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The scattering of high-energy deuterons from spin-zero targets 

is treated in the framework of the impulse approximation, using the 

polarization formalism of Wolfenstein and Ashkin, which is here extended 

to the case of spin-1 particles. The contributions of the deuteron 

D-state are included and are found to be important in large-angle 

scattering. The contributions to the deuteron scattering due to the 

simultaneous scattering of both particles of the deuteron are also 

included. TI1ese contributions are treated by a multitime formalism 

similar to that used in the Bethe-Salpeter and Levy-Klein approach to 

the relativistic two-body wave equation, but here a slightly different 

assumption regarding the relative time dependence is made. It is found 

that these contributions are important at both large and small scattering 

angles, and account for the large disparity between the experimental and 

theoretical values of the differential cross section obtained in previous 

calculations. 
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In recent experiments the differential cross sections and the 

polarization effects in the scattering of deuterons by carbon and various 

1 other nuclei have been measured. An attempt to interpret the 

experimental results on the basis of an impulse approximation has been 
1,2 

made by Baldwin. , For a typical case of 157-Mev deuterons on carbon 

the differential cross section he obtains is larger than the measured 

value by a factor of about 2.5 for small scattering angles, and at 
it 

large angles/becomes smaller than the'measured value b.1 a factor of about 7. 

The predicted polarization reaches a maximum of about 5%, whereas the 
1 

experimental value rises to about 50%. It has been suggested that the 

discrepancy at large angles may be due, in part, to the effects of the 

deuteron D-state contributions; which were not considered in Baldwin's 

treatment. T~e D-state contributions are, of course, suppressed by a 

factor of the D-state amplitude, which is ,- 2CJI,, but at large angles 

they might be expected to become important for the following reason. A 

dominating factor in the large-angle differential cross section predicted 

on the basis of the impulse approximation is the sticking factor. 3 At 

large angles this factor, which is essentially the Fourier transform of 

the square of the deuteron wave function, becomes quite small when only 

the S-state part of the deuteron wave function is included. Since the 

D-state wave function is sharply peaked, compared with the S-state wave 
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function, the D-state parts of the sticking factor might be expected 

to have larger high~momentum components than the pure S-~tate contribution. 

As high-momentum components correspond to large scattering angles, it is 

possible that at large angles the D-state parts of the ·sticking factor 

·may become large enough to compensate for the small D-state.amplitude. 

In order to investigate this possibility, the impulse approximation 

for the scattering of deuterons b.y carbon has been extended. to include the 

D-state contributions. The calculations, which are carried out in 

Section II, show that the D-state contributions at large angles are 

almost equal in importance to the S-state contributions but that they 

are not sufficient~ large to produce Qy themselves the large changes 

reauired to obtain agreement with the experimental results. 

A second process that would evidently contribute significantly at 

large angles is the simultaneous scattering of both particles of the 

deuteron. In Baldwin's treatment, which includes only the effects of 

processes in which a single particle of the deuteron is scattered, the 

sharp decrease in the large-angle differential cross section caused b,y 

the sticking factor reflects the large probability that the deuteron will 

become disassociated if one particle of the deuteron receives a large 

impulse. However, if both particles receive large impulses of approximately 

equal magnitudes this tendency to break apart should be reduced, and at 

sufficiently large angles this type of contribution might be expected to 

predominate over those in which only a single particle is scattered. The 
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theory for the simultaneous scattering is developed in Section III, and 

it is shown that for large scattering angles the effects of the simultaneous 

scattering indeed becomes the dominant contribution. __ 

The effects of the simultaneous scattering are important also in 

the small-angle region. In Baldwin's treatment the particle that is not 

scattered remains, in effect, undisturbed in some plane-wave state. The 

fact that Baldwin's result is too _large in the small-angle region can be 

explained, qualitatively, by noting that the amplit'll:de for the "unscattered" 

particle should evidently be reduced to account for the fact that some of 

these particles will be scattered and-hence removed from the unscattered 

beam. Simple estimates sho~ that Baldwin's results should be reduced to 

approximately the experimental values when this effect is considered. 

The quantitative treatment of this effect is obtained by considering 

the interference between the processes in which a single particle and those 

in which both pa_rticles are scattered·. The evaluation of the interference 

term requires a knowledge of phase of the scattering amplitude for the 

nucleon-carbon scattering. In the forward direction this may be determined 

b.1 the use of the optical theorem. The differential cross section 

obtained if one assumes this phase to persist at all angles is in good 
0 

agreement with the experimental results for angles less than 14 • At 

larger angles the predicted values become considerably too small, owing 

to the large destructive interference. If, as a more realistic approximation, 

the phase angle predicted by the Fernbach-Serber-Taylor model of nucl~on-

nucleon scattering is used, the interference becomes constructive at large 

angles, and the theoretical and experimental differential cross sections 

at all angles are brought into reasonable agreement; for angles less than 

14° the experimental and theoretical cross sections are in virtually perfect 
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agreement, whereas at large angles the predicted value is about 50% larger 

than the experimental value. The model of Fernbach, Serber, and Taylor 

is not a completely reliable basis for detailed considerations at large 

angles because, for one thing, polarization effects are not included. 

The results demonstrate, however, the importance of the simultaneous 

scattering processes in the scattering of deuterons both at large and 

at small angles. Results obtained by using more realistic models of the 
4 

nucleon-nucleus interaction will be discussed in a subsequent paper. 
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SECTION I. POLARIZATION FORJ.IALISM 

In. this section the general formalism for the description of the 

nonrelativistic scattering of spin-1 particles b.Y spin-0 targets is 

developed. The treatment is along the same general lines as that used 

. 5 
by Wolfenstein and Ashkin in their treatment of spin-i particles, and 

is based upon the use of the density matrix and the M-matrix. 

The M matrix that describes the scattering of a spin-1 particle 

by a target of zero spin will be three by three, and may be \~itten in 

the following form: 

A summation convention is to be understood, and 1 and . j run over 

x, y, .and z. The· s1 are the usual matrices, 

. . 

(o 0 l 

~) 
-i 0 

I 

sx = _L l 0 , S-- -L \i 0 -i 
-{2' y - {2 

0 1 .o i 0 

/1 0 :1 83 - ~: 0 - I 
I 

0 -1/ 

while 

siJ = -~(s1 S j + sj s 1) 
2 

I ~~j - 3 

(1) 

, 
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These matrices, together with the unit matrix, form a complete set in 

the space of three-by-three matrices. The Ci/ e, ¢) are made unique 

by imposition of the condition that the matrix C(9, ¢) with elements 

c1j(9, ¢) be symmetric and traceless. 

The spin state of the scattered beam may be described by the 

density matrix t> (a, ¢), which is related to e inc , the density 

matrix before the scattering, by 

f'(e, ¢) : M(9, ¢) t\nc M(9, ¢)/Tr einc 

where 
M is the hermitian conjugate of M. With this definition the 

differential cross section may be written 

I(e, ¢) = Tr f(9, ¢) 

and the average value of an operator A in the beam scattered in the 

direction (e, ¢) is 

(A) a¢ : Tr( e (9, ¢)A)/Tr ~(9, ¢) 

(2) 

(3) 

(4) 

Using Eq. -(3), one can write the expansion of {:r(e, ¢) in terms of the 

si and sij 

(5) 

. · · · · and synunetric. 
where Ti/9, ¢) will be taken to be traceless,i From Eq. (4) one then 

finds 

( si > e¢ = Pi (e, ¢) (6) 

( s1 j >e¢ = Tij(e, ¢) , 
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where the el&llentary properties of the s1 and Sij su.rmnarized in 

Table A have been used. 

The vector With components Pi is a measure of the spin angular 

momentum in the scattered beam, and will be called the vector polarization. 

These components of vector polarization, together with __ Tij' which will 

' be called the comPonents of tensor polarization, specify the state of 

polarization of the particles in the beam. In an unpolarized beam both 

the Pi and the Tij are zero:and the density matrix is a multiple of 

the unit matrix. If the incident beam is unpolarized, f inc may be 

taken as the unit matrix and 

Equations (4), (6), and (7) then give 

(B) 

1 - 1 - . 
T1j(e, ¢) = Tr 3 M(e, ¢) M(e, ¢)sij/Tr J M(e, ¢) M(e, ¢) (9) 

These equations give the vector and tensor polarizations as functions of 

the M(e, ¢). 
In a double-scattering experiment the beam is first scattered 

through 9, ¢ and is then scattered through a second angle, which will 

be denoted b,y 9', ¢'. The M matrix corresponding to the second scattering · 

is denoted by M1 (9 1 , ¢'),and the density matrix after the secon9 

scattering is, correspondingly, 
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f' (9 1 , ¢') :: H1 (9 1 , ¢') (' (6, ¢) l.f 1 (9 1 , ¢' )/Tr f (9, ¢) 

_ r•(e•, ¢•)(j +-~ P'i(9', ¢•)s1 + T'ij(e•, ¢•)s1 j) 

(10) 

The differential cross section after the second scattering is then 

! 1 (9 1 , ¢') :: Tr e' (9', ¢') 

= Tr(M 1 (9 1 , ¢') M1 (9 1 , ¢•)) 

Tr ~ M1 (9', ¢') M1 (9', ¢•)sij 

Tr 1 M I ( e I , ¢I ) J.f' ( 9 I , ¢I ) 

6 
If in analogy to Eqs. (B) and (9) one defines 

(11) 

Pt i (9 1
, ¢') = Tr ~ M' (9 1 , ¢' )M' (9 1

, ¢' )Si/Tr ~ }.1' (9', ¢' )M 1 (9 1 , ¢') , 

(12) 

then the differential cross section given in Eq. (11) may be written 
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r•(e•, ¢.•> = J r'
0
<e•, ¢') [5+~ P1(e, ¢JP. 1<e•, ¢•) 

+ T1/e, ¢) Tt iJ(e•, ¢•) 1 ' 
(14) 

where 

. I' (9', ¢') - !. Tr M1 (9', ¢•) M1 (6 1 , ¢') 
0 3 . (15) 

__, ...J 

The P(e, ¢) and T(9, ¢) given in Eqs. (12) and (13) may be called the 

vector- and tensor-analyzing powers, since they give the degree to which 

the vector and tensor polarizations of the incident beam affect the 

differential cross section after the scattering. 

The quantities that appear on the right in Eq. (14) may, with the 

aid of Eqs. (8),. (9), (12), (13), and (15), be expressed in terms of the 

parameters A(9, ¢), Bi(e, ¢), and c1j(9, ¢) which determine theM 

matrix. It is convenient, however, to first reduce these parameters to 

the forms that are imposed upon them by the requirements of invariance 

under spatial rotations and time reversal. Arguments similar to those 
. 5 
used by Wolfenstein and Ashkin show that one may write 

A(e, ¢) = · ~(9) , 

while Cij(6, ¢) must be a linear COU<bination of the terms 

(16) 
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CN(e) (N1 Nj - ~ si~> ' 

cP(e) (D1 Dj - ~ sij> , 

CK(e) (E1 Ej - ~ sij> • 

Here 

!.. = ~in X ~ut I I ~in X ~out r 

, 

. ~- = !out - ~n I. J .~out - _!sin , 

where the vectors 1\_~in and ii -~out are the incident and final momenta. 

Using the relation \,&_ ~j 1 ~~i Q.j f-_];1 ltj) : 5'1j one may write the 

matrix cij . as 

and the M matrix is reduced to the form 

(18) 

The scalar coefficients a(e), b(e), .c(e), and d(e) give a complete 

description of the scattering, and the cross section and polarizations 

may be expressed in terms of them. Carrying out the required matrix 

multiplications, one obtains 

Io = a a* + g b b* -t ~ c c* + ,g d d* 
3 9 3 

(19) 
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' 
(20) 

. (21) 

,..J 

10 Tij - same except for sign of last term. (22) ' 

These equations, when substituted into Eq. (14), will give the ,differential 

cross section after the second scattering; this is the quantity measured 

in the polarization experiments. The result of' this substitution may be 

reduced-to the f'orm7 

= I' 0(e•)(i+ itt'+ ~(uu'- v\r•)cos ~· + t ww' cos 2~ 1 ) , 
(23) 

where ~· is the azimuthal angle for the second scattering in the right-

handed coordinate system in which the intermediate beam moves in the z 

direction and the normal to the first scattering is along the y axis. 

The parameters t, u, v, and w are function-s of the scattering 

angle e, and are given in terms of the scattering par~~eters b.Y the 

equations 

10 = aai'~ t- i bb* + ~ cc* + i dd* , ' (24) 
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I0t - 2 cos 9 Re d(a -t-~ c + 1 b tan e)*-% Re c(a +-i c)* 

- l dd* - ! bb* +- ! cc* , 
:> 3 3 

2 Re b(a i- 1 c)* 
3 

I 0 v = 2 cos 9 Re d ( -i b i- a tan e t- ~ c tan e)* 

: - 2 cos 9 Re d (a + ! c t- i b tan 9) * 
3 

1 * .. - 2 Re c(a + _ c) - dd* - bb* + cc* • 
3 

(25) 

(26) 

(27) 

(28) 

The primed parameters are given by the same equations, but with 10 and 

the quantities on the right replaced by the corresponding quantities for 

the second scattering. 

An expression for 1 1 (9', ¢•) having the same general form as 

Eq. (23) has also been deduced by Lakin.
8 

In Lakin's expression the 

parameters t, u, v, and w are expressed as expectation values of 

certain spin-space operators in the intermediate beam, and the t 1 , 

v 1 , and w' are defin~ in a similar way. The expressions for these 

parameters given ~n Eqs. (24) through (28) are more complicated than 

Lakin's, but they are expressed directly in tenns of the scattering 

u' I 

matrix amplitudes. The latter are the quantities obtained directly from 

particular models for the interaction. In the following sections and naper 

these expressions are used todbtain the cross section and the asymmetr,y 

parameters predicted on the basis of the impulse approximation. 

I,. 
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SECTION II: IMPULSE APPROXIMATION \.<liTH DEUTERON D-STATE INCLUDED 

The transition matrices T1 and T2 for the individual scatterings 

of the two particles of the deuteron by the target nucleus, which is 

assumed to have zero sp~n, are defined b,y 

Mi (9, rl.) -- - 2 .I!lj_2 <!<·. I Ti f ~.') 1 I Jtl - -- J . ·- = ~i (~. T i J !t_! ) , 
47111 . 

(1 = 1,2) ' 
(36) 

where the II1j_ are the masses of the two particles and the Mt(9, ¢) are 

the corresuonding M matrices. The quantity (_~ I Ti I !<~) is the matrix 

element of Ti between the single-particle initial ~d final moment~ 

eigenstates. In the first Born approximation the Ti may be identified 

with ~hat part of the Hamiltonian which represents the interaction between 

the target nucleus and the individual particle of the deuteron. The 

transition matrix T for the scattering of the entire deuteron is 

defined, analogously, by 

M(e, ¢) = - 2 m (K I T 
4r1112 /V 

- .J:_ (K I T I K t) .,. . ...., , ... .,., 
n 

K') 
-v 

J 

where m and M(9, ~) are respectively the mass. and theM matrix for 

the deuteron, and (K J T f K1 ) . is the matrix element of T between .,...... ,,.._ 

(37) 

the initial and final deuteron momentum eigenstates. The matrix element 

of (K I T I K 1 ) (Which is a matrix in spin space) between the deuteron -- ,._ 

states o( and Ci{ 1 will be written (K r.'( I T I ~--~ 'i 1 ). In the Born __.. 

approximation T becomes the sum of the two interaction Hamiltonians, 

(38) 



.·, 

UCRL-3657 

-15-

The impulse approximation is obtained if Eq. (38) is considered to be valid, 

not only in the Born approximation, but in general. 

The momentum-space matrix elements of T i must, according to 

invariance arguments, take the form9 

(i = 1,2) 

where A k1 : i k - k I f -i -~ i , 

and the ~i are the Pauli spin-matrix vectors for the two particles. 

The normalization factor ~ is included in order that f1(~ K) . be the 

usual scattering amplitude. Introducing the relative momentum -~~ = i(~l - ~Is2 ) 

and the total momentum. _!{_.. = (~1 + js2) and using Eqs. (38) and (39), one 

may write the matrix element of T in the relative-total momentum 

representation as 

(k K r T I k I K I) = n(k K I f ' k 1 K I) 
........... -../ ·- ,,.._, ...,_ •'""''" . _, ......... 

+ n 1 ~·!_X l<-1 ~~ f. 2 ~X ~-~ ·.~ 

+ ~<~~X ! 1 T ~X~~) ·(?,"-1- ~~2) l '~-~I g I ~~ -~~) , 
(40) 

where ~:. ~(~1 -f- ~), and wher.e~ in operator notation, 10 

(41) 

Here 2L is the relative coo!-dinate ~l - ~2 , Ll K = K - K1 and ,......,- ~ ,.~ 

l\ K :: Iii~ J . The operator g is defined in the exactly analogous 
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way. If the deuteron state is labeled by the symbol i and exp(il1!:Y2) 

·. · is abbreviated by e, the matrix element of T may be expressed as 

Cot ~ 1 T I o( I ~) =. Co( I ~) '! !. J T J ! 1 ~·) (~ . ' of I) 

+ n1 g1 (LI K) { i !_ x ~ o ("j I e ~ /; 1) 

+ 2('1 I y X <y e)·~ 10{ I) f =t (a( I ecrl- §"2)·!,._x y_ li'') 

+ "2 g2{1lK) f i ~X £.o <<>( I . -1 ~ le< 1) 

+ 2(o(' y x (?__ e-1)·~- jo(')- .~ (<~ ~ e-1 (§l_- C\2)·~x ~ )e<') 

- .!_ <1 I V x K' • (~ - cr: ) e -1 \ r.-1 ') ') • 
. 2 I ~ .._ ---1 -2 . I ~, \ c42) 

Since the deuteron wave functions are all states of positive parity, a 

transformation x ·-7 -x may be performed in the f 2(1\ K) and g2<.a. K) 

terms to eliminate e-1 • Then one obtains 

~ ("( !_ f T j ~ '-~) = rCA K)(o( ~ e I ~ ') 

t g{A K) \ ~!_X!' 0 <"{ I • .S~ I o( I) + *" I Y. X (~_e)~ I~ ') ~ ' 
. . . (~) 

· where 
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and similarly for g( Ll K). The terms proportional to (~ 1 - <:> 2), 

which appear in Eq. (42), are zero in virtue of their spin-space dependence, 

and have been dropped from Eq. (43). 

The calculation of the matrix elements appearing on the right in 

Eq. (43) may be carried out in coordinate space. In this representation 

the deuteron wave function is
11 

(x I 9 1) = (r-
1

){u(r) + w(r) 

- (4Jt r 2
) ~ (u(r) + 

_, i -
512<8> ) y101 (a, ¢) 

w(r) 512(8)_,) xi (44) 

i 
where X are the three triplet-state spin functions, 512 is the tensor 

operator, 

, (45) . 

and s(r) and d(r) are the radial S- and D-wave functions. These 

satisfy the normalization conditions 

oO J-, 2 
(5-state probability) 

.-J 

96%, dr u (r) --
0 (46) 

OtO 

J dr w2(r) (D-state probability) 
,.J 

4% = - . 
(47) 

0 

When.Eq. (44) is substituted into Eq. (43) and the angular integrations 

and matrix multiplications are carried out, the M matrix reduces to the 

form 
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where the unit vectors E and N are defined above Eq. (17), S is 
~ .......... ~-

defined above Eq. (41) and a0, b0, and c0 are given b,y 

a0 - f(~ K) ) (j (!.A..!)) + <j (r.1li.) ) J l 0 2 ss 0 2 dd 

bo : (g(A K) ) K2 sine l <j (ri1 K)> t _!_ <j (.!:iLJi) '-. 
2 l 0 --z- ss 1 '2! 2 2 /d s 

_ t (j {r l\ K) \. 
2 2 /dd 

+ (g{ tt K) ) \36 1 
2 I 

- 72 i <j (r Ll K) 
2 2 

<
j (r Ll K) 

y~ 2 2 

r 
:;J_ \ 

Jr /ds 

(48) 

(49) 

(50) 

(51) 

The 12 are the usual spherical Bessel functions, and 

for aey A 
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(52) 

The (A> dd are defined analogously. When the D-state 

contributions are neglected only the terms proportional to 

<:j0( r~);>68 remain. This factor is the square root of the usual 

sticking factor. 

The expression for the M matrix given in Eq. (48) may be put in 

the form given in Eq. (17) by using the identity 

. 
The coefficients a, b, c, and d appearing in Section I are then 

expressed in terms of the coefficients defined in Eqs. (49) through (51) 

by the relations 

a = ao 
b = b0 , 

c - - co/2 

d = - c0/2 

(53) 
, 

These relations, when used in Eqs. (23) through (28), give the differential 

cross section and polarization effects in terms of the S and D radial 

deuteron wave functions and f(~ K) and g(L\ K), the two parameters 

which describe the scattering of the individual particles of the deuteron. 

In order to obtain estimates for the various expectation values 

appearing in Eqs. (49) through (51), some assumption regarding the forms 

of the radial wave functions must be made. The problem of determining 
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S- and D-state wave functions that are consistent with the known properties 

of the deuteron--in particular its binding energy, quadrupole moment, and 

13 
effective range--has been studied by Sugawara. He uses the forme 

u(r) 
- o/ r 

: N(e 
-fJr 

- e ) J (54) 

[ 
_ "6rJ2 -c< [ -{r -'(r 2] 

w( r) : N' 1 - e e 1 t 3 ( 1 - e ) +- 3 ( 1 - e 
2

) 
o( r (~ r) 

(55) 

If the percentage D state is taken as 4% and the deuteron effective range 

is approximated b,y the triplet n-p effective range, then Sugawara finds 

for the parameters in Eqs. (54) and (55) the values 

: 0.23171 x 1013 cm-l 

p = 5. 751 'Y ' (56) 

15" = 2. 922 o( 

Using these values one obtains for the various expectation values 

appearing in Eqs. (48) through (51) the values given in Fig. 1. A 

second apparently reasonable form for the deuteron wave function was also 

investigated, and it gave similar results. 

If the values given in Fig. l are used, one finds that the 

contributions to the coefficients a0 and bo in Eqs. (49) and (50) are 
0 I 

changed by less than 35% at angles lees than 30 unless J! g(Ll K)
1 
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-26 2) (A ) (measured in units of 10 em is larger than f ~ K • In the same 

angular range, Co --which was zero when D-state contributions were 

neglected--becomes roughly a0 ( -j + ~ g(A K) f-l~ K)J • Equations {53) 

and (24) then show that the D-state contributions may significantly affect 

the differential cross section, but not to the large extent required to 

fit the experimental values. For instance, if one assumes tg(d K) : i f(/:J. K) , 

then the effect of the D-state contributions at L1K: 1.8 x 1013 cm-1 

(i.e., e .-::::: 31°) is to increase a by ......,32%, to leave b virtually 

unchanged, and to change both c and d from zero to 

-~ ( -0.35 + 1.15 1( ~ g(~K) f-1(L! K)] : 0.75 a • The cross section 

is then increased by about 75%. Hm·:ever, the increase in the differential 

cross section needed to fit the experimental values is about ten times as 

large as this representative increase due to the D state contributions. 

Although the D-state effects are evidently not primarily 

responsible for the large differential cross sections at large angles, 

they must evidently be considered in any quantitative treatment of the 

large-angle scattering for which the contributions corresponding to the 

S-state terms considered in this section are important. In particular, 

since the interference between the contributions considered in this section 

and the contributions of processes in which both particles of the deuteron 

are scattered is very important at both large and small scattering angles, 

the D-state contributions must be considered in any quantitative treatment 

of large angle scattering. Detailed numerical considerations are given 
4 

in the forthcoming paper. 
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SECTION III: THE IMPULSE APPROXIMATION FOR THE SIMULTANEOUS SCATTERING 

OF BOTH PARTICLES OF THE DEUTERON 

The contributions to the scattering calculated in the prec~ing 
section are linear in T1 and T2 and contain no term proportional 

to T1 T2. Terms of the latter type would correspond to processes in 

which both particles of the deuteron were scattered. In order to treat 

processes of this nature it is convenient to use the time-dependent 

formulation of scattering theory. This section begins with a short 

formal description of that theory. 

With a slight generalization of Dirac's notation,
14 

the time-

dependent Schroedinger wave function for a single particle can be written 

'f'(~ t) : (x, t 1 tf') ($7) 

Since the vector I If) corresoonds to a function in both space and 

time, it is not the usual state vector. The usual time-deoendent 

the Schroedinger state vector is rather ( t I ~ )> 

projection of J f) upon the vector ( t I . 
Schroedinger equation may be written 

15 
The time-dependent 

(E - H) I 'f > - v I ljl > , (58) 

where E ; i 11· J/;:} t and H +- V is the total Hamiltonian of the 

particle, which is assumed for the moment to w~ve in a given potential V. 
16 

A formal solution of Eq. (58) is 

, (59) 

where (E - H) /l}! 0
) = 0. Iteration gives 
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I o/ > = (60) 

where 

G : 1/(E - H) (61) 

and ,..; 
T: VtVGV+VGVGV-r ••• 

;V 

: V + V G T 

= v + v 1 v (62) 
E - H - V 

.The pole of G is to be resolved in the usual way be assuming the mass 
-J 

to have an infinitesimal negative imaginary part. The tilde above T 

is to distinguish this time-dependent operator frorr. the similar time-

independent operator of earlier sections. 

In a scattering problem the quantity of interest is the limit 

as t~00 of f 
a (t), the amplitude at time t of final state 

f 
~ (x, t). This amplitude is, by qefinition, 

. - r <'f' Ct) 1 lJICt)} : 

where the dot in J t > • ( t I signifies that the integral over dt 

that is otherwi~e imnlied is not to be performed. The vector 

'
Wo) . like 
7 

, is to be a solution of the homogenous Schroedinger 

equation, 
f 

(E - H) I 'f > = 0 

(63) 

, 

(64) 
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Substituting Eq. (60) into Eq. (63), one obtains 

(65) 

whe~e 8t abbreviates r t >· < t I . This expression for af(t), 
~ 

when T is expressed in its power series form and t is evaluated at 
. 17 

t-oo , will be recognized as the one used extensively by Feynman. The 

time-dependent Green's function operator G is just (ih)-l times the 

free-field one-pa~icle Feynman propagator. This propagator-oroperty of 

G is expressed by the equation18 

< 'ff / g t G I t' ) = (til) -1 < tj-l l et I t') , (66) 

where et is· the operator defined by 

f t I > 9( t - t I) , (67) 

9(x) being the usual step function 

9(x) : f 1; 0 } for X ~ > 0; 
(68) 

With the aid of this property of G the expression for af(t) becomes 

Taking the limit t ·-> '>(> , and assuming the initial and final states to 

be orthogonal, one obtains the transition matrix element 

ME : 11m ar(t) - (70) 
t-'lco 

If V is time-independent, the computation of the time part of the matrix 

element ME is trivial. Expressing the operator G in the representation 
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where E 
. 19 

is diagonal, one obtains immed~ately 

. <:..0 . 0 f 

ME -
.. ~ 

( 

r_ · -i( w - w )t 
\ e dt 

d . 
-=AJ . 

x (~f(o) / T(ih)-1 I yVo(o)) 

. (71) 

/'V 
where T is T with the operator E replaced by E0 , the energy of the 

state I 'f' 0 > . The frequencfies uY· and u../ are those of the states 

. { ~0 > · and J tfJf) 1 which have now been assumed to be eigenstates 

of energy. The transition rate is 

l ME.. 12 -1 
(time) = 

(72) 

which is the familiar transition-rate formula. It gives for the 

differential cross section the usual expression 

cr- (6) = (73) 

where the quantity inside the absolute value signs is the scattering 

amplitude f(a). 

This same method will now be applied to the case _of the 

simultaneous but independent scattering of the two particles of the 

deuteron. The solutions for the independent scattering of the two 

particles are 

(74) 
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·and 

(75) 

In the direct-product space of the two particles, 

= {1 +- Gl Tl t G2 'T; + Gl G2 ·.rl-T2) ) 4'10 tf20> 
(76) 

The first term contributes the unscattered wave and the second two terms 

are those considered in Section II. In this section the last term is 

considered. 

If the two particles were noninteracting and scattered independently, 

the contribution of this term to the transition matrix element for the 

I UJlr dJ2r > final state 
1 

• 1'· would be 

(77) 

For the case of deuteron scattering the incident and final states are not 

independent plane waves but are bound deuteron plane wave states. To 

obtain the impulse approximation for this problem, the free-particle initial 

and final states that occur in Eq. (77) are re?laced by the bound-deuteron 
~""'· , ... , 

states, but the transition operator T1 T2 is assumed to be unchanged. 

Thus the transition matrix element is 

.. ..., -v -2 
ME = { K , I Tl T2 I K I i.~ I ) {tli) 

' I 

, 



UCRL-3657 

-27-

where o( designates the relative coordinate part of the deuteron state 

and K1 and K denote the initial and final energy momentum corresponding 

to the center-of-mass coordinate. The connection between the form of the 

impulse approximation proposed here and the more usual time-independent 

form will be discussed in a later paper. 4 

To evaluate ME one may first express it in the form 

(79) 

r; '"to ,,., r.J J d '( J dt < K of I l. t / • < 1: t I T l T 2 1 K I ·i I > ( ifi) -2 

' 

where "t! is the average time ~(t1 + t 2) and t is the relative time 
..J -v 

t 1 - t 2 • The operators T1 and T2 contain an explicit dependence on 

time because of the operators E1 and E2 • In the spirit of the impulse 
0 0 

approximation these latter operators may be replaced by E1 and E2 , 
,..,_, . ...J 

the appropriate free-particle energies. Then the T1 and T2 become 

the time-independent operators T1 and T2, the transition matrix operators 

which describe the scattering of the individual particles in accordance 

with Eqs. (72) and (73). Since the tL~e dependence is now removed, the 

vector < t r( j may be moved through the operators and dotted into 

J K' "'\ 1
) on the far right, giving 

ME = cS d 1' 5 dt ( K 'l Ct, t) I T l T 21 K I ~ I ( r, t)) ( rl1) -
2 

(80) 

The dependence of / K 1 '-i 1 ( '(, t)) on the average time ( is 

exp -i ...l)_l r, where ... ("L.,I}l = E I is the total energy of the deuteron with 
20 

momentum K1 • Removing this factor, and the similar factor for 
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( K o\ ( t, t) I , one obtains 

c.>tO . <::>0 . 

ME = (i.li) -~1· i(.il - JL• )1' dt J dt ( K o( (o, t) \ T
1 

T
2
1 xl o( 1 (o, t~ 

---~ 

= (rli) -
2 

21/ I (-<"l. -_[)_I lj""dt (K "( (0, t) I Tl T2 I K IiI (0, tl) 
-00 (81) 

Before the integrand in the above equation for the general case 

is evaluated, the special case t = 0 will be treated. rfuen the relative 

time t is zero, · J K Of (0, t)) and I K 1 c.( 1 (0, t)) are just the 
. 21 

usual time-independent eigenvectors. · These will be denoted by I JL q ) 

and I !_1 or I) in accordance with the notation of earlier sections. 

The calculation of (~ a( J T 1 T 2 J _!<_) '~ 1 ) is straightforward. Denoting 

. the relative momentum ~~+ - .!_{2) by k, and total mome~tum ~l +-~2 
by _!, where ~l and --~2 are the individual· particle ·momenta, one may 

t~rrite10 

(of! I Tl T2 I e( 1 ~) = (~ J ~)(!:!S_ J Tl T2 J ~ -~1 )(k 1 I ~ 1 ) 

= (9' J ~)(~ -~ I Tl/ k" !£')(~" !C~" I T2/ kl ~I) ~I J 0{ 
1

) 

To obtain the last line the relation22 
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(83) 

and a similar relation for T2 have been used. It has been assumed that 

· Qcl f T1 I .... ~1 

1) : T1 (~1 - k 1 

1 ) is a function of momentum transfer. Only 

. the spin-independent contributions to T1 and T2 are considered for 

the moment. 

The expression ( 9 J exp i(!_+- £ - 2~~) ·~ ~ J o{ 
1
) is the Fourier 

component of the square of the deuteron wave function. If only the S-state 

part of the deuteron wave function is considered, then 

(1 J exp i(!_. + ~~ - ~1 ) ·~ ~ J ~ 1
) is a function of \ K + K 1 

- 2K" I J ~ .-(_.- .kb.-

with a m~· at K" = '(K 1 +- K) and with the sharpness of the peak ......., ---:- ........... 

varying i·nversely as the size of_ the deuteron. In the limi~ in which the 

impulse approximation becomes exact, the deuteron is very loosely bound 

and very large in ~tent. The wave function of the deuteron in· momentum 

space is then sharply peaked. For this limit T1 (}L- ,!S:) and T2(JS:- £) 

can be considered slo,.,rly varying functions of K", and may be evaluated at .,_ 

K 11 = ~fK 1 + K) and taken out of the integral. This gi vas 
If'<• \:.:. -

(~ 1S I Tl T21 9' !5_1
) --....1 Tl (~ L1 K) T2(~ 11 K) 

(' d3 Kll I . I 
x \ ( o( exp i (~ t £ - 2!'~) ·t :._ '{ 1 

) _ . · ... ~J (2n' )3 -~ 

. 2 
= Tl <! ll K) T2(i Ll K) 1 ¢(0) I , (84) 



(• 
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and ¢(0) is the deuteron wave function 

In order to extend this result to the case t ·~ O, some assumption 

regarding the relative time dependence of the deuteron wave function must 
' 

be made. This question of the relative time dependence is a familiar one 

in the history of the attempts to use multitime wave functions in bound­

state oroblems. I.evy and Klein23 assume that during the time interval 
~ . 

between the two times t 1 and t2 the particle whose time is later 

m.Oves as a free particle. The slightly different assumption made here 

is that the second particle remains in the deuteron state. More precisely, 

it will be assumed that for a deuteron at rest the wave function is. 
. -1 

¢(x) exp(E t1~ E t 2)(2ik) , where E is the deuteron total energy • 

Over the short period of the collision the difference between wave functions 

obtained by using the two different assumptions is small for high-energy 

deuterons. 

The generalization of this ax~ression for the wave function to 

the case of a moving deuteron is obtained by making the Galilean 

transformation ~ -t -~ - _.!t1 , .~2 -) ~2 - ~2, where .!... is the 

velocity of the deuteron. The relative coordinate part of the deuteron 

wave function is therefore 

¢(x-, t) - ·''· = ¢(x - vt) .. ..., ...._ 
(85) 

where t is the relative time t 1 - t 2 • The integrand in Eq. (81) may 

2 
now be obtained from Eq. (84) by replacing . J ¢(0) J by 9f"(-~) ¢(-y_'t), 

where v 1 and v are the initial and final velocities of the deuteron. 

This gives. 
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00 

ME : (111) -
2 

271 ~(Il. -.fl. I) Tl <! 11 K) T2(i L\ K) s dt I ~(vt) 1
2 

_0<!) 

(86) 

This equation expresses the fact that for the simultaneous·-

scattering process the effective transition matrix is the product of the 

individual transition matrices times (i'fi)-l times an average time for 

the collision. Another form of the equation is 
oD 

ME - (i.Jl)-
2 211' Jc.o.- .!1.') T1 (/p'l K) T2(! ll K) 2 s '!.'" l ¢(r) ( 

0 

/ r-2) where "\ is the expectation value of 

2 (r-2) ·' 
41/ v 

-2 . r · for the deuteron. 

formula for the scattering matrix element is similar in form to,. and 

consistent with, an expression for the forward-scattering amplitude 

(87) 

This 

. . . 24 
derived by Glauber. It gives a contribution to the differential cross 

section of 

6 (j(6) = 
T1 (~ fl K) T2(i 6 K) 

(ifi) 

2 

(88) 

where m is the mass of the deuteron. The quantity inside the absolute-

value signs is the scattering amplitude. With the aid of the expressions 

for the individual particle cross sections given in Eq. (73), Ll o-(9) 

may be expressed as 

(89) 



,. 

where 

-1 
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Here K ·is the incident momentum of the deuteron. There is, of course, 

also a contribution to the cross section from the cross terms between the 

contributions to the scattering amplitudes due to the G1T1 + G2T2 parts 

of the scattering matrix and the contributions considered in this section. 

To get an idea of the order of magnitudes, some typical values may 
25 

be inserted in the above formulas. The measurement by Strauch of the 

0 
proton-carbon center-of-mass cross section at AJ84 Mev and at 2?.2 

is about 50 mb. With the parameters given in Section II, the value of 

( r-2> for the deuteron S-state is .rtJ 0.68 x 1026 em -
2

• The value 
. 13 -1 

of K for a 157-Mev deuteron on carbon. is AJ 3.3 x 10 em • This 
. . ··'· -26 2 

gives o-0 ~ 1.47 ~.10 em • The contribution to the cross section 

is therefore 

(2500/14.7) mb ,...., 
·"'-·~" 170 mb. 

Because of the difference in energies the corresponding scattering angle 

for the deuteron scattering is about 31.5° (c.m.). · There the center-of-mass 

cross section is about 10 mb. 

This large discrepancy between experiment and theory is due, in 
and hence large. 

part, to the assumption that the deuteron is very loosely bound/ Although 

the imculse approximation becomes valid when this condition is satisfied, 

the condition is in fact not satisfied here. In particular, the deuteron 

is not a large object in comparison with the scattering nucleus, and the 

transition between Eq. (82) and Eq. (84) is not legitimate. It is necessary, 
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therefore, to obtain a more exact treatment of Eq. (82). 

In order to carry out explicitly the integration over K11 in 

Eq. (82), the forms of T1(K- K11 ) and T (K 11 - K1 ) 2 must be prescribed. 

The cross-section data of Strauch for 96-Mev protons on carbon may be 

represented to an accuracy of 10% in the range between 15° and 40°, and 
26 

qualitatively at all angles, by a scattering amplitude of the form 

where y = .6. K and the parameters are 

10.83 X 10-13 
o( cl = em, -- 4.68 X 10-26 2 em , 

0.42 X 10-13 -26 2 
c2 = em, f3 = 0.72 X 10 em , 

-13 {(' -26 2 
c3 = 0.27 X 10 · em, = Oo34 X 10 em 

(92) 

This form will be assumed to represent the scattering amplitude of the 

neutron as well as the proton. In order to simplify the calculation the 

S-state deuteron wave function is represented by a gaussi~n: 

-x2/2R2 
¢(x) = N e ......... 

27 13 2 +13 -1 3 
with R -- 2.64 x·· 10- em d N 0 00973 (10 ) an = . em . • 

integrations may then beeasily performed to give 

(93) 

The 
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00 

Jdt(Kqr(O, t) I Tl T2' K' 1'(0, t)) = X 

-~ 

(94) 

where 

~ 
2 . \ ~ 

R ' 
R

2 
-t 4x sin

2 
e/2 } 

(95) 

r (x, y) : r (X ! Y) exp { J<x - 7) a llJ 
R + 2(x t· y) 

(96) 

Here a = I i<L- r) J and 9 is the angle between Land £. 
Equation (39) has been used to convert the expressions for t1(~ K) and 

t 2(Li K) to those for T1 (.6. K), and T2( Li K). The contribution to the 

cross section ..6 o- is 
oe· 

(

-2m.\ 

411~2/ 
i \ 5 dt ( K ·"! (0, t) I Tl T2 J K' "'' (0, tl) I 

2

' 

_oe; (97) 

which, with the aid of Eq. (94), becomes 

= ~lm:2) y r , (98) 



UCRL-3657 

-.35-

\"/here Y represents the large bracket on the left-hand side of Eq. ( 94) • 

The quantity inside the absolute-value sign is the scattering amplitude. 

The correspondence between this expression for ~ ·cr- and the earlier 

expression in Eq. (89) is seen if one notes that when the wave function 

( 3) f < r~> is given b,y Eq. 9 the value o '»" 2 -is 2uN R i~, and that 

in the limit R ---,QO the quantity J Y I 2 
approaches a11 ~ . 

The above computations can be generalized to include also the 

spin-dependent contributions. ln order to include these the soin-dependent 

part of the individual-particle transition matrices must be considered. 

The general form of the single-particle transition matrices given in 

Eq. (39) is 

(99) 

These forms may be substituted into Eqs. (82) and (81) and the calculations 

carried out if a sufficientlY simple form is used for giVdki). A not 

unreasonable assumption is that gi (~ ki) and fi (Aki) may be represented 

by the forms 

(100) 

and 

(101) 

where fa(t1 k1) is a real function of the form given in Eq. (91), x is 

a phase factor, and y is a complex constant which determines the phase 

and strength of the spin-dependent term. The general form specified in 

Eqs. (100) and (101), but with arbitrary fa, is what is obtained in the 

Born apnroxi~tion if the real and im~ginary potentials have the same 



,. 
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form factor and if there is a spin-orbit potential proportional to the 
. 28 . . 

gradient of this fonn factor. Us1ng the fonns given by Eqs. (100) and· 

(101), one obtains for the quantity X, defined in Eq. (94), 

+ l<?:l·Nj(~2·.N) l ft ein
2 e I !.t y- ~ r~l cos

2 ~ z 

·;... J K J 
2 

cos 
2 ~ Z" 

J ~ 2/ sin2 ~ 2 
-"--~2-...:::.=. Y f- t I ~~ I sin 

2 
9 Z' 

·- 2 2 R 

+ -:-2 + .Z.. + 3 cos - sin ~ Z 2 Z" . 2 Q 2 .,J f 
R R2 2 . 2 

Y Z 2 Z" 2 9 + :2 +·--:T teas ~ 
R R 

T l<.Tl~)(~2 ·E) {- i j K J
2 

cos
2 ~ Z t R~ -t- sin

2 ~ ~}] • 

(102) 

The unit vectors N, D, and E are defined follornng Eq. (16), and 
..-u..,... ..._ .... "'--. 

the Y and Z's are defined by 
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·• 
{cl

2 r <.Y) t- c}r <(3) t- c3 2r (){) t- 2clc2n<>j 'p) y --

... + 2c1 c/7 
("{, <r) + 2c2c3r<f, ~ )} J 

,. 

z - { cl2r (of) c22r<p) c~ 2 r<"!) 2c1c2 r<os, f1) 
- + 2 f" 2 + 2 . 

. R
2

+4e( R + 4p R +4?f R + 2~ f- 2fJ . 

+ 
2clc3f(of, ~) 2cic'Jr<p. 'lfl J 

' 
R

2 + 2<{ f. 2 '2f 
t- 2 

R +:' 2p t 2 Cf 

2 . 
. { c 1 r ( 4 ) c22 r ( p ) c/ {' (7{) Z' : 

2 2a-t 2 2a·+- 2 2 
R + 44 sin 2 R t 4 f3 sin 2 ·. R + 41!' sin ~ 

+ 
2cl c2 r <c:l , p ) 2cl c3 r ("/ , 1() . +-

R
2 + (2tj + 2j:1)sin

2 ~ R
2f (21 't 2f)sin

2 ~. 

t- 2c2c['<P. n ; } 
' 11: 

' R
2+ (2f3 t- 2?t')sin2 ~. 

Z" : 2cl c2 r ( cj , p ) L; -,Pl I!. I sin ~ r 
R + 2'1 t 2 p . 

2 

~ + 2clc3 r<ot ,lfl r<~- ¥JI ~I •in ~ J 
' ·. . R + 2~ + 21S' 

... 

t- 2c2c3P<J3' 1{) ['p- <fl I £1 sin~ T , 
R

2 + 2jlt 2 ¥ 
/ 



,J 

z = 

_, 
Z' -

+ 

UCRL-3657 

-38-

+ J 

c3 2r ( (() 2clc3r (c( J p) 
----~------------- + 
(R

2-t 4"'f sin
2 ~ ) (R

2 + 4 tf) (R
2+ (2t::/T 2fJsin

2 ~) (R2 + 2q-t 2fl) 

(103) 

The formulas given above were calculated with the assumption that 

the phase of the scattering amplitudes r1 and gi were angle-independent. 

Although this is true in the Born approximation, it is certainly not 

completely correct. In the limit of a large deuteron the calculations may 
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be carried out for arbitrary fi ·and g1 • For this limit the deuteron 

scattering amplitude at a given scattering angle depends on the nucleon­

scattering amplitudes only.in the immediate neighborhood of this same 

.scattering angle--as may be seen, for example, in Eq. (88). When the 

deuteron is not assumed infinitely large, a first approximation for the 

phase may be obtained b,y assuming the phase of the nucleon-scattering 

amplitudes to be constant at that value which the phase assumes at the 

angle for·which the deuteron-scattering amplitude is being calculated. 

The same appra,ximation- can be made for the ratio of f1 and gi as a 

function of a~le. With these approximations Eqs. (102), (94), and (81), 

together with Eqs. (48) through (53) and (23) through (28), give the 

differential cross section and polarization effects in the scattering of 

deuterons explicit~ in terms of x and y, the parameters that give the 

phase and relative magnitud.es of the scattering amplitudes fi and gi; 

• and the function fa, (x) that determines the magnitude of the scattering 

amplitudes for the scattering of the nucleo~s. If the spin-dependent 

effects are omitted b.Y setting y = 0, then the value of fa(x) given 

in Eq. (91) may be used, anq the only variable is the phase factor x. 

This phase factor may be determined at small angles b,r use of the optical 

theorem. At other angles it is necessary to use some detailed model of 

the nucleon-nucleon interaction. The results obtained by use of the model 

of Fernbach, Serber, and Taylor29 were described in the introductory section. 

The numerical details of these results, together with considerations of 

more realistic models that include polarization effects, will be_Aiscussed 

in a subsequent paper. 
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APPENDIX A 

This appendix contains a brief description of the operator 

notation that is used in the body of the text. The notation is that of 

Dirac, to ~mich several conventions are appended. For those unfamiliar 

with the operator techniques some examples are provided. 

In Section II the symbol / a) represents the state vector 

corresponding to the wave function (x I' a) = a(x). The symbol (b I a) 

is a scalar equ~ to (a I b)* and may be defined as 

(b I a) ~ dx b*(x) a(x) 

Since (b I x) is equal to b*(x) on_e may write 

(b I a) = (b I x) (x I a) 

if- an integral over dx is implied by the repeated "index" x. 

The symbol k is reserved for the vector corresponding to the 

momentum eigenfunction. In particular, 

(x J k) - k(x) - exp i kx 

One may then write 

(k J a) : (k I x) (x f a) :: ,S dx exp -i kx a(x). 

Thus (k / a) is the fourier transform of · (x I a). The inverse 

relationship is 

(x I a) = a(x) = f dk exp i kx (k f a) L21f 
This relation may be expressed as 

(Al) 

(A2) 

(A'J) 
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. (x I a) : (x I k)(k I a) (A4) 

it' the sum over the repeated 111ndaxn k is interpreted a.s · S dk/21/' . 

This convention will be adopted. The relationship (A4) is readily 

extended to the more general identity 

(a f b) = <a I k)(k I b) (A5) 

From (A5) _and (Al) one may obtain the formal identities 

(X \ ~I ) - 8 (X - X I ) , 
(A6) 

<k 1 k 1 > = 21/ g (k - k 1 > , 

where the quantities . g (x - x 1 ) and S(k - k 1 ) are Dirac delta. 

functions. Also obtained are the operator identities 

I x)(x' J : I J (A7) 

where I is the identity operator. 

If there are two particles present the state vector is a function 

of two variables: 

(A8) 

An alternative _SJq)ression is in terms of the coordinates X : i(x1+ ~) 
·and x : x1 - ~· By definition we take 

(x X J a) _ a( x1 (x, X), x2 (x, x)) 

= a(X t AX, X - ~x) 

= (x. X j ~ x2.)(x1 x2 J a) (A9) 
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T~is_definee (x X t·x1 x2) to be S<x1- x1(x,x)) 8(x2- x2(x,X)) • 

Similar considerations may be applied to the momentum representation. The 

evaluation of the expression appearing on the left of Eq. (41) of the text 

then proceeds as follows: 

n: '! ~ I f I ~' !.~) = (~ ! J Tf I ~-' ~) 

= q~ ~- I T 1 r + T 2f I !<: £) 

- (~ ! ~~1 ~2) ~1 !2 I T1f +- T2f I 1S1 ~2)(!_\ i 21.i .£) 

= (!_! /.!1~) f <2 11'>
3 g~ - !' 2)(h I T/ li!\) . 

+ (2f1')
3
$ ~1 -~\)(k2j T/} k'2)~ ~1 i2l ~ ~) 

- · ( 2 f( ) 3 S ( l A .!S - _t +- ~ ) n1 r 1 C.t1 K) 

f' (21/)
3 .S (iLl!,._~£_-!.! )n2 f2( L\ K) , 

where Tf, T1f , and T2f represent the parts of the T and T1 matrices 

proportional to f (see Eq. (39)) • The expression ( 211)"8 (!A JL- .!s i- ~) 
may be written as (k / exp !. 4 K•x I k'', where x is here to be 

- 2 -- .,:_, -

interpreted as an operator. The operator ~ is defined by the equation 

J- x)x 
fjpp. -

, 



UCRL-3657 

-44-

.where on the right ~ ...... is an eigenvalue. (and hence a scalar). With the 

aid of this property one may write 

(AlO) 

where in the last line x is a number. (At a slight risk of confusion 
. r'-<./ 

the primes which Dirac uses to distinguish operators from eigenvalues are 

not used here.) The desired result follows immediately: 

S -i k·x 
dx --. e 

4. ..,._, • 

i L\ K·X 
~ -~···-e 

ik' •X - _ .. 
e 

= (All) 

An important special vector is the vector I ajl) , which represents 

the state of the system. In the Schroedinger representation (picture) this 

vector is time-dependent, and may be expressed as 

depenctent wave function is 

(x J \f (t)) = W (x, t) . 1 ~~ 

I ~(t)) . The time-

As a natural generalization of the formalism described above one may treat 

the.time coordinate on the same basis as the space coordinate. When the 

bra and ket vectors are generalized in this way they will be represented 

with;angular brackets. Thus 



I~ 
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The vector < x J : < ~ t J is the tensor (direct) product of the 

vectors (x J and ( t f The quantity 

< t I "P> = I ep<t>) (Al2) 

is a matrix element and hence a scalar function with respect to the "time" 

part of the vector f ~;> , but it is still a vector with respect to the 

"space" part.; one must multiply J {jJ (t)) by a vector (a I 
·to obtain a scalar. 

in order 

In analogy with the momentum eigenvectors { k) introduced before, 

the energy eigenvector f (AJ~ may now be introduced. It is defined by 

<t J w) = exp - i ~Pt (Al3) 

and is an eigenvector of the energy operator E = iir a I J t . ; 

, (Al4) 

where on the right E = -11 w . \<lith the aid of this equation the operator 

equation 

(Al5) 

may, for the case in which H and V are independent of time, be expressed 

as 

l (,u0
) (_ V tV 

1 
V ~ l tiu.P-H-V J 

(Al6) 
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This is the relation used in the transition between Eqs. (70) and (71). 

As a final illustration of the notation, the fundamental propagator property 

given in Eq. (66) will be derived.- Displaying explicitly the imaginary 

infinitesi.rilal i f. , one may v.Tite 

. < t ' G I .tl > < t J E - ~ + i& J t > 

= 1 

= S 
-iW(t- t 1 ) 

. ~ ;( e ilw _\ + if.. 

= 9 ( t - t I ) [ exp - i ~ ( t - t I ) 1 ( 1/ rli) 

Thus 

<crf r t >·< t J G I t 1> = e(t- t
1Hrllt1 

'(o/f' t~ 

if r (t) is a soluti~n of (E - H)(~> = O. It has been assumed 

here that H is not a function of t, but the relationship is actuallY 

valid more generally. It was also assumed that the frequency W was 

positive. For negative frequency eigenstates the factor e(t- t 1 ) is 

replaced by -9(t 1 - t) .: and the propagation is backward in time, in 

accordance with the ideas of Feynman. 
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TABLE A 

r· l. 

5. (Prove using 6) 

6. 

' . 

7. · 51 5 j sk .. - ~ [81 j sk:+ Gjk 51~i+ ~[six j,k+sj x k,i -sk x i,j] 

+ ~ Eijk I 

s . = l:ijk 5r j X k -

sj x k,Q -
f:ijk 5i,.fl --

.. 1 if i, j, k are cyclic 

£ijk 
'· 

- -1 ' if 1, k, j are cyclic 

0 if i, j, k are not all different. 
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(• 

TABLE B 
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TABLE C 

Tr Sij Sk.£ Smn is independent of the order of the three factors. Each 

factor itself is unchanged b.Y an interchange of the order of its two indices. 

The [ ~ means the contents of the bracket is to be . 

eymmetrixed with respect to interchanges of the orders of each element of 

the pairs ij, k 'R , a~. mn, a11:d also with respect to interchanges of 

the pairs with each other. Thus 
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FIGURE CAPTIONS 

Figure 1: · Cl.u-Ve (1). is /jo< ~ ) ' x P -1 
'' 2 /sa a ' 

.. 
Curve (.3) is (r-1 j ( ~ ) ) x P -

1 
, 

1 2 dd d 

CurVe (5) is 

The wave functions us~j are those of Sugawara that are given 

in Eqs.· (54), (55) arid (56) of the text.. The ordinate for 

( ) 1.3 -1) Curve .3 is in units of (10 em and the ordinate for 

.v 

. 13 1 2 ·. 
Curves (6) and (7) is in units of (10 em-) • ?

8 
and Pd 

are the deuteron 5-state and D-atate probabilities respectively. 
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