and auf are those of the states

- I LP°> * and , ({Jf > » which have now been assﬁmed to be eigenstates

of energy. The transition rate is

t
N
=
O
>
¢
8"@

i ﬁE IZ (time)fl

g 1) |

1]
=

' o _f £, ... 2
2T S -5 [(yfo [z [yeo) |
. . . \.

(72)
which is the familiar transition-rate formula. It gives for the
differential cross section the usual expression

s (@) = | =2z (L}/(O) [t] °©@) (73)
2
L h
where the Quantity inside the absolute value signs is the scattering
amplitude f£(8).
‘This same method will now be~applied‘to the case of the
‘'simultaneous but independent scattering of the two particles of the

deuteron. The solutions for the independent scattering of the two

particles are

“”1> = (146, Ty }%°> ,. o (74)‘.
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‘and
iLy2> S SRR A (75)

In the direct-product space of the two particles,

I VT (1 + 6, T)A + 6, T,) [ W %°>

A+ 6T + 6, T+ 006, T,T,)| Wlo %°> :
| (76)
The first term contributes the unscattered wave and the second two terms
are those considered in Section II. In this section the last term is
considered,
If the two particles were noninteracting and scattered independently,

the contribution of this term to the transition matrix element for the

final state | Li/lf szf > would be

B

£ f A ™ FpO o
tﬁfz_aw M ¥e ; By 3,00 T T i Y1 “i)2>

g |5 [ 9 4y o

For the case of deuteron scattering the incident and final states are not

11}

independent plane waves but are bound deuteron plane wave states., To
obtain the impulse approximation for this problem, the free-particle initial
and final states that occur in Eq. (77) are replaced by the bound-deuteron

v

states, but the transition operator ii éz is assumed to be unchanged.

Thus the transition matrix element is

ME - (\xv{j"'f'lﬂizixuy;)(iﬁ)'z ,
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where c{ designates the relative coordinate part of the deuteron state
and K' and K denote the initial and final energy momentum corresponding
to the center-of-mass coordinate. The connection between the form of the
impulse approximation proposed here and the more usual time-independent
form will be discussed in a later paper.Z+

To evaluate ME one may first express it in the form

Al Teydr e R oAy @ (79)

&

Sd/(' j’dt <Ko{;'( t >-<Tt l’rfl"{z EK.Q‘.>(m)-2 K

where ¢/ is the average time é(tlfk t2) and t 1s the relative time
tl - t2. The operators E; and ‘¥; contain an explicit dependence on
time because of the operators El and E,. In the spirit of the impulse
approximation these latter operators may be replaced by Elo and E, |,
the appropriate free-particle energies, Then the 'gl and ‘¥; become

the time-independent operators T, and TZ’ the transition matrix operators

1
which describe the scattering of the individual particles in accordance
with Eqs. (72) and (73). Since the time dependence is now removed, the
vector <~t ’Z’I may be moved through the operators and dotted into

j K! >§'> on the far right, giving

ME = jd’[’ (S'dt (kA G0 [ 11| 0 A (T, ) () .
(80)
The dependence of I K' o (T, t)) on the average time ¢ is

exp ~i 1 77, where h 2 E' is the total energy of the deuteron with

20
momentum K', Removing this factor, and the similar factor for
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(K A (T, t) E , one obtains

<

- . -y - »
_— (iﬁ)-zj ei( )T’dr dt (I{o{ (0, t) ‘ Ty T, E ,x!o(v(o, t)).
. W o Sy J at (K o (0, 8) | 7,1, | K1{*(0, )

(81)
| Befofe the integ;'and in the aﬁove equation for the general case
is evaluated, the special case t - O will be treated. Whén the relative
time t 1is zero, | K{(0, t)) and | K' o{1(0, t)) are just the
usual time-indepéndent eigenvectors.zl " These will be denoted by i LO;’ )

and K' o) in accordance with the noté{.ion of earlier sections.

The calculation of (K of j T, Ty i K! of ') is straightforward. Denoting
_ the rélgtive momentum 3(k; - k,) by k, and total momex?tum Ky + X, .
by 35 R where l(l and 1_:2 are the individual par't.:icle ‘momenta, one may

writelo

A E[TT |9 k) = O] &K [T Tpf kK0 [y0)

RGO IS SRR QIS )’.Tz'! k' KD (K Jof')

3 | |
= jg-i‘—-— (X | exp 4(R+K' - 2K") -3 x | of )Ty(K - K"TH(K" - K')
(27)3 (82)

To obtain the last line the relat.:lon22
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Gk [y | kKD = K-k |- k) x BK 4k [ Ty ] B k)

e A

t

(211)% § (K - k%) - (k - k) x T, (BOK - k) - (k - k1))

20 § (R - kM) - (k- kM) x Ty(K - kv)

| (83)
and a similar relation for T2 have been used. It has been assumed that
- (kq e Tli 415_'1) = Tl(Ei - k';) 1is a function of momentum transfer. Only
- the spin-independent contributions to T, and T, are considered for
the moment. »

The expression (3} l exp i(}_j—ﬁl_(_: - 2{(:)'% X io(‘) is the Fourier
component of the square of the deuteron wave function. if only the S-state
part of the deuteron wave function is considered, then
(of ) exp i'('§'+ K' - 2K")*2 x [y ') is a function of a K +K' - 2§1£
with a maximum at K" = é(l_g-}—}i) and with the sharpness of the peak
. varying inversely as the size of the deu;t,eron. In the limit in which the
impulse approximation becomes exact, the deuteron is very loosely bound
and very large in extent. The wave function of the deuteron in‘momentum
' space is then sharply peaked. For this limit Tl(‘lg_'— ﬁ) and T2(El“ }g/)
can be considered slowly vary;ng f_unctions of ‘I,S:, and may be évaluated at

K* = é@i'{- K) and taken out of the integral. This gives

i

(Og .;IE,F ;rllT2‘ it .I.(-') 4 T1<%A K) Tg(’éA K)

S (Zi,’)‘s o | oo (a1 - b x [

| o |
- MGAR REAR | fo T, (84)
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vhere AK = E §‘-’§j}' " and @(0) 4is the deuteron wave function
at x = 0,

In ordér to extend this result to the case t‘5§ 0, some assumption
regarding the relative time dependence of the deutsron wéve function musﬁ
be made. This question of the relative time dependence is a familiar one
in the history of the attempts to use multitime wave functions in bound-

state problems. Levy and Klein23

assume that during the time interval
between the two times t; and t; "the particle whose time is later
moves as a free particlg. 'The slightly different asgumption made here
is that.thé second particlé remains in the deuteroh state. More precisely,
it will Ee assumed that for a deuteron at rest the wave function is
#(x) exp(E t,+ E £2)(2ih)‘l, where E is the deuteron total energy.
0§er the short period of the collision the difference between wave functions
obtained by using the two different assuﬁptioné is small for high-energy
deuterons. |

The generaiization of this exoression for the wave function to
the caq@lof a moving deuteron is obtained by making the Galilean
transformation x,— X, - Vvt, , X,—>X, - Vty, where v is the |
velocity of the deuteron. The relative coordinate part of the deuteron

wave function is therefore

Blx, t) = Plx-w) , -~ — (85)
where 4+ 4is the relative time ty - t,. The integrand in Eq. (81) may
now be obtained from Eg. (84) by replacing - i #(0) ‘2 by ¢*(~Xp) ¢(-x}t),
where. v!' and v are the initial and final velocities of the deuteron. |

This gives .



* UCRL-3657
-31- -

. -2 3 . 2
B s (107 27§ - AN Ra K § e jgen |
\ . —o¢ ‘ ’ (86)
This equation expresses the fact that for the simultaneous-
scattering process the effectivé transition matrix is the product of the
individual transition matrices times (iﬁ)-l times an average time for

the collision. Another form of the equation is
: ‘ oL

2
(fdi‘)’2 2§ (- ) Tl(éA K) Tz(éA'K) 2 5 dr

~ ME

#(r) }

v
0

-2 o -2
(th) © 2 S (n-an G AR 34K 2 (7Y,

- : 1 2
. LY v

(87)

where ‘<; r-2>> is the expectation value of r'z for the déuteron, This
formula for the scattering matrix element is similar in form to,_andA
consistent with, an expression for the forward-scattering amplitude
derived by Glauber. b It gives a contribution to the differential cross

section of

Ave) - | =22 DEAVTLGL0 5 2 r ,
skt k) e

| (88)

whére m is the mass of thé deuteron. The guantity inside the ébéolute-

value signs is the scattering amplitude, With the aid of the expressions

for ﬁhq individual particle cross sections.given in Eq. (73), A g(8)

may be expressed as

A0 = o36) oy . (89)
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where

.
-1 A : 2 =2 .
(S-O oz '; . mlmmz <:!'. :> } . (90)

Here ‘K 'is the incident momentum of the deuteron. There is, of course,

also a contribution to the cross section from the cross terms between the

contributions to the scattering amplitudes due to the GlT1'+' GZTZ parts

of the scattering matrix énd the contributions considered in this section.
To get an idea of the order of magnitudés, some typical values may

be inserted in the above-formulas. The measurement by Strauch25 of the

. proton-carbon center-of-mass cross sectién at ~v 84 Mev and at 27.2o

is about 50 mb. With the parameters given in Section II, the value of

r—z for the deuterbn S-state is ~v 0.68 x 1026 cm.z. The value
<

. 1 -
of K for a 157-Mev deuteron on carbon is ~~r 3.3 x 10 ? cm 1. This

0
is therefore

s -26 : '
gives o7, = 1.47 x 10 cm2. The contribution to the cross section

AT (9) = (2500/14.7) mb 22 170 mb.

~Because of the difference in energies the corresvonding scattering angle
for the deuteron scattering is about 31.50 (c.m.). There the center-of-mass
cross section is about 10 mb. o
This large discrepancy between experiment and theory is due, in
and hence large,

vart, to the assumption that the deuteron is very loosely bound/ Although
the imoulse approximation becomes valid when this 6ondition is satisfied,
the condition is in fact not satisfied here. In particular, the deuteron

is not a large object in comparison with the scattering nucleus, and the

transition between Eq. (82) and Eq. (84) is not legitimate. It is necessary,



UCRL-3657
-33-

therefore, to obtain a more exact treatment of Eq. (82).

In opder to carry out explicitly the integration over K" in
Eq. (82), the forms of Tl(K - K") and T2(K" - K') must be prescribed.
The cross-section data of Stfauch for 96-Mev protons on carbor may be
represented tﬁ an accuracy of 10% in the range between 15o and hOo, and
qualitatively at all ﬁngles, by a scattering amplitude of the form26

- | 2 2
£(y) = cle}'(p:‘_%.. y2+c2exp:.2£y --\—03 exp-':?\iy » .(91)

where y = AK and the paramsters are

-

o, = 10.83 x 107 e, of = 4.68x 10720 c?
cr = 0.2 x 10-13 cm, ' fg = 0.72 x ]'.O_26 cm2 s
63 = 0.27x 10713 cm, ¥ =z 0.34x 10‘26 en? .

(92)
This form will be assumed to represent the scattering amplitude of the
neutron as wéll as the proton. In order to simplify the calculation the

S-state deuteron wave function is represented by a'gaussian:
_x2 /2R2

13 2 13 13

2 +
with27 R = 2,64 x 10 em and N = 0,00973 (10 em ) . The

integrations may then beeasily performed to give
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=3
jdt(xq(o, t) !Tl T, | K y0, t)) z X
D
.
2\ 2
. ¥ f?(&ﬁﬁ >(\z.17’)6 > 1012/"(«) + czzﬂ(ﬁ)
v -2ml "2m2 i

+ cBZF(K) +20102/7(°f, ﬁ) + 23103/’(‘1 , )

+ 2050, (B, 7 I (9%)
where
2 \ %

- 2 2 -, !
Mo = o (2 —E

R+ ix R™+ 4x sin 6/2/

2

- . (96)

[N, ¥) = F(-’-‘—%I) exp 2[(x y)“i—]

R +2(x + y) f

Here a = ' é(l}w— I.{.-') ) and O is the angle between X and K'.
Fquation (39) has been used to convert the expressions for fl(A K) and
fz(A K) to those for Tl(A K)‘ and Tz(A K). The contribution to the

cross section AT is

- ‘ (97)

which, with the aid of Eq. (94), becomes

Ao"lz ’iNZR{;-—f-Z- (m2> Y
K

)

2

» (98)
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where Y represents the large bracket on the left-hand side of Eq. (94).
The quantity inside the absolute-value sign is the scattering amplitude.
The correspondence between this expression for A G~ and the earlier
expression in Eq. (89) is seen if one notes that when the wave function
is given by Eq. (93) the value of < r"2> is 2//° R 77 , and that
in the limit R —@ the quantity i Y iz approaches 7 G .

The abofe computations can be generalized to include also the
spin-deperdent contributions. In order to include these the spin-dependent
part of the individual-particle transition matrices must be considered.

The general form of the single-particle transition matrices given in
Eq. (39) is
Gy [ ulep = n E’fi(A k) + %0 g (AK)]
(99)

‘These forms may be substituted into Egs. (82) and (81) and the calculations
carried out if a sufficiently simple form is used for gi(A ki)' A not
unreasonable assumption is that gi(A ki) and fi(A ki) may be represented
by the forms »

£,(A k) = x £,(A k) (100)
and |

g; (A kq) vy £,(A k) | (101)

1)

where fa(lﬁ ki) is a real function of the form given in Eq. (91), x is
a phase factor, and y 1is a complex constant which determines the phase
and strength of the spin-dependent term. The general form specified in
Egs. (100) and (101), but with arbitrary f,» 1is what is obtained in the

Born approximation 1f the real and imaginary potentials have the same
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form factor and if there is a spin-orbit potential proportiongl.to the

. g _
gradient of this form factor. Using the forms given by Egs. (100) and
(101), one obtains for the quantity X, defined in Eq. (94),

wh

X

| 2 -
2 2 2 - . b
N RIT (47 n xY+hy (S1785) kxkr fy 422
07 (s ) [ (25) o ey

| . )
2 . 1 2 2
+y (T M(W) ?fé- ain” 8 Iﬁl T-3% if‘i cos” 3 7

ﬁxzi in @

sin

- !_}Eizcoszgzn_- i~ o 2 Y 2 E!S- SinzeIZ'
2R

- ,
t y2<§*1'.§)(‘9—2'}3.) {‘5 j¥ ﬁ cosz.g. z 4 }—z% + sin

The unit vectors N, D, and E_ are defined following Eq. (16), and

the Y and Z's are defined by
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{012/,(% ) + czzf'(ﬁ) t 032’1( ¥) # 200,06, £)

+ 2c1c3/7(7 , X))+ 2c2c3r'(ﬁ‘, F)} s

. - i”(cp a2l &7 2000, )
R ue A WP RELY  Bb2q 4 28

N 2c e, (of , ¥) . 2ch(P ‘5’)} ,
szqux szﬁﬂ*z*ff

VAl

8

L ) ;

e, I'(4) S )
3 e T 2 75t 3 20
R+ Ldfsin > R+ hﬁ sin' 5 R 4+ 4¥sin 3

2¢,c /_'(q{ p) . XNMCTR'S
R + (29 + Qﬁ)sin S B (2o + 28)sin” §

2¢,0,/ (B, ¥) ;} ,

B (2p + 2%)s1n? §

2 s el p) [e/ Al :mer

R+2u§+2ﬁ

2

‘ - ' X R2+ 24+ 2%
2
+2023[7(/3 'K') (,@ K)lKiSing}
| R+2ﬁ+2’f
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¥._a o) e 032/%3')2
(B +aefetn” §)° @4 4pein” 7 @+ 471 )

2clc2F(O[ ' B) + 2°1£3F o, %)
(R2+ (29 + 2F)sin2 §>2 (R2+ (29 + 2‘X)sin2 g )2

20,0577 (8, ¥)

+ ’
(8 + (24 + 2¥)stn® §)°
7. o'l .2l
(R%+ L sin® 95 )(R2+ L) (R2+ aﬂsin? .2. )(nz+ Lp)
ey " (¥) .\ 20.e37 4, B)
(R%+ 4 sin? g- YRE+ LY) (R (29 'f‘.?ﬁ)sinz g)(R2+ 24+ 2p3)
4 2clc3f’(e{ ,Y) . 2¢,0, F(ﬁ, %)

B2+ 2o+ 2Wotn? (% + 290+ 2%) (B4 (2 5+ 2¥)sin’ B+ 25+ )
(103)

The formulas given above were calculated with the assumption that
the phase of the scattering amplitudes fi and gy were angle-independent.
Although this is true in the Born approximation, it is certainly not

completely correct, In the limit of a large deuteron the calculations may
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be carried out for arbitrary fi ‘and gg. For this limit the deuteron
scattering amplitude at a given scattering angléAdepends on the nucleon-

scattering aﬁplitﬁdes only in the immediate neighborhood of this same

scattering angle--as may be seen, for example, in Eé. (88).l When the

deuteron is not assuméd infiﬁitely large, a first approximation for the
phase may be obtained by assumihg the phase of the nuclgon-scattering
amplitudes'ﬁo be constant at that value which the phase aésumes at the
éngle for-which the deuteron;scattering amplitude is being calculated.
The-éame'apprgximation”can be made for the ratio of fil and gy asa
function of aﬁgle. With these approximations Eqs. (102), (94), and k8l),

together with}Eqs. (4,8) ihrough (53) and (23) through (28), give thé

: differential'cross section and polarization effects in the scattering of

deuterons explicitly in terms of x and y, the parameters that give the

phase and relative'magnitudés of the scattering amplitudes f; and g3

~and the function fa(x) that determines the magnitude of the scattering

amplitudes for>the scattering of the nucleons. If the spin-dependent

"effects are omitted by sétting 'y = 0, then the value of fa(x) given

in Eq. (91) may be used, adq the only variable is the phase factor x.

:This vhase factor may be determined at small angles by use of the optical

theorem. At other angles it is necessary to uéé some detailed model’of
the nucleon-ﬁucleon interaction. The results obtained by'use of the model
of Fernbach,.Serber, and Taylor29 were described in the introductory sectibn.
The numerical details of these results, together with considerations of
more realistic models that include polarization effects, will be discussed

in a subsequent paper.
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APPENDIX A
This appendix contains a brief description of the operator
notation that is used in the body of the text. The notation is that of

Dirac, to which several conventions are appended. For those unfamiliar

with the operator techniques some examples are provided.

In Sectibn'II the symbol I a) represents the state vector

- corresponding to the wave function (x f a) = a(x). The symbol (b E a)

is a scalar equal to (a i b)" and may be defined as
(b | a) = ‘g dx b*(x) a(x) . | (A1)
Since (b | x) is equal to b*(x) one may write

(b {a) = (b ! x)(x ﬂ'a) _ ‘ - (A2)

“if an integral over dx is implied by the repeated "index" x.

The symbol k is reserved for the vector corresponding to the

A(xi-k):k(x):exp'iloc. Wy
One may theh write
" (k ’ a) = (k H x)(x ﬁ a) = ﬂj!dx exp ;i kx a(x).l
fhus '(k | a) is the fourier transform of.'(x | a). Th§ inverse
relaiionship is

(x 3 a) = a(x) = Lg‘ﬁ%% exp i kx (k i a) .

This relation may be expressed as
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if the sum over the repeated "index" k 1is interpreted as fggadk/zﬁf .-

This convention will be adoptéd. The relationship (A4) is readily

extended to the more general identity

el s Gkl . (5)

From (A5) and (Al) one may obtain the formal identities

!

xlx) = Sx-x) ,

| (46)
fu) = 20 Sw-x)
where the quantities . g(x - x') amd S(k - k') are Dirac delta
functions. Also obtained are the operator identities
lwaw ] - o) =1, T an

where I is the identity operator.

va there are two particles present the state vector is a function

of twb variables:

(x1 x, iya) ; a(xl,.xz) . : (AB)

An alternative expression is in terms of the coordinates X = é(xlqp x2)

‘and x ;-x'l - X,. By definition we take

(x X A ;)

?(xl(xp X), xz(x, X))

n

a(X+ &, X - &x)

(x'-X i kl xé)(x1 x, ! a) . (A9)
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This defines (x X i'xl x,) to be g(xl - x(x, X))‘ 8(x2 - XZ(X,X)) .
Simiiar considerations may be applied to the momentum representation., The

evaluation of the expression appearing on the left of Eq. (41) of the text

then proceéda as follows:

.
k|| K x)

-4
~
~

{=

b N
[

b =
=
"
e

t

i

AL N D

(k K [ ky)(k) Xy E T1f+ Tzfg kly ELZ)(E-'I 5:2!}.‘_'.,.:)
= (X | da ko) f(zﬁ’)BS(& SE | 1T K

+ @I 8 g -kl | 1] W] 6y | KK

= @)Y S -k -3+ k1) ny £ OKH k- 3K - k)

+ Iy SR+ k - 3K' - k')ny £,(3K - k - K"+ k)

@)’ 8G4 K-k+k)n £,(4 K)
+ 1) 8 QAR+ - Kny £,(AK)
whe:e Tf, Tlf

proportional to f (see Eq. (39)). The expression (2 ﬂfg (BAK - k + k')

, and T2f represent the parts of the T and T, matrices

may - be written as r(,}f.i exp %.ﬁ, K-x ! }5_9, where x 1is here to be

interpreted as an operator. The operator % is defined by the eq_uation

2l = Ipx
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.ﬁhere on the right x 1s an eigenvalue (and hence a scalar). ‘With the

aid of this property one may write

op 2 AKx = explAKx [ x)(x |

i 35_) exp % AKx(x}| , (A10)

where in the last line x_ is a number. (At a slight risk of confusion
the primes which Dirac uses to distinguish operators from eigenvalues are

not used here.) The desired result follows immediately:

k[eawdAxx k) = (kfard ARx|x)x i)

-1 kx SARx ik'x
Jaxe T ST e

(21 SGAK+K - k) . (a11)

An important special vector is the vector J %‘) , which represents
the state of the system. In the Schroedihger representation (picture) this
vector is time-depehdent, and may be expressed as 5 QV(t2) . The time-~

dependent wave function is

Glym) = P .

As a natural generalization of the formalism'describéd above one may treat

- the time coordinate on the séme basis as the space coordinate. When the

* bra and ket vectors are generalized in this way they will be represented |

with angular brackets., Thus

Lo YD = (1Y) = g
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The vector <x , = <x, t ’ is the tensor (direct) product of the

vectors (x' and <t! . The quantity

| <t. |LP> = ,Q})(t)) | (812)

is a matrix element and hence a scalar function with respect to the "time"
part of the vector | \j)} , but it is still a vector with respect to the
"space" pért; one must multiply FSLﬂ(t)) 'by a vector (a]  in order
‘to obtain a scalar. _

’ In analogy with the momentum eigenvectors i-k)' introduced before,

the energy eigenvector g(x):> may now be introduced. It is def%ned by
<t lw) - exp - if;)t , | | (A13)

and is an eigenvector of the energy operator E - ﬂf&/ It ;
E lm)> - i (,d} E , ' , . (A1)

where on the right E =¥ w . With the aid of this equation the operator

equation

'/Tujz»°>'=' %v%vE Lo v}fg)°> | (A1)

- -

may, for the case in which H and V. are independent of time; be expressed

as

?’i w°>

o _\ 1 :
iw>gv+v P a— v} | ‘(A-lé)

!w° >T
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This is the relation used in the transition between Eqs. (70) and (71).
As a final illustratidn of the notation, the fundamental propagator property
_given in Eq. (66) will be derived. Displaying explicitly the imaginary

infinitesimal 1€ , one may write

(tic].t')

3]
VN
'
.
]
1
- h=
Y
o
4
cr
N~

"
AN
o+
=
'
= "
+
| add
m
€
N
~
N
2

- 1 1
- <t!wf hew - H41E <wit>
o faw SR

27 ] ‘hu-ﬁfiﬁ

o(t - ) [ exp - 1B -t')} a/k) .

G 1eyCefoloy = memsobyd (974

‘}/f(t) is a solution of (E - H)(qu:> 0. It has been assumed
here that H 1is not a function of t, but the relationship is actually

Thus

valid more generally. It was also assumed that the frequency ¢4/ was
positive. For negative frequency eigenstates the factor 6(t - t') is
replaced by -8(t' - t): and the propagation is backward in time, in

accordance with the ldeas of Feynman.
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TABLE A

Tr 8y = Tr Sij

e

TrS; Sy = 28,

S13%4 = % -[gik YRR gjk] -385 B

Tr S4 S:}-'Sk = i éijk (Pr"ove using 6)

e

1% = Spct 5550t 2 85

35ij é[&ijk jk J* {Sixjk.jxkistiJ}

. i : 4
.g-..;. &ijk I
z Eijk 5y
T Bt
1 if i, §, k are cyclic
= -1, 4f 1, k, J are cyclic

o - if 4, 3, k are not all different.
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TABLE B
51 Sg -;- [Si x J,k f 5 x k,j}*é {Sij % Sik F‘gak Si}
S13% = 3 {Sj xki ¥ %ix k,j} R N LY Sk}

S15%R = 3 [Sij Sk£+gkfzsij’?ég Sig + 344 8y Sijgld]
- % {8 k(Sy¢ - 3 54 x ,g) MRV CPAEE LI

| 1 i
t 85, -3 55 O+ S -581“)}
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TABLE C

Tr S;y 8, 0% = 21: {Sik &f +81£’

2 & .
TP 545 5% Sm = 7§ %y ‘s"xedi;.gmn_‘t {gij

UCRL-3657

% Sid gkf

£km g,( &‘SN &

+$ e« Cagn T chg éikm}

)

-Tr Sij kf

factor itself is unchanged by an interchange of the order of its two indices -

is indepehdent of the order of the three factors.

Each

The [ l means the contents of the bracket 1,5 to be -

syriune’c.rixed with respect to int.erchanges of the orderes of each element of

the pairs ij, k¢ ’ ahd. mn, and also with respect to interchanges of

the pairs with each other. Thus

{‘gm S gfn]; = 3 [513 S

fgkf 5 g 5 gki IJ gmn

fi@a S ], - fgi(g 51,,*%:

+5 & & g L :
%% Pan Tm 200 Flm Fng t oy S st S %

| fgjk c%,m Sni]

‘S{n+ 813 gkn §Qm+g

g gim
Ses &4 ]
S 8 it $f

S in

£

6‘
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The wave funét_.ions used are those of Sugawara that are given

in Eqs. (54), (55) and (56) of the text. The or&inate for

3 cm_l) and the ordinate for

2
L

Curve (3) is in units of (10l
Curves (6) and (7) is in units of (10 3 em . Pgand Py .

are the deuteron S-state and D-state probabilities resmectively.
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